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0. Introduction

We consider higher order quasilinear elliptic partial differential equations
of the form

(0.1) (= D)™4™u + of (|1x|, u, Au,..., 4™ *u)=0, xeR",

where m=2, N=3, 6=+4+1 or 6 = —1, |x| is the Euclidean length of
X = (X4,...,Xy), and 4° denotes the i-th iterate of the N-dimensional Laplacian
A=Y 0%/0x?. Tt is always assumed that the function f in (0.1) is
continuous on [0, o) x R™ and satisfies the sign condition

(0'2) uOf(t’ Ug, ul,---’um—l)g()’ ;0 for (t9 Up, ula---)“m—l)e[()) CX)) x R™.

A prototype of (0.1) satisfying (0.2) is the multi-dimensional generalized
Emden-Fowler equation

0.3) (— )"4™u + op(|x|)|u]’ sgnu = 0, xeRN,

where y > 0 and p is continuous on [0, c0) and p(t) 2 0, # 0 for t = 0.

We are concerned with the problem of existence (and nonexistence) of
radial entire solutions of (0.1) which have no zero in RY. By a radial entire
solution of (0.1) we mean a radially symmetric function u(|x|)e C2™(R") which
satisfies (0.1) at every point of RN. The study of this problem was initiated
by Walter [20, 21] and followed by Walter and Rhee [22], Kusano and
Swanson [13], Kusano, Naito and Swanson [10-12], and Usami [19]. In
particular, it is shown in [11] that the equation

0.4) (= 1)y"4™u + af (x|, u) = 0, xeRY,

generalizing (0.3), may possess a variety of positive or negative radial entire
solutions with different types of asymptotic behavior as |x| — oco.

The purpose of this paper is to provide a theory which unifies and furthers
basic theories developed in [10-13] and which enables us to obtain detailed
information about the structure of radial entire solutions with no zero of
equation (0.1). Our theory is based on the fact (Theorem 2.1 below) that a
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radial entire solution u(|x|) of (0.1) which is either positive or negative
throughout RV satisfies the inequalities

0.5) {u(lxl)(Aiu)(|x|)>0 for all large |x|, 0<i<j—1,
Y (— ) u(x))('w(x))= 0  forall x, j<ism,

for some integer je{0, 1, 2,...,m} such that
(0.6) j is odd in case 0 = + 1, and j is even in case 0 = — 1,

or, in short, (— 1y*'g =1. It should be observed that this fact is quite
similar to the following theorem, known as Kiguradze’s lemma [4, 5], regarding
the ordinary differential equation

0.7) (= 1"y™ +af(t, y, ¥,....y)"" V) =0, >0,
where m, ¢ and f are as in (0.1):

THEOREM 0.1. If y(t) is a nonoscillatory solution of (0.7), then there exists
an integer je{0, 1, 2,...,m} such that (0.6) holds and

{y(t)y""(t) >0, 0<i<j—1,

©8) (- D yy°) 20, jSism,

for all sufficiently large t.

In view of (0.5); and (0.8); it is natural to conjecture that the structure
of radial entire solutions having no zero of (0.1) is similar to the structure of
nonoscillatory solutions of (0.7), and that, with suitable modifications, known
basic results for (0.7) can be carried over to (0.1). In this paper, efforts will
be made to verify the truth of this conjecture.

For this purpose let us review the basic results for nonoscillatory solutions
of (0.7). Denote by 4" the set of all functions ye C™ that are defined and
have no zero on some half-line [T), ) and satisfy (— 1)"oy (O)y™ () <0 for
all large t. A nonoscillatory solution y(t) of (0.7) clearly belongs to .#". For
an integer je{0, 1, 2,...,m} satisfying (0.6), let .#; denote the set of all ye A"
that satisfy (0.8); for all large t. The set .4 is often referred to as the
Kiguradze class of degree j. In view of (0.8); it is easily seen that if ye /]
for 1 <j<m— 1, then there exist positive constants c,, ¢, and T such that

(0.9) ! THS |y Sepf fort 2T,
and y(t) has the integral representation

ji— (k) J)
(0.10) y(t) = Zl VP SO ( ),(oo)
k=0 k! ]'

(t—TYy
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o (=P [ (= sy
FEDT o ), =Y

for t =2 T, where y¥(c0) = lim y¥(t) as t » c0. From (0.9) and (0.10) it follows
that exactly one of the next three cases holds for each ye #}, 1 <j<m — 1:

™) (r) drds

0.11) lim J—)(J—Q exists and is a nonzero finite value;
t=o
t t
012 1im?? -0 and tim ?¥ = & oo;
t—> o t] t—= o t] 1
t .
(0.13) lim g exists and is a nonzero finite value.
t= o

This admits a further classification of A4} for 1 £j<m —1:
(0.14) N; = N;[max]u A;[int]U A [min],

where A;[max], A;[int] and A;[min] denote the sets of all ye.#; satisfying
(0.11), (0.12) and (0.13), respectively. The study of the existence (and
nonexistence) of nonoscillatory solutions in the Kiguradze classes .4} and the
three subclasses of .4 appearing in (0.14) has been one of the central problems
in the qualitative theory of ordinary differential equations of the form (0.7);
see, e.g., the papers [2, 8,9, 16, 17, 18].

Consider the generalized Emden-Fowler equation

(0.15) (= D"y™ +op(®)lyl'sgny =0, >0,

where y>0 and p is continuous on [0, oo) and p(t)=20, #0 for
t > 0. Equation (0.15) corresponds to (0.3). Fundamental and important
results for (0.15) are the following theorems.

THEOREM 0.2. Let j be an integer such that (—1Y*'o=1 and 1<j
<m-1.

() Equation (0.15) has a nonoscillatory solution of class A;[max] if and
only if

(0.16) f "It p(f)dt < oo.
0

(i) Equation (0.15) has a nonoscillatory solution of class A;[min] if and
only if

0.17) j tmTit D p(f)dt < 0.

0
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THEOREM 0.3. Let j be an integer such that (—1Y*'c=1 and 1<j
<m-—1.

(i) If (0.15) is strictly superlinear, i.e., y > 1, then a necessary and sufficient
condition for (0.15) to have a nonoscillatory solution of class N is that (0.17)
is satisfied.

@) If (0.15) is strictly sublinear, i.e., 0 <y <1, then a necessary and
sufficient condition for (0.15) to have a nonoscillatory solution of class N is
that (0.16) is satisfied.

The problem of characterizing the solutions of class .4;[int] has been
settled for the strictly sublinear case of (0.15), whereas it remains open for
the strictly superlinear case.

THEOREM 0.4. Let j be such that (—1Y*'c=1 and 1<j<m—1.
Assume that equation (0.15) is strictly sublinear, i.e., 0 <y < 1. Then, equation
(0.15) has a nonoscillatory solution of class A;[int] if and only if

‘[ it Np(t)dt < 0 and
(0.18) 0
‘[ I p (1) dt = co.

0

Surprisingly, all the corresponding results also hold, with slight modifi-
cations, for radial entire solutions of (0.1) without zero in RY. Let # denote
the set of all radial entire functions u(|x|)e C?>™(R") that have no zero in RY
and satisfy (— 1)™ou(|x|) (4™u)(|x|) <0 for xeR". For an integer je{0, 1,2,...,m}
with (— 1¥*'o = 1, denote by ] the set of all u(|x|)e A satisfying (0.5);. It
can be shown that if ueX; for 1 £j<m—1, then there exist positive
constants c¢; and ¢, such that

(0.19) ¢ %2970 < Ju(|x])| € cy]x]? for all large |x|,

and u(]x]|) is expressed as

(0.20) u(lx) = ]{Z, (k) (A u) (0) | x|** + py(j) (47u) (00) x|/

k=0
+ (= )DL PRI (A (Ix]),  xeRY,
where
021) pyO0)=1, pyk)=1/[2*k'N(N +2)---(N+2k—2)] fork=1,2,...,

and @4 and P/ denote, respectively, the j-th iterate and (m — j)-th iterate
of the integral operators @, and ¥, defined by
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t s
0.22) (Dyh)(t) = t‘"”j sN'3j rh(r)dr ds, t=0,
0 0

0.23) (Py)(@)=t"N*2 f sV3 fao rh(r)drds, t=0.
0 s

The corresponding decomposition of )}, 1 <j<m — 1, is formulated as
(0.24) A; = A;[max]u A;[int] U o [min],
where Jf;[max], &;[int] and 2;[min] denote the sets of all ue ¢ such that

u(|x|)

(0.25) |llim [ exists and is a nonzero finite value,
x|=o |Xx
. u(lx]) . u(|x])

0.26 lim -~ =0 lim ——— = R

( ) |x|1_+m lezl |x| = 00 |x|2(1—1)

(0.27) lim u(lx1) exists and is a nonzero finite value,

Ix|=w |x|207D
respectively. Moreover, the following Theorems 0.5-0.7 for the multi-

dimensional generalized Emden-Fowler equation (0.3), which correspond to
Theorems 0.2-0.4, can be proved.

THEOREM 0.5. Let j be an integer such that (—1Y*'e=1 and 1<
<m-1.

() Equation (0.3) has a radial entire solution of class A;[max] if and
only if N=22(m—j)+ 1 and

(0.28) J £2m=D =142 () df < oo,
0

(i) Equation (0.3) has a radial entire solution of class A;[min] if and
only if N=22(m—j)+ 3 and

(0.29) f (2= D1+ 2901 () 4y < oo,
0

THEOREM 0.6. Let j be an integer such that (—1Y*'e=1 and 1<j
<m-1.

(i) Let N=2(m—j)+ 3. Suppose that (0.3) is strictly superlinear, i.e.,
y > 1. Then a necessary and sufficient condition for (0.3) to have a radial entire
solution of class A is that (0.29) holds.

(ii) Supppose that (0.3) is strictly sublinear, ie., 0 <y <1. Then a
necessary and sufficient condition for (0.3) to have a radial entire solution of
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class A; is that N 2 2(m — j) + 1 and (0.28) holds.

THEOREM 0.7. Let j be an integer such that (— 1y *le=1,1<j<m—1
and let N = 2(m — j) + 3. Supppose that (0.3) is strictly sublinear (0 <y < 1).
Then, equation (0.3) has a radial entire solution of class X [int] if and only if

e o)
f 2m=D=1+ i p()dt < o0 and
0

(0.30)

©
J t2(m—j)+1+2y(j—1)p(t)dt = 0.
0

These results show that the structure of the radial entire solutions of (0.3)
having no zero in RM has a striking similarity to that of the nonoscillatory
solutions of (0.15), but not to that of the nonoscillatory solutions of the
equation

(— D"y®™ + op(t)|y"sgny =0, t>0.

It should be noticed here that the restriction on the dimension N is essential
for the existence of radial entire solutions of (0.3) having specific asymptotic
properties on R" (see, e.g., Theorem 0.5). This delicate relation between the
order 2m of the equation and the space dimension N is a remarkable feature
which is not shared by the one-dimensional differential equation (0.15).

The complete analysis of solutions in the extreme classes A and A, is
difficult even for the simple ordinary differential equations of the type
(0.15). For the detailed discussions and related results the reader is referred
to [3-7, 14]. It turns out, however, that the situation is different for the
class A, of solutions of the elliptic equation (0.3) in RY. In fact, the class
Ay can also be decomposed into the three subclasses A [max], ,[int] and
Ay [min], and necessary and sufficient conditions can be obtained for the
strictly sublinear equation (0.3) to have solutions of classes X, A, [max],
Ay [int] and A, [min], respectively.

It is the properties of the iterated integral operators @, and ¥y defined
by (0.22) and (0.23) that play an important part throughout the paper. These
properties are stated and proved in Section 1. Section 2 contains the
classification into the Kiguradze classes ¢} (0 < j < m) of radial entire functions
u(|x|)e C*™(RM) satisfying u(|x|) # 0 and (— 1)™ou(|x|)(4™u)(]x|) £ 0 for xe R¥
as well as further classification of J¢; according to the possible asymptotic
behavior of members of £} as [x| - co. The integral representations for ue %,
which are formed from iterates of @, and ¥y, are also given in Section 2. In
Section 3, elliptic equations of the form (0.1) and certain elliptic differential
inequalities are considered and comparison theorems for the existence of
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solutions in the classes Jf; are established. Detailed discussions of the
existence of solutions of (0.1) in the classes ;, #;[max], J;[int] and
A;[min] are presented in Sections 4 and 5; Section 4 concerns the case
1 <j<m and Section 5 concerns the case j =0. Finally, in Section 6, we
state important consequences of the theorems given in Sections 4 and 5. It
is shown, for example, that if m is even, 6 =1, and N >2m+ 1, then a
necessary and sufficient condition for the existence of a radial entire solution
of (0.3) with no zero in RV is that

J 2™~ 1p(t)dt < oo for the case y > 1, and
(4]

f $1H2m=D ) dt < o0 for the case 0 <y < 1.
0

This result may be considered as a higher-dimensional version of a well known
theorem of Kiguradze [4, 5] and Licko and Svec [15].

1. Preliminary lemmas

We begin by stating and proving some preparatory results which will be
needed in the proofs of our theorems.

Let N>3 be an integer. The N-dimensional Laplacian 4 acting on
radial C? functions is written in the polar form

d d d d

(11) A=t—-N+1_tN—1_=t—1_t—N+3_tN—2

, t=|x]|.
dt dt dt dt

For an integer i =1, 2,..., we denote by 2'[0, o) the set of all functions
h: [0, ) = R such that 4*h(|x|), 0 £ k <, are well defined and continuous
on RY, where 4* is the k-th iterate of 4. Note that if 4*h(|x|) is defined for
|x| =ty (= 0), then 4*h(|x]|) is clearly radial for |x| > t,. It should be also
noticed that he 2' [0, o) if and only if he C?[0, o) and h'(0) = 0. Therefore,
if he 2'[0, ), then 4*h(t), 0 < k £ i, are continuous on [0, o) and (4*h)' (0) =
0,0Zk=<i—1

LeMMA 1.1. If he2'[0, o) and Ah(t) =0 [resp. <0] for t =0, then
W(t)=0 [resp. 0] for t 2 0.

