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0. Introduction

We consider higher order quasilinear elliptic partial differential equations
of the form

(0.1) (- \)mΔmu + σf(\x\, ii, ΛH,..., Δm~lu) = 0, xεRN,

where m ^ 2, N ^ 3, σ = + 1 or σ = — 1, \x\ is the Euclidean length of
x = (x !,..., Xjy), and Δi denotes the i-th iterate of the JV-dimensional Laplacian
A = £*= 1d 2/dXfc. It is always assumed that the function / in (0.1) is
continuous on [0, oo) x Rm and satisfies the sign condition

(0.2) ιι0/(ί, MO, M!,. . . ,M m _ Λ ^ O , ^0 for (£, MO, M1,...,Mm_1)e[0, oo) x JT.

A prototype of (0.1) satisfying (0.2) is the multi-dimensional generalized
Emden-Fowler equation

(0.3) (- l)mΔmu + σp(\x\)\u\y sgnw = 0, xεRN,

where 7 > 0 and p is continuous on [0, oo) and p(i) ^ 0, ^ 0 for ί ̂  0.
We are concerned with the problem of existence (and nonexistence) of

radial entire solutions of (0.1) which have no zero in RN. By a radial entire
solution of (0.1) we mean a radially symmetric function u(\x\)eC2m(RN) which
satisfies (0.1) at every point of RN. The study of this problem was initiated
by Walter [20, 21] and followed by Walter and Rhee [22], Kusano and
Swanson [13], Kusano, Naito and Swanson [10-12], and Usami [19]. In
particular, it is shown in [11] that the equation

(0.4) (- \)mΔmu + σ/(|x|, ι<) = 0,

generalizing (0.3), may possess a variety of positive or negative radial entire
solutions with different types of asymptotic behavior as |x |->oo.

The purpose of this paper is to provide a theory which unifies and furthers
basic theories developed in [10-13] and which enables us to obtain detailed
information about the structure of radial entire solutions with no zero of
equation (0.1). Our theory is based on the fact (Theorem 2.1 below) that a
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radial entire solution u(\x\) of (0.1) which is either positive or negative
throughout RN satisfies the inequalities

(05) f " ( W ) ( Λ ' n ) ( | x | ) > 0 for all large I x I, O g i g j - 1 ,
j \(-l)ί-ju(\x\)(Λiu)(\x\)^Q for all x, j^i^m,

for some integer ye{0, 1, 2,...,m} such that

(0.6) j is odd in case σ = 4- 1, and j is even in case σ = — 1,

or, in short, ( — l ) J + 1 σ = l . It should be observed that this fact is quite
similar to the following theorem, known as Kiguradze's lemma [4, 5], regarding
the ordinary differential equation

(0.7) (- l)Vm) + σ/(ί, y, /,...,y ( m~ 1 }) = 0, ί > 0,

where w, σ and / are as in (0.1):

THEOREM 0.1. If y(t) is a nonoscillatory solution of (0.7), then there exists
an integer ./e{0, 1, 2,...,m} such that (0.6) holds and

(0g)

/or α// sufficiently large t.

In view of (0.5); and (0.8); it is natural to conjecture that the structure
of radial entire solutions having no zero of (0.1) is similar to the structure of
nonoscillatory solutions of (0.7), and that, with suitable modifications, known
basic results for (0.7) can be carried over to (0.1). In this paper, efforts will
be made to verify the truth of this conjecture.

For this purpose let us review the basic results for nonoscillatory solutions
of (0.7). Denote by Jf the set of all functions yeCm that are defined and
have no zero on some half-line [Ty, oo) and satisfy (— l ) m σ y ( t ) y ( m ) ( t ) ^ 0 for
all large ί. A nonoscillatory solution y(t) of (0.7) clearly belongs to JΛ For
an integer je{0, 1, 2,...,m} satisfying (0.6), let Jf^ denote the set of all ytJf
that satisfy (0.8)7 for all large ί. The set Λ^ is often referred to as the
Kiguradze class of degree . In view of (0.8)7 it is easily seen that if ye J/}
for 1 ̂ 7 ^ m — 1, then there exist positive constants cί9 c2 and T such that

(0-9) c^'1 ^ \y(t)\ ^ c2t
j for t ̂  T,

and y(t) has the integral representation

«o,o,
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for t ^ T; where y(j)(ao) = lim y^(t) as t -> oo. From (0.9) and (0.10) it follows

that exactly one of the next three cases holds for each ye^Vj, 1 ̂ j^m— 1 :

y(t)(0.11) lim — - exists and is a nonzero finite value;

(0.12) lim = 0 and lim - = ± oo
ί->oo tj t^ao tj

(0.13) lim -T— r exists and is a nonzero finite value.
ί->oo tj~l

This admits a further classification of Jf j for 1 ̂  7 ̂  m — 1 :

(0.14) Λ'j = Λ/}[max] U Λ^ [int] U Λ} [min] ,

where J/} [max] , Λ^ [int] and Λ/} [min] denote the sets of all y e Jf^ satisfying
(0.11), (0.12) and (0.13), respectively. The study of the existence (and

nonexistence) of nonoscillatory solutions in the Kiguradze classes Jf 3 and the
three subclasses of ̂ } appearing in (0.14) has been one of the central problems

in the qualitative theory of ordinary differential equations of the form (0.7);
see, e.g., the papers [2, 8, 9, 16, 17, 18].

Consider the generalized Emden-Fowler equation

(0.15) (- l)my(m) + σp(ί)l3>Γsgn y = Q, t > 0,

where y > 0 and p is continuous on [0, oo) and p(t) ^ 0, ^0 for

t > 0. Equation (0.15) corresponds to (0.3). Fundamental and important
results for (0.15) are the following theorems.

THEOREM 0.2. Let j be an integer such that (— i y + 1 σ= 1 and l^j

^m-L
(i) Equation (0.15) has a nonoscillatory solution of class ^-[max] if and

only if

(0.16) I tm~j-l+yjp(t)dt< oo.
Γ00

r~j-
Jo

(ii) Equation (0.15) has a nonoscillatory solution of class «Λ^ [min] if and

only if

(0.17) I tm~j+y(j~l)p(t)dt< oo.ΓJo
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THEOREM 0.3. Let j be an integer such that (— iy+1σ= 1 and l^j

(i) If (0.15) is strictly super linear, i.e., γ > 1, then a necessary and sufficient
condition for (0.15) to have a nonoscillatory solution of class Λ^ is that (0.17)
is satisfied.

(ii) If (0.15) is strictly sublinear, i.e., 0 < γ < 1, then a necessary and
sufficient condition for (0.15) to have a nonoscillatory solution of class Jf^ is
that (0.16) is satisfied.

The problem of characterizing the solutions of class ^[int] has been
settled for the strictly sublinear case of (0.15), whereas it remains open for
the strictly superlinear case.

THEOREM 0.4. Let j be such that (— iy + 1σ = 1 and 1 ̂ 7 ^ m — 1.
Assume that equation (0.15) is strictly sublinear, i.e., 0 < γ < 1. Then, equation
(0.15) has a nonoscillatory solution of class ^-[int] if and only if

: oo and

tm-j+y(j~1}p(t)dt= oo.

Surprisingly, all the corresponding results also hold, with slight modifi-
cations, for radial entire solutions of (0.1) without zero in RN. Let Jf denote
the set of all radial entire functions u(\x\)eC2m(RN) that have no zero in RN

and satisfy (-l)mσu(\x\)(Amu)(\x\)^Q for xeRN. For an integer ;e{0, l,2,...,m}
with (- iy+1σ = 1, denote by Jf} the set of all u(\x\)e jf satisfying (0.5),-. It
can be shown that if ueJfj for l^j^m — 1, then there exist positive
constants c^ and c2 such that

(0.19) Cilxl 2 0 ' " 1 * ^ |n(|x|) | g c2\x\2j for all large |x|,

and M ( | X | ) is expressed as

(0.20) ιι(|x|) = 'Σ pN(k)(Λkum\x\2k + pN(j)(4u)(<x))\X\
2J

fc = 0

+ (- l)m~jΦj

N Ψ™-j(Amu)(\x\), xeRN,

where

(0.21) p*(0)=l, pN(k)=\/l2kk\N(N + 2)...(N + 2k-2)] for k = 1, 2,...,

and Φj

N and Ψ%~j denote, respectively, the -th iterate and (m — j)-th iterate
of the integral operators ΦN and ΨN defined by
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(0.22)

Kiguradze classes

= t~
N+2
 Γ s

N
~

3
 Γ rh(r)drds, t ̂  0,

Jo Jo

= t~
N+2 s

"~
3
 rh(r)drds, t ̂  0.

Jo Js

osition of <#}, 1 ̂ j ^ m — 1, is formula

(0.23) (ΨNh)(t) = t~N+2 sN~3 rh(r)drds, t ^ 0.
Jo Js

The corresponding decomposition of Jfj, 1 ̂ j ^ m — 1, is formulated as

(0.24) Jfj = Jfj [max] U Jf) [int] U «#} [min],

where Jf}[max], Jί}[int] and Jί}[min] denote the sets of all weJf} such that

(0.25) lim 2 exists and is a nonzero finite value,

(0.26) lim r = 0 and lim — = ± oo,

(0.27) lim — ._ exists and is a nonzero finite value,

respectively. Moreover, the following Theorems 0.5-0.7 for the multi-
dimensional generalized Emden-Fowler equation (0.3), which correspond to
Theorems 0.2-0.4, can be proved.

THEOREM 0.5. Let j be an integer such that (— iy + 1 σ = 1 and l^j

(i) Equation (0.3) has a radial entire solution of class Jf}[max] if and
only if N ^ 2(m —j)+ 1 and

Γ00

(0.28) i2(w" j)~1 + 2w>(i)di<oo.
Jo

(ii) Equation (0.3) has a radial entire solution of class Jfj[min] if and
only if N ^ 2(m — 7) + 3 and

(0.29) fβ°
Jo

THEOREM 0.6. Let j be an integer such that (— ΐγ+1σ= 1 and l^j

^m-L
(i) Let N ^ 2(m —7) + 3. Suppose that (0.3) is strictly superlinear, i.e.,

y > 1. Then a necessary and sufficient condition for (0.3) to have a radial entire
solution of class Jf) is that (0.29) holds.

(ii) Supppose that (0.3) is strictly sublinear, i.e., 0 < y < 1. Then a
necessary and sufficient condition for (0.3) to have a radial entire solution of



306 Takasi KUSANO and Manabu NAITO

class Jfj is that N ^ 2(m -j)+l and (0.28) holds.

THEOREM 0.7. Let j be an integer such that (— iy+ 1σ = 1, 1 ̂ 7 ^ m — 1
and let N ^ 2(m -j) + 3. Supppose that (0.3) is strictly sublίnear (0 < y < 1).
Then, equation (0.3) has a radial entire solution of class Jί} [int] if and only if

and

(0-30)

t2<
Jo

These results show that the structure of the radial entire solutions of (0.3)
having no zero in RN has a striking similarity to that of the nonoscillatory
solutions of (0.15), but not to that of the nonoscillatory solutions of the
equation

(_ i)my(2m) + σp(t)\y\yspιy = 0, ί > 0.

It should be noticed here that the restriction on the dimension N is essential
for the existence of radial entire solutions of (0.3) having specific asymptotic
properties on RN (see, e.g., Theorem 0.5). This delicate relation between the
order 2m of the equation and the space dimension AT is a remarkable feature
which is not shared by the one-dimensional differential equation (0.15).

The complete analysis of solutions in the extreme classes Λ^0 and Jfm is
difficult even for the simple ordinary differential equations of the type
(0.15). For the detailed discussions and related results the reader is referred
to [3-7, 14]. It turns out, however, that the situation is different for the
class Jf0 of solutions of the elliptic equation (0.3) in RN. In fact, the class
J^Q can also be decomposed into the three subclasses j£J>[max], Jf0[int] and
J^[min], and necessary and sufficient conditions can be obtained for the
strictly sublinear equation (0.3) to have solutions of classes Jfθ9 JΓ0[max],
Jίo[int] and Jί^[min], respectively.

It is the properties of the iterated integral operators ΦN and ΨN defined
by (0.22) and (0.23) that play an important part throughout the paper. These
properties are stated and proved in Section 1. Section 2 contains the
classification into the Kiguradze classes Jf} (0 ̂  j ^ m) of radial entire functions
u(\x\)eC2m(RN) satisfying u(\x\) φ 0 and (- \)m™(\x\)(Amύ)(\x\) ^ 0 for xeRN

as well as further classification of Jf) according to the possible asymptotic
behavior of members of Jί} as |x| -> oo. The integral representations for ME Jf),
which are formed from iterates of ΦN and ΨN, are also given in Section 2. In
Section 3, elliptic equations of the form (0.1) and certain elliptic differential
inequalities are considered and comparison theorems for the existence of
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solutions in the classes jf j are established. Detailed discussions of the
existence of solutions of (0.1) in the classes JfJ, Jf}[max], Jfj[int] and
Jf}[min] are presented in Sections 4 and 5; Section 4 concerns the case
1 ^ j ^ m and Section 5 concerns the case j = 0. Finally, in Section 6, we
state important consequences of the theorems given in Sections 4 and 5. It
is shown, for example, that if m is even, σ = 1, and N ^ 2m + 1, then a
necessary and sufficient condition for the existence of a radial entire solution
of (0.3) with no zero in RN is that

Λoo

t2m-l

JO

ΓJo

< oo for the case y > 1, and

ί1 + 2y(m-1}p(ί)dί < oo for the case 0 < y < 1.

This result may be considered as a higher-dimensional version of a well known
theorem of Kiguradze [4, 5] and Licko and Svec [15].

1. Preliminary lemmas

We begin by stating and proving some preparatory results which will be
needed in the proofs of our theorems.

Let N ^ 3 be an integer. The N-dimensional Laplacian Δ acting on
radial C2 functions is written in the polar form

(1.1) A = ΓN+1-tN-i- = Γ1-t-N + 3~tN-2, t = \x\.
1 ' dt at at dt '

For an integer i= 1, 2,..., we denote by ^l[0, oo) the set of all functions
h: [0, oo)-»/? such that A k h ( \ x \ ) , 0 ^ k ̂  i, are well defined and continuous
on RN, where Ak is the fc-th iterate of A. Note that if A k h ( \ x \ ) is defined for
\x\ ^ ί0(^ 0), then A k h ( \ x \ ) is clearly radial for \x\ ̂  ί0. It should be also
noticed that he®1 [0, oo) if and only if he C2 [0, oo) and h'(0) = 0. Therefore,
ifhe& [0, oo), then Akh(t), 0 ̂  k ̂  i, are continuous on [0, oo) and (Akh)'(0) =

0, 0 ̂  k ̂  i - 1.

LEMMA 1.1. // h e^CO, oo) and Ah(t)^0 \_resp. g 0] for t ^ 0,

A'(ί) ^ 0 [ra/7. ^ 0] /or ί ̂  0.

This elementary lemma is an immediate consequence of (1.1).

LEMMA 1.2. (i) If he C2 [ί0, oo), ί0 > 0, satisfies Ah(t) ^ c0ί
p, t ̂  ί0,

constants c0 > 0 #«d p > — 2,
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for some constants c± > 0, c2 > 0 and t1 ^ ί0.
(ii) If /ιeC2[ί0, oo), ί0 > 0, satisfies Ah(t) g c0ί

p, ί ̂  ί0>
constants c0 > 0 #«£/ p > — 2,

/or some constants c: > 0, c2 > 0 αwrf ίt ̂  ί0.

PROOF. It suffices to prove part (i). Integrating the inequality (tN~ίh'(t))'
^ c0t

N+p~1 over [ί0, ί], we have

tN~lh'(t) ^ ίΓ1 Λ'(ίo) + -̂

which implies the existence of c1 > 0 and t'Q ^ ί0 such that t"~lh'(t) ^cΐt
N+

or h'(t) ^c1t
p+1 for ί ̂  ίό Integration of the last inequality yields

h(t) ^ h(Q + ̂ -(tp+2 - tf+2), ί ̂  ίi,

which shows that /z(ί) ̂  c2ί
p+2, ί ̂  ί l 9 for some c2 > 0 and ̂  ̂  ίo.