This elementary lemma is an immediate consequence of (1.1).

LemMa 1.2. (i) If he C?[t,, ), to > 0, satisfies Ah(t) = cot?, t = t,, for
some constants ¢, >0 and p > — 2, then
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K@) Z e P, h(t) 2?2, t21y,

for some constants ¢, >0, ¢, >0 and t; = t,.
(i) If heC?[ty, ), to>0, satisfies Ah(t) < cot?, t=ty, for some
constants ¢, >0 and p > — 2, then

W) S e tP*h, h(t) Sc,t7*2, t=ty,
for some constants ¢, >0, ¢, >0 and t; = t,.

Proor. It suffices to prove part (i). Integrating the inequality (¥ ' h’'(t))’
= cotNtPT over [to, t], we have

C
NI SN TR (L) + —2— (VTP — N, 2>t
N+p

which implies the existence of ¢; >0 and t; = t, such that tN"1h'(t) = c, tN*P
or h'(f) = c,t*** for t = t;. Integration of the last inequality yields

h(t) = h(ty) + I% (tP*2 — P2, t=ty,

which shows that h(t) = c,t?*2, t > t,, for some ¢, >0 and t, > t.

Let L} (0, ), A = 0, denote the set of all real-valued measurable functions
h on (0, o0) such that

Jw t*|h(t)| dt < co.

0

Define the integral operators @y: C[0, o) —» C%[0, c0) and ¥y: C[0, )
nL} (0, c0) - C%[0, c0) by (0.22) and (0.23), respectively. It is sometimes
useful to note that &, and ¥, can be rewritten as

(12) (Byh)(t) = ﬁ{—ﬂ (;)N_Zsh(s)ds+£ sh(s)ds}, t>0,

1 t s N-2 ©
= — >
(1.3) (Pyh) () N_3 {L < " ) sh(s)ds + J; sh(s)ds}, t=0.

The operator @y, satisfies (Pyh)(0) = (@Pyh)'(0) = 0 and (Dyh)(t) is a nondecreas-
ing function on [0, o) for any he C[0, o0) with h(t) =20, t =2 0. If heC[0, o)
and

(1.4) Jm sh(s)ds = lim ft sh(s)ds
t— o 0

0
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exists in the extended real line R, then
. 1 ®
}1}2 (Dyh)(t) = =3 L sh(s)ds.
Likewise it is shown that lim,, , (¥yh)(t) = (¥yh)'(0) =0 and
1 o]
(qINh) (0) = m Jo sh(s) ds

for he C[0, c0)nL} (0, 00), and that (¥yh)(t) is nonincreasing on [0, co) for
all nonnegative he C [0, co)nL’ (0, o).
An easy calculation by means of (1.1) shows that

(1.5) A(D@yh)(t) = h(t), t =0, for he C[0, o0),
(1.6) AP () = — h(t), t 20,  for heC[0, 0)n Lk (0, o).
LEMMA 1.3. Let i =1 be an integer. If he 2'[0, ), then

(1.7) h(t) = E pa(k) (4°h)(0)t* + Py (A'H)(1),  t =0,
k=0

where @ denotes the i-th iterate of ®y, and py(k) is defined by (0.21).

LEMMA 1.4. Let i =1 be an integer. If heC[0, ) and h(t)=0 for
t =0, then

t
(1.8) 0 < (Pyh)(t) < ax(i) tzi_zj sh(s)ds, t20,

(V]
where ay(i) = 1/[2""1(i — )!(N —2)]. If in addition the improper integral
(1.4) exists in the extended real line R, then

(19) lim (%”}f—)z(t—) = by(i) f sh(s)ds,

t— o

where by(i) = 1/[271(i — D!(N — 2)N (N + 2i — 4)].

The proofs of Lemmas 1.3 and 1.4 are given in [12, Lemma 2.4] and
[10, Lemma 1], respectively.

LEMMA 1.5. If his a C[0, o) function such that lim,_, , h(t) = h(c0) exists
in R, then

(‘P}'vh} ®

t2

(1.10) lim

t— o0

= py(i)h(0), i=12,...
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Proor. The conclusion (1.10) is true for i = 1, since repeated application
of L’Hospital’s rule shows that

f J rh(r)drds
(‘sz )(t)

t”‘3ft rh(r)dr ft rh(r)dr

> I\ t=0  Nt?

— lim 10 th(t) h(oo).
- 2Nt 2N

t—'ao

If we assume the truth of (1.10) for some i = 1, we obtain

((D‘“h)(t) f f r(DL h)(r)drds

t21+2 tN+21

lim ———

t—= o0

(N3 f' r(®4h) (r)dr Jt r(®4h) (r)dr

— 0 — Y S —
Cmo (N 420N e (N 4 2i) 132
(PR _ 1 N0

T o (N+20)Qi+ 2 2+ DN + 2w (B
= pn(i + 1)h(c0).
Thus Lemma 1.5 follows by induction.
The following lemma is contained in [12, Lemma 2.8].

LEMMA 1.6. Suppose that he2'[0, ©) and Ah(t)=0 or <0 for
t 2 0. Then, lim,_  h(t) = h(c0) exists and is finite if and only if Ahe L} (0, o0),
in which case

(1.11) h(t) = h(c0) — Px(4h)(2), t=0.
LEMMA 1.7. Let i =1 be an integer. Suppose that he 2'[0, ) and
(1.12) (= DE4*m) () =0, t20, k=1,2,...,i

If lim,_, , h(t) = h(c0) exists and is finite, then ¥(4'h) is well defined on [0, )
and

(1.13) h(t) = h(0) + (— 1Y ¥ (L) (5), t=0.
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Proor. From the hypothesis it follows that (— 1)*(4*h)(¢), k=1, 2,...,
i — 1, are nonnegative and nonincreasing on [0, o), and hence (— 1)¥(4*h)(t),
k=0,1,...,i — 1, have the finite limits (— 1)*(4*h)(oc0) as t - c0. By Lemma
1.6 we have 4*he L} (0, o) for k =1, 2,...,i. Since (4*h)(0), k=1,2,...,i —1,
are finite, this means that (4*h)(c0) =0 for k=1, 2,...,i — 1. Thus, by Lemma
1.6 again,

(1.14) ) () = — Py h)(@), t=0, k=1,2,...,i—1; and
(1.15) h(t) = h(c0) — Py(4h)(®), t=0.

Combining (1.14) with (1.15), we see that Y%(4°h) is well defined for
k=1,2,...,i and that (1.13) holds.

LEMMA 1.8. Let i=1 be an integer and let he C[0, o0) be such that
h(t)=0, #0 for t 20. Then, ¥Yih is well defined on [0, 00) if and only if

(1.16) N=2i+1 and heLl, (0, x).
If (1.16) holds, then

1.17) cN(i)<t_N+2i ft sV 1h(s)ds + J‘w s2i_1h(s)ds>

] t

t 0

< (PLh)() £ dN(i)<t—N+2iJ‘

0

sN"1h(s)ds + f

t

s21p(s) ds)
for t 20, where cy(i) and dy(i) are positive constants defined by
(1.18) en(i) = 1/[(N — 2)'(N — 4)---(N — 2i)],

(1.19) dy(i) = 1/[2""Y(N — 2)(N — 4)---(N — 2i)].

For the proof of Lemma 1.8, see Kusano, Naito and Swanson [12, Lemma
2.7]. The inequality (1.17) shows, in particular, that if P4h is well defined
on [0, o) for he C[0, o), h(t) = 0 on [0, c0), then

(1.20) 0 (Wb () < dN(i)J. s~ 1h(s)ds < oo, t=0,
]
and furthermore this inequality (1.20) together with (1.8) implies
(1.21) 0 < &L PR h(t) £ A, k) tZ‘J s>~ 1h(s)ds, t=0,
0

for i=0,1,2,... and k=1, 2,..., where Ay(i, k) = dy(k) in the case of i=0
and Ay(i, k) = ay(i)dy(k)/2 in the case of i = 1.
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LemMA 1.9. Let i =1 be an integer. Suppose that he C [0, o), h(t) = 0,
#Z0 . for. t 20 and (Wih)(t) is well defined on [0, o). Then, the function
tN"2{(PLh)(t) is nondecreasing in te[0, o) and

(1.22) lim V=24 h) (o) = eN(i)Jm sV 1h(s)dse(0, o],
0

where ey(i) = 1/[2~1(i — 1)!(N — 2)(N — 4)---(N — 2i)].

Proor. The proof is done by induction. Let i =1. Then, since

d [oe}
o [(N=2(Pyh) ()] = tN_3J sh(s)ds = 0, t=0,

the nondecreasing property of t¥~2(¥yh)(t) on [0, ) is clear. Moreover it
is easy to see that

. . 1 t N-2 ©
,1112 tN2(Pyh) () = 'llrg <F—2J sV h(s)ds +1\tJ 2£ sh(s)ds)

0 —

- sV 1h(s)ds.
N=-2),
Thus the assertion holds for i = 1. Assume that the assertion is true for some
i,i = 1. Suppose that Y4 'h is well defined on [0, c0) for an heC[0, )
with k() =0, #0, t=0. Notice that we have N =2i+3 by Lemma
1.8. Using the definition of Wi 'h = ¥y ¥4 h and the nondecreasing property
of tN=2(¥ih)(t) on [0, o), we find that

4 22 1) )]
dt

t
= — tN'Zi'z‘t'N+1J‘ SN (W h) (s)ds + (N — 2i — 2)t¥ 373 (PR Lh) (1)
0

2i . v S
— ___t—2|—1j SZI—I-SN_ZI('P;Vh)(S)dS
N-2 0

R
N-2 '
2i
N -2

[\

t
t—Zi—l 'tN_Zi('{ﬂI.Vh)(t)J‘ s2i—1ds
0

+ N_"_zi__%tN—Zi—s.tN—ﬁ(q/;‘vh)(t)J g~N*2itlgg
N-2 t

=0 for t =0,
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which implies that t¥ =2~ 2(¥4f 1 h)(t) is nondecreasing on [0, c0). Since (1.22)
is assumed to hold, application of L’Hospital’s rule shows that

lim ¥~ 2 2(Pir L) (¢)

t— o

1 . 1 t _ . 1 @© .
T N-— 2,‘1‘2 (ﬁj sV (PR (s)ds + F"mﬁ S('I"Nh)(s)ds>

0
b (t”*(%h)(t) _ H(Pivh) (1) )
T N-—2t>w 2ir?i1 (— N + 2i + 2)¢~N+2i+1

=———lim " F(PLh) (¢
AN —2i—gent R0

=ey(i + l)j sV 1h(s)ds,
0

which proves (1.22) with i replaced by i+ 1. This completes the proof of
Lemma 1.9.

LemMA 1.10. Let i=1 be an integer, and suppose that heC[0, o),
h(t) =0, # 0 for t = 0 and that (WYih)(t) is well defined on [0, ). Define the
Sfunction qy (t) by
(1.23) qy.i(t) = min {1, ~N*21} t=0.

(i) Then,

)

(1.24) (P h)(8) = cx(i) J min {s%~1, "1} h(s)ds- gy (f), = 0.

0

(i) If in addition he Ly _, (0, ), then
(1.25) (Pih) () < dn(i) f max {s*71, s" "'} h(s)ds-qy(), tZ0.
0
Here cy(i) and dy(i) are positive constants defined by (1.18) and (1.19),

respectively.

ProoF. (i) By Lemma 19 the function tY~2(¥%h)(t) is nondecreasing
on [0, o), and hence, in particular, t¥~2(¥ih)(t) = (¥4 h)(1) for te[l, o).
On the other hand, the nonincreasing property of (¥ih)(t) implies that
(Pih) () = (P h)(1) for te[0, 1]. Therefore we have

(1.26) (P () = (PyD (1) qw0),  t20.
From inequality (1.17) it follows that
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1 ©

sV~ 1h(s)ds + J s271hp(s) ds>

1

(Pyh (1) 2 CN(i)<f

0

or equivalently
(Pyh) (1) = cN(i)f min {s* 71, sN "1} h(s)ds,
0
implying, together with (1.26), that the desired inequality (1.24) holds.

(ii) Since N2 (¥4h)(t) tends nondecreasingly to eN(i)j sN"1h(s)ds as
0

t —» o0, we have
2 (W) () < eN(i)r Slhsds, 120,
0
and in particular
NEPLR)() < d,,,(i)‘[oo s¥ " Lh(s)ds, t=1.
0
By the nonincreasing property of ¥4ih and inequality (1.17) we have
(Prh) (@) < (Pih)(0) < dy(i) Jm s*~'h(s)ds
0

for t = 0 and in particular for 0 £t < 1. Then we easily see that (1.25) holds.
LemMmA 1.11. Let i and k be integers, i, k = 1. Suppose that he C[0, ),
h(t) =0, #0 for t =0, and that Y%h is well defined for t =0 (that is,
N=2k+1 and heL,_, (0, ©)). Then,
(i) there exists a positive constant By(i, k) such that

(1.27) (P, WX h)(t) = By(i, k) <t2" J " = 1h(s)ds

t

t

+t2i—2j s““h(s)ds), t=0;

0

(i) i in addition N = 2k + 3, there exists a positive constant Cy(i, k) such
that

o

(1.28) (B, P5h) (t) < Crli, k) (ﬁi f 2~ 1p(s)ds

t

t
+t2i'2j sz"“h(s)ds), t=0.

0
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To prove (i) of Lemma 1.11, the following lemma is needed.