Let L\(0, oo ), A ^ 0, denote the set of all real- valued measurable functions
h on (0, oo) such that

fJo
tλ\h(t)\dt< oo.

o

Define the integral operators ΦN: C[0, oo) -> C2[0, oo) and ^N: C[0, oo)
nL^O, oo)->C2[0, oo) by (0.22) and (0.23), respectively. It is sometimes
useful to note that Φ^ and ΨN can be rewritten as

1 ί Γ (s\N~2 Γ 1
(1.2) (ΦNh) (ί) = —— \-\ (-) sh(s) ds+\ sh(s)dsl, t* 0,

N -2 [ J0\t J Jo J

1 f P / s \N~2 Γ°° 1
(1.3) (¥Vi)(ί) = —— <\ (-) Sh(s)ds + 5^5)^5^ t ̂  0.

N -2 (J0\t J Jt J

The operator ΦN satisfies (ΦNh)(0) = (ΦNh)'(Q) = 0 and (ΦNh)(t) is a nondecreas-
ing function on [0, oo) for any JιeC[0, oo) with h(t) ̂  0, t ^ 0. If fceC[0, oo)
and

(1.4) sh(s)ds= lim sΛ(s)ds
Jo ^^Jo



Kiguradze classes 309

exists in the extended real line R, then

lim(Φ*/0(t)=—!— Γ sh(s)ds.
ί^00 N-2J0

Likewise it is shown that lim^^/ίHί) = (ΨNh)'(0) = 0 and

sh(s)ds
N-2JO

for /ιeC[0, oo)nL\(0, oo), and that (ΨNh)(t) is nonincreasing on [0, oo) for
all nonnegative /ιeC[0, cc)nL\(Q, oo).

An easy calculation by means of (1.1) shows that

(1.5) A(ΦNh)(t] = h(t), t ^ 0, for /ιeC[0, oo),

(1.6) Δ(ΨNh)(i) = - fc(ί), t ̂  0, for JteC[0, oo)nL\(0, oo).

LEMMA 1.3. Let i^ 1 όe α« integer. If /ιe^[0, oo), /few

i-l

(1.7) /ι(ί) = Y pN(/c)(Jk/i)(0)i2fc 4- ΦJvί^ί^Jίί)? ί ̂  0,

jy denotes the i-th iterate of ΦN, and pN(k) is defined by (0.21).

LEMMA 1.4. Let i^l be an integer. If /zeC[0, oo) and h(t) ̂  0 for
t ^ 0, then

(1.8) 0 ̂  (Φ^)(ί) ̂  αN(ί)ί2ί-2 Γ sh(s)ds, ί ̂  0,
Jo

aN(i) = l / [ 2 i ~ 1 ( i — 1)!(N — 2)']. If in addition the improper integral
(1.4) exists in the extended real line /?, then

(1.9)

where bN(ί) = l / [ 2 l ~ l ( i - 1)!(JV - 2)N~ (N + 2i - 4)].

The proofs of Lemmas 1.3 and 1.4 are given in [12, Lemma 2.4] and

[10, Lemma 1], respectively.

LEMMA 1.5. If h is a C [0, oo) function such that lim^^ h(t) = /ι(oo) exists

in R, then

(1.10) lim = pN(ί)h(ao), i = 1, 2,....
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PROOF. The conclusion (1.10) is true for i = 1, since repeated application
of LΉospitaΓs rule shows that

Γs"3 fi Jo Jo
rh(r)drds

ί»-3 Γ rh(r)dr Γ
ι:_ Jθ i Jo

rh(r)dr

t-αo Nt"-1 ί-αo ΛΓί2

Γ t*(ί) Λ(oo)
= lim = .

ί-oo 2AΓί 2AΓ

If we assume the truth of (1.10) for some i ̂  1, we obtain

r(Φl

Nh)(r)drds
o Jo

f.»
N~3 Γ i ίΦSfΛMr)*- Γ r(Φ

Jθ _ ,;„ JO

,2i+2
= lim

1 (Φ'Nh)(t)
= lim - — — - = - lim - — —

ί-oo (N + 2i) (2i + 2)ί2l+1 2(ΐ + 1)(N + 20 ^«> ί21

= pN(i + l)ft(oo).

Thus Lemma 1.5 follows by induction.

The following lemma is contained in [12, Lemma 2.8].

LEMMA 1.6. Suppose that /le^^O, oo) and z f / ι ( f ) ^ 0 or ^0 for
t ^ 0. Then, lim^^ h(t) = h(co) exists and is finite if and only if AheL\ (0, oo),
in which case

(1.11) Λ(ί) = Λ(cx)) - ΨN(Ah)(t), t ̂  0.

LEMMA 1.7. Let i ̂  1 6^ αw integer. Suppose that Λe®'[0, oo)

(1.12) (-l) fc(

T/* lim^^hίί) = ft(oo) e cw^ αwrf w ̂ te, /Ae/i 9^(4* h) is well defined on [0, oo)

and

(1.13) Λ(ί) = Λ(oo) + (- lyn^'^W, t ̂  0.
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PROOF. From the hypothesis it follows that (- \)k(Δkh)(t), k= 1, 2,...,
ί — 1, are nonnegative and nonincreasing on [0, oo), and hence (— l)k(Δkh)(t),
k = 0, !,...,/ — 1, have the finite limits (— l)k(Δkh)(co) as ί-^ oo. By Lemma
1. 6 we have Ak h eL\(0, oo) for k = 1, 2,...,ϊ. Since (Λ fcfc)(oo), fc = 1, 2,...,i- 1,
are finite, this means that (zf fcft)(oo) = 0 for k = 1, 2,...,ϊ — 1. Thus, by Lemma
1.6 again,

(1.14) (Δkh)(t) = -ΨN(Δk^h}(i), ί^O, fc=l,2,...,i-l; and

(1.15) h(t) = h(ao) - ΨN(Δh)(t), ί^O.

Combining (1.14) with (1.15), we see that Ψk

N(Δlh) is well defined for
k = 1, 2,...,ί and that (1.13) holds.

LEMMA 1.8. Let i^ 1 £e #« integer and let ΛeC[0, oo) £e swc/z
h(t) ^ 0, φO for t^O. Then, ^Nh is well defined on [0, oo) if and only if

(1.16) N ^ 2ϊ + 1 and /leL^.JO, oo).

// (1.16) holds, then

/ fί Γ00 \
(1.17) cN(i) rN + 2ί 5^-^(5)^5+ 5^-^(5)^5

V Jo Jί /

Γ00

sN-ίh(s)ds+ s21

o Jr /

for t ^ 0, where cN(i) and dN(i) are positive constants defined by

(1.18) cN(ΐ) = I/UN - 2)l(N - 4)-(JV - 2i)],

(1.19) dN(i) = l/p'-^N - 2)(JV - 4)-(ΛΓ - 2i)].

For the proof of Lemma 1.8, see Kusano, Naito and Swanson [12, Lemma
2.7]. The inequality (1.17) shows, in particular, that if Ψ*Nh is well defined
on [0, oo) for JzeC[0, oo), h(t) ̂  0 on [0, oo), then

Γ^
(1.20) 0 ̂  (Ψl

Nh)(t) ^ dN(ί) s2i-lh(s)ds < oo, ί ̂  0,
Jo

and furthermore this inequality (1.20) together with (1.8) implies

Γ°°
(1.21) 0 ̂  Φl

NΨk

Nh(t) ^ AN(i, k)t21 s2k-ίh(s)ds9 t ̂  0,
Jo

for i = 0, 1, 2,... and k = 1, 2,..., where AN(i, k) = dN(k) in the case of ί = 0

and AN(ί, k) = aN(i)dN(k)/2 in the case of i ̂  1.
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LEMMA 1.9. Let i ̂  1 be an integer. Suppose that /ιeC[0, oo), h(t) ̂  0,
φ 0 for ί ^ O and (!P^A)(ί) is well defined on [0, oo). Then, the function
tN~2i(Ψi

Nh)(t) is nondecreasing in ίe[0, oo) and

(1.22) lim tN-2i(^Nh)(t) = eN(ι) Γ sN-1h(s)dse(Q9 oo],
r"°° Jo

where eN(i) = l/[2l'l(i - 1)!(N - 2)(ΛΓ - 4) (N - 2i)].

PROOF. The proof is done by induction. Let i = 1. Then, since

ί* •- \T 1 ^ »•.

, .- v . ,v-^ - , sh(s)ds^Q, ί^O,
αί

the nondecreasing property of tN~2(ΨNh)(t) on [0, oo) is clear. Moreover it
is easy to see that

/ j Λ ^-2 Λoo \

lim ίN-2(^NΛ)(ί) = lim I sp-lh(s)ds + —— sh(s)ds\
(~>0° <~"10 \1M -^Jo " ^ Jt /

i Γ°°
= sp-ihWds.

N-2J0

Thus the assertion holds for ί = 1. Assume that the assertion is true for some
i, i^ 1. Suppose that iP^+1Λ is well defined on [0, oo) for an fceC[0, oo)
with h(t) ̂ 0, ^0, ί ̂  0. Notice that we have N ̂  2i + 3 by Lemma
1.8. Using the definition of Ψίjίh = ΨNΨ\th and the nondecreasing property
of tN~2i(^Nh)(t) on [0, oo), we find that

= _^-2i-2. rΛί+ι Γ 5^-1(^
Jo

= _ 2l r2'-1 Γ s^-^s^-
N - 2 Jo

I J V- 2 t '- 2

fy-«-3 Γ00

N-2 J,

^ —^ί—r2'-1^'21^*)^) Γ s2ί"x<is
N - 2 Jo

-2i-3 tN-2i(Ψ'Nh)(t) Γ s-w+2i+1

JrN-2

= 0 for ί ̂  0,
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which implies that tN~2ί~2(Ψί^ίh)(t) is nondecreasing on [0, oo). Since (1.22)
is assumed to hold, application of LΉospitaPs rule shows that

N-2'"^\ 2it2'-1 (-N + 2i + 2)r"+2i+1

ί lira tN-2i(V
2i(JV-2i-2)«-«>

which proves (1.22) with i replaced by i + 1. This completes the proof of

Lemma 1.9.

LEMMA 1.10. Let ϊ ^ l be an integer, and suppose that heC[0, oo),

h(t) ^ 0, φ 0 /or ί ;> 0 αwrf ί/zαr (^U)(0 w we// έfe^Λerf o/i [0, oo). Define the
function qN,t(t) by

(1.23) ίw>((t) = min{l,rw + 2 ί}, t ̂  0.

(i)

(1.24) (n*)W ^ cw(0 Γ min {s2-1, s*'1} A(s)ώ ίw>((ί), ί ̂  0.
Jo

(ii) //" in addition heLί

N^1(0, oo), ί/iβn

(1.25) (n*)(t) ̂  ̂ (0 00 max {s2-1, ̂ -^Λίsjds.^t), ί ̂  0.

Here cN(ί) and dN(i) are positive constants defined by (1.18) and (1.19),

respectively.

PROOF, (i) By Lemma 1.9 the function tN~2ί(Ψί

Nh)(t) is nondecreasing

on [0,oo), and hence, in particular, l*-2i(9*Nh)(t) ^ (!P^Λ)(1) for ίe[l, oo).
On the other hand, the nonincreasing property of (Ψl

Nh)(t) implies that
(Ψl

Nh)(t) ^ (Ψl

Nh)(l) for ίe[0, 1]. Therefore we have

(1.26) (ήΌW ^ (n*)(i) «*.*(*),
From inequality (1.17) it follows that
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Z cN(ί)
o

Γ s2i-1

Ji

or equivalently

Γ00

ι^cN(0 min{s2' ^SN x}
Jo

implying, together with (1.26), that the desired inequality (1.24) holds.

Γ°°
(ii) Since tN~2i(Ψl

Nh)(t) tends nondecreasingly to eN(i) sN~ih(s)ds as
ι_ Jθί -» oo, we have

•ΓJo

and in particular

tN~2i(^Nh)(t) ^ dN(ί) Γ sN-ίh(s)ds9 t ̂  1.
Jo

By the nonincreasing property of Ψ^h and inequality (1.17) we have

^ (ή^)(0) ̂  dN(ί) Γ s2i-i
Jo

for ί ̂  0 and in particular for 0 ̂  t ^ 1. Then we easily see that (1.25) holds.

LEMMA 1.11. Let i and k be integers, i, k ^ 1. Suppose that /ιeC[0, oo),
h(t) ^ 0, φ 0 for t ^ 0, αflrf ίΛαί ^/i ΐs well defined for t ^ 0 (/Λαί is,

JV ^ 2k + 1 am/ ΛeL^! (0, oo)). Then,
(i) /λere exwίj a positive constant BN(ί, k) such that

(1.27) (<ZWOW ^ BN(i, k)(t2i Γ s2k-1h(s)ds
\ Jt

+ t2i-2 Γ

JoJo /

(ii) z/ /n addition N ^ 2fe + 3, /λere exists a positive constant CN(i, k) such
that

(1.28) (Φ^iPViMO^CjΛϊ, -

+ ί21'-2 |5 2 f e + 1/ι(s)rf5),
Jo /
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To prove (i) of Lemma 1.11, the following lemma is needed.

LEMMA 1.12. Let i be an integer, i^. 1. Suppose that /ιeC[0, oo) is a

nonnegative nonincreasing function on [0, oo). Then,

(1.29) (Φ{,Λ)(ί) ̂  2pN(i)t2i~2 Γ sh(s)ds, t ̂  0.
Jo

p
PROOF. Fix t in (0, oo). We may assume that sh(s)ds > 0. From the

Jo
Cauchy generalized mean value theorem it follows that

rh(r)drds
ια>.,fi)m I Λ IΛ

(1.30)

ίV-'Γ
Jo Jo

Γ sh(s)ds tN'2\ sh(s)ds
Jo Jo

rh(r)dr

ξN~2 ξh(ξ) + (N- 2)ξN~3 i sh(s)ds
Jo

i
J

rh(r)dr
o

)\ sh(s)ds
Jo

for some ξe(Q, t). Note that

(1.31) ξ2h(ξ)£2\ sh(s)ds,

for any nonnegative nonincreasing function heC[0, oo). Then (1.30) and (1.31)

lead us to

^- sh(s)ds, ί^O,
^VJo

which implies that (1.29) holds for i = 1. Assume that (1.29) is satisfied for

some i ̂  1. Using the Cauchy mean value theorem and (1.31) again, we find

that
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(1.32) (Φ»+1*)(t)

Γ *-3 P /*«
S r(ΦN

Jo Jo

t2i Γ sh(s)ds tN+2i~2 Γ sh(s)ds
Jo Jo

(JV + 2i - 2)ξN+2i~-fJo

Γ f

J 0

r N

for some £e(0, ί). Exactly as in the above, the last term of (1.32) can be
estimated as follows:

r(Φl

Nh)(r)dr
o

ξ2i I s/ι(s)ds if 2 l ιjfc(ί) + Ziί2'"1 Γ
Jo Jo

2( i+l) f f 2 1 - 2 sλ(5)έb
Jo

for some ηe(0, ξ) (c(0, ί)) From (1.29), (1.32) and (1.33) it follows that

which proves (1.29) with i replaced by i + 1. The inductive proof of Lemma
1.12 is complete.

PROOF OF LEMMA 1.11. (i) Let N ̂  2k + 1 and heC [0, oo)nL 1

2 k _ ί (0, oo),
h(t) ^0, φ 0 for t ;> 0. By (1.17) in Lemma 1.8 we have

(Ψ*Nh)(t)*cN(k) Γ s^
Jί

i, ί ̂  0.