LEMMA 1.12. Let i be an integer, i 2 1. Suppose that he C[0, ) is a
nonnegative nonincreasing function on [0, ). Then,
t

(1.29) (DL, h) () = 2px(i) zﬁﬂf sh(s)ds, t=0.
0

t
Proor. Fix ¢ in (0, c0). We may assume that J sh(s)ds > 0. From the
0
Cauchy generalized mean value theorem it follows that

@) Jt sV-3 r rh(r)drds
(1.30) ul =20 9

Jr sh(s)ds tN-2 J t sh(s)ds

0 0

EN-3 ‘r rh(r)dr

0

EV72-Eh(E) + (N — 2)6”"3f sh(s)ds

0
4
J rh(r)dr

0

- ¢
&h) + (N — Z)j sh(s)ds
0
for some £€(0, t). Note that

(1.31) &h@) = 2r sh(s)ds, 20,
0

for any nonnegative nonincreasing function he C[0, o). Then (1.30) and (1.31)
lead us to

1 t
(¢Nh) (t) g X7 J\ Sh(s) ds’ t g 0,
NJo
which implies that (1.29) holds for i = 1. Assume that (1.29) is satisfied for
some i = 1. Using the Cauchy mean value theorem and (1.31) again, we find
that
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' N-3 * i
@he Ls L F(@ih) () drds

t t
tz'f sh (s)ds t"”i’zj. sh(s)ds

0 0

(1.32)

f""f{ r(®yh) (r)dr

0

EVF22Eh(E) + (N +2i — 2)¢"+2i_3f s

0

-r r(®4h) (r)dr

0

- (N + 2i)¢&% fg sh(s)ds

0

for some £€(0, f). Exactly as in the above, the last term of (1.32) can be
estimated as follows:

¢
BLh) () d .
3 f ehod n(@yh ()
€2if{ sh(syds  n*-nh(n) + 2in? ! J‘n sh(s)ds
0 0

. @k
2i + 1)p2 r sh(s)ds

0o

for some ne(0, &) (= (0, ¢)). From (1.29), (1.32) and (1.33) it follows that

@N'HE) 2pn(i)

i f’ shis)ds 20T DO +2)

0o

which proves (1.29) with i replaced by i + 1. The inductive proof of Lemma
1.12 is complete.

ProoF OF LEMMA 1.11. (i) Let N=2k+ 1 and heC[0, co)nL},_, (0, o0),
h(t)=20, #£0 for t 20. By (1.17) in Lemma 1.8 we have

(P5h) () = cy(k) f T ig)ds, 20,

Since (¥%h)(t) is nonnegative and nonincreasing on [0, o), it follows from
Lemma 1.12 that
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t
(B Pih) (1) Z 2p5(i)t% 2 f s(Pxh)(s)ds, t=0.
0

Consequently we have

(PN PN (@)
= 2pn()ey(k)t?—2 ft s( on rz"_‘h(r)dr) ds

0 s
e} t
= pN(i)cN(k)(tz‘j sZ*~p(s)ds + t”‘zj s”‘“h(s)ds), t=0,
t 0

which implies that (1.27) holds for By(i, k) = py(i)cy (k).
(i) Let N=2k+3 and heC[O0, co)nL,_,(0, 0), h(1)=0, #0 for
t20. By Lemma 1.4 we have

(@ PRR)(@) < ay()t*™? 'r s(Ph)(s)ds, tz0.
0

Using the upper estimate for ¥%h given in (1.17), we obtain

(@ PRh) (@)

t S t [«
< aN(i)dN(k)tz"”(J' sTN*+Zk+1 J " h(r)drds + f SJ‘ rz"‘lh(r)drds)
0 s

0 0

—N+2k+2 t
= ay()dy()t2 2 ————— | s*"h(s)d
an(i)dy (k) (_N”k“fos (s)ds
N-2% [
2N —2k—-2) ),

1 )
s**1h(s)ds + Etzf

t

sk~ 1p(s) ds), t=0.

In view of the assumption — N + 2k + 2 < 0, we see that (1.28) is satisfied for

N -2k 1
Cy(i, k) = ay(i)dy(k)max { ————, — ».
n(i, k) n(i)dy(k) {2(N—2k—2) 2}
This completes the proof of Lemma 1.11.
2. Kiguradze’s classes
THEOREM 2.1. Let m = 2 be an integer and 6 = + 1 or 6 = — 1. Suppose

that ue 9™[0, o) has no zero in [0, ) and satisfies
(2.1 (= D™ou(t)4™u(t) < 0, t=0.

Then there exist an integer j€{0, 1,...,m} and T, 2 0 such that
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2.2) jisodd if o=+1; jisevenif o= —1

and

23) { u(t)4'u(t) > 0, 0<igj—1, fort2T,
i (= )i u@) du@®) 20, j<i<m, fort=0.

REMARK 2.1. (i) Condition (2.2) may be rewritten as (— 1y*'g = 1.
(i) If j=0, then (2.3); reduces to

2.3), ut) #0 and (= D'u@®A'u(®)=0, 1<i<m, for t=0.

Proor oF THEOREM 2.1. To prove the existence of j and T, satisfying
(2.2) and (2.3);, it is convenient to distinguish the two cases: (— )"0 = — 1
and (— 1)"e = + 1.

(I) The case of (—1)"o = — 1. Without loss of generality we may
assume that u(f) > 0 for t = 0. The hypothesis (2.1) then implies 4™u(t) = 0
for t 20. By Lemma 1.1 applied to h = 4™ 'u, A™ 'u(t) is nondecreasing
on [0, o). There are two possibilities for 4™~ u(f):

(Am—1) 4" 'u(t,-,) >0  for some t,_, >0; or
(bp—1) A" u(t) £0 for every ¢t 2 0.

Suppose that the case (a,_,) occurs. Since 4™ 'u(t) = 4™ 'u(t,_,) >0 for
t=t,_,, successive application of Lemma 1.2 shows, in particular, that
A'u(t) >0 (0 < i <m— 1) for all sufficiently large t. Then (2.2) and (2.3); hold
for j = m. Suppose that the case (b,,_,) occurs. Then 4™ 2u(t) is nonnegative
for t = 0. Indeed, if 4™ 2u takes a negative value at some t,_, > 0, then
A™ " 2u(t) £ A 2u(t,,-,) <0 for t>t,_, since 4™ %y is nonincreasing on
[0, ). Repeated application of Lemma 1.2 shows that A'u(t) <0 (0=
<m—2) for all large ¢, which is a contradiction to the assumption that
u(t) >0 on [0, 0). Thus 4™ 2u(t)=0 for t 2 0. Arguing exactly as in the
above discussions starting from the fact that 4™u(t) =0 for t = 0, we have
the two possibilities:

(ap-3) A" 3u(t,-3) >0  for some t,_5>0; or
b,,—3) A" 3u() <0 for every t = 0.

If (a,_3) occurs, then (2.2) and (2.3); hold for j=m—2. If (b,_;) occurs,
then 4™ *u(t)=0 on [0, ). In this case, repeating the above procedure,
we can conclude without difficulty that (2.3); holds for some je{0, 1,...,m},
which is even or odd according as mis even (¢ = — 1) or mis odd (¢ = + 1).
(IT) The case of (—1)"6 =+ 1. We may assume that u(t) >0 for
t20. By Lemma 1.1, 4"~ 'u is nonincreasing on [0, o0). If 4™ 'u(t,,_,) <0
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for some t,_; > 0, then Lemma 1.2 implies that A'u(f) <0 (0 <i<m — 1) for
all large t, contradicting the positivity of u. Thus A™ 'u()=0 for
t = 0. Therefore, discussing as in the case of (I), we can show that there exist
an integer je {0, 1,...,m — 1} and T, satisfying (2.2) and (2.3); with m replaced
by m — 1. It is clear that (— 1) 74™u(t) = 0 for t = 0. This completes the
proof of Theorem 2.1.

Let m =2 be an integer and let 6 = + 1 or 6 = — 1. Let A denote the
set of all functions ue 9™[0, co) that have no zero in [0, c0) and satisfy
(— )"ou(t)4™u(t) <0 for t 2 0. For an integer je {0, 1,...,m}, denote by X;
the set of all functions ue " satisfying (2.3);. The set J; will be called the
Kiguradze class of degree j. Theorem 2.1 means that ¢ has the decomposition

H = H UAZU--UA for m even, o= +1,

H = AHUA U UH g for m odd, o= —1,

H =AHyUAU- - UL, for m even, o= —1,

H =AH UA3U - UA,, for m odd, o= + 1.
THEOREM 2.2. (1) Let ueA,,. Then

(24) w0 =Y, u A DO + BEAmO, 20,

(i) Let ued; for 1<j<m—1. Then Y5 (4™u) is well defined on
[0, ), A7u(c0) = lim,_, , (4°u)(t) exists and is finite and

23) )= 3, o))" + py()) W) (c0)

+(= )RR,  tz0.

(iii) Let ueAy,. Then WR(4™u) is well defined on [0, o©), u(c0)=
lim,_, ,u(t) exists and is finite and

(2.6) u(t) = u(0) + (= Y"PRA™w) (), t=20.
ProoF. Suppose that ued; 0=<j<m). Let 1<j<m. Lemma 13
with i =j and h = u shows that

@7 w0 =S oA DO + Sh(d)@), 120
k=0

If j = m, then (2.7) becomes (2.4).
Let 0<j<m—1 and let u(t) >0 for t 20. Then, by (2.3);, 4°u(r) is
nonnegative and nonincreasing on [0, 00). The limit 47u(o0) = lim,_, ., (47u)(t)
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exists and is finite. From Lemma 1.7 applied to the case i=m —j and
h = A’u, we see that Y7 J(4™u) is well defined on [0, o0) and

2.8) Au(t) = Au(o0) + (— 1" ¥m=i(4™u) (1), t20.

If j=0, then (2.8) reduces to (2.6). If 1 <j<m— 1, then, in view of the
identity

29) BL()(0) = py()e,  £20, i=1,2,..,

(2.7) and (2.8) together yield (2.5). The proof of Theorem 2.2 is complete.
Let us study the asymptotic behavior as t — oo of u in the Kiguradze
class o (0 <j<m). First suppose that ue#,. Since
prlk =) -2 for i<k
(2.10) g =] P

0 for i >k,

application of the operators 4° to (2.4) yields

Au()) =Y, oyl — D8O + S5~ (4m)(0)

k=i

for t=20,0<i<m-—1, and hence by Lemma 1.4 we have

Atu(t)

2m—i-1)

@

py(m —i— 1)(4™ *u)(0) + by(m — i)J‘ s(4™u)(s)ds

0

lim

t—=oo f

= pylm —i— I)I:(A"'_lu)(O) + 1-V~1——2 Lw s(d”‘u)(s)ds:l

for 0<i<m—1. In particular,

t— o

lm 4™ Yu(t) = (4™ *u)(0) + ~N—1——2 J:O s(4™u)(s) ds,

which does not vanish because 4™ u(¢) is eventually positive [resp. negative]
and nondecreasing [resp. nonincreasing] on [0, o) if ue X, is positive [resp.
negative]. Therefore we can conclude that exactly one of the following two
cases holds for ue J,,:

lim L@’
@11, | emTiTy

either + o0 or — o0;

0<i<m-—1, are equal to
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Ai
fim ~44®

————, 0<i<m-—1, exist and are either
1= 00 t2(m—1—1)

(2.12),,

positive finite values or negative finite values.

The set of all ue,, satisfying (2.11),, or (2.12),, is denoted, respectively, by
A, [inc] or A, [min].

Let ued; for 1 £j<m—1. In this case, it follows from (2.5) that
izl . . .
(2.13) A'u(t) =Y, pylk — i) (4w Q) > + py(j — i) (47u) (c0) /72
k=i
+ (=) PRI W), t20,

for 0<i<j—1 and
(2.14) (Au)(t) = (4'u)(0) + (= " IPRIA™w) (1), t20.

Using Lemma 1.5 and noticing that lim,. , (¥Yyh)(t) =0 for any heC [0, )
nL} (0, o), we obtain

A ; . :
tim G — G = D) () + (= 17" Ipalj = ) lim PRAm) )
= oali — () (e0)
for 0<i<j If (4u)(c0) =0, then Lemma 1.4 shows that

@0

t—= 0 t2(j—i—1)

=py(j — i = D7) (0) + (= )" by(j - i)jw s¥y /(4™ u)(s)ds
0

= pli—i— 1)[(Af'1u)(0) L e j ) sv'x-fu'"u)(s)ds]
for 0<i<j— 1. Note that

(-

hm (A u)(t) = (4~ u)(0) + j sYTi(A™u) (s)ds
0

is not zero, because (4’"'u)(t) is eventually positive [resp. negative] and
nondecreasing [resp. nonincreasing] on [0, o) if ue; is positive [resp.
negative]. Consequently one of the following three cases can occur for ue %},
1<j<m-—1:
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. Atu(t . .
lim ZL,E_), 0<i<j, exist and are either
t- oo 20D
(2.15);
positive finite values or negative finite values;
. A'u(d)
= <i<ij
,ILT, 3679 0, 05iZj, and
(2.16), .
) A'u(t) L. .
hmzh.._—, 0<i<j—1, are equal to either + o0 or — o0;
v 2G—i-1)
. A'u() L
tllrgzwh_i)=0, 0<Li<j, and
. . Atul(t . .. .
2.17); lim u(t) 0<i<j—1, exist and are positive finite values

=00 (20— 1)
or negative finite values.

Denote by #;[max], 2;[int] and X;[min] the sets of all functions u in X
satisfying (2.15);, (2.16); and (2.17);, respectively.

Finally suppose that ue#,. We have (2.6). If 4™u(t)=0 on [0, c0),
then u(t) is a nonzero constant function. If A™u(t) £ 0 on [0, o), then Lemma
1.8 implies in particular that N = 2m + 1, because ¥§(4™u) is well defined on
[0, o0). Ifin addition u(co) = 0, then, using Lemma 1.9, we see from (2.6) that

lim N7 2™u(t) = (— 1)"ey(m) J‘w sV (A™u) (s) ds.
t— oo 0

Therefore we conclude that exactly one of the following three cases holds for
each non-constant function ue #j:

(2.18), lim u(¢) exists and is nonzero finite value;
t— o

(2.19), lim u(t) =0 and lim t"~?™u(t) = + © or — o0;
t— oo t— o

(2.20), lim tN~2™u(f) exists and is a nonzero finite value.
t— o

We denote by X,[max], A,[int] and X, [min] the sets of all functions u
in X, satisfying (2.18),, (2.19) and (2.20),, respectively.
From the above observation we obtain the following result.