Since (Ψk

Nh)(t) is nonnegative and nonincreasing on [0, oo), it follows from
Lemma 1.12 that
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_ ί ̂  0.
Jo

Consequently we have

(Φl

NΨk

Nh)(t) ^ 2pN(i)t2i~2 Γ s(Ψk

Nh)(s)ds9

Jo

^ 2pN(ΐ)cN(k)t2i-2 Γ s( Γ r2k^h(r)dr]ds
Jo \ J s /

= PN(ϊ)cN(k)(t2i Γ s2k-ίh(s)ds + t2i~2 Γ s2k+ίh(s)ds}9 t ̂  0,
\ Jί Jθ /

which implies that (1.27) holds for BN(i, k) = ρN(i)cN(k).
(ii) Let N ^ 2 f c + 3 and /ιeC[0, ooJnL^.JO, oo), Λ(ί) ̂  0, ^0 for

ί ^ 0. By Lemma 1.4 we have

Γ s(n*)wώ, ί ̂  o.
Jo

Using the upper estimate for Ψk

Nh given in (1.17), we obtain

(Φl

NΨk

Nh)(t)

^ aN(ί)dN(k)t2i-2( Γ s~N+2k + 1 Γ rN-1h(r)drds + Γ s | °° r2k-l

\ J θ Jo Jo Js

N — 7k f 1 Γ°° \
- JV - ZK - s2*+lΛ ( s ) ί ί s +i t2 s2*-l/,(s)(fc , ί> 0 .

2(N-2fc-2)J 0 2 J( /'

In view of the assumption — N + 2k + 2 < 0, we see that (1.28) is satisfied for

N - 2k Γ
CN(i, k) = aN(ΐ)dN(k)ma\

2(N-2k~2) 2

This completes the proof of Lemma 1.11.

2. Kiguradze's classes

THEOREM 2.1. Let m ̂  2 be an integer and σ=+\orσ= — 1. Suppose
that we^m[0, oo) λ&s wo zm? UPI [0, oo) and satisfies

(2.1) (- \)mσu(i)Amu(t) ^0, ί ̂  0.

exist an integer 7*e{0, l,...,m} and Tu ^ 0
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(2.2) j is odd if σ = + 1 j is even if σ = — 1

and

\ u(t)Δlu(t) > 0, 0 ̂  i ^ j - 1, fort^Tu,(2 3)
' - ' ' ~ J ' Ή ( 0 ̂  0, 7 g i ̂  m, /or ί ̂  0.

REMARK 2.1. (i) Condition (2.2) may be rewritten as (- iy+ 1σ = 1.

(ii) If j = 0, then (2.3) j reduces to

(2.3)0 u(t) =£0 and (- 1)̂ (0 (̂0 ̂  0, 1 ̂  i ̂  m, for t ̂  0.

PROOF OF THEOREM 2.1. To prove the existence of j and 7^ satisfying
(2.2) and (2.3);, it is convenient to distinguish the two cases: (— l)mσ = — 1
and (- l)mσ = +1.

(I) The case of (— l)mσ = - 1. Without loss of generality we may
assume that u(t) > 0 for ί ̂  0. The hypothesis (2.1) then implies Amu(t) ^ 0
for t ^ 0. By Lemma 1.1 applied to h = Δm~1u, Δm~lu(t) is nondecreasing

on [0, oo). There are two possibilities for Δm~1u(t):

(aw_!) Jm~ 1w(ίm_ 1) > 0 for some tm.1 > 0; or

(bm_i) Δm~lu(t) ^ 0 for every t ̂  0.

Suppose that the case (am_ t) occurs. Since Am~lu(i) ^ zίm~1w(ίm_1) > 0 for

£^ί m - ι> successive application of Lemma 1.2 shows, in particular, that
zTw(ί) > 0 (0 ̂  i <; m - 1) for all sufficiently large t. Then (2.2) and (2.3),- hold

for; = m. Suppose that the case (bm_i) occurs. Then Δm~2u(t) is nonnegative

for ί ̂  0. Indeed, if Δm~2u takes a negative value at some ίm_ 2 > 0, then

Δm~2u(t) ^ Δm~2u(tm_2) < 0 for t ̂  ίm_ 2 since z f m ~ 2 w is nonincreasing on
[0, oo). Repeated application of Lemma 1.2 shows that zf'w(ί) < 0 (0 ̂  /

^ m — 2) for all large ί, which is a contradiction to the assumption that
u(t) > 0 on [0, oo). Thus Δm~2u (t) ̂  0 for t ^ 0. Arguing exactly as in the

above discussions starting from the fact that Δmu(t) ^0 for t ^ 0, we have
the two possibilities:

(am_3) Jm-3w(ίm_3) > 0 for some ίm_ 3 > 0; or

(bm_3) Δm~3u(t) ^ 0 for every t ^ 0.

If (am_3) occurs, then (2.2) and (2.3) j hold for j = m - 2. If (bm_3) occurs,
then Δm~*u(t) ^ 0 on [0, oo). In this case, repeating the above procedure,

we can conclude without difficulty that (2.3); holds for some 7'e{0, l,...,m},
which is even or odd according as m is even (σ = — 1) or m is odd (σ = + 1).

(II) The case of (- l)mσ = + 1. We may assume that u(t) > 0 for
t ^ 0. By Lemma 1.1, Δm~1u is nonincreasing on [0, oo). If Δm~lu(tm_l) < 0
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for some ί m _ x > 0, then Lemma 1.2 implies that J'w(ί) < 0 (0 ̂  i ̂  m — 1) for

all large ί, contradicting the positivity of u. Thus J m ~ 1 w(ί)^0 for

t ^ 0. Therefore, discussing as in the case of (I), we can show that there exist

an integer j e {0, l , . . . ,m— 1} and Tu satisfying (2.2) and (2.3), with m replaced

by m - 1. It is clear that (- l)m~jAmu(t) ^ 0 for ί ̂  0. This completes the

proof of Theorem 2.1.

Let m ̂  2 be an integer and let σ = + 1 or σ = — 1. Let JΓ denote the

set of all functions we^m[0, oo) that have no zero in [0, oo) and satisfy

(- \)mσu(i)Δmu(t) ^ 0 for t ^ 0. For an integer 7*e{0, l,...,m}, denote by jf)

the set of all functions weJf satisfying (2.3),-. The set C^j will be called the

Kiguradze class of degree j. Theorem 2.1 means that Jf has the decomposition

Jf = J ίΊUJfsU UJC-i for m even, σ = + 1,

JίT = Jtr0\JJf2\J "\JJfm-1 for m odd, σ = - 1,

Jf = J f 0 \ j j f 2 \ j " \jjfm for m even, σ = - 1,

Jf = J f i U J f 3 U UJΓm for m odd, σ = + 1.

THEOREM 2.2. (i) Let weJΓm. TTzew

(2.4) ιι(ί) = mχ pN(fe) (zlfcM) (0) ί2k + Φ^(Z!WM) (ί), ί ̂  0.

(ii) L^ ueJfj for l ^ ^m-1. Γ/z^w n~J'(^ww) w we//
[0, oo), ^JM(OO) = lim^^^M)^) eocwij and is finite and

(2.5) ιι(ί) = Jχ pN(fc) (zlfc u) (0) ί2* + Pjv(7 ) (Λ'ιι) (oo

+ (- l)m-^Φ^^-^mM)(ί), ί ̂  0.

(iii) Let M6Jf0. 77z^« ϊ^(zlmM) is well defined on [0, oo), w(oo) =

linij^^w^) exists and is finite and

(2.6) ιι(ί) = ιι(oo) + (- l)m Ψ^(Δmύ)(t), t ^ 0.

PROOF. Suppose that w e J f j (O^j^m). Let l^j^m. Lemma 1.3

with i =j and Λ = u shows that

(2.7) ιι(ί) = 'X Pjv(fe) (Jfe u) (0)ί2fc + Φ^^ii) (ί), t ^ 0.

If j = m, then (2.7) becomes (2.4).

Let 0 ^7 ^ m - 1 and let u(t) > 0 for t ̂  0. Then, by (2.3);, Δju(t) is

nonnegative and nonincreasing on [0, oo). The limit Δju(co) = lim t_>00(Λ /M)(ί)
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exists and is finite. From Lemma 1.7 applied to the case i = m—j and

h = Aju9 we see that Ψ%~J(Amu) is well defined on [0, oo) and

(2.8) Aju(t) = Aju(ao) + (- l)m-jΨ%-j(Amu)(t), t ^ 0.

If j = 0, then (2.8) reduces to (2.6). If 1 ̂ y^ w — 1, then, in view of the

identity

(2.9) #ir(l)(0 = Pjγ(0f 2 i» ί = 0, i = 1, 2,...,

(2.7) and (2.8) together yield (2.5). The proof of Theorem 2.2 is complete.

Let us study the asymptotic behavior as ί -> oo of u in the Kiguradze

class Jfj (O^y ^ m). First suppose that uεJfm. Since

(2.10) Alt2k =

0

for f ^ fc

for ί > fc,

application of the operators A1 to (2.4) yields

m-l

= Σ .
k = i

for ί = 0, 0 ̂  i ^ m — 1, and hence by Lemma 1.4 we have

r-^oo ι^m-ι-ι.f

= pN(m -i-l

for 0 ̂  i g m — 1. In particular,

lim Am~1u(t) = (Am~

Γ
Nm i J^

1 f°° 1
tf-2Jo J

-h
-2J0

s(Amu)(s)ds,

which does not vanish because Am~lu(t) is eventually positive [resp. negative]

and nondecreasing [resp. nonincreasing] on [0, oo) if uetfm is positive [resp.

negative]. Therefore we can conclude that exactly one of the following two

cases holds for

(2-11L
1™ -», _ . _ n > 0 ^ i ̂  m — 1, are equal to
f-*αo I 'm * 1^

either +00 or — oo
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f lim — — — - , 0 ̂  i g m — 1, exist and are either
(2-12)m — i*--1'

[ positive finite values or negative finite values.

The set of all weJf m satisfying (2.11)m or (2.12)m is denoted, respectively, by
jΓm[inc] or Jfm[min].

Let we Jf) for 1 £j ^ m - 1. In this case, it follows from (2.5) that

(2.13) J'ιι(t) = 'Σ pN(k - i)(Aku)(Q)t2k-2i + PN(j - i)(^u
k = i

+ (_ i)»-'φ{f 'yjj-VW), ί ̂  0,

for 0 ^ / ^ 7 - 1 and

(2.14) (Λju)(t) = (^M)(OO) + (- l)m-jΨ^-j(Δmu)(t), t ̂  0.

Using Lemma 1.5 and noticing that limί_00(ϊί

jv/ι)(ί) = 0 for any fteC[0, oo)
Γ\L\(Q, oo), we obtain

(- ^~SPHU ~ 0 Um ^-^m«)(ί)
f-»oo

for 0 g i g;. If (JJu)(oo) = 0, then Lemma 1.4 shows that

;' - 0 Γ s!P!J-J(J"tt
Jo

for O ^ i g j - 1. Note that

r_
lim (AJ-*u)(t) = (^'^XO) -h
'-*«>

_ nm-^' f °°
- — sΨ^-j(Amύ

N - 2 Jo

is not zero, because (Aj~lu)(t) is eventually positive [resp. negative] and
nondecreasing [resp. nonincreasing] on [0, oo) if weJf} is positive [resp.
negative]. Consequently one of the following three cases can occur for we Jί},
1 ̂ ^m- 1:
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lim ^.-i , 0 ̂  i ̂  j, exist and are either
f->oo t V l'

(2.15),.
positive finite values or negative finite values;

lim

(2.17), -

Alu(i) Λ Λ ,
llm ,, - -ι., 0 ̂  ί ̂  — 1, are equal to either +00 or - oo
f-»00 t2(J l l>

^ i g j , and

1™ ?/ _ -n, 0 ̂  / g; — 1, exist and are positive finite values
ί-*oo t V l '

or negative finite values.

Denote by Jί) [max], «#}[int] and Jί}[min] the sets of all functions u in Jf}

satisfying (2.15),, (2.16), and (2.17),, respectively.

Finally suppose that weJΓ0. We have (2.6). If zΓw(ί) = 0 on [0, oo),

then u(t) is a nonzero constant function. If Amu(ί) φ 0 on [0, oo), then Lemma

1.8 implies in particular that N ^ 2m + 1, because Ψ^(Amu) is well defined on

[0, oo). If in addition M(OO) = 0, then, using Lemma 1.9, we see from (2.6) that

P
lim tN~2mu(t) = (- l)meN(m)
°̂° J

Therefore we conclude that exactly one of the following three cases holds for

each non-constant function

(2.1 8)0 lim u(t) exists and is nonzero finite value;
f->oo

(2.19)0 lim u(t) = 0 and lim tN~2mu(t) = + oo or - oo
f->oo ί-*oo

(2.20)0 lim tN~2mu(t) exists and is a nonzero finite value.
f-»oo

We denote by J^[max], Jf^[int] and ^[min] the sets of all functions u

in Jf0 satisfying (2.18)0, (2.19)0 and (2.20)0, respectively.

From the above observation we obtain the following result.

THEOREM 2.3. (i) If uε Jfm9 then there are constants c^ > 0 and T^

such that
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(2.21) M/M(ί)|^cJ | tί
2(m-/-1), t^T, O ^ ί ^ m - 1 .

(ii) If ue^fj for 1 ̂ 7 ̂  m — 1, then there are constants c^ > 0, c* > 0

and T^ 1 such that

(222)
^ T:

(iii) I f u e J f θ 9 then there are constants c^ > 0, c* > 0 and T^l such thai

(2.23) c+ΓN+2m ^ \u(t)\ ^ c*, ί £ T

By definition, the Kiguradze classes Jfj, 0 g 7 ̂  m, are decomposed as

follows :

Jf) = JίJ [max] U Jί} [int] U Jf) [min] for 0 ̂  7 ̂  m - 1.

Sometimes it is useful to note that

: lim Λm~lu(t) = 4- oo or - 00}
f-»oo

= {MeJTm: lim M(ί)/ί2(m"υ = + oo or - oo};
ί~* C30

Jfm[min] = {we Jfm: lim /f"1"1!!^) exists in R - {0}}
ί->oo

= (we^: lim M(ί)/ί2(m~υ exists in R - {0}};
f->00

and for 1 ̂  j g m — 1

«#}[max] = {u6 Jf}: lim JJ'M(ί) exists in /? - {0}}
ί-* oo

j: lim w(ί)/ί2j exists in /? - {0}};
-

J : lim JJ'w(ί) = 0, lim ̂ "^(ί) = + oo or - 00}
ί-*αo ί->oo

): lim u(t)/t2j = 0, lim M(ί)/ί2°'~1) = + oo or - 00}
J f->oo f-»oo

Jf}[min] = {we Jf> lim ̂ "^(ί) exists in Λ - {0}}
f->00

= {ue Jf): lim u(t)/t2(i~l) exists in J? - {0}}.
f-*oo

If we Jf}[min] for 1 ̂ 7 ^ m, then the integral representation (2.4) or (2.5)

for M can be refined as follows:
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THEOREM 2.4. Let u e j f j [min] for l^j^m. Then Ψ^~j+ 1 (Δmύ) is well
defined on [0, oo) and

(2.24) ιι(ί) = 'Σ PN(k)(Δku)(0)t2k + pN(j -

interpreted as 0.

+ (- i)™-^1^-1 ̂ -;+1(jmw)(ί), ί ̂  o,
limί_00(J /~1M)(ί) and for j = I the sum Σk~=l must be

PROOF. Since 47'"1 11(00) exists and is finite, Lemma 1.6 shows that
ΨN(Δju) is well defined on [0, oo) and

(2.25) A*~lu(t) = J'-XQO) - ΨN(AJu)(t)9 t ̂  0.

On the other hand, we have

(2.26) A*u(t) = (- \)m-jΨ^-j(Δmu)(t), t ̂  0,

for fjεJf}[min] ( l^ j^m). Indeed, if j = m, then (2.26) is trivial. If
1 ^ j ' ^ w — 1» then (2.8) in the proof of Theorem 2.2 reduces to (2.26) because
of ^ιι(oo) = 0. By (2.25) and (2.26) we see that Ψ%~j+l(Δmύ) is well defined
on [0, oo) and

t ^ 0.

Then the desired equality (2.24) follows from Lemma 1.3 and (2.9).

For y'e{0, l,...,m} and (— iy+ 1σ = l, the set of all functions
satisfying (2.3) j with Tu = 0, i.e.,

ί u(t)A{ u(t) > 0, 0 g i ^ j - 1, for ί ̂  0,

' ί (- irMiK'wW ^0, j ^ i ̂  m, for t ̂  0,

is an important subset of JfJ . This subset of jfj is denoted by JΓ/, and the
sets Jf/n.#j[max], Jf/ Π Jf} [int] and Jf/ n Jf} [min] are denoted by
Jf/[max], JΓ/[int] and Jf}*[min], respectively. For example, Jf/[max],
1 ^ 7 ^ m — 1, is the set of all weJf such that u satisfies (2.3)J and

exists in R-{0}. If = 0, then the sets Jf0*, Jf0*[max],
and Jfo*[min] are identical to the sets without the asterisk,

respectively.

3. Comparison theorems

In this section elliptic differential equations of the form (0.1) are considered
under the assumption that m Ξ > 2 , N^3, σ = + l or σ = - l , and / is
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continuous on [0, oo) x Rm and satisfies (0.2). From Theorem 2.1 it follows

that a radial entire solution u(t), t = \x\9 of (0.1) with no zero in RN, if exists,

falls into one and only one Kiguradze class JfJ such that (— i χ + 1 σ = l ,

0 ^ j ^ m. The existence of a radial entire solution u in a given class jfj of

equation (0.1) is guaranteed by the existence of a radial entire function v(t),

t = |x|, in the same class Jf) satisfying the differential inequality

(3.1) {σ(- V)mΔmv + 0(|x|, Ό, Jι?,...,J" |-1t?)}sgnι; ̂  0, xeRN.

Here the function g is continuous on [0, oo) x Rm and satisfies the sign

condition

(3.2) v0g(t, v0, vl,...,vm-1)^Q, φO for (ί, ι?0, «!,..., ι?w_ J 6 [0, oo) x Rm.

Two comparison theorems illustrating such a situation are presented in this

section. They will be crucial in proving our main existence theorems given

in Sections 4 and 5.

THEOREM 3.1. Let j be an integer such that (— iy + 1σ = 1 and 0 ^j ^ m.

Let g in (3.1) be continuous on [0, oo) x Rm and satisfy (3.2). Suppose that

the following inequality holds:

(3.3) /(ί, MO, M 1,. . .,Mm_ 1)sgnw 0 ̂  g(t, t?0, ι>ι,...,0«-ι)sgni70

/or α// (f, MO, «!,..., «„_!) α/irf (£, ι?0, ui,...,!^-!) SMC/Z /Aα/

ί ^ 0, M0tf0 > 0, 0 < Mf sgn MO ^ I?, sgn ι?0, 0 ̂  i ^ j - 1,

θ ^ (- l)'- Ίιf sgn MO g (- I)1''!?, sgn ι?0, j ^ i < m - 1.

(i) Lef 7 = m. If there exists a radial entire function v of class Jf*

satisfying (3.1), then equation (0.1) has a radial entire solution u of the same

class tf£. Furthermore, if the function v is of class JΓ,*[min], then (0.1) has

a radial entire solution u of class Jf£ [min] .

(ii) Let l ^ j ^ m — 1. If there exists a radial entire function v of class

tff satisfying (3.1), then equation (0.1) has a radial entire solution u of the

same class tff. Furthermore, if the function υ is of class Jf}* [max] [resp.

Jf/[int]UJf/[min], JΓ/[min]], then (0.1) has a radial entire solution u of

class tff [max] [resp. tff [int] U Jf/ [min], JίTf [min]].

(iii) Let j = 0. If there exists a radial entire function υ of class JΓ0 [max]

satisfying (3.1), then equation (0.1) has a radial entire solution u of class

Jf0 [max] .

As before, let ^m~1[0, oo) denote the set of all functions M on [0, oo)

such that Alu(\x\), 0 ̂  i ̂  m — 1, are defined and continuous on RN. The

3)m~l [0, oo) becomes a Frechet space with the topology induced by the family
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of seminorms

For simplicity we use the notation

(3.5) ΰ(ί) = (u(t), Au(f),...,Am-lu(t)) for ue^'1 [0, oo).

PROOF OF THEOREM 3.1. The proof of part (ii). We first prove (ii). Let
1 ^7 ^ m — 1 and vttff. We may suppose that υ(t) > 0 for t ^ 0. Then
we have Λlv(t) > 0 (0 ̂  i ̂ j - 1) and (- ly- MXf) ^ 0 (j^i^m-1) for
t ^ 0. From (ii) of Theorem 2.2 it follows that

v(t) = JΣ PN(k)(Akv)(Q)t2k + P*ϋ)(^0)(«>)f2'
* = 0

+ (- \)m'iΦi

NΨ^-i(Δmv)(t), t ̂  0,

and so

+ (- IΓ-^ΦiΓ^-^t;)^), t ̂  0, 0 ̂  i <;;

JJ'ί;(oo) + (- l)m-'^-'(Jmι;)(ί), ί ̂  0; and

(- ly- ̂ Xf) = (- \}m-jΨ^-i(Δmv)(t), t ̂  0, j < i ̂  m - 1,

where J Ί (oo) = lim ί_00J
 7't;(ί)e[0, oo). Therefore, by (3.1), we see that

(3.6) A*v(t) ^ pN(k - i)(Akv)(0)t2k-2i + pN(j - ϊ)(A*υ
k = i

+ Φ^'Ψ^-Jg^, ϋ)(t), t Z 0, 0 ̂  i <;;

(3.7) Λ''t>(ί) ̂  ̂ r(oo) + Ψ%-Jg ( , v) (t), t ^ 0 and

(3.8) (-iΓ^'βW^Π'^ί .PXt), t ^ 0 , j < i g

Consider the set U of all ue®"1"1^, oo) such that

k = i

^ Alu(t) ^ Λ'Xί), ί^O, 0^ι<;;

(/ί 'i Jίoo) ̂  JJw(ί) ̂  J7'ί;(ί), ί ̂  0; and

o ̂  (- ly-^'uίo ̂  (- ly-^^w, ί ̂  o, 7 < ϊ ^ m - 1.
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It is clear that U is a closed convex subset of ^m-1[0, oo). Define the
mapping M on U as follows:

ί(MW)(ί) = J Σ /

(3.9) l

Since condition (3.3) holds for all (ί, M 0,...,κm_ 1) and (ί, ϋo» . »t>m-ι) satisfying
(3.4)y, we have

(3.10) 0 ̂  /(ί, ΰ(ί)) ̂  flf(ί, t (ί)), f £ 0, lie 17,

and hence M is well defined on ί/ and maps U into ^m-1[0, oo). It will
be shown by the aid of the Schauder-Tychonoff theorem (see, e.g., [1, p. 161])
that M has a fixed point u in U.

(a) M maps U into itself. Let u e U. Then, taking account of the lower
estimates (3.6)-(3.8) for Alv and inequality (3.10), we easily see that
MuεU. Thus M maps U into U.

(b) M is continuous on U. It is sufficient to verify that if u,uvεU
(v = 1, 2,...) and (Aluv)(t) -> (Λ l u)( t ) as v -> oo, 0 rg ί ^ m — 1, uniformly on
every compact subinterval of [0, oo), then Al(Muv)(t)-+Λl(Mu)(t) as v->oo,
0 ^ i ̂  m — 1, uniformly on every compact subinterval of [0, oo). By the
definition of M we have

\A\Muv)(t) - Al(Mu)(t)\ ^ Φj

N-lΨ%-j\f(', δv) -.

ί ^ 0, 7 g i g m - 1.

Furthermore, with the aid of (1.20) and (1.21) we see that

^ AN(j - i, m -7)ί2°'-° Γ s2<m-»-l\f(s9 ΰv(5)) -f(s,
Jo

ύ(s))\ds,

ί ^0, O g ϊ ^ 7 - 1,

and

^ dN(m - i) Γ

Jo
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Note that (3.10) implies

\f(s9 ΰv(s)) - f (s, ΰ(s))\ < 2g(s, ϋ(s))9 s ̂  0,

and the well-definedness of Ψ%~lg( , v), j ^ i ̂  m - 1, implies

f00

Jo S

Then the Lebesgue dominated convergence theorem shows that

<H~'H~'l/(^*J-/(^l(f)->0 a s v ^ o o , O ^ i g y - 1 ,

T'l/ί , wv) -/(•> fi)l(t) ->0 as v -» oo, ^ i ̂  m - 1,

uniformly on every compact subinterval of [0, oo). Consequently Λl(Muv)(t),
0 ^ i ̂  m — 1, converge to zΓ(Mw)(ί) as v -> oo uniformly on compact
subintervals of [0, oo). This proves the continuity of M.

(c) M(U) is relatively compact. It suffices to verify that {/Γ(Mw)(f): ueU},
0 ^ i ̂  m — 1, are uniformly bounded and equicontinuous at every point of
[0,oo). Since \Al(Mu)(t)\ ^ \4lv(t)\, t ̂  0, 0 ̂  i ̂  m - 1, for all w e (7, the
uniform boundedness is obvious. Notice that

Γ N-l j-

J o S N

t ^ 0, 0 5Ξ i ̂ 7 - 1,

i- d i fV-^-'-'/ί ,
Jo

t ^ 0, 7 g i ̂  m - 1,

where the sum Σίl}+1 must be interpreted as 0 when / + 1 >j — 1. Then,
by means of (3.10), we see that \(d/dt)^i(Mu)(t)\9 0 ̂  i ̂  m — 1, are majorized
on [0, oo) by certain positive functions which are independent of u e U. This
proves the equicontinuity of {Λl(Mύ)(t): w e 17}, 0 ̂  i ̂  m — 1.

In view of (a)-(c) we can apply the Schauder-Tychonoff fixed point theorem
to conclude that M has a fixed point ueU. Evidently this fixed point u is
a member of class jff and tι(|x|) is an entire solution of (0.1).

Suppose in addition that ι?eJf/[max] and t (ί) > 0 for t ^ 0, that is,
vεJff and Ajv(cc) is a positive finite value. Then, for the fixed point ueU
of M obtained above, AJU(CQ) exists and is equal to Λjv(ao) (see the definition
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of U). This implies that if ϋεJf/[max], then u e JΓ/ [max] .

If υeJίTf [min] and υ(t) > 0 for ί ̂  0, that is, t ε jf/, J Ί (oo) = 0 and

^"^(oo) is a positive finite value, then the fixed point ueU of M has the

properties that Λju(ao) = 0 and AJ~lu(<x>) exists in the interval [̂ '"̂ (O),

^'^(oo)] c(0, oo). This means that if i? ε Jf}* [min] , then u ε Jf/ [min] .
Likewise it is seen that if Ajυ(ao) = 0, then zf jM(oo) = 0; and hence

t?εJf/[mt]UJf/[min] implies M e j f f [int] U Jf/ [min] . This completes the
proof of (ii) of Theorem 3.1.

The proof of part (i). Let uε Jf* and v(t) > 0 for ί ^ 0. Using (2.4) and

(3.1), we see that

Alυ(t) ^ ^pN(k - i)(A
k = i

t ^ 0, 0 ̂  i ̂  m - 1.

Consider the set ί/ of all functions we^m "*[(), oo) such that

m-l

X pjv(fe - i)(Akv)(0)t2k-2ί ^ Δlu(ί) ^ Δlv(t), £ ^ 0, 0 ̂  / ̂  w - 1,
k = i

and define the mapping M: 17 -*®1""1 [0, oo) by

(Mu)(t) = Ϋ Pjv(fc)(Jkt;)(0)t2fc + ΦJ|/( , ΰ)(t), ί ̂  0.

Then, arguing as above, we can show that (a) M maps U into itself, (b) M

is continuous on 17, and (c) M(ί/) is relatively compact. The Schauder-

Tychonoff fixed point theorem guarantees that M has a fixed point u in U. It

is clear that this we U belongs to Jf^ and that u(\x\) is a solution of (0.1). If

t εJfj* and Jm~1ι;(oo) is finite and positive, then the fixed point ue U of M

has the property that lim ί_> 0 0zlm~1M(ί) = J" I" IM(OO) exists in the interval

[Jm~ x ι?(0), Λ m ~ x ι (oo)] . This means that i f v e J f £ [min] , then u E Jf* [min] .

Γλέ? /?r00/ of part (in). Let ι;eJΓ0[max] and t (ί) > 0 for t ^ 0. The

limit ι (oo) is finite and positive. From (2.6) and (3.1) it follows that

ί^O, and

(- ly'zfxo ^ ϊp - ' f l f ί , fi)W, t ^ o, i ^ / ^ m - i.

Denote by ί/ the set of all we^"1 [0, oo) such that

ι (oo) ̂  u(t) ̂  t?(ί), ί ̂  0, and

0 ̂  (- 1)̂ *11(0 g (- 1)^^(0, ί ̂  0, 1 ̂  i ̂  m - 1,
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and define the mapping M: U ̂ ^m~1[0, oo) by

(MM) « = ι> (oo) +H/( ',")«, * £ 0.

It can be shown, via the Schauder-Tychonoff theorem, that M has a fixed

element u in U, which gives rise to a positive entire solution u(\x\) of (0.1)

such that lim^^uίί) = u(oo). The proof of (iii) of Theorem 3.1 is complete.

The next theorem concerns the existence of a solution of (0.1) in Jf^[int]

or Jfj>[min]. These classes can be nonempty only for σ = — 1.

THEOREM 3.2. Let σ = — 1 in (0.1) and (3.1). Suppose that g in (3.1) is

continuous on [0, oo) x Rm and satisfies (3.2), and that

(3.3) /(ί, MO, «!,..., um_1)sgn ιι0 ^ 0(ί, t>0, ι>ι,.. .,t>m-

/or all (ί, MO, "!,..., W m - i ) ̂  (ί, ^o> t>i , . . . , i>m-i) satisfying

t ^ 0, MQ^O > 0, 0 < MO sgn MO ^ ι?0 sgn ι;0,(3.4)0 1 Λ ' ' "' " ' ' x < 1 < f < m - 1.

Suppose that there is a continuous function h(t, MO) o« [0, oo) x /? SMC/Z

(3.11) ιι0Λ(ί, w0) ̂  0, φ 0 /or (ί, ιι0)e[0, oo) x /?,

(3.12) Λ(ί, MO) sgn MO ̂ /(ί, t;0, t?1,...,t;m-1)sgnι;o

/or α// (ί, MO) αwrf (ί, v0, ι^ι,...,ym-ι) satisfying (3.4)0, β«J SMC/Z /Λαί, /or

ί ^ 0, h(t, MO)/ MO w nonincreasing in M0e(0, oo) and nondecreasing in M0e(— oo, 0),

and

(3.13) lim ! = + oo.
uo-*±0 M

//* /Λ^r^ exwii # rαJ/α/ ^«π'r^ function v satisfying (3.1)

g(\x\, υ ( \ x \ ) , Aυ(\x\)9...9A
m-lΌ(\x\)) ^ 0, ^ 0,

t?(|x|)-»0 α^ |x| -> oo, then equation (0.1) Λα^ α radial entire solution u

such that M ( | X | ) Φ 0 /or xeRN and u ( \ x \ ) -> 0 as |x| ->• oo. Furthermore, if the

function v is of class JfJ)[min], /AβA2 (0.1) has a radial entire solution u of

class «#J)[min].

PROOF. Let υ(\x\) be a radial entire function satisfying the conditions

mentioned above. We may suppose that v(t) > 0 for t ^ 0. Clearly υ belongs

to Jf0 D
nt] U JfJ) [min] . From (iii) of Theorem 2.2 we have
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(- ly^Xί) = (- \)mΨ^-i(Δmv)(i), t ̂  0, 0 ̂  i g m - 1,

which implies by (3.1) that

(3.14) (- l)'J'ι (ί) ^ yjΓ'flί * fi)(f), ί ̂  0, 0 g i g m - 1.