THEOREM 2.3. (i) If ue,, then there are constants ¢, >0 and T =1
such that
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221) |A'u(@)| 2 e, 2™ (> T 0<i<m-— 1.

(i) If ued; for 1 <j<m—1, then there are constants c, >0, c* >0
and T =1 such that

(222) {c*‘zu_i_” <|Au@| Sc*?07, 12T 0Si<j—1,

|[du@) <c*, t=T
(i) If ue Ay, then there are constants ¢, >0, c* >0 and T = 1 such that
(2.23) Ct VTS u@®)| Sce*, t2T

By definition, the Kiguradze classes ¢, 0 <j < m, are decomposed as
follows::

Ky = Ay [inc] U A, [min],
H; = A;[max]U A [int] U A;[min] for 0j<m-1

Sometimes it is useful to note that

A [inc] = {ueA,,: lim 4™ 'u(t)= + © or — oo}

t— oo

= {ueA,,: lim u(t)/t*™ Y=+ o0 or — w0};
t— o

Hp[min] = {ue A,,: im 4™ 'u(r) exists in R — {0}}

t— oo

= {ueA,,: lim u(r)/t*™~ 1 exists in R — {0}};
t— o

and for 1<j<m—1

A;[max] = {ue Xj: lim 47u(t) exists in R — {0}}
t— oo

= {ue A: lim u(t)/t*> exists in R — {0}};

A;[int] = {uet]: lim Au(t) =0, lim 477 u(t) = + © or — oo}
t—= o0

t—* 0

= {ue;: lim u(t)/t¥ = 0, lim u(t)/t?Y"" = + 0 or — o0};
t—* o t— oo

A;[min] = {ue;: lim A7~ 'u(t) exists in R — {0}}

t— o

= {ue;: lim u(t)/r*Y™" exists in R — {0}}.
t— o

If ue A;[min] for 1 < j < m, then the integral representation (2.4) or (2.5)
for u can be refined as follows:
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THEOREM 2.4. Let ue A;[min] for 1 <j<m. Then Y5 I* (4™u) is well
defined on [0, o) and

224) u(t) = jiz pn(k) (A W) )1 + py(j — 1)(4~ u)(c0) 2071

k=0
+ (= )RR (A ) (), 120,

where (4°~'u)(00) = lim,_, (4’ *u)(t) and for j=1 the sum YI_2 must be
interpreted as 0.

PrROOF. Since 4/~ 'u(co) exists and is finite, Lemma 1.6 shows that
Y\ (4'u) is well defined on [0, o) and

(2.25) A7 u(t) = A7 u(o) — Py(du) (), t=0.
On the other hand, we have
(2.26) Au(t)= (= )" IPRTIAm (@), 120,

for ueA;[min] (1 <j<m). Indeed, if j=m, then (226) is trivial If
1 <j<m-—1, then (2.8) in the proof of Theorem 2.2 reduces to (2.26) because
of Afu(o0) =0. By (2.25) and (2.26) we see that YR /*1(4™u) is well defined
on [0, o0) and

A7 y(t) = A7 u(00) + (— DI LERTIT I (Am) (0), t=0.
Then the desired equality (2.24) follows from Lemma 1.3 and (2.9).

For je{0,1,...,m} and (— 1Y*'¢ =1, the set of all functions uex
satisfying (2.3); with T, =0, i.e,,

{u(t)Aiu(t) >0, 0<i<j—1, fort=0,

23) . ) o=
(=D 7u@d'u@®) 20, j<ism, fort >0,

is an important subset of ;. This subset of ] is denoted by ¥, and the
sets A *noj[max], A Fn;[int] and A *nS;[min] are denoted by
A ¥[max], X *[int] and X *[min], respectively. For example, X*[max],
1<j<m-—1, is the set of all uex such that u satisfies (2.3)F and
lim,, , u(t)/t* exists in R—{0}. If j=0, then the sets XH§, A [max],
X ¥ [int] and o }[min] are identical to the sets without the asterisk,
respectively.

3. Comparison theorems

In this section elliptic differential equations of the form (0.1) are considered
under the assumption that m>2, N23, 6=+1 or 6=—1, and f is
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continuous on [0, ) x R™ and satisfies (0.2). From Theorem 2.1 it follows
that a radial entire solution u(t), t = |x|, of (0.1) with no zero in R", if exists,
falls into one and only one Kiguradze class J; such that (—1y*'e =1,
0<j<m. The existence of a radial entire solution u in a given class J; of
equation (0.1) is guaranteed by the existence of a radial entire function o(t),
t = |x|, in the same class ] satisfying the differential inequality

(3.1) {o(— )"4™v + g(|x|, v, 4v,...,4™" 'v)}sgnv <0, xeR".

Here the function g is continuous on [0, c0) x R™ and satisfies the sign
condition

(3:2) wog(t, vgs Vys...sVpy—1) 20, #0 for (t, vg, v1,...,0,_1)€[0, 00) X R™.

Two comparison theorems illustrating such a situation are presented in this
section. They will be crucial in proving our main existence theorems given
in Sections 4 and 5.

THEOREM 3.1. Let j be an integer such that (— 1Y*'c=1and 0<j< m.
Let g in (3.1) be continuous on [0, c0) x R™ and satisfy (3.2). Suppose that
the following inequality holds:

(33) f(ta Ug,s ul,-"’um—l)sgn Ug é g(t7 Vo> Ula---,vm—l)sgn Vg

for all (t, ug, Uq,...,U,_) and (t, vy, V1,...,0,,_1) Such that

t=20, ugvo>0, O<u;sgnuy=<v;sgnov,, 0<i<j—1,
(3.4);

0= (=1 Jusgnug (= 1y Josgno,, j<ism—1

(i) Let j=m. If there exists a radial entire function v of class A}
satisfying (3.1), then equation (0.1) has a radial entire solution u of the same
class A¥. Furthermore, if the function v is of class A} [min], then (0.1) has
a radial entire solution u of class A} [min].

(i) Let 1<j<m— 1. If there exists a radial entire function v of class
H¥ satisfying (3.1), then equation (0.1) has a radial entire solution u of the
same class A¥. Furthermore, if the function v is of class A ¥ [max] [resp.
A} [int]u A ¥ [min], X *[min]], then (0.1) has a radial entire solution u of
class A’ ¥ [max] [resp. A [int]u ¥ [min], ¢ * [min]].

(i) Letj=0. If there exists a radial entire function v of class Ay [max]
satisfying (3.1), then equation (0.1) has a radial entire solution u of class
Ao [max].

As before, let 2™ 1[0, o) denote the set of all functions u on [0, o)
such that A'u(|x|), 0 <i<m— 1, are defined and continuous on R". The
2™~ 1[0, o) becomes a Fréchet space with the topology induced by the family
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of seminorms

[Iull,,=mi1 sup {|4*u(®)|: 0<t<n}, n=12,..

k=0

For simplicity we use the notation
(3.5 a(t) = u(t), du(t),..., 4™ u())  for ue 2™ 1[0, o).

PrOOF OF THEOREM 3.1. The proof of part (ii). We first prove (ii). Let
1<j<m—1 and veX*. We may suppose that v(t) >0 for £t =20. Then
we have 4'v(t)>0 0<i<j—1) and (— 1)) 7 4v(t)=0 (jSi<m—1) for
t=20. From (ii) of Theorem 2.2 it follows that

ji—1
v(t) = kZO (k) (4*0) (0) £** + py(j) (47v) (00) £*/

+(= )RR PRI, 120,

and so

j—-1

Av(e) = Y pyk — i)(4*0) (0) t2* =2 + py(j — i) (47v) (00) t %

k=i

+ (= )" PR T4 ) (1), t20,0=i<j;
Ao(t) = Av(00) + (— )" I ¥Ri(4™v)(t), t=0; and
(= D)7 = (— D" IR A™0) (1), t20,j<i=m-—1,

where 4/v(00) = lim,_, , A'v(t)€ [0, 00). Therefore, by (3.1), we see that

ji-1
(3.6 A'v(t) = Z pnlk — i) (40)(0) 2%~ 2 + py (j — i) (47v) (c0) £9~ 2

k=i
+ O PR gL 0, t20,05i<j;
(3.7) Ao(t) 2 Av(0) + PR 7g(-, 0)(®), t20; and
(3.8) (=) 4v@) 2 PR '9(-, D)0, t20,j<i<m-—L

Consider the set U of all ue ™" [0, c0) such that
i=1
Y pulk — i) (4*0) (0) 2% + py(j — i) (4v) (c0) £~ %
k=i

SAu@) S A'o(t), t20,02i<j;
(47v)(0) £ Au(t) < Av(t), t=0; and

0 (=) Au) S (- )7 4), t20,j<ism—1
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It is clear that U is a closed convex subset of 2™ [0, ). Define the
mapping M on U as follows:

k=0

+‘D{vm—jf(,a)(t), tgo

{ Mu)(©) =Y, (k) (80 0) > + py(j) (4'0) (c0) 17
(3.9)

Since condition (3.3) holds for all (¢, uy,...,u,—,) and (¢, vy,...,v,_,) satisfying
(3.4);, we have

(3.10) 0= f(t, u(t) < g(t, 9(t)), t=20, uel,

and hence M is well defined on U and maps U into 2™ '[0, o0). It will
be shown by the aid of the Schauder-Tychonoff theorem (see, e.g., [1, p. 161])
that M has a fixed point u in U.

(@) M maps U into itself. Let ueU. Then, taking account of the lower
estimates (3.6)—(3.8) for A4'v and inequality (3.10), we easily see that
MueU. Thus M maps U into U.

(b) M is continuous on U. It is sufficient to verify that if u, u,eU
(v=1,2,..) and (4'u)(t) > (4'u)(t) as v—> o0, 0 <i<m — 1, uniformly on
every compact subinterval of [0, o0), then 4‘(Mu,)(t) - 4'(Mu)(t) as v — o,
0<i<m-—1, uniformly on every compact subinterval of [0, c0). By the
definition of M we have

|4} (Mu,)(t) — 4'(Mu) ()| < S PR 1f(, a,) — £, D)),

4(Mu) () — A(MD) O] < PRS-, @) — £, DI,
£20,j<i<m—1.
Furthermore, with the aid of (1.20) and (1.21) we see that
SRS (-, @) — £, D
< Ay(i— i, m— )20~ f " D=1 £, (9) — (s, @) ds,
0 t20,0<i<j—1,
and
PR £ ) — £ D10
< dy(m — i) f: 2001 | £(s, a,(5) — (s, 6))Ids,

t20,j<i<m-— 1
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Note that (3.10) implies
Lf(s, 4,(5)) — f (s, u(s))] < 29(s, 0(s)), s20,

and the well-definedness of Y% ig(-, 9), j <i <m — 1, implies

J‘ s2m=D=lg(s, p(s))ds < o0, j<i<m-—1
0

Then the Lebesgue dominated convergence theorem shows that
SRS a)—f(C,DIO-0 asv—oo0, 0=isj-—1,
RN, a) — f(, D) -0 asv—ooo, jSi=m-—1,

uniformly on every compact subinterval of [0, ). Consequently 4‘(Mu,)(t),
0<i<m-—1, converge to A‘(Mu)(t) as v— oo uniformly on compact
subintervals of [0, c0). This proves the continuity of M.

() M(U) is relatively compact. 1t suffices to verify that {4'(Mu)(t): ueU},
0<i<m-—1, are uniformly bounded and equicontinuous at every point of
[0, ). Since |4i(Mu)(t)| < |4'v(@)], t=0, 0<i<m—1, for all ueU, the
uniform boundedness is obvious. Notice that

%Ai(Mu)(t) _ ji‘ 2k — i) pyl — i)(AkD)(O) f2k—2i—1

k=i+1

+ 2(j—i)py(j — i) (A7) (c0) tHI 7271 4 g~V f sNTI@IT Il wmi £ ) (s)ds,
0

t20,0<sisj—1,

(= l)i'j%Ai(Mu)(t) =—t " f sNTIPRTITLS(, w)(s)ds,

0
t20,jsism—1,
where the sum Z{‘;f +, must be interpreted as 0 when i+ 1>j— 1. Then,
by means of (3.10), we see that |(d/dt) A'(Mu)(t)|, 0 £ i < m — 1, are majorized
on [0, o) by certain positive functions which are independent of ueU. This
proves the equicontinuity of {4'(Mu)(t): ueU}, 0<i<m— 1.

In view of (a)—(c) we can apply the Schauder-Tychonoff fixed point theorem
to conclude that M has a fixed point ue U. Evidently this fixed point u is
a member of class #* and u(|x|) is an entire solution of (0.1).

Suppose in addition that ve#* [max] and v() >0 for t =0, that is,
veX ¥ and 4’v(c0) is a positive finite value. Then, for the fixed point ue U
of M obtained above, 47u(o0) exists and is equal to 47v(c0) (see the definition
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of U). This implies that if ve #* [max], then ue#*[max].

If veot*[min] and v(t) >0 for ¢t >0, that is, ve X }*, A'v(c0) =0 and
4"'y(c0) is a positive finite value, then the fixed point ue U of M has the
properties that A/u(c0) =0 and 4" 'u(co0) exists in the interval [47~!v(0),
477 1p(0)] = (0, 00). This means that if ves*[min], then ue A ¥ [min].
Likewise it is seen that if A4/v(c0)=0, then 4’u(c0)=0; and hence
ve ¥ [int]u X * [min] implies ue s *[int]Ju¢* [min]. This completes the
proof of (ii)) of Theorem 3.1.

The proof of part (i). Let ve ¥ and v(t) >0 for t = 0. Using (2.4) and
(3.1), we see that

m-—1

Av(@)z Y pnlk — )00 + g (-, D)(0),

k=i

t=20,05is<m-—1.

Consider the set U of all functions ue 2™ ! [0, o) such that

m-—1
Y. onlk —i)(d*0) (0% < A'u() < 4'v(r), t20,05i<m—1,

k=i

and define the mapping M: U - 2™ ' [0, c0) by

m-—1
Mu)(t) = kZO pn(k) (4*0) Q) t** + RS (-, @) (®), t20.
Then, arguing as above, we can show that (a) M maps U into itself, (b) M
is continuous on U, and (c) M(U) is relatively compact. The Schauder-
Tychonoff fixed point theorem guarantees that M has a fixed point u in U. It
is clear that this ue U belongs to J,¥ and that u(|x|) is a solution of (0.1). If
veX* and 4™ 1v(o0) is finite and positive, then the fixed point ueU of M
has the property that lim,,, 4™ 'u(f) = 4™ 'u(co) exists in the interval
[4™ 'v(0), 4™ *v(c0)]. This means that if ve /¥ [min], then ue X * [min].

The proof of part (iii). Let veAy[max] and v(t) >0 for t = 0. The
limit v(c0) is finite and positive. From (2.6) and (3.1) it follows that

v(t) 2 v(o0) + PRY (-, D) (1), t20, and
(= Did'o@t) 2 PR7'9(-, D)), t=0,1<i<m-—1L
Denote by U the set of all ue 2™ ! [0, o) such that
v(00) Z u(t) < v(t), t =0, and

0< (= )idu@) < (= 1ydiv@), t20,1<ism—1,
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and define the mapping M: U - 2™ 1[0, o) by
Mu)(®) =v(0) + PRf(-, @)@, =20

It can be shown, via the Schauder-Tychonoff theorem, that M has a fixed
element u in U, which gives rise to a positive entire solution u(|x|) of (0.1)
such that lim,_ ,u(f) = v(c0). The proof of (iii) of Theorem 3.1 is complete.

The next theorem concerns the existence of a solution of (0.1) in J [int]
or A,[min]. These classes can be nonempty only for o = — 1.

THEOREM 3.2. Let 6 = — 1 in (0.1) and (3.1). Suppose that g in (3.1) is
continuous on [0, c0) x R™ and satisfies (3.2), and that

(3.3 St ug, tyy...sUp—1)sgN Uy < g(t, Vg, Vys...,Up—1)SgN Vg

Sfor all (t, ug, uy,...,u,_,) and (t, vy, Vy,...,0,_1) Satisfying

t=0, ugvy >0, 0<uysgnuy=<v,sgn v,
(3.4), { olo 0881 Uy 0S80 Vg

0= (— u;sgnuy <(— 1)v;sgnvy,, 1<i<m—1.
Suppose that there is a continuous function h(t, uy) on [0, ©0) x R such that
(3.11) ugh(t, u)) =20, #0  for (t, up)€[0, ) x R,

3.12) h(t, ug)sgnuy < f(t, vg, V15...,0p_1)SEN Vg

Sfor all (t, uy) and (t, vy, V1,...,0,,_1) Satisfying (3.4),, and such that, for each
t =0, h(t, ug)/u, is nonincreasing in uy€(0, 00) and nondecreasing in uye(— oo, 0),
and

h(t,
(.13) fim M%) _ 4
up—>*0 Ug
If there exists a radial entire function v satisfying (3.1) and such that
v(|x|) #0, xeR",

g(Ix[, v(Ix]), dv(Ix]),...,4" *o(]x])) 20, #£0,  xeR",

and v(|x|) >0 as |x| > oo, then equation (0.1) has a radial entire solution u
such that u(|x|) #0 for xe RN and u(|x|) >0 as |x| = co. Furthermore, if the
Sfunction v is of class Ay[min], then (0.1) has a radial entire solution u of
class Ay [min].

ProoF. Let v(|x|) be a radial entire function satisfying the conditions
mentioned above. We may suppose that v(t) > 0 for t = 0. Clearly v belongs
to A, [int]U A, [min]. From (iii) of Theorem 2.2 we have
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(= Dido@e) = (= "PRIA™0)(@), t20,0<i<m—1,
which implies by (3.1) that
(3-14) (— Ddo@®)Z2 PR7'g(, D)), t20,0sism-—1
Since ¥YTg(-, 0) is well defined on [0, oo0) and g(t, (1)) =0, #0 for ¢t 20, it
follows from (i) of Lemma 1.10 that

(3.15) v(t) 2 cy(m) ro min {s*" "1, s""'}g(s, 9(s))ds - qn,m(®), 20,
0

where gy () =min{1,t"*2"}, ¢t > 0. Let ¢ be a number such that

(3.16) 0<c<cy(m) jm min {s?™~1, s "1} g(s, 0(s))ds.

0
Then, by (3.15),

(3.17) can ) S 0(H), 20,
Noting that 0 < h(t, cqy,.(t)) < f(t, 0(t)) < g(t, 0(2)), t =0, because of (3.11),
(3.12) and (3.3), we find that

f min {s*™~1, s" "1} h(s, cqy,m (5))ds < 0.
0
On the other hand, the nonincreasing property of h(t, u,)/u, implies

J min {s>™ "1, s" "1} h(s, cqy m(5)) ds

0

@ h
> cf min {s*™"1, s" "1} gy (s (s 9 ds.
0 c

Take a positive number ¢ sufficiently small so that

h(s, ¢)
c

ds > 1.

(3.18) cN(m)Jw min {s*™ "1, s "1} gy u(5)
0

Such a choice of c is possible, since the left-hend side of (3.18) diverges to
+ o0 as ¢— + 0. To see the divergence it suffices to apply the Lebesgue
monotone convergence theorem by taking account of the nonincreasing
property of h(t, uy)/u, and condition (3.13).

Now, for a positive constant ¢ satisfying (3.16) and (3.18), consider the set
U of all ue2™ 1[0, ) such that

cqn,m(t) < u(t) < v(), t20,
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0< (= 1du) S (= 1)o@, tz01sism—1,
(U is nonempty by (3.17)) and define the mapping M: U —» 2™ ' [0, c0) by
(Mu)(t)= mf(,ﬁ)(t)’ tgo

It is verified routinely that (a) M maps U into U, (b) M is continuous on U,
and (c) M (U) is relatively compact, so that M has a fixed point ue U by the
Schauder-Tychonoff fixed point theorem. This fixed point u generates an
entire solution u(|x|) of (0.1) having the properties: u(|x|) > 0 for xe R" and
u(|x]) >0 as |x] = co. It is also clear that ue A, [min] if ve #,[min]. This
completes the proof of Theorem 3.2.

4. Existence of radial entire solutions I

We are now ready to develop the main results of this paper giving criteria
for the existence of radial entire solutions of equation (0.1) (and its particular
cases) belonging to the Kiguradze classes . and their subclasses. The results
are presented in this and the next sections. Our purpose here is to
characterize, under appropriate assumptions on the nonlinearity of (0.1), the
classes o;, A;[max], #;[int] and #;[min] for j, 1<j<m—1, (—1y*lo=1,
and the classes 7, [min] and A [max].

DErFINITION 4.1. Let h be a continuous function on [0, c0) x R™ and let
d be an integer such that 0 <d <m — 1. We say that the function h satisfies
the condition (N,) if

h(t, pa()) #0  on [0, )

for every polynomial p, of the form p,(t) = Yi_, c;t?* with c, # 0, where

Pa(t) = (Pa(®), Apu(®), ..., 4™ " p4(t)).

For example, the function h(t, ug, uy,...,Uy—1) = p(t)|ue|’ sgn u,, where
y>0 and peC[0, ), p(t) =0, #0 on [0, c0), satisfies conditions (N,) for
alld, 0cd<m— 1.

If 0<j<m—1 and ueX is a radial entire solution of (0.1), then, by
Theorem 2.2, u satisfies (2.5) or (2.6) according as 1<j<m-—1 or
j=0. Assume that A™u(t)=0 for ¢=0. Then, u(t) is of the form
u(t) = p;(t) = Y1 _, cit®™ for some ¢, (0 <k =<j), co #0. From equation (0.1)
it follows that f(z, p;j(t)) = 0 for t 2 0. Therefore we can conclude that, if f
satisfies condition (N), then 4™u(t) # 0 on [0, co) for any radial entire solution
u of (0.1) in the class #; (0 <j<m —1). Likewise we can prove by Theorem
2.4 that, if f satisfies condition (N;_;), then 4™u(t) #0 on [0, o) for any
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radial entire solution u of (0.1) in J;[min] (1 <j < m).

THEOREM 4.1. (i) Suppose that j is an integer such that 0 <j<m—1,
(—1Y*'o =1 and f in (0.1) satisfies condition (N)). If equation (0.1) has a
radial entire solution of class X, then N = 2(m — j) + 1.

(i) Suppose that j is an integer such that 1 <j<m, (—1Y*'e =1 and
f in (0.1) satisfies condition (N;_,). If equation (0.1) has a radial entire solution
of class A;[min], then N 2 2(m — j) + 3.

Proor. (i) Let uef; be a radial entire solution of (0.1). As mentioned
above, 4™u(t) # 0 on [0, c0). Furthermore, from Theorem 2.2, Y7~ /(4™u)(t)
is well defined on [0, ). Then Lemma 1.8 shows in particular that
N =2(m —j)+ 1. This proves part (i). Part (ii) can be proved similarly with
the aid of Theorem 2.4.

DErFINITION 4.2. Let d be an integer with 0 <d<m —1 and let h be a
continuous function defined on [0, c0) x R**! such that

@.1) ugh(t, ug, uy,...,u) 20, #0  on [0, 00) x RI*1,

We say in this paper that such a function h is restrictively nondecreasing on
[0, c0) x R4+ if

h(t, ug, Uy,...,ug)sg0 Uy < h(t, vy, Vy,...,0,)SgN V,
for all (¢, uy, uy,...,uy) and (¢, vy, vy,...,0,) satisfying
4.2) t=0, ugve>0 0<uysgnu,=v;sgnv, (0=i=<d).

A continuous function h on [0, o) x R**! satisfying (4.1) is said to be
superlinear [resp. sublinear] on [0, c0) x R**! if it is restrictively nondecreasing

on [0, ) x R‘*! and the function
1
3 h(t, Aug, Auy,...,Aug) sgn uq

is nondecreasing [resp. nonincreasing] in A€(0, o) for each fixed (¢, ug, uy,...,uy)
such that t 20 and u;sgnuy, >0 (0<i=<d). A continuous function h on
[0, 0) x R4*! satisfying (4.1) is said to be strongly superlinear [resp. strongly
sublinear] on [0, co) x R**' if it is superlinear [resp. sublinear] on
[0, o) x R*! and

1
Ih(t’ Aug, Auy,...,Au)—>0 as A— +0 [resp. > + 0]

for each fixed (¢, ug, uy,...,uy), t =0, u;sgnuy >0 (0 <i<d). Furthermore,
a continuous function on [0, o) x R**! satisfying (4.1) is said to be strictly
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superlinear [resp. strictly sublinear] on [0, c0) x R**! if it is restrictively
nondecreasing on [0, o) x R**! and there exists a number y such that y > 1
[resp. 0 <y < 1] and the function

1
ﬁ h(t’ iu09 j'ul,-ﬂs A'ud) sgn Uy

is nondecreasing [resp. nonincreasing] in A€ (0, oo) for each fixed (¢, uy, uy,...,
ug), t =0, u;sgnuyg >0 (0=<i=<d).

As is easily verified, if h is strictly superlinear [resp. strictly sublinear] on
[0, ) x R4*!, then it is strongly superlinear [resp. strongly sublinear] on
[0, c0) x R¥*!. The function h(t, ugy, Uy,...,u;) = p(t)|ugl’sgnu, with y >0
and peC[0, ), p(t)=0, #0 on [0, ), is superlinear or sublinear on
[0, ) x R**! according as y=1 or 0<y<1. It is strictly (and hence
strongly) superlinear on [0, c0) x R**! if y > 1; and is strictly (and hence
strongly) sublinear on [0, o) x R*! if 0 <y < 1.

For an integer j, 0 <j<m, we denote by D; the set of all points
(¢, ug, Uq,...,u,_1)€[0, 0) x R™ such that

> . <i<iji—
43) {t=0, ug#0, wsgnuy>0 0<ZLi<j—1),

(= 1) Ju;sgnuy =0 (G<igm—1).
THEOREM 4.2. Let j be an integer with 0<j<m—1, (—1y*le=1.

Suppose that h; is continuous and restrictively nondecreasing on [0, 00) x Rit!
and satisfies

4.9 0 = h;(t, ug, uy,...,u;)sgnug < f(t, ug, Uy,...,Uy_1)Sgn Uy on D;.
If equation (0.1) has a radial entire solution of class A;[max], then
4.5) j 2D hy(t, et et?V7Y, L 0)ldt < 0 for some ¢ #0.

0o

PrOOF. Let ue;[max] be a solution of (0.1) such that u(f)>0 for
t>0. By Theorem 2.2, Y7 i(4™u) = (— )" ¥R I f(-, @) is well defined on
[0, o0), where i is defined by (3.5). Lemma 1.8 shows in particular that

f t2m=D=1 £(¢ q(t))dt < oo,
0

and hence (4.4) implies that

(4.6) J 2Dt u(t), du(t), ..., A u(t))dt < co.

0
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Since ueJ;[max] means that lim,., 4'u(f)/t*Y™?, 0 <i<j, exist and are
positive, there exist ¢, >0, ¢* >0 and T= 1 such that
C, 12U < Alu(t) < c*t207), t2T,0<5i<j.
In view of the restrictively nondecreasing property of h; we see that
4.7 hi(t, u(t), 4u(t),..., Au(t)) 2 hy(t, c, t>, ¢, t*97Y, . c,)

fort 2 T Then, (4.6) and (4.7) together imply that (4.5) holds for ¢ = c,. The
case where ue f;[max] is negative in R is similarly proved. This completes
the proof of Theorem 4.2.