Since !PJ50( , δ) is well defined on [0, oo) and g(t, v(t)) ^ 0, ^ 0 for t ̂  0, it
follows from (i) of Lemma 1.10 that

Γ°°
(3.15) υ(t) ^ cN(m) min {s2m~\ sP-l}g(s, ϋ(s))ds qNtm(t), t ̂  0,

Jo

where qNtm(t) = min{l, t~N+2m}, t ^ 0. Let c be a number such that

f°°
(3.16) 0 < c < cN(m) min {s2"1"1, if'l}g(s9 v(s))ds.

Jo

Then, by (3.15),

(3.17) cqNtm(t) ^ υ(t), t > 0.

Noting that 0 g Λ(ί, c^>m(ί)) g/(ί, t (ί)) ̂  flf(ί, »(ί)), ί ̂  0, because of (3.11),
(3.12) and (3.3), we find that

ΓJo
min {s2m S SN ^Λίs, c^N>m(s))ds < oo.

On the other hand, the nonincreasing property of h(t, UO)/UQ implies

Γmin
Jo mm

-. Γ^ c mi
Jo c

Take a positive number c sufficiently small so that

Γ00

) mi
Jo

(3.18) cN(m) minis2--1, s"'1} «*„(«) ̂ ~^-ds ^ 1.
Jo ' c

Such a choice of c is possible, since the left-hend side of (3.18) diverges to
+ oo as c -> + 0. To see the divergence it suffices to apply the Lebesgue
monotone convergence theorem by taking account of the nonincreasing
property of h(t, u0)/u0 and condition (3.13).

Now, for a positive constant c satisfying (3.16) and (3.18), consider the set
17 of all ti e®"1"1^), oo) such that
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0 ̂  (- iyjl'w(i) ^ (- ly'ΛXί), t ̂  0, 1 ̂  i g m - 1,

(U is nonempty by (3.17)) and define the mapping M: U ->^m~1[0, oo) by

(Mu)(t)=Ψtf( ,u)(t)9 ί^'O.

It is verified routinely that (a) M maps [/ into 17, (b) M is continuous on (7,

and (c) M (U) is relatively compact, so that M has a fixed point ueU by the

Schauder-Tychonoff fixed point theorem. This fixed point u generates an

entire solution M ( | X | ) of (0.1) having the properties: w( |x | ) > 0 for xeRN and

u(\x\) -> 0 as |x| -> oo. It is also clear that w e Jf0 [min] if υe JfQ [min]. This

completes the proof of Theorem 3.2.

4. Existence of radial entire solutions I

We are now ready to develop the main results of this paper giving criteria

for the existence of radial entire solutions of equation (0.1) (and its particular

cases) belonging to the Kiguradze classes Jί1} and their subclasses. The results

are presented in this and the next sections. Our purpose here is to

characterize, under appropriate assumptions on the nonlinearity of (0.1), the

classes JtTj9 Λ}[max], Jf}[int] and Jί}[min] for;, lgy^w-1, (-I)i+lσ = l9

and the classes ^[min] and JΓ0[max].

DEFINITION 4.1. Let h be a continuous function on [0, oo) x Rm and let

d be an integer such that 0 ̂  d ̂  m — 1. We say that the function h satisfies

the condition (Nd) if

W, PdW) ^0 on [0, oo)

for every polynomial pd of the form pd(t) = Y,d

k=0ckt
2k with c0 Φ 0, where

For example, the function Λ(ί, MO, M I ? . . . , um_ί) = p(t)\u0\
γ sgn w0, where

7 > 0 and peC[0, oo), p(ί) ^0, ^ 0 on [0, oo), satisfies conditions (Nd) for

alld, O ^ έ f ^ m - 1 .
If 0 ^7 ^ m — 1 and we Jf) is a radial entire solution of (0.1), then, by

Theorem 2.2, u satisfies (2.5) or (2.6) according as l^j^m— 1 or

j = 0. Assume that Amu(t) = 0 for t ^ 0. Then, u(t) is of the form

"(0 = P/(0 = Σί = o cfc ί 2 f e for some cfe (° = fc =Λ» co ^ 0. From equation (0.1)
it follows that /(ί, p7 (ί)) = 0 for ί ̂  0. Therefore we can conclude that, if /

satisfies condition (N,), then Δmu(t) φ 0 on [0, oo) for any radial entire solution

u of (0.1) in the class JfJ (0 ̂ 7 ^ m — 1). Likewise we can prove by Theorem

2.4 that, if / satisfies condition (N^), then Amu(t)φb on [0, oo) for any
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radial entire solution u of (0.1) in Jf}[min] (1 ̂ 7 ^ m).

THEOREM 4.1. (i) Suppose that j is an integer such that 0 ^7 5̂  m — 1,

(— iy + 1 σ= 1 and f in (0.1) satisfies condition (N,.). If equation (0.1) has a

radial entire solution of class Jf), then N ^ 2(m — 7) + 1.

(ii) Suppose that j is an integer such that 1 ̂ 7 ^ m, (— iy+lσ = 1 and

f in (0.1) satisfies condition (N/.J. If equation (0.1) has a radial entire solution

of class ^.[min], then N ^ 2(m -j) + 3.

PROOF, (i) Let M G jf} be a radial entire solution of (0.1). As mentioned

above, Amu(t) φ 0 on [0, oo). Furthermore, from Theorem 2.2, Ψ%~J(Amu)(t)

is well defined on [0, oo). Then Lemma 1.8 shows in particular that

N ^ 2(m — 7) + 1. This proves part (i). Part (ii) can be proved similarly with

the aid of Theorem 2.4.

DEFINITION 4.2. Let d be an integer with 0 ̂  d ̂  m - 1 and let h be a

continuous function defined on [0, oo) x Rd+1 such that

(4.1) u0h(t, MO, M l 5 . . . ,M d ) ̂  0, ^ 0 on [0, oo) x Rd+1.

We say in this paper that such a function h is restrictively nondecreasing on

[0, oo)x Rd + 1 if

h(t, MO, ιι1,...,ιιd)sgnfi0 ^ M*> ϋo» ^ι,...

for all (ί, MO, ui9...,ud) and (ί, t?0, vi9...,vd) satisfying

(4.2) ί ̂  0, M0y0 > 0, 0 < Ui sgn MO ^ ι?f sgn v0 (0 ̂  i g

A continuous function h on [0, oo) x Rd+l satisfying (4.1) is said to be

super linear [resp. sublinear] on [0, oo) x Rd+1 if it is restrictively nondecreasing

on [0, oo) x Rd+l and the function

- h(t, ΛMO, Λ-M! , . . . , λud) sgn MO
Λ

is nondecreasing [resp. nonincreasing] in Λ,e(0, oo) for each fixed (ί, MO, M^...^)

such that t ^ 0 and u{ sgn MO > 0 (0 ̂  i ̂  rf). A continuous function h on

[0, oo) x Rd+1 satisfying (4.1) is said to be strongly superlίnear [resp. strongly

sublinear} on [0, oo) x Rd+ί if it is superlinear [resp. sublinear] on

[0, oo)x/? d + 1 and

— /ι(ί, /lM0, λul , . . . , /lMd) -> 0 as λ -» H- 0 [resp. 1 ̂  + oo]
Λ

for each fixed (ί, MO, M 19..., Md), ί ^ 0, Mf sgn MO > 0 (0 g i ̂  d). Furthermore,

a continuous function on [0, oo) x Rd + l satisfying (4.1) is said to be strictly



334 Takasi KUSANO and Manabu NAITO

super linear [resp. strictly sublinear] on [0, oo) x Rd + l if it is restrict! vely
nondecreasing on [0, oo) x Rd+1 and there exists a number y such that γ > 1
[resp. 0 < y < 1] and the function

— h(t, λuθ9λul9...9λujsgnu0

is nondecreasing [resp. nonincreasing] in Λ,e(0, oo) for each fixed (t9uθ9ul9...9

wd), t ^ 0, w ίSgn MO > 0 (0 g i ^ d).

As is easily verified, if h is strictly superlinear [resp. strictly sublinear] on
[0, oo) x Sd+1

9 then it is strongly superlinear [resp. strongly sublinear] on
[0, oo) x Rd+l. The function h(t, MO, uί9...9uj = p(t)\u0\

y sgn u0 with y > 0
and /?£C[0, oo), p(t) ^ 0, ^0 on [0, oo), is superlinear or sublinear on
[0, oo) x Rd+1 according as y ̂  1 or 0 < y ̂  1. It is strictly (and hence
strongly) superlinear on [0, oo) x Rd+1 if y > 1; and is strictly (and hence
strongly) sublinear on [0, oo) x Rd+1 if 0 < y < 1.

For an integer j, 0 ̂  j ^ m, we denote by D7 the set of all points
(ί, MO, M1,...,wm_1)e[0, oo) x Rm such that

f ί ^ O , M O ^ O , W ί s g n M 0 > 0 ( O ^ i ^ -l),

l(- IΓ^sgnwo ^0 (jίί^m- 1).

THEOREM 4.2. Let j be an integer with O^ ^m-1, (- iy ' + 1 σ=l.
Suppose that hj is continuous and restricίively nondecreasing on [0, oo) x Rj+ί

and satisfies

(4.4) 0 ^ hj (ί, MO, M! , . . . , uj) sgn MO ^ /(ί, "o* "i ? - - - , "m- 1) sgn w0 OΛ Dj

If equation (0.1) /zα^s1 a radial entire solution of class Jf)[max], then

ΛCX)

(4.5) ί2(m~ / )~1 |/t/(ί, cί2-7', cί2°'~1),...,c)|Λ < oo for some cφ§.
Jo

PROOF. Let weJfJ[max] be a solution of (0.1) such that u(t) > 0 for
t ^ 0. By Theorem 2.2, ̂ ~J(^mw) = (- l)m~J^"J/( , ΰ) is well defined on
[0, oo), where ΰ is defined by (3.5). Lemma 1.8 shows in particular that

Λ c

Joo

and hence (4.4) implies that

Γ f2<" -Λ
Jo

(4.6) ί2(m j) 1hj(t, w(ί), Λu(t),...,ΛJu(t))dt < oo.
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Since weJf}[max] means that lim,^ Λ'tiφ/f20'"0, O^i^;, exist and are
positive, there exist c^ > 0, c* > 0 and T ̂  1 such that

c*i2°'~° ̂  Λ fM(ί) ^ c*ί2ϋ"°, ί ̂  7; 0 ̂  i ^ j.

In view of the restrictively nondecreasing property of ft,, we see that

(4.7) hj(t, M(ί),

for ί ^ T: Then, (4.6) and (4.7) together imply that (4.5) holds for c = c+. The
case where MeJfJ [max] is negative in RN is similarly proved. This completes
the proof of Theorem 4.2.

THEOREM 4.3. Let j be an integer with O ^ j ^ m - l , (— i y + 1 σ = l .
Suppose that #,- is a continuous function on [0, oo) x RJ+ί which is either
strongly super linear or strongly sublinear on [0, oo) x Ri+1 and satisfies

(4.8) /(ί, MO, u1 , . . . , wm_ i) sgn MO ^ ̂  (ί, MO, MI , . . . , M;) sgn MO o« Djy

where Dj is the set of all points (ί, MO, M 1 , . . . ,M m _ 1 ) satisfying (4.3). Suppose
moreover that N ^ 2(m — j) + 1

ί
oo

t2(m-j)-l |̂ ί? Cί2j? ct2ϋ-D9 ?

D

equation (0.1) ΛΛΛ α radial entire solution u1 of class Jf}*[max]. 7f
1 ^7 ^ m — 1, /Ae«, ί/ι addition to this uleJ^rf [max], equation (0.1) has another
radial entire solution u2 which belongs to tff [int] U Jf}* [min].

PROOF. Without loss of generality we may assume that c > 0 in (4.9).
Let

(4.10) τ(ί) = max{l, ί}, ί ̂  0.

The strong superlinearity [resp. strong sublinearity] of 0,- on [0, oo) x RJ+1

implies

0 ^ -gj(t9

Λ

g-flfXf,
C

for all ί ̂  0 and all A, 0 < λ ̂  c [resp. λ ̂  c], and
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as λ -> + 0 [resp. λ -> + oo]. Therefore we have

1 f0 0

iJo

as A-> +0 [resp. Λ,-> + oo]. Consequently there exists a positive number
λQ > 0 such that

(4.11) Γ
Jo 2AN(j-i,m-j)

for all ϊ, 0 ̂  i ̂  , and all Λ,e(0, Λ0] [resp. Λe[/ί0, oo)], where AN(j — ί, m —j)
is a positive constant appearing in (1.21) with (i, fe) replaced by (j - ί, m -7).

Let 0 5^7 g m - 1. For any λ(> 0) satisfying (4.11), define the function

MO by

2(7 + l)* = o

for t ^ 0. In view of Lemma 1.8 we see that υ^t) is well defined for
ί ^ 0. Differentiation of vl gives

Λ'MO = —^- Σ pN(

ί ̂  0;

and

(- IΓ ̂ MO = Π"%( , λτV, λτ2(j~l\..., λ)(t), t ̂  0, j + 1 ̂  i ̂  m.

It is clear that v^ is of class JΓ/[max], because ^i satisfies /4 ίf1(ί)>0
(0 ̂  i ̂ 7 - 1) and (- ly-^^^ί) ̂  0 (7 ^ i ̂  m) for ί ̂  0 and ̂ (ί) has the
positive finite limit λ/[2(j + 1)] as t -> oo. Note that

(4.12) σ(- ir/fXίί) + βχί, A[τ(ί)]2j, A[τ(ί)]20'-1},...α) = 0

for ί ^ 0. If 0 ^ / ^ 7 , then, by means of (1.21) with (i, k) replaced by
(7 — i, m — 7), we obtain
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f«
+ AN(j-i, m-j)t2(j ° s2(m J) 1gj(s9 λ[τ(s)']2j,...,λ)ds

Jo

+ AH(j - i, m -Mτίt)]20-0 Γ ί2'"-*-1^, A[τ(s)]2',...,A)«fa
Jo

+ Aκ(j - i, m -j) Γ s2<--Λ-^χs, l[τ(5)]^...,
Jo

for £ ̂  0, where (4.11) has been used in the last step. These inequalities
combined with (4.12) yield

σ(- IΓ^ΓUiW + 0/ί, Mi), M «,..-, ̂ (ί)) ̂  0 in tf",

where ί = |x|. Then, applying Theorem 3.1 to the case of g(t9 vθ9 vί9...9vm,ί)
= 9j(t> vo> v i 9 . . . 9 V j ) and ί;(ί) = ι^ι(ί)5 we conclude that there exists a radial
entire solution u{ of (0.1) of class JΓj*[max].

Let l ^ j ^ m — 1. Then, for any λ(> 0) satisfying (4.11), define the
function t;2(ί) by

2(7 + l ) f c = o

for ί ̂  0. As in the above, it is shown that υ2 belongs to Jfj* [int] U Jf/* [min]
and satisfies

σ(- !ΓzΓι;2(ί) + ̂ (r, ϋ2(ί), Jt;2(ί),...,^t?2(ί)) ^0 in RN,

where ί = |x|. Part (ii) of Theorem 3.1 shows that there is a radial entire

solution u2 of (0.1) belonging to tff [int] U JΓ/ [mίn] The proof of Theorem
4.3 is complete.

The next theorem is concerned with equations of the form

(0.1),. (- ly^Γii + σfj(\x\9 M, zlM,...,^W) = 0, xe/?N,

where m ̂  2, σ = + 1 o r σ = — 1, J V ^ 3 , O ^ j ^ m — 1 and /) is continuous
and satisfies u0fj(t, MO, u ί 9 . . . 9 U j ) ^0, ^ 0 on [0, oo) x Rj+l. Condition (4.5)
in Theorem 4.2 for the case of / = hj = fj and condition (4.9) in Theorem 4.3
for the case of / = #,- = fj reduce to the same condition

Γ°°
.13),-

Jo

(4.13),- ί2(m-j)-l |y^ί? Cί2j? c ί 2t/-D > β φ φ j C )μ t < oo for some c ^ Q.
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THEOREM 4.4. Let j be an integer with 0 ^j ^ m — 1, (— iy+ 1σ = 1 and
consider equation (0.1) .̂ Suppose that fj satisfies condition (N,-) and is either
strongly super linear or strongly sublinear on [0, oo) x Rj+ί. Then the following

three statements are equivalent:
( i ) equation (0.1)7 has a radial entire solution of class tff [max]
(ii) equation (0.1)7 has a radial entire solution of class Jfj[max];
(iii) the dimensional condition N ^ 2(m —j)+ 1 and the integral condition

(4.13)y are satisfied.