THEOREM 4.3. Let j be an integer with 0<j<m—1, (—1y*'e=1.
Suppose that g; is a continuous function on [0, co) x R**' which is either
strongly superlinear or strongly sublinear on [0, c0) x R'*! and satisfies

4.8) St ug, Uy, U 1)sgnug < g; (8, ug, Uy,...,u;)sgnu, on D;,
where D; is the set of all points (t, ug, Uy,...,U,_,) satisfying (4.3). Suppose

moreover that N = 2(m —j)+ 1 and

4.9) J 2D g (e, ct?, c?U™D, Lc)ldt <o for some ¢ #0.
0

Then equation (0.1) has a radial entire solution u, of class A ¥ [max]. If
1 £j =< m— 1, then, in addition to this u, € X ¥ [max], equation (0.1) has another
radial entire solution u, which belongs to X ¥ [int]u X * [min].

Proor. Without loss of generality we may assume that ¢ >0 in (4.9).
Let

(4.10) t(t) =max{l,t}, t20.

The strong superlinearity [resp. strong sublinearity] of g; on [0, c0) x RI*1
implies

05 L4, AT, ALHOTI,....2)
<~ 0,6, LI, x0T ,...00
for all t=0 and all 4, 0 <A< ¢ [resp. 4 =c], and

%gj(t, Alt®1%, Alt(®)]*Y7Y,.., ) >0
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as A— + 0 [resp. A— + o0]. Therefore we have

%f 2=ty (¢, ALt(6)]%, A[x()]?Y7Y,...,A)dt >0
0

as A— + 0 [resp. A— + oo]. Consequently there exists a positive number
Ao > 0 such that

. | | A
2m-j)—1 2j 26-D
@11) Lt o, AL, AT, e < 5t

for all i, 0 <i <j, and all 1e(0, 4,] [resp. A€e[4y, o©)], where Ay(j — i, m —j)
is a positive constant appearing in (1.21) with (i, k) replaced by (j — i, m — j).

Let 0<j<m—1. For any A(> 0) satisfying (4.11), define the function
vy(f) by

Jj
Z pN(k)tZk + ¢-)ivqﬁls_jgj(" A'sz’ ATZU_I),---,A)(I)

v,(8) = 26 + 1)

for t=0. In view of Lemma 1.8 we see that v,(t) is well defined for
t 2 0. Differentiation of v, gives

J , . . .
Y palk — i)2€70 + DETIPRTIgi(-, AP, APUTD, Q) (@),

ERRETTERP
£20,0<i<j—1;
Ao, () = —l~ + YR Tigi(-, A%, AU, L)), t=0;
2+ 1)
and

(= o, (t) = PR7ig,(-, A%, 22?070, (@), t20,j+1<i<m.

It is clear that v, is of class J*[max], because v, satisfies A'v, (1) >0
O0<i<j—1)and (— 1) 740, ()20 (j i< m)for t 20 and 4’v,() has the
positive finite limit A/[2(j + 1)] as t > co. Note that

4.12) o(— D)"d™v () + g;(t, ALz(®)1%, A[z(®)]*V7Y,...,) =0

for t20. If 0<i<j, then, by means of (1.21) with (i, k) replaced by
(j — i, m —j), we obtain

A, (t)

A J .
T k — )29
211 rE D)

IIA
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+Ay(j—i,m —j)tz(j_”j s2m=D= g (s, ALt(s)]%,..., A ds
0

< =i+ DI

2(j+ 1)

+ Ay(j — i, m — j)[x(t)]?Y9 P J s?m=D"lg (s, ALt(s)]%,..., A)ds

0

< {; + Ay(j —i,m —j) fm s2m=DT g, /l[t(s)]zf,...,l)ds} [x()7?9~2

0

< Alx(®72977

for t 20, where (4.11) has been used in the last step. These inequalities
combined with (4.12) yield

o(— )md™v (1) + g;(t, v,(¢), 4v,(0),...,4°v,()) £0  in RV,

where ¢t = |x|. Then, applying Theorem 3.1 to the case of g(t, vy, V1,...,0pm—1)
= g,(t, vo, vy,...,v;) and v(t) = v,(t), we conclude that there exists a radial
entire solution u; of (0.1) of class ¥ [max].

- Let 1=j<m—1. Then, for any A(> 0) satisfying (4.11), define the
function v,(t) by

j—1
G+ Y () + SRR g (-, A7, A0, A)()
k=0

v, () =

for t 2 0. As in the above, it is shown that v, belongs to 2*[int] U.# * [min]
and satisfies

o(— 1" d™v,(t) + g; (¢, v5(t), 4v,(¢),...,47v,(t)) <0 in RV,

where t = |x|. Part (ii) of Theorem 3.1 shows that there is a radial entire
solution u, of (0.1) belonging to J* [int]u X * [min]. The proof of Theorem
4.3 is complete.

The next theorem is concerned with equations of the form
(0.1); (— )™d™u + of(|x|, u, du,...,47u) =0, xeRY,

where m22,6=+1oro=—1, N23,0<j<m—1 and f; is continuous
and satisfies u, fj(t, uo, Uy,...,4;) 2 0, #0 on [0, c0) x R**'. Condition (4.5)
in Theorem 4.2 for the case of f = h; = f; and condition (4.9) in Theorem 4.3
for the case of f=g; = f; reduce to the same condition

(4.13); ‘[ 2D £t et V7Y, ¢)ldt < oo for some ¢ # 0.
0
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THEOREM 4.4. Let j be an integer with 0 <j<m— 1, (— 1y*'e =1 and
consider equation (0.1);. Suppose that f; satisfies condition (N;) and is either
strongly superlinear or strongly sublinear on [0, c0) x Ri*'. Then the following
three statements are equivalent:

(i) equation (0.1); has a radial entire solution of class A* [max];

(ii) equation (0.1); has a radial entire solution of class A;[max];

(i) the dimensional condition N = 2(m — j) + 1 and the integral condition
(4.13); are satisfied.

Proor. 1t is trivial that (i) implies (ii). Theorem 4.1 and Theorem 4.2
applied to the case f= h; = f; show that (i) implies (iii), and Theorem 4.3
applied to the case f = g; = f; shows that (iii) implies (i).

THEOREM 4.5. Let j be an integer with 1 <j <m,(— 1Y*'e = 1. Suppose
that hj_, is continuous and restrictively nondecreasing on [0, c0) x R’ and
satisfies

4.14)
0= h;_y(t, ug, thy,...,u;_1)sgn ug < f(t, Ug, Uy,..., Up_1)SEN U on D;.
If (0.1) has a radial entire solution of class X;[min], then
4.15) f 2D (8, 9D, 207D o)ldt <o for some ¢ # 0.
0

PrOOF. Let uef;[min] be a solution of (0.1) such that u(t) >0 for
t 20. Then there exists ¢, >0, ¢c* >0 and T =1 such that

c 207D < Miy(f) S c*20Y, (2T 0Li<j— L

By Theorem 2.4 we see that Y7 7/*!f(., a) is well defined on [0, c0), and
hence Lemma 1.8 and (4.14) yield

f 2T R (8, u(t), du(t),..., 47" u(t))dt < oo.
(V]

Therefore (4.15) holds for ¢ =c,. The case of u(f) <0 on [0, c0) can be
similarly proved. This completes the proof of Theorem 4.5.

THEOREM 4.6. Let j be an integer with 1 <j < m, (— 1Yy*'a = 1. Suppose
that g;_, is a continuous function on [0, ©) X R’ which is either strongly
superlinear or strongly sublinear on [0, ) x R’ and satisfies

(4.16)  f(t, oy Uy,...oUp—1)5gN Uy < gj— (L, Ug, Uy,...,Uj_1)SEN U on D;.

If N22m—j)+ 3 and
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[eo]
4.17) f g2m= D g. (20D, e’V g)ldt <0 for some ¢ #0,
0

then equation (0.1) has a radial entire solution in the class X ¥ [min].

PrOOF. We may suppose that ¢ >0 in (4.17). Arguing as in the proof
of Theorem 4.3, we can show that

%J P tg (6 A1, A1, ) de -0
0

as A— +0 or as A —» + oo according as g;_, is strongly superlinear or g;_,
is strongly sublinear, where (t) is the function defined by (4.10). There is a
number 4, > 0 such that

(4.18) Jl g2t lg @ Al®1PYTY, APV, Ade
0
Aoy(j—i—1)
JANG —i—=1,m—j+1)

forall i, 0 <i<j—1, and all 1€(0, 4,] or all Ae[4,, 00) according as g;_, is
strongly superlinear or g;_, is strongly sublinear. For any such 4, define v(t)
as follows:

A
J

j-1
o)== Y pyk)* — B PRIt g, (-, AP0, 222072 1) (1)
k=0

for t = 0. An easy computation shows that

(419) 290 = 'Y, pylhe— 2

] k=i
— QPRI g (¢, ARUTY, 222072 (),
t=20,0<5i<j—1; and
(4.20) (= 1y 4(t) = PR 77g;- (-, 472070, 422072 2)(0),
t20,j<ism

It then follows from (1.21) with (i, k) replaced by (j —i— 1, m —j + 1) that

) Ait . .
Ao ZZ Y pylk — )¢ — Ay(j—i—1,m—j+ 1)207i-D
J k=i

XJ sz(m—j)+1gj_1(s’ 1[1.(5)]20—1),,..,/1)(15

0
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j=2 i — ] —
225 ol — )20 [——l””(’ =D
i J

] k=i

X f sPm=DTlg. (s, ,1[r(s)]w'”,...,l)ds]tw“"”

0

—Ay(j—i-Lm—j+1)

>0 fort=0and 0<i<j— 1.

Therefore, noting that 4'~'v(t) > 1/je(0, ) as t— co, we see that v is of
class o * [min]. Furthermore, the function v satisfies

4.21) o(— 1" d™v(t) + g;-1(t, ALt(®) 1?97, A[x(®)1*V™?,...,A) =0

for t 20. In view of (4.19), we have

. Azl .
Ao(t) £ - ), pylk —i)e2*?

] k=i

< &5 [eypo-o
J k=i

<A[OTYY,  £20,0<i<j—1,
and hence (4.21) gives
o(— 1)"A™v () + gj-1(t, v(1), 4v(D),..., 4" v(t)) <0 in RV,

where t = |x|. Applying Theorem 3.1 to the case g = g;_, (¢, vo,...,0;—,), We
conclude that equation (0.1) has a radial entire solution of class J* [min].
This completes the proof of Theorem 4.6.

Consider the equation
0.1);_, (— )"d™u + of;_y(Ix], u, du,...,4 " 'u)=0, xeR",

where m22, 6=+1o0oro=—-1, N23, 1<j<m and f;_, is continuous
and satisfies uo f;_ (¢, uo, Uy,...,4j—41) 20, #0 on [0, ) x R/. Then condi-
tion (4.15) in Theorem 4.5 applied to the case of f = h;_, = f;_; and condition
(4.17) in Theorem 4.6 applied to the case of f=g;_; = f;_; become

4.22),_,

[eo]
J 2T £ (8, 207D, 207D o)|dt < o0 for some ¢ # 0.
o

This observation combined with (ii) of Theorem 4.1 yields the next
theorem.

THEOREM 4.7. Let j be an integer with 1<j<m, (—1¥*'e=1 and
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consider equation (0.1);_,. Suppose that f;_, satisfies condition (N;_,) and is
either strongly superlinear or strongly sublinear on [0, ) x Ri. Then the
following three statements are equivalent :

(i) equation (0.1);_, has a radial entire solution of class A * [min];

(ii) equation (0.1);_, has a radial entire solution of class X;[min];

(iii) the dimensional condition N = 2(m — j) + 3 and the integral condition
(4.22);_, are satisfied.

Now consider the equation
(4.23) (= Dm"4™u + oF(|x|,u)=0, xeR",
where m, ¢ and N are as above and F is assumed to satisfy the conditions:
(4.24) F is continuous on [0, o0) x R,
4.25) uF(t,u)>0 for t 20, ue R — {0}; and
(4.26) |F(t, u))| S |F(t, uy)| for t 20, uyu, >0, |uy| < |u,l.
The next result follows from Theorems 4.4 and 4.7.

THEOREM 4.8. Consider equation (4.23) under the above conditions and
suppose in addition that F satisfies either

{Iull"IF(t, u)| Sup|THF(@ u)l  for £ 20, u3u, >0, Juy| < uyl,

lim u 'F(t,u)=0 for each fixedt =0
u— 10

or
{|“1|_1|F(ta u)| 2 luy| " F (2, uy)l Jort 20, uu; >0, |u| < lu,l,

lim u 'F(t,u)=0 for each fixed t = 0.

u—too

Let ke{0, 1,...,m — 1}. Then (4.23) has a radial entire solution u which has
no zero in RN and has the property that

lim 20D

o exists and is a nonzero finite value

i
x> | x|

if and only if

0

Nz2m—k)+1 and J t2m=O- 1 F(t, ct?*)|dt < o0 for some ¢ # 0.
0

THEOREM 4.9. Let j be an integer such that 1 <j<m—1 and (— 1y*'g=1.
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Suppose that h;_, is a continuous and strictly superlinear function on [0, 00) x R
satisfying
4.14)

0= hj_y(t, ug, ty,...,uj—1)sgnug < f(t, U, Ugs..., Uy 1)S8N Ug on D;.

If (0.1) has a radial entire solution of class X, then
4.15)

f 2D b (97D, e?UTD o)ldt <o for some ¢ # 0.
0
PrOOF. Let u be a radial entire solution of (0.1) in the class ;. We
suppose that u(t) >0 for t 2 0. It follows from (i) of Theorem 2.2 that
j-1

Au®) =Y pulk — )@ w0 >* 7 + py(j — i)(47u)(c0)£2¢7?

k=i

+ ORI w0, t20,0ZiZj-1;
hence, by (4.14) and the fact that 47u(o0) = 0,
4.27)

j—1 .
Au@) 2 Y pylk — i) (du) 0) 2% + & PR Ih;_ (-, u, du,..., 4 u)(0),
k=i
t20,0<i<j—1.

From (i) of Lemma 1.11 we easily see that

42) A0S k- DO

k=i

t
+ By(j—i,m —j)tz("’i’”j s2mI*Lp (s, u(s),..., 47 u(s))ds
0
for t 20 and 0 <i<j— 1, where By(j — i, m — j) is a positive constant.
Assume that the conclusion (4.15) does not hold in the following sense:

(4.29) J sPm=D*Ip. (s, es?U7D, 52072, c)ds= o0  for every c > 0.
(V]

Since u satisfies d'u (t) 2 ¢, t?Y~""V, 12 T, 0<i<j— 1, for some ¢, >0 and

T=1 (see (2.22) in Theorem 2.3), (4.29) implies

J s2 DT Lp (s, u(s), Au(s),..., 47 u(s))ds = co.
0
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Then, using (4.28), we see that there exist constants T; and ¢, such that T; = T,
0<c¢; <By(j—i,m—}) for all ie{0, 1,...,j — 1}, and

t
(4.30) A'u(t) 2 ¢, tz(f""”f s2mTDY IR (s, u(s),..., 47 u(s))ds
0

for t=T,,0<5i<j— 1. Define I(t) by

I(t)=j sPmTIHp (s, u(s),..., 4 Lu(s))ds

0

and take a number T, = T, so that I(t) > O for every t = T,. By (4.30) we have
Au(t) 2 e, 297VI@), 12T, 0<i<j—1,

and hence

%I(t) = 2= p L (, u(t),..., 47 u()

2 2Dt (8 ey t29TVI), .01 ()

for t 2 T,. The strict superlinearity of h;_, implies that there is a constant
y > 1 such that

@)1 hi—y(t, ¢ 297 VI(D), ..., c,1(2))
2 [[(T,)]177hj_(t, ¢, t*9"VI(L),...,c, I(Ty)), t2T,.

Therefore we have
%I(t) 2 ()] P ki (t, ¢, (T2, e I(T)) [1(0)]

for t 2 T,. Dividing this inequality by [I(¢)]” and integrating over [T, t],
we find that

- T
> [1(1)] f | A, ¢ IS, L, I(Ty))ds
T2
for t = T,, which in the limit as t - oo yields
on s2 DT (s, ¢, (T)s*970, ¢, I(Th))ds < .

T2

But this is a contradiction to (4.29). Thus the integral in (4.15) converges
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for some ¢ > 0. It is similarly shown that if u(f) <0 on [0, o©), then the
integral in (4.15) converges for some ¢ < 0. The proof of Theorem 4.9 is
complete.

THEOREM 4.10. Let j be an integer with 1 £j <m —1,(— 1Yo =1 and
consider equation (0.1);_,. Suppose that N 22(m —j)+ 3 and that f;_, is
strictly superlinear on [0, c0) x RI. Then the following three statements are
equivalent :

(i) there exists a radial entire solution of (0.1);_, in the class A},

(ii) there exists a radial entire solution of (0.1);_, in the class X;

(ii) the integral condition (4.22);_, is satisfied.

Proor. It is trivial that (i) implies (ii). Theorem 4.9 for the case
f=h;_y=f;_; shows that (ii) implies (iij). Theorem 4.6 for the case
f=¢j-1=f;—1 shows, under condition (4.22);_,, that (0.1);_; has a radial
entire solution of class 7 *[min], which is obviously of class x#*. This
means that (iii) implies (i).

THEOREM 4.11. Let j be an integer such that 1<j<m—1 and
(—1Y*'e = 1. Suppose that h;_, is a continuous and strictly sublinear function
on [0, 00) x R/ satisfying

4.14)
0= h;j_i(t, ug, thy,...,u;_1)sgn g < f(t, tg, Uy,..., Uy,_1)SEN Uy on D;.

If (0.1) has a radial entire solutio of class X, then

(4.31) j g2 (et et?UTY, et?)|dt < 0 for some ¢ # 0.
0
PrROOF. Let ueJ; be a radial entire solution of (0.1) such that u(t) >0
for t = 0. As in the proof of Theorem 4.9, inequality (4.27) can be derived. By
(i) of Lemma 1.11 we have

4.32) At ’i‘ otk — i) (450) (0) 26D

k=i

0

+ By(j —i,m—j) {tw‘”'[ s2mD 7 h (s, u(s),..., 47" tu(s)) ds

t

t
+ tz(j—i-l)f s2mmDtLp (s, u(S),---,Aj_lu(S))ds}

0

for t20,0=<i<j— 1. The two possibilities occur:
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(4.33) J 2D g (8, u(),..., 47 u(t))dt < oo or
0

(4.34) I 2O-D (1 (D)., 4 u(e)) dt = oo.
0

Suppose that (4.33) occurs. By Theorem 2.3 we have
UV < Aty S c*e?UTY, 12T 0SiZj—1,

for some ¢, >0, c*>0 and T= 1. From the sublinearity of h;_, it follows
that, for each fixed t > T, if A =1 then

Byt u(t),..., 47" u(®) 2 A7 hy_ (8, Au(t),..., Ad " Lu(t)).
Taking
A=max {c*t*079/4u(@): 0 i<j— 1}
and noticing that 1 < 1 £ c¢*t?/c,, we see that
hioy (8 u(),..., 77 u(t)) 2 (cy/c¥)t™2h_ o (8, c*¥ 1%, .., c*t?).

Then assumption (4.33) implies that (4.31) holds for ¢ = c*.
Suppose that (4.34) occurs. Then from (4.32) it follows that there exists
T, = 1 such that

(4.35) Atu(t) = ¢ t2079 f s?m=D=1h (s, u(s),..., 47" u(s)) ds

t

for t=T,, 0<i<j—1, where c¢; is a positive constant such that
By(j—i,m —j)>c, for all ie{0, 1,...,j — 1}. Let J(¢) denote the integral on
the right-hand side of (4.35); thus

Au@) 2?9700, t2T,05i<j—1,

and consequently
d . .
- (};J(t) =2 Lp (8, u(t),..., 47 M u())

22D (8 ey 12 (1), 0 2T (1))

for t = T,. Note that 0 < J(t) £ J(T}) for t = T,. Then the strict sublinearity
of h;_; implies that there is a constant y such that 0 <y <1 and

IO hj_ 1t ¢ 8T (1),...,c, 2 (1))
2 [J(T)]1 -y (8, ¢t I(TL), ..., e 2 J(Th))
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for t 2 T;. Therefore we have
- diJ(t) 2 [J(T)1772™ P by (¢, ¢ J(T) ., e J () LT (O]
t

for t = T;. This gives
- LT T
> [J(TI]]'Vft 2D (s, ¢ J(Ty)sY,..., ¢ J(Ty)s?) ds
for t = T;, from which itT 1follows that
jm s2mD=h (s, ¢y J(Ty)sH,..., ¢, J(T;)s?) ds < 0.
T,

Therefore (4.31) holds for ¢ = ¢;J(T;). This completes the proof of Theorem
4.11.

The following theorem is an easy consequence of (i) of Theorem 4.1, and
Theorems 4.3 and 4.11.

THEOREM 4.12. Let j be an integer with 1 £j<m—1,(—1Y*'o =1 and
consider equation (0.1);_,. Suppose that f;_, satisfies condition (N;) and is
strictly sublinear on [0, ©) x Ri. Then the following three statements are
equivalent :

(i) there exists a radial entire solution of (0.1);_, in the class A},

(ii) there exists a radial entire solution of (0.1);_, in the class X;

(iii) the conditions N 22(m —j)+ 1 and

[e o]
(4.36) J. 2= ( ctH, ct?UTY, L Let?)|dt < 0 for some ¢ #0
0

are satisfied.

THEOREM 4.13. Let j be an integer with 1 <j<m —1 and (— 1y 1o = 1.
Suppose that N 2 2(m — j) + 3 and g;_, is a continuous and sublinear function
on [0, 00) x RI satisfying

(4.16)  f(t, ug, Uy,..., Up—1)S8N0UG = g1 (L, Ug, Uy,...,U;—1)SEN U on D;.
If equation (0.1) has a radial entire solution of class A;[int], then either
@.37%)

o]
f 2D gt ct?UTY 207D )|dt =00  for every ¢ >0
0
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or
4.377)
0
f =D g (29T, er?UD e)|dt =00 for every ¢ <O.
0
Proor. Let ue;[int] be a radial entire solution of (0.1), and suppose

that u(t)>0 for t=0. We claim that (4.37%) holds. Since ueX;[int]
satisfies 47u(c0) = 0, it follows from (ii) of Theorem 2.2 that

(4.38) A'u(t) = Jil prlk — 1) (4*w) Q) 2“7 + SIIWRTIf (-, a) (1),

k=i
t20,0<i<j— L.

Then (i1) of Lemma 1.11 shows that

4.39) Ad'u@) = Jil pn(k — i)(4*u)(0) 2%
FCyli—im—]) {tw-n f " a1 (s, a9) ds

+ tzU_i'l)f s2m=D+1f(s, ﬁ(s))ds}

0

for t20,0<i<j— 1, where Cy(j — i, m —j) is a positive constant and # is
defined by (3.5).
On the other hand, (i) of Lemma 1.11 shows that

(4400 @y PRI, B)()

= By(1, m —j) {tz J‘w §2m=N=1£(s, G(s))ds + Jl s2m=+1f(s ﬁ(s))ds}

0

for t = 0, where By(1, m — j) is a positive constant. Therefore (4.39) and (4.40)
together imply that

A'u(t) £ jil palk — i) (4 w) (0) 2% 9
k=i

U =bm=D) ag-i-0 g wm-if(., @)(0),
BN(I, m _])

so that, in view of (4.38),
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j—1

Au(t) £ Y pyk — i) (4*u) (0) 2* 7P
k=i
M2<j—i—1, i-1 i
T hmey L A0 470

for t20, 0<i<j— 1. Since 4° 'u(t) tends to + oo as t— oo, using the
above inequality, we conclude that there exist constants M =1 and T2 1
such that

4.41) 0< A'u(t) S MU= V47 @), t=2T,0<Zi

lIA

ji—1

Assume now that (4.37%) does not hold, i.e., there is a constant ¢ > 0
such that

4.42) J Pt ct?UTY, 20D o)dt < oo.
0
We will derive a contradiction. Take a number T, = T such that 49~ 1u(t)
=c/M for t = T;, where M and c are constants satisfying (4.41) and (4.42),
respectively. This is possible because 4/~ 'u(t) > + oo as t— 0. On the
other hand, by (ii) of Theorem 2.3, there is a constant c¢* >0 such that
A7 u(t) < c*t* for t 2 T;.  Therefore, using the sublinearity of g;_; and (4.41),
we have
(4.43) gi—1(t, u(®),...., 4 Lu(t))
S g1 (t, MEPU™VA " (), ..., MA " u(t)
SM/) (A u)(t)g;—q (¢, ct*U™D, o)
S (Mc*/o)tg;— (L, et ¢)
for t = T;. This implies that
J P2t u(),..., 47 tu(t)) dt < oo

0

by (4.42); and it follows from (4.16) and (4.39) that
(4.44) A u(t) < 471 u(0)

+ Cy(1, m —j) {tzj s2m=D=1g. (s, u(s),..., 4" Tu(s)) ds
t

t
+ f Sz(m_j)+1gj—1(3, u(s),m’A,-—lu(S))dS}

0
for t 2 0. Note that
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(4.45) gj—1(t, u®),..., 4 u(t)) £ (M/c)(H ™ u)()g;-(t, ct*9™Y,...,c)

for t 2 T, (see (4.43)), and recall that 47~ 'u(t) tends monotonically to + oo
as t > oo. Then, for t=2t2= T,

1
A7 y(t)

t
J SEDG (5, 1 (S)s.., 40 (5) ds
0

< 1 f s2m= ¥ g (s, u(s),..., 4" u(s))ds

A7) ),
+ —M—J' A u(s)- 2t g (s, es2UY, o) ds
cA’ " tu(r) ),
1 ’ ; .
< — §2m=d+lg. (s, u(s),..., 47 ‘u(s))ds
"A"lu(t)jo gj-1(s, u(s) ()

M [* ; )
+ - j s2m=Dtlg. (s, es?U7Y, ..., 0)ds,
T
which in the upper limit as t - oo gives

lim sup —
e A u(t)

t
f SOI g (6, u),.n., 4 u(s) ds

0

M [*® . .
<= j s2m= D lg. (s, es?V7Y, L, 0)ds.
c T

Since 7= T; is arbitrary, the left-hand side in the above is zero; and
consequently

1
(4.46) lim —
1= A7 1y(f)

t
j s2 =D g. (s, u(s),...,4° u(s))ds = 0.
0

By (4.44) and (4.46) we can conclude without difficulty that there exist L> 0
and T, = T, such that

(4.47) AT u@) S L2 | 2T lg. (s, uls),..., 47 u(s))ds
J

t

for t 2 T,. Then it follows from (4.47) and (4.45) that
gj— 1 (t9 u(t), LARR] Aj_ ! u(t))

S (LM /o)t g4 (¢, th("'”,...,C)J‘ s2m= D=t g. (s, u(s),..., 4 u(s))ds
t

for t = T,, which implies that
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K(t)=f sPm=D=lg. (s, u(s),..., 4" 'u(s))ds
t
satisfies
K(t)§(LM/c)f sEmmI* g (s, es?UTY, L, 0)K(s)ds
t

for t > T,. Noticing that K(¢) is positive and nonincreasing on [T;, o), we
have

1< (LM/o) f SHm DG (s, ¢s?07 Y, ., 0)ds
t

for t = T,. However this is a contradiction since the right-hand side tends
to 0 as t > 0. Thus we conclude that, if (0.1) has a positive radial entire
solution ue J;[int], then (4.37%) holds.

Likewise we can show that (4.377) holds if (0.1) has a negative radial
entire solution in J;[int].