PROOF. It is trivial that (i) implies (ii). Theorem 4.1 and Theorem 4.2
applied to the case / = hj = fj show that (ii) implies (iii), and Theorem 4.3
applied to the case /= #,- = fj shows that (iii) implies (i).

THEOREM 4.5. Let j be an integer with 1 ̂ j ^ m, (— iy + 1σ = 1. Suppose
that hj_ί is continuous and restrictiυely nondecreasing on [0, oo) x Rj and
satisfies

(4.14)

0 <; hj.^t, MO, M 1 , . . .,w / _ 1 )sgn MO ^/(ί, MO, M 1,...,Mm_ 1)sgn MO on Dj.

If (O.I) has a radial entire solution of class JfJ [min], then

(4.15)
Γ°°

t2(m-j)+l\hj_i(t,ct2(j-i)

9ct2(j-2\...,c)\dt< oo for some
Jo

PROOF. Let MeJf}[min] be a solution of (0.1) such that u(t) > 0 for
ί ^ 0. Then there exists c^ > 0, c* > 0 and T^> 1 such that

By Theorem 2.4 we see that Ψ%~j+1 /( ,M) is well defined on [0, oo), and
hence Lemma 1.8 and (4.14) yield

fJo
00.

Therefore (4.15) holds for c = c#. The case of u(t) < 0 on [0, oo) can be
similarly proved. This completes the proof of Theorem 4.5.

THEOREM 4.6. Letj be an integer with 1 ̂ 7 ̂  m, (— iy+ 1σ = 1. Suppose
that gj_1 is a continuous function on [0, oo) x Rj which is either strongly
super linear or strongly sublinear on [0, oo) x Rj and satisfies

(4.16) /(ί, MO, tt1,...,ιιm_1)sgnιio ^ 0/-ι(f, MO, u1,...,ιi i /_1)sgnιio on Dj.

If N^2(m-j) + 3 and
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Γ°°
(4.17) ί2(m"Λ + 1l^-ιfe ct2(j~l\ ct2(j~2\...9c)\dt < oo for some c / 0,

Jo

then equation (0.1) Λαs a radial entire solution in the class Jf}*[min].

PROOF. We may suppose that c > 0 in (4.17). Arguing as in the proof

of Theorem 4.3, we can show that

-
Λ JOΛ

as λ-> + 0 or as λ-+ + oo according as gj_ί is strongly superlinear or gj_l

is strongly sublinear, where τ(ί) is the function defined by (4.10). There is a
number λ0 > 0 such that

(4.18) Γ
Jo

-i- 1, ro-7

for all ί, 0 ̂  i ̂ j — 1, and all Λ,e(0, >10] or all λe[A0, oo) according as ^.i is
strongly superlinear or #,-_! is strongly sublinear. For any such λ, define t (ί)
as follows:

v(t) = -JΣ PN(k)t2k - ί*-1 ¥7Γ'+ Vι( > ^2(j~l

J fc=o

for ί ̂  0. An easy computation shows that

(4.19) Jίt;(0 = - JΣPN(fe-Oί2 ( f c- ί )

7 k=i

ί^O, 0 ^ i ^ 7 - 1; and

(4.20) (- IΓ' zf'Xί) = !PT Vι( > ^2°'"1)' Aτ2^2>,..

ί ^ 0, 7 ̂  i ̂  m.

It then follows from (1.21) with (i, k) replaced by (7 — i — 1, m — 7 + 1) that

° - AN(j -i-lm -j
7 Λ = i

x f00

Jo
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>-V (k-i) 2(k~l)

= j k = i

f°° 52( ϋ-i-D

>0 for ί ^ O and O^i

Therefore, noting that Λ /'~1ϋ(ί)-»Λ,//e(0, oo) as ί-»oo, we see that ι? is of
class Jf}* [min] . Furthermore, the function v satisfies

(4.21) σ(- IΓzΓι (f) + βfj-aί, ^[τW]20'-^, λ[τ(t)γU-2\...,λ) = 0

for ί ̂  0. In view of (4.19), we have

J k = i

^ ^[τ(ί)]2°'"/~1), ί ̂  0, 0 ̂  i g j - 1,

and hence (4.21) gives

- 0 in

where t = \x\. Applying Theorem 3.1 to the case g = < / / _ i ( i , yθ5...5^-ι)? we
conclude that equation (0.1) has a radial entire solution of class Jf}*[min].
This completes the proof of Theorem 4.6.

Consider the equation

(0.1),..! (- \)mΔmu + σ/ . Λ I x l , u, Ju,...,^-1!!) = 0, xeRN,

where m ^ 2, σ = H- 1 or σ = — 1, N ̂  3, l ^ j ^ m and ^_! is continuous
and satisfies u0)}-ι(ί, "o? W ι » . o«j-ι) ^ 0, ^0 on [0, oo) x RJ. Then condi-
tion (4.15) in Theorem 4.5 applied to the case of /= h^^ =//-ι and condition
(4.17) in Theorem 4.6 applied to the case of f=gj_ί = f j - ι become

(4.22),̂

Γ°°
t2(m-J> + l\fj-1(t,ct2<J-l\ct2(J-2\...9c)\dt< oo for some c / 0.

Jo

This observation combined with (ii) of Theorem 4.1 yields the next
theorem.

THEOREM 4.7. Let j be an integer with l ^ gm, (— iy ' + 1 σ=l and
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consider equation (OΛ)j^l. Suppose that f j _ 1 satisfies condition (N^) and is
either strongly super linear or strongly sub linear on [0, oo) x RJ. Then the
following three statements are equivalent:

(i) equation (QΛ)j_1 has a radial entire solution of class Jf}*[min];
(ii) equation (QΛ)j_1 has a radial entire solution of class Jίj[min];
(iii) the dimensional condition N ^ 2(w — j) + 3 and the integral condition

(4.22)J _ 1 are satisfied.

Now consider the equation

(4.23) (- l)mzΓw + σF(|x |,w) = 0, xeRN,

where m, σ and N are as above and F is assumed to satisfy the conditions :

(4.24) F is continuous on [0, oo) x /?;

(4.25) uF(t, u) > 0 for ί ̂  0, we/? - {0} and

(4.26) |F(ί, M l)l ^ |F(ί, M 2 ) | for t ̂  0, W l w 2 > 0, \u,\ g |ιι2|.

The next result follows from Theorems 4.4 and 4.7.

THEOREM 4.8. Consider equation (4.23) under the above conditions and
suppose in addition that F satisfies either

2)l for t ̂  0, W l w 2 > 0, \Ul\ £ |ιι2|,

lim ii '̂ (ί, fi) = 0 for each fixed t^Q

u2)\ for t ̂  0, u,u2 > 0, j u j ^ |ιι2|,

lim u " 1 F(ί, M) = 0 for each fixed t ̂  0.
-» ± co

Let fce{0, l,...,m — 1}. Then (4.23) has a radial entire solution u which has

no zero in RN and has the property that

lim exists and is a nonzero finite value

if and only if

ΛOO

N ^ 2 ( m - k ) + l and t2{m'k}~^\F(t9 ct2k)\dt < oo for some c Φ 0.
Jo

THEOREM 4.9. Let j be an integer such that 1 ̂ j ^ m— 1 and(— \y+1 σ= 1.
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Suppose that h^^ is a continuous and strictly superlinear function on [0, oo) x Rj

satisfying

(4.14)

0 ^ Λ/-ι(ί, MO, u^.-oMj-Jsgniio ^/(ί, MO, Kι,.. »κ«-ι)sgn MO 0/1 #/•

Tjf (0.1) λαs a radial entire solution of class Jfj, then

(4.15)

Γ00

t2(m-j) + 1\hj.l(t9 ct2(J-»9 ct2(j~2\...9c)\dt< oo /or jomβ c ̂  0.
Jo

PROOF. Let u be a radial entire solution of (0.1) in the class Jfj. We
suppose that tι(ί) > 0 for ί ̂  0. It follows from (ii) of Theorem 2.2 that

j-l

Alu(t) = J] PN(^ ~ i)(Aku)(Q)t2^k~l) + pN(j — ί)(Δ^ύ)(<

+ Φj

N~lΨ%~jf(', w)(ί), ί ̂  0, 0 ̂  ϊ ^7 — 1;

hence, by (4.14) and the fact that Λju(co) ^ 0,

(4.27)
j i

From (i) of Lemma 1.11 we easily see that

(4.28) Λu(t) ^ Ϋ PN(k

) Γ
Jo

j_1(5, 11(5),..., ̂ - x ιι(s)) ώ

for ί ̂  0 and 0 ̂  i ^7 — 1, where BN(j — ί, m — 7) is a positive constant.
Assume that the conclusion (4.15) does not hold in the following sense:

(4.29)
Γ°°

s2(m-j)+ίhj_1(s, cs2(j~l\ cs2(J-2\...,c)ds = oo for every o 0.
Jo

Since u satisfies Alu (i) ̂  c1| lί
2C/~ i~1), t^T, Q^i^j - 1, for some c* > 0 and

^ 1 (see (2.22) in Theorem 2.3), (4.29) implies

Jo
_1(s, u(s), Δu(s),...,Δj-lu(s))ds = oo.
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Then, using (4.28), we see that there exist constants 7ί and c1 such that 7J ^ T,
0 < cγ < BN(j — i, m —7) for all ie{0, l,...j — 1}, and

(4.30) Λ'n(ί) ̂  c^u-ί-v Γ s^-fi + ̂ hj-^s, u(s),...,A-lu(s))ds
Jo

for t ̂  Γi, 0 ̂  i ̂  - 1. Define / (ί) by

I(t) = Γ
Jo

and take a number T2 ^ Tt so that /(ί) > 0 for every t ^ T2. By (4.30) we have

Jf

w(ί) ^ c^ϋ-'-^/ίί), ί ̂  T2, 0 ̂  i g j - 1,

and hence

at

for t^T2. The strict superlinearity of h^^ implies that there is a constant
7 > 1 such that

),...,ClI(T2)), t £ Γ2.

Therefore we have

at

for t^.T2. Dividing this inequality by [/(ί)]y and integrating over [T2, f],
we find that

+
7-1 7-

' Γ s
Jr2

for t^T2, which in the limit as ί -> oo yields

Γ00

 S2(m-j)+l f t._ ι ( s > Cl/(T2)S20 -l)5

Jr2

But this is a contradiction to (4.29). Thus the integral in (4.15) converges
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for some c > 0. It is similarly shown that if u(t) < 0 on [0, oo), then the

integral in (4.15) converges for some c < 0. The proof of Theorem 4.9 is

complete.

THEOREM 4.10. Let j be an integer with 1 ̂ j ^ m - 1, (- iχ+ 1σ = 1 and

consider equation (0.1 ),-_!. Suppose that N^.2(m—j) + 3 and that fj.1 is

strictly superlinear on [0, oo) x Rj. Then the following three statements are

equivalent :

(i) there exists a radial entire solution of (0. !),-_! in the class tff\

(ii) there exists a radial entire solution of (OΛ)j_l in the class Jfj;

(iii) the integral condition (4.22)J _ 1 is satisfied.

PROOF. It is trivial that (i) implies (ii). Theorem 4.9 for the case
f=hj_1=fj_1 shows that (ii) implies (iii). Theorem 4.6 for the case

f=9j-ι=fj-ι shows, under condition (4.22)/_1, that (0. !),•_! has a radial
entire solution of class Jf}*[min], which is obviously of class tff. This
means that (iii) implies (i).

THEOREM 4.11. Let j be an integer such that 1 ^ 7 ' ^ w — 1 and
(— iy+ 1σ = 1. Suppose that hj_1 is a continuous and strictly sublίnear function

on [0, oo) x Rj satisfying

(4.14)

w0 ^/(ί, w0, w 1 , . . . ,w m _ 1 )sgnw 0 on Dj.

If (0.1) has a radial entire solutio of class JfJ , then

(4.31) Γ t2(m- n~1\hj.1 (ί, ct2j, ct2(i'^\...,ct2)\dt < oo for some c Φ 0.
Jo

PROOF. Let we JfJ be a radial entire solution of (0.1) such that u(t) > 0
for t ^ 0. As in the proof of Theorem 4.9, inequality (4.27) can be derived. By
(i) of Lemma 1.11 we have

(4.32) A^t) ^ JΣpN(k - ί)(Aku)(Q)t2(k-i}

k = i

+ BN(j - i, m - j){ί2ϋ"° Γ S2(m-Λ'lhj^(s9

Γr

-f t2U~l-v s^- n+thj-Λs, u(s),...,Aj-lu(
Jo

for t ^ 0, 0 ̂  i ^j — 1. The two possibilities occur:
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f 0 0

(4.33) t2(m-Λ+lhJ.l (ί, u(t)9...9A
J-lu(t))dt < oo; or

Jo

f0 0

(4.34) t2(m-j) + 1hj-ι(t, u(t),...,ΛJ-lu(t))dt = oo.
Jo

Suppose that (4.33) occurs. By Theorem 2.3 we have

Cj |{ ί2ϋ-i-i) ^ ̂ φ ̂  C*ί2o -o? ί ̂  7; 0 ̂  i ^7 - 1,

for some c^ > 0, c* > 0 and T^ 1. From the sublinearity of hj_^ it follows
that, for each fixed ί ̂  T9 if A ^ 1 then

Taking

/I = max {c*ί2(/-|)/^'ιι(f): 0 ̂  i ^7 - 1}

and noticing that 1 ̂  λ ̂  c*ί2/cs|ί, we see that

(cφ/c*)r2Vιfec*ί2^..0

Then assumption (4.33) implies that (4.31) holds for c = c*.
Suppose that (4.34) occurs. Then from (4.32) it follows that there exists

T! ^ 1 such that

(4.35) lu(t) ^ c,t2(j-»

for ί^T 1 ? O ^ i ^ j — 1, where ct is a positive constant such that

βjvO — ί» m —j)> cι f°r all ie{0, 1,... J — 1}. Let J(t) denote the integral on
the right-hand side of (4.35); thus

Δlu(t) ^ M^-'Vίt), t ̂  T!, 0 ̂  i g j - 1,

and consequently

αί

^ t2*-*-1^-^ CltVj(t),...,Clt
2J(t))

f o r ί ^ T j . Note that 0 < J(t) ̂  /(ΓJ for t^ Γt. Then the strict sublinearity
of /ίj_! implies that there is a constant γ such that 0 < y < 1 and
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for t ^ 7i . Therefore we have

]-y i2(*-/)-ihJ_1(i,c1J(T1)f2J,...,c1J(T1)i2)[J(i)]y

at

for t ̂  Tj . This gives

ί-γ l-γ

Γ
Jl

for ί ̂  7ί , from which it follows that

fJr
00.

Therefore (4.31) holds for c = CL J(7ί). This completes the proof of Theorem
4.11.

The following theorem is an easy consequence of (i) of Theorem 4.1, and
Theorems 4.3 and 4.11.

THEOREM 4.12. Let j be an integer with 1 ̂  ^ m - 1, (- iy+ 1σ = 1 and
consider equation (0.1 ),-_!. Suppose that /)•_! satisfies condition (Ny) and is
strictly sublinear on [0, oo) x Rj. Then the following three statements are
equivalent:

( i ) there exists a radial entire solution of (0. !),-_! in the class tff\
(ii) there exists a radial entire solution of (O.I),-.! in the class JfJ ;
(iii) the conditions N ^ 2(m — j ) + 1 and

(4.36)
Γ°°

f20"^"1 l/j-ι(f, cί2j', cί2°'-1),...,cί2)|Λ < oo /or ΛWW? c Φ 0
Jo

are satisfied.

THEOREM 4.13. Let j be an integer with 1 ̂  ^ m — 1 am/ (— iχ+ 1σ = 1.
Suppose that N ^ 2(m — 7) + 3 0«</ g^^ is a continuous and sublinear function
on [0, oo) x Rj satisfying

If equation (0.1) has a radial entire solution of class Jf}[int], then either

(4.37+)
30

gj-1 (ί, cί2°'~1), ct2(j~2\...,c)\dt = oo /or et er.); c> 0ΓJo
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or

(4.37-)

Γ°°
t2(m-j) + 1\gj.l(t9ct2(j-i\ ct2(j-2\...,c)\dt= oo for every c < 0.

Jo

PROOF. Let MEJf)[int] be a radial entire solution of (0.1), and suppose
that w(ί)>0 for ί ̂  0. We claim that (4.37 +) holds. Since Me.#}[int]
satisfies JJ'w(oo) = 0, it follows from (ii) of Theorem 2.2 that

(4.38) /Cιι(ί) = 'ΣW - i) μku)(0)t2(k-» + ΦίΓ'iPXr'/
k = ί

ί^O, O g i ^ j - 1.

Then (ii) of Lemma 1.11 shows that

(4.39) Δlu(t) ^ ϊ pN(k - i)(Aku

Γ
Jo

-"
Jί

+ CN(j - i, m -j) ί2"-" f-Λ-ifb ϋ(s))ds

for ί ̂  0, 0 ̂  i ̂ 7 - 1, where CN(j - i, m -;') is a positive constant and ΰ is
defined by (3.5).

On the other hand, (i) of Lemma 1.11 shows that

(4.40) ΦNΨ%-Jf(

^ BN(l m -j)\t2 Γ s2<m-»-lf(s9 ΰ(s))ds + Γ s2(w-^ + 1/(S, ΰ(s))ds\
I Jί Jo J

for t ^ 0, where J3N(1, m —j) is a positive constant. Therefore (4.39) and (4.40)
together imply that

so that, in view of (4.38),
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k = i

CN(j - ί, m -7)

for ί ̂  0, O ^ ί ^ j — 1. Since J7'"1^*) tends to + oo as t-> oo, using the
above inequality, we conclude that there exist constants M ̂  1 and T ̂  1
such that

(4.41) 0 < Alu(t) ^ Mt2(J-l~1}Aj-lu(t)9 t^T,0£i^j-l.

Assume now that (4.37 +) does not hold, i.e., there is a constant c > 0
such that

Γ
Jo

(4.42) t2(m j) + 1 g<-i(ί, cί2°'~1), ct2(j~2\...,c)dt < oo.
Jo

We will derive a contradiction. Take a number 71 ̂  T such that Aj~lu(t)
^ c/M for ί ̂  71, where M and c are constants satisfying (4.41) and (4.42),
respectively. This is possible because Aj~lu(t) -> + oo as f-*oo. On the
other hand, by (ii) of Theorem 2.3, there is a constant c* > 0 such that
Aj~lu(t) ^ c*ί2 for ί ̂  71. Therefore, using the sublinearity of Q^_V and (4.41),
we have

for ί ̂  T! . This implies that

poo

ί2("-Λ"1^.1(ί,ιι(ί),...,^-1ιι
Jo

by (4.42); and it follows from (4.16) and (4.39) that

(4.44) Aj-lu(t)^Aj~vu(ϋ)

+ CN(l,m-j)γ2 Γ s2(m-j)-1gj-1(s,u(
(. Jt

+

o

for ί > 0. Note that

Γ

Jo
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(4.45) g,.1(t,U(t),...,4i-1u(t))Z<

for ί ^ 7j (see (4.43)), and recall that zF"1^) tends monotonically to + oo
as t -> oo. Then, for ί ̂  τ ̂  T1?

_ ι f e ^ ^

= ,j ! / . Γ s2(
Λ J "(ί) Jo

+ c^^u(t) Γ

- ^-Lft) Γ s2(

+ - Γs^-^
C Jt

which in the upper limit as ί -̂  oo gives

lim sup \ Γ s2(m-Λ + 1^_1(5, u(s),...9*-iu(s))ds
ί-oo ^ MO Jo

^- Γs2^-^1^-^^^^-1),...^)^.
C JT

Since τ ̂  Tx is arbitrary, the left-hand side in the above is zero and
consequently

(4.46) lim \ \ s2(m-Λ+1^_1(s, u(s)9...9^'lu(s))ds = 0.
ί-oo^ ^(OJo

By (4.44) and (4.46) we can conclude without difficulty that there exist L > 0
and T2 ^ T! such that

(4.47) Δj~^u(ί) ^ Lt2 s2^--0"1^.!^, u(s)9...9A
j-ίu(s))dsJt

for ί ̂  T2. Then it follows from (4.47) and (4.45) that

j^(t, ct2"-1',...^) ί°
Jί

for t^.T2, which implies that
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K(t) = Γ s2^-Vι(s> u(s),...,AJ-lu(s))ds
Jt

satisfies

f 0 0

K(t) £ (LM/c) s2(M"/)+1flfJ-1(s, cs2(J-l\...9c)K(s)ds
Jt

for t^T2. Noticing that K(t) is positive and nonincreasing on [T2, oo), we

have

1 ^ (LM/c)
f"5

s2(m-j) + 1gj.1(s, cs2(J-l\...,c)ds

for t^T2. However this is a contradiction since the right-hand side tends

to 0 as ί-» oo. Thus we conclude that, if (0.1) has a positive radial entire

solution ueJf)[int], then (4.37 +) holds.

Likewise we can show that (4.37") holds if (0.1) has a negative radial

entire solution in «

THEOREM 4.14. Let j be an integer with 1 ̂ 7 ^ m — 1 and (— iy+ 1σ = 1,

and consider equation (0. !),-_!. Suppose that N ^ 2(m — j) + 3 and that f j - {

is strictly sub linear on [0, oo) x Rj and satisfies

fj-^t, -MO, -Mι,. . . ,-tf/-ι) = -fj-ι(t, uθ9 MI,...,^-I)

/or £ ̂  0, Mt > 0 (0 ̂  i ^7 — 1). Then the following statements are equivalent'.

(i) there exists a radial entire solution of (0. !),•_! of class Jfy*[int];

(ii) there exists a radial entire solution of (0. !),•_! of class

(iii) the following two integral conditions are satisfied:

(4.36)
}Q

Λoo

t2(m-j)-1\fj_1(t,ct2j,ct2(j-1\...,ct2)\dt<ao for some
Jo

Γ00

t2(m-j}+l\fj-1(t,ct2(j-1\ct2(j-2\...,c)\dt= oo for every c Φ 0.
Jo

and

(4.48)

PROOF. Suppose that (O.l)^-! has a radial entire solution in Jfj [int].

Then, using Theorem 4.11 with f=hj_1=fj_ΐ and Theorem 4.13 with

f=gj-ι=fj-i9 we have (4.36) and (4.48). This means that (ii) implies
(iii). Suppose that (4.36) and (4.48) hold. Theorem 4.3 applied to the case

f=9j=fj-ι ensures the existence of a radial entire solution u2 of (O.l)^!

belonging to j f f [int] U Jff [min]. But it follows from Theorem 4.5 with

f=hj_ί =fj-\ that this u2 does not belong to Jf/[min], and consequently
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u2e tff [int]. This proves that (iii) implies (i). It is trivial that (i) implies (ii).

Theorems 0.5-0.7 mentioned in the Introduction are the special versions

of Theorems 4.4, 4.7, 4.10, 4.12 and 4.14.

5. Existence of radial entire solutions II

In this section the existence of radial entire solutions of (0.1) belonging

to Jfo, Jf0[int] and Jf0[min] is discussed. Note that these classes are

nonempty only for the case σ = — 1.

THEOREM 5.1. Let σ = — 1 in (0.1). If equation (0.1) has a non-constant

radial entire solution u of class JΓ0, then N ^ 2m + 1.

PROOF. We assume that u(t) > 0, φ const, on [0, oo). By (iii) of

Theorem 2.2, Ψ^(Δmu) is well defined on [0, oo) and

u(t) = κ(oo) + (- \)mΨ^(Δmu)(t), t ̂  0.

From the assumption, we see that (- l)mzΓw(ί) ̂  0, φ 0 on [0, oo). Then it

follows from Theorem 1.8 that N ^ 2m + 1. This completes the proof of

Theorem 5.1.

Let DO be the set of all (ί, MO, u l 5..., um_ί) e [0, oo) x Rm satisfying

(5.1) ί^O, M o ^ O , ( - l y i i j S g n i i o ^ O (1 ̂  i ̂  m - 1).

THEOREM 5.2. Let σ = — 1 in (0.1). Suppose that fι0(ί, MO) is continuous

and restrictively nondecreasing on [0, oo) x R and satisfies

(5.2) 0^/ι0(ί, MO) sgn MO <;/(£, MO, Mi^.^.^sgn w0 on D0

If equation (0.1) has a radial entire solution of class JΓ0[min], then

Γ tN-l\h0(t,cΓN+2n

Jo
(5.3) r~ΊMί> cΓN+2m)\dt < oo for some c + 0.

Jo

PROOF. Suppose that M is a radial entire solution of (0.1) such that

u e JΓ0 [min] and u(t) > 0 for t ^ 0. It follows from (iii) of Theorem 2.2 that

u(t) = (— l)mΨ%(Amu)(t) = Ψ%f(-9 u)(t), t ^ 0,

where u = (M, zfw,. . . ,Δ m ~^u). By (1.22) in Lemma 1.9 we have

Γ00

(5.4) lim tN~2mu(t) = eN(m) sN~1f(s, ΰ(s))dse(Q, oo].
'-*00 Jo

By the definition of Jf0[min], lim t_0 0ί
N"2 w ιM(ί) exists and is a positive finite
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value, and so there are c^ > 0, c* > 0 and T ̂  1 such that

(5.5) c*rN+2m ^ u(t) ^ c*ΓN+2m, t ̂  T.

Combining (5.5) with the inequality

ΓJo

which follows from (5.4), we see that (5.3) holds as desired. This completes

the proof of Theorem 5.2.

THEOREM 5.3. Let σ = — 1 and N ^ 2m + 1. Suppose that the functions

ho(t, u0) and g0(t, u0) are continuous and restrictively nondecreasing on

[0, oo ) x R and satisfy

(5.6) 0^ h0(t, M 0)sgnw 0 <^/(ί, MO, M 1,. . .,wm_ 1)sgn w0

^tfofc w0)sgnM0 on DO,

where D0 is the set of all points (ί, MO, t/ 1 , . . . ,M m _ 1 ) satisfying (5.1). In addition,

suppose that, for each fixed t ^ 0, h0 (ί, W0)/w0 w nonincreasing in w0e(0, oo)

nondecreasing in (— oo, 0),

(5.7) lim ? = + oo,
«o-^±0 MO

Suppose that g0 is strongly sub linear on [0, oo) x R and that

g0(t, φ(ί))sgn φ(ί) ̂  0, ^ 0 on [0, oo)

/or et ̂ r^ bounded φeC[0, oo), φ(ί) ̂  0 (ί ̂  0).

(i) //

(5.8) f 2 m ~Ί0ofc c) |Λ < oo /or 5ome c ̂  0,

equation (0.1) has a radial entire solution u such that u(\x\) φ 0 in RN and

w(|;c|)->0 as \x\ -> oo.

(ϋ) //

(5.9) f"-1 |00(t, cΓN+2m)\ at < oo for some c * 0,

equation (0.1) Λαs α rαώα/ en/ire solution u such that u(\x\) =^Q in RN and

i^oo |x|N~2 mM(|x|) exists and is a nonzero finite value.

PROOF, (i) Without loss of generality we may assume that c in (5.8) is
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positive. The strong sublinearity of g0, condition (5.8) and the Lebesgue
dominated convergence theorem imply that

lim dN(m)
λ^ + αo J(

s«m , ̂ —1 ds = υλ
where dN(m) is a positive constant appearing in (1.20) with i = m. There exists
Λ,0 ^ c such that

Γ°° , -1
(5.10) <Mw) s yo(s,λ)ds^λ

Jo

for all /le[^o» °°) F°Γ sucn a ^ define the function v(t) by

By the assumption on #0 we see that v(t) is well defined on [0, oo) (see Lemma
1.8) and that v(t) > 0 on [0, oo) and lim^^ί) = 0. From inequality (1.20)
with i = m, h(t) = 00(ί, λ) it follows that

' ^ dN(m) \
Jo

υ(t)£dN(m) S2m-lg0(s9λ)ds, t ̂  0,
o

which implies by (5.10) that v(t) ̂  λ for t ;> 0. Then it is clear that

0= -(-lyn^rXO

Applying Theorem 3.2 to the case of h = h0 and g = 00, we conclude that
equation (0.1) has a radial entire solution u such that u( |x | )>0 for xεRN

and M(|x |)->0 as |x|^oo.
(ii) The proof of (ii) is similar to that of (i). Let c > 0 in (5.9). It is

shown that

r J / Λ Γ°° Γ 2m- 1 JV-11 9θ(S> λ(lN,m(S)) A πlim dN(m) max {s2m l, s" l} - - - as = 0,
A- + OO JQ λ

where qNtm(t) = min {1, ΓN+2m}9 t ̂  0. Note that max {ί2"1'1, ί^'1} = ί^'1

and qNtm(t) = f~ N + 2 m for ί ̂  1 because of N ̂  2m + 1. There is λ0 ^ c such

that for /le[A0, oo)

Γ°
dN(m)

Jo

Fix a constant λ satisfying the above inequality, and define v(i) by

dN(m) max ίs2m 1

9 SN x} g0(s, λqN m(s))ds ^ A.
J o
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It can be proved that v(t) > 0 for t ^ 0; t (ί) g λqNtin(t) for ί ^ 0 (see (ii) of
Lemma 1.10); and

+N-2m

t->ao ί
oo

s 9o(s> λqN „
3

lim tN~2mv(t) = eN(m) s"-1^ λqNtm(s))ds

(see Lemma 1.9). Since the right-hand side in the above is finite and positive,
we find that ι;eJf0[min]. It is easy to see that

- (- ir*mv(t) + g0(t, v(t)) gO, ί ̂  0,

and so it follows from Theorem 3.2 that equation (0.1) has a radial entire
solution u in the class Jf0 [min] . This completes the proof of Theorem 5.3.

REMARK 5.1. We know by Theorem 4.3 for the case j = 0 that (5.8) is
sufficient for (0.1) to have a radial entire solution u of class Jf"0[max]. Thus,
if (5.8) is satisfied, then (0.1) has at least two different kinds of solutions

and u
2

Let /0(ί, u) be continuous on [0, oo) x R and satisfy

(5.11) ιι/0(ί, ιι) £ 0, φ 0 for (ί, u)ε [0, oo) x /?.

Consider the conditions on /0 :

(5.12) /o (ί, φ(ί))sgn φ(t) ̂  0, ^ 0 on [0, oo)

for every bounded φeC[0, oo), φ(ί) ^0 (ί ̂  0);

(5.13) |/0(ί, u)| g |/o(ί, v)\ for ί ̂  0, uv > 0, |u| g M;

(5.14) u - ^ o f e i i J ^ i -Voίί^) for ί ̂  0, uv > 0, |ιι |^|t; |;

(5.15) lim f i 'VΌfe M) = 0 for each fixed ί ̂  0;
u-> ±00

(5.16) lim iΓVofe u) = + oo for each fixed ί ̂  0;
u-^±0

(5.17) there exists a number y, 0 < y < 1, such that

|u|-y |/o(i, ιι)| ^|ϋ|-y |/o(ί, ιι)| for ί ̂  0, ιιt» 0, |ιι|^|ι;|;

(5.18) /0(ί, - u) = - /0(ί, M) for ί ̂  0, u > 0.

The function /0 satisfying (5.11) is strongly sublinear [resp. strictly sublinear]
on [0, oo) x R if and only if (5.13)-(5.15) [resp. (5.13) and (5.17)] hold.

The following theorem is concerned with equations of the form

(5.19) (- IΓzΓu =/0(|x|, tt),

where /0 is continuous on [0, oo) x R and satisfies (5.11).
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THEOREM 5.4. Suppose that /0 satisfies (5.12)-(5.16). Then equation (5.19)

has a radial entire solution of class Jf0 [min] if and only if

(5.20) N^2m+l and tN~1\f0(tί cΓN+2m)\ at < oo for some c Φ 0.
J i

Theorem 5.4 follows from Theorems 5.1, 5.2 and (ii) of Theorem 5.3.

THEOREM 5.5. Let σ = — 1. Suppose that h0(t9 u0) is a continuous

and strictly sublinear function on [0, oo) x R satisfying

(5.2) 0 ̂  /ι0(ί, w0)sgn MO g/(ί, u0, w^.^w^^sgn w0 0« D0.

T/* equation (0.1) to # rαJzYz/ entire solution in the class JΓ0, then

ρ°
Ji o t '(5.21) ί2"1'1^, c)\dt < oo /or ^we c Φ 0.

PROOF. Let w e Jf0 be a radial entire solution of (0.1) such that u(t) > 0

for ί ̂  0. It is easily seen that

By Lemma 1.8 we find that

(5.22) u(t) ̂  cN(m) Γ s2m-[ fc0(s, u(s)) ds, t ̂  0.

Assume that /ι0(ί, u(t)) = 0 on [ίl5 oo) for some tl ^ 0. Since 0 < u(t)

^ w(0) for ί ̂  0 and h0 is strictly sublinear on [0, oo) x /?, we have

Mί)]~vMί, w(0)^[w(0)]~yΊ0fc w(0)) for ί^O, where 7 is a constant such
that 0 < 7 < 1. Then, Λ0(ί, w(0)) = 0 for ί ̂  ̂  and (5.21) is trivially satisfied.

Assume that Λ0(ί, u(t)) ^0, ^ 0 on [ίl9 oo) for all ̂  ̂  0. We denote the

integral in (5.22) by J(t). Observe that J(t) is positive on [0, oo) and

- J(ί) = ί21--1^^ n(0) ̂  i2m~^0(i, cN(m)J(ί)), ί ̂  0.
at

Since the strict sublinearity of h0 implies

U(t)Tyh0(t, cN(m)J (t)) ̂  [J(0)]-yA0(t, cw(m)J(0)), ί ̂  0,

we have

'ί^-^oίt, CN(W)^(O)), t ̂  0.
α

An integration of the above inequality yields
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7 Γ
Jo

l-γ

'Ms, cN(m)J(0))ds, t ̂  0,
o

from which it follows that

ΓJo
s*m-1h0(s,cH(m)J(0))ds< oo.

Thus (5.21) also holds in this case. The proof of Theorem 5.5 is complete.

Combining Theorems 5.1 and 5.5 with Theorem 4.3 for the case j = 0,

we have the following theorem.

THEOREM 5.6. Consider equation (5.19). Suppose that /0 satisfies (5.12),

(5.13) and (5.17). Then equation (5.19) has a radial entire solution of class JΓ0

if and only if

(5.23) N ^ 2m + 1 and t2m~l\f0(t, c)\dt < oo for some c / 0.

THEOREM 5.7. Let σ = — 1. Suppose that g0 is continuous and sublίnear

on [0, oo) x R and satisfies

(5.24) /(ί, MO, M 1 , . . . ,M m _ 1 )sgnw 0 ^ g0(t, M0)sgn MO on D0.

If equation (0.1) has a radial entire solution of class Jfo[int], then either

Γ°°
(5.25+) ί*~Ί0ofc cΓN+2m)\dt = oo for every c> 0

or

Γ00

(5.25") tN-ί\g0(t9 cΓN+2m)\dt = oo for every c < 0.

PROOF. Suppose that MeJf0[int] is a radial entire solution of (0.1) and

that u(t) > 0 for t ^ 0. By Theorem 5.1 we have N^2m+l.
Assume now that there is a c > 0 such that

(5.26) r W, cΓN+2m)dt < oo.
J i

Take a 7J ^ 1 so that u(t) ̂  ct~N+2m for t ^ Γ1? which is possible because of
[int]. From the sublinearity of g0 it follows that
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ί
(5.27) 00(t, M (ί)) ̂  ±u(i)i"-2m00(i, crw+2"),

C

and hence

(5.28) 00(ί, ιι(ί)) ̂  -̂  ί"-2m00(ί, cr"+2 "), ί ̂
c

In view of (5.26) and (5.28), we have

t2m-lg0(t9u(t))dt«x>9

Ji

which combined with N ^ 2m + 1 implies that Ψ^gQ(', u) is well defined on
[0, oo). Then it is easily seen that

ιι(ί) = (- IΓ Wmι<)(ί) ^ ^0o( , "MO, ί £ 0.

By Lemma 1.8 we have

(5.29)

ιι(ί) ̂  dw(m) jrN+2m Γ 5N-^0(s, ιι(s))ds + ί°° s2w-^0(s, u(s))ώj, ί ̂  0.
I Jo Jί J

Lemma 1.9 shows that t"~2mψ%((- l)mAmύ)(t) = tN~2mu(t) is nondecreasing in
[0, oo). If t ^ τ ̂  T1} then we can estimate as follows:

t-N + 2m Γt

— — s^-^0(S,w(
w(0 Jo

f-N + 2m Λτ f-N + 2m Λί

^ — T— ^-^0(S, I|(S))Λ + - — 5^-^(5)5^-^^0(5,

Il(ί) Jo Cfl(ί) Jt

f-N + 2m Λτ i Λί

^— Γ — 5^-^0(s,M(5))d5 + - S^-^0(s,C5-N + 2-)ds.

"(ί) Jo C J r

Noting that t~N+2m/u(t) ->0 as ί->oo, and taking the upper limit as ί-»oo,
we have

j.-N + 2m Γt ι poo

lim sup——- 5^-^o(5, u(s))ds ^ - 5N-^ofe c5-N+2w)d5.
°̂° K(ί) Jo C J τ

Since the right-hand side of the above inequality tends to 0 as τ -> oo, the
left-hand side is equal to 0, and hence

j.-N + 2m Λί

(5.30) lim — — 5^-^0(5, u(s))ds = 0.
'-""> "(0 Jo
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In view of (5.29) and (5.30) there are L> 0 and Γ2 ^ Γj such that

(5.31) u(t) £ L Γ s2"1-1^, u(s))ds, t^T2.

Then it follows from (5.27) and (5.31) that

9o(t,

for t^.T2, which implies that

K(t)= P S2m-1g0(s9u(s))ds

satisfies

K(t) ^L\ sN~1g0(s9 cs-N+2m)K(s)ds

L Γ°°
ί, u(t)) ^ - tN-2mg0(t9 cΓN+2m) s2m~lgQ(s, u(s))ds

c Jί

s that

PCX)

s2m ^ofe w l
Jί

for t^T2. Noticing that K(t) is positive (see (5.29)) and nonincreasing on
[T2, oo), we obtain

<Lί°° W-!
= c S,

for t^.T2, which contradicts the fact that the right-hand side approaches 0
as t -» oo. Thus we conclude that if (0.1) has a positive radial entire solution
of class Jf0[int], then (5.25+) holds.

Similarly we can prove that if (0.1) has a negative radial entire solution
of class JfJ) [int], then (5.25 ~) holds. The proof of Theorem 5.7 is complete.

THEOREM 5.8. Consider equation (5.19). Suppose that /0 satisfies (5.12),
(5.13), (5.16)-(5.18). Then equation (5.19) has a radial entire solution of class
tfQ [int] // and only if

(5.32)

Γ°

Λ O

Ji

1,

ί2m" X l/o(ί> c)| A < oo for some c φ 0,

= oo for all c Φ 0.

PROOF. If there is a radial entire solution of (5.19) in Jf0[int], then, by
Theorems 5.1, 5.5 (or 5.6) and 5.7, the desired conclusion (5.32) holds.
Conversely, if (5.32) is satisfied, then (i) of Theorem 5.3 ensures the existence
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of a radial entire solution u of (5.19) such that u(t) Φ 0 for ί ̂  0 and u(t) -> 0
as t -> oo. By Theorem 5.2 (or 5.4), this solution u does not belong to

Jf0[
mm] and therefore belongs to Jf0[int]. This completes the proof of

Theorem 5.8.

Finally let us summarize some results on bounded radial entire solutions
with no zero on RN of the generalized Emden-Fowler equation

(5.33) (- l)mΛmw = p( |x | ) |u | y sgnw, xeRN

9

where y > 0 and peC[0, oo), p(t) ^ 0, ^έO for t ^ 0. They follow from
Theorem 4.4 with j = 0, and Theorems 5.4, 5.6, 5.8 specialized to (5.33).

COROLLARY 5.9. (i) Let γ > 0, /I . Equation (5.33) has a radial entire
solution u such that u(t) ̂  0 for t ̂  0 and

(5.34) lim u(t) exists and is a nonzero finite value
ί-»αo

if and only if

Γ°°
(5.35) Λ Γ ^ 2 m + l and t2m~lp(t}dt < oo.

(ii) Le/ 0 < y < 1. Equation (5.33) AΛS # bounded radial entire solution u
such that u(t) φ 0 for t ^ 0

(5.36) lim tN 2mu(t) exists and is a nonzero finite value
f-» oo

if and only if

Γ°°
(5.37) N ̂  2m + 1 and tN~l~y(N~2m}p(t)dt < oo.

Ji

(iii) Let 0 < γ < 1. Equation (5.33) has a bounded radial entire solution
u such that u(t) ^ 0 for t ^ 0 and

(5.38) lim u(ή = 0, lim tN~2mu(t) = ± oo

= oo.(5.37) AT ^ 2m + 1, ί °° t2m~lp(t)dt < ao and \ tN-1

COROLLARY 5.10. Let 0 < γ < 1. ^l// o/ the following statements are

equivalent :
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( i ) equation (5.33) has a bounded radial entire solution which has no zero
in RN,

(ii) equation (5.33) has a radial entire solution which has no zero in RN

and satisfies (5.34);
(iii) equation (5.33) has a radial entire solution which has no zero in RN

and satisfies lim| J C |_>0 0M(|:x|) = 0;
(iv) condition (5.35) is satisfied.

6. Supplementary results

In this section we consider the equation

(6.1) (- VfΔmu + σ/0(|x|, u) = 0, xεRN,

where m ̂  2, Λf ^ 3, σ = + l o r σ = — 1 and /0 is continuous on [0, oo), and
state some results on the existence and asymptotic behavior of its radial entire
solutions which can be obtained by suitably combining the theorems given in
Sections 4 and 5. For simplicity it is assumed that

(6.2) w/0(ί, u) > 0 for t ^ 0, u + 0.

For equation (6.1), the integral condition of the type

(6.3),-

Γco

t2(m-J>- 1 |yo^ #2^ fo < OO for SOme C φ 0

Jo

plays an important rule. Here j is an integer with 0 r g j g m — 1.
Let /o be strictly superlinear on [0, oo) x R, that is, let /0 satisfy the

condition

(6.4) there exists a number 7 > 1 such that

|ιιP |/o(ί, u)\ ̂  bΠ l/o (f, v)\ for t ^ 0, uv > 0, \u\ ̂  \v\.

Then, noting that

t2(m-j} + l \ f o ( t , ct2(j-")\ ^ t2(m-»~l\fQ(t, ct2j)\

for t ^ 1 and c φ 0, we find that (6.3),- implies (6.3)^-!; and in particular (6.3),
implies (6.3)^2, (6.3)j_4,..., and so on. We observe that, under the
dimensional condition N ^ 2m + 1, the following statements hold:

( i ) (6.1) has a radial entire solution of class Jf} (1 ̂ j ^ m — 1) if and
only if (- iy+ 1σ = 1 and (6.3), _! holds (see Theorem 4.10);

(ii) (6.1) has a radial entire solution of class Jf0 such that lim^
ER - {0} if and only if σ = - 1 and (6.3)0 holds (see Theorem 4.4 with; = 0);

(iii) (6.1) has a radial entire solution of class tfm such that \\mt^^u(
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ί2(m-l)6 / ? _ |QJ jf and Qnly if (_ l)m+lσ = γ an(j (gj)^ holds (SCC Theorem

4.7 with j = m).

Taking these facts into account and recalling the decomposition of JΓ
mentioned just before Theorem 2.2, we have the following theorems.

THEOREM 6.1. Consider equation (6.1). Suppose that m is even, σ = + 1,

N ^ 2m + 1 and that /0 satisfies (6.2) and (6.4). Then equation (6.1) te a

radial entire solution with no zero in RN if and only if

ΓJo

2m~1

l/o (ί, c)| dt < oo for some c / 0.

THEOREM 6.2. Consider equation (6.1). Suppose that N ^ 2m + 1
/o satisfies (6.2) αwrf (6.4). 77ze« fλe condition

fα

Jo
for

w necessary and sufficient in order that the following situation occurs:

( i ) /or m ei en am/ σ = + 1, each radial entire solution of (6.1) has at

least one zero;

(ii) for m odd and σ = — 1, each radial entire solution u of (6.1) with no

zero satisfies lim^^tφ) = 0;

(iii) for m even and σ = — 1, each radial entire solution u of (6.1) with no

zero satisfies either lim^^iφ) = 0 or Iim i_> 0 0 |w(i)|/i2 ( m~1 ) = + oo;
(iv) for m odd and σ = + 1, each radial entire solution u of (6.1) with no

zero satisfies Iim ί_00 |tι(ί)|/ί2(m~1) = + oo.

Next consider the case where /0 satisfies the conditions

(6.5) lim w'Vo (ί, u) = +00 for fixed t ^ 0;
u->±0

(6.6) |/0(ί, ιι)| ^ |/0(ί, i?) I for ί ̂  0, 111; > 0, |ιι| g M; and

(6.7) there exists a number y, 0 < y < 1, such that

|ιι|-η/0(t, ιι)| ^ |t;Π/0(ί, i?) I for t ̂  0, ιιι» 0, \u\ ̂  \v\.

In this case, the condition

ί N^2(m-j) + 1 and

(6-8), foo

[ t2(m-j)-l\f0(t, ct2j)\dt < oo for some c + 0
Jo

is crucial. It is easy to see that (6.8), implies (6.8),+ 1; and hence (6.8)7 implies
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(6.8),-+2, (6.8);+4,..., and so on. Furthermore,
( i ) equation (6.1) has a radial entire solution of class Jf) (0 ̂ 7 ̂  w — 1)

if and only if ( - i χ + 1 σ = l and (6.8); holds (see Theorem 4.12 for

1 g j ^ w — 1 and Theorem 5.6 for 7 = 0);
(ii) equation (6.1) has a radial entire solution of class j f m such that

Hmt^aou(t)/t2(m~1)eR- {0} if and only if (- l)m + 1σ= 1 and (6.8)m_! holds

(see Theorem 4.7 with j = m).
Then the following theorems can be shown without difficulty.

THEOREM 6.3. Consider equation (6.1). Suppose that (— l)mσ = 1 and that
/o satisfies (6.2), (6.5)-(6.7). Then equation (6.1) has a radial entire solution

with no zero in RN if and only if

ί|/0(ί, ct2(m~1})\dt < oo for some c^O.
o

THEOREM 6.4. Consider equation (6.1). Suppose that /0 satisfies (6.2),

(6.5)-(6.7). Then the condition

Γ°

Jo
f, ct2(m-")\dt = oo for all c / 0

is necessary and sufficient for the following situation to occur:
(i) for the case of ( — l)mσ = 1, each radial entire solution of (6.1) has

at least one zero;
(ii) for the case of (— l)m+1σ = 1, each radial entire solution u of (6.1)

with no zero satisfies lim f_Q O |M(ί)|/ί2 ( m~1 ) = + oo.
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