THEOREM 4.14. Let j be an integer with 1 <j<m —1 and (— 1y lo =1,
and consider equation (0.1);_,. Suppose that N = 2(m — j)+ 3 and that f;_,
is strictly sublinear on [0, o) x R’ and satisfies

f_‘i—l(t’ -“uo, _ul,.,,,_uj_1)= _f_‘i—l(t’ uo, ul,...,uj_l)

fort=20,u;,>0(0=<i<j—1). Then the following statements are equivalent:
(i) there exists a radial entire solution of (0.1);_, of class A *[int];
(ii) there exists a radial entire solution of (0.1);_, of class X[int];
(iii) the following two integral conditions are satisfied:

4.36) f 2= £ (@ e, P, et?)|dt < o for some ¢ #0
0

and

(4.48) J P f (@t 207D, 207D o)|dt =00 for every ¢ # 0.
0

ProoF. Suppose that (0.1);_; has a radial entire solution in J[int].
Then, using Theorem 4.11 with f=h;_; =f;,_, and Theorem 4.13 with
f=gj-1=f;-1, we have (4.36) and (4.48). This means that (ii) implies
(iii). Suppose that (4.36) and (4.48) hold. Theorem 4.3 applied to the case
f=49;j=f;-, ensures the existence of a radial entire solution u, of (0.1);_,
belonging to #*[int]Ju ¢ *[min]. But it follows from Theorem 4.5 with
f=h;j_y = f;_, that this u, does not belong to J*[min], and consequently
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u e ¥ [int]. This proves that (iii) implies (i). It is trivial that (i) implies (ii).

Theorems 0.5-0.7 mentioned in the Introduction are the special versions
of Theorems 4.4, 4.7, 4.10, 4.12 and 4.14.

5. Existence of radial entire solutions II

In this section the existence of radial entire solutions of (0.1) belonging
to Ay, Ap[int] and A[min] is discussed. Note that these classes are
nonempty only for the case 0 = — 1.

THEOREM 5.1. Let 6 = — 1 in (0.1). If equation (0.1) has a non-constant
radial entire solution u of class A,, then N =2 2m + 1.

Proor. We assume that u(f) >0, # const. on [0, 0). By (iii) of
Theorem 2.2, ¥%(4™u) is well defined on [0, c0) and

u(t) = u(o0) + (— " ¥R(A™u)(t), t=0.

From the assumption, we see that (— 1)"A4™u(t) =0, #0 on [0, o0). Then it
follows from Theorem 1.8 that N =2m + 1. This completes the proof of
Theorem 5.1.

Let D, be the set of all (¢, ugy, uy,...,u,-,)€[0, c0) x R™ satisfying
(5.1 t=0, uy#0, (—Dusgnuya=0 (1Zi<m—1).

THEOREM 5.2. Let 0 = — 1 in (0.1). Suppose that hy(t, uy) is continuous
and restrictively nondecreasing on [0, o0) X R and satisfies

(5.2) 0 < ho(t, ug)sgn ug < f(t, ug, Uyy... Upy_1)SEN Uy on D,.
If equation (0.1) has a radial entire solution of class A,[min], then
(5.3) J tN Y hy(t, ct™VN*2™)|dt < 0 for some c # 0.

0

PrOOF. Suppose that u is a radial entire solution of (0.1) such that
ue Ay [min] and u(t) > 0 for ¢t = 0. It follows from (iii) of Theorem 2.2 that

u@®) = (— D"PR™w) (@) = YR/, 9@, 20,

where @ = (u, du,..., 4™ *u). By (1.22) in Lemma 1.9 we have

(5.9 tllm tN72mu(t) = ey (m) J‘w V=11 (s, 6(s))dse(0, o].

0

By the definition of #y[min], lim,_, t¥ ~2™u (t) exists and is a positive finite
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value, and so there are ¢, >0, ¢* >0 and T2=1 such that
(5.5) Cet NI S u(r) S XN t=T

Combining (5.5) with the inequality

J‘w s¥71f (s, 1(s))ds < 0,

0
which follows from (5.4), we see that (5.3) holds as desired. This completes
the proof of Theorem 5.2.

THEOREM 5.3. Let 6 = — 1 and N 22m + 1. Suppose that the functions
ho(t, ug) and go(t, uy) are continuous and restrictively nondecreasing on
[0, ) x R and satisfy
(5:6) 0 < ho(t, up)sgn ug < f(2, tg, Uys..., Up—1)SEN Ug

= go(t, uo)sgn ug on Do,
where D, is the set of all points (t, ug, Uy,...,u, 1) satisfying (5.1). In addition,

suppose that, for each fixed t =0, hy(t, ug)/uy is nonincreasing in uqe(0, o)
and nondecreasing in (— oo, 0), and

(5.7) fim o4 _ 4 o

uo— 0 Uy
Suppose that g, is strongly sublinear on [0, ©0) x R and that
go(t, o(1))sgn o(t) 20, #0  on [0, )

for every bounded @€ C[0, ), ¢(t) #0 (t = 0).
G If
(5.8) J 2™~ go(t, c)|dt < 0 for some ¢ # 0,
1

then equation (0.1) has a radial entire solution u such that u(|x|) # 0 in RY and
u(|]x])—0 as |x| -» 0.
@ If
(5.9) f tN " go(t, ct™Nt2™|dt < 0 for some c # 0,
1

then equation (0.1) has a radial entire solution u such that u(|x|) # 0 in RN and
lim .o %Y ~2™u(|x|) exists and is a nonzero finite value.

Proor. (i) Without loss of generality we may assume that ¢ in (5.8) is
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positive. The strong sublinearity of g,, condition (5.8) and the Lebesgue
dominated convergence theorem imply that

lim dN(m)J gm-1964 40 o
A=+ 0 A

where dy(m) is a positive constant appearing in (1.20) with i = m. There exists
Ao = ¢ such that

(5.10) dy(m) J‘w stm=1g.(s, )ds £ 4
0

for all Ae[4y, ). For such a 4, define the function v(t) by
v(t) = PRgo(-, (@), 20

By the assumption on g, we see that v(t) is well defined on [0, o) (see Lemma
1.8) and that v(t) >0 on [0, o0) and lim,,v(t) =0. From inequality (1.20)
with i =m, h(t) = g,(t, A) it follows that

v(t) £ dN(m)J stm=1g.(s, Ads, t=0,
0

which implies by (5.10) that v(t) < A for t = 0. Then it is clear that
0= — (= 1"d"o(t) + go(t, 4)
2 — (= 1)"4"o(1) + go(t, v(1)), ¢ 20.

Applying Theorem 3.2 to the case of h =h, and g = g,, we conclude that
equation (0.1) has a radial entire solution u such that u(|x|)> 0 for xeR"
and u(|x|) >0 as |x| — 0.

(i) The proof of (ii) is similar to that of (i). Let ¢ >0 in (5.9). It is
shown that

@ A
lim dy(m) f max (21, §8-1y 900 Mnn() yo
A=+ 0

where gy (t) = min {1, t™V*?"} ¢ >0. Note that max {t*"~!, "1} =71

and qy () =t"N*?" for t 2 1 because of N = 2m + 1. There is 4o 2 ¢ such
that for Ae[4,, )

dN(m)J max {s*" 1, s "1} go(s, Ady,m(s))ds < A.
0

Fix a constant A satisfying the above inequality, and define v(t) by

() = YRgo(-> Mnm (), 20
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It can be proved that v(t) >0 for t = 0; v(f) < Agy (¢) for t =0 (see (i) of
Lemma 1.10); and

lim V72" (f) = en(m)f s¥ "1 go(s, Aqy,m(s)) ds
0

t— o0

(see Lemma 1.9). Since the right-hand side in the above is finite and positive,
we find that ve #,[min]. It is easy to see that

— (= )" 4™0() + go(t, v(®)) =0, =0,

and so it follows from Theorem 3.2 that equation (0.1) has a radial entire
solution u in the class ), [min]. This completes the proof of Theorem 5.3.

ReMARK 5.1. We know by Theorem 4.3 for the case j =0 that (5.8) is
sufficient for (0.1) to have a radial entire solution u of class #;[max]. Thus,
if (5.8) is satisfied, then (0.1) has at least two different kinds of solutions
u, € Xy [max] and u, e A, [int] U A, [min].

Let f,(t, u) be continuous on [0, c0) X R and satisfy
(5.11) ufot, u) =0, #0 for (¢, u)e[0, o) x R.
Consider the conditions on f,:

(5.12) Jo (@t o(t))sgn ¢(t) 20, #0 on [0, )
for every bounded ¢eC[0, x), @) #0 (t = 0);

(5.13) I fot, W)l = [fot,v)]  for 20, uv >0, [u] = |v];
(5.14) u ot wzo iy t,v)  for t 20, uv >0, |ul < |v|;
(5.15) l‘lqirinao u 'fy(t,yy=0  for each fixed t = 0;
(5.16) ul_l:rilo u ot u) = + oo for each fixed ¢t = 0;
(5.17) there exists a number y, 0 <y < 1, such that
[ul "1 fot, Wl 2 [v] 77| fo(t, w)|  for t 20, uv >0, |u| = |v];

(5.18) folt, —u) = — fo(t, u) for t 20, u>0.

The function f, satisfying (5.11) is strongly sublinear [resp. strictly sublinear]
on [0, o) x R if and only if (5.13)—(5.15) [resp. (5.13) and (5.17)] hold.
The following theorem is concerned with equations of the form

(5.19) (= )"d™u = fo(lx|, w),  xeRY,

where f; is continuous on [0, c0) x R and satisfies (5.11).
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THEOREM 5.4. Suppose that f, satisfies (5.12)—(5.16). Then equation (5.19)
has a radial entire solution of class Ay [min] if and only if

¢ o)

(5200 N=2m+1 and j N7 folt, ct V2™ dt < 0 for some c # 0.
1

Theorem 5.4 follows from Theorems 5.1, 5.2 and (ii) of Theorem 5.3.

THEOREM 5.5. Let o= — 1. Suppose that hy(t, uy) is a continuous
and strictly sublinear function on [0, ) x R satisfying

(5.2) 0 < ho(t, ug)sgn ug < f(t, ug, Uy,... Uy, 1)SgN Uy on D,.

If equation (0.1) has a radial entire solution in the class X, then

(5.21) J‘ t2™ "1 hy(t, ¢)ldt < 00 for some c # 0.

1

ProoF. Let ue X, be a radial entire solution of (0.1) such that u(t) >0
for t 0. It is easily seen that

u(t) g lpxho(', u)(t)’ t g 0.
By Lemma 1.8 we find that

(5.22) u(t) = cN(m)J‘Oo s2m=1ho(s, u(s))ds, t=0.

Assume that ho(t, u(t)) =0 on [t;, o) for some t; = 0. Since 0 < u(t)
<u(0) for t=0 and h, is strictly sublinear on [0, c0) x R, we have
[u(®)1" 7 ho(t, u®)) = [u(0)] "hy(t, u(0)) for t >0, where y is a constant such
that 0 <y < 1. Then, hy(t, u(0)) =0 for t = ¢, ; and (5.21) is trivially satisfied.

Assume that hy(t, u(t)) =0, # 0 on [t,, o) for all £, = 0. We denote the
integral in (5.22) by J(t). Observe that J(t) is positive on [0, o©0) and

- %J(t) =t2""Lh(t, u(t)) = > 1hy(t, cy(m)J(t)), t=0.

Since the strict sublinearity of h, implies

LI®] 7 ho(t, cn(m)J (1)) 2 [J(O)] 7ho(t, cy(m)J(0)), 20,

we have
- [J(t)]'Y%J(t) 2 [J(O)] 77> ho(t, cy(m)J(0)), t=0.

An integration of the above inequality yields
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-—Or "+ —[O1
1—y 1—v

2 [J(O)]_yft s*" " ho(s, cy(m)J(0))ds,  t=0,
0
from which it follows that
Jm sZm=1h (s, cy(m)J(0))ds < co.
0
Thus (5.21) also holds in this case. The proof of Theorem 5.5 is complete.

Combining Theorems 5.1 and 5.5 with Theorem 4.3 for the case j =0,
we have the following theorem.

THEOREM 5.6. Consider equation (5.19). Suppose that f, satisfies (5.12),
(5.13) and (5.17). Then equation (5.19) has a radial entire solution of class X
if and only if

o)

(5.23) N22m+1 and J t2m= 1 fo(¢, ¢)|dt < oo for some ¢ # 0.

1

THEOREM 5.7. Let 6 = — 1. Suppose that g, is continuous and sublinear
on [0, o0) x R and satisfies

(5.24) St ug, thyy... Uy 1) 58N Uy < goll, Ug) SN Ug on D,.

If equation (0.1) has a radial entire solution of class A, [int], then either

(5.25%) Nl go(t, ct N2 dt = 0 for every ¢ >0
Ji

or

(5.257) tN Y got, ct V2™ dt = 0 for every ¢ <O0.
Ji

Proor. Suppose that ue A, [int] is a radial entire solution of (0.1) and
that u(t) >0 for t 0. By Theorem 5.1 we have N = 2m + 1.
Assume now that there is a ¢ > 0 such that

(5.26) f N 1go(t, ct N2 dt < oo.

1

Take a T, = 1 so that u(t) = ct"¥*?™ for t = T,, which is possible because of
ue Ay [int]. From the sublinearity of g, it follows that
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1

(5.27) golt, u (1)) < ;u(t)tN—zmgo(t, ca™N2Imy 2T,

and hence

(528) golt, u®) £ “Qpw-mg ( covrmy x>,
[

In view of (5.26) and (5.28), we have

f 2" 1go(t, u(t))dt < o,

1

which combined with N = 2m + 1 implies that ¥Y}g,(-, u) is well defined on
[0, c0). Then it is easily seen that

u(®) = (= Y"PRA™"u) (@) < PRgo(-, w(@®), t=0.
By Lemma 1.8 we have

(5.29)
u(t) £ dy(m) {t‘”“’"f

0

t o)

sV 1g0(s, u(s))ds + J

t

s 1 gols, u(S))dS}, t20.

Lemma 1.9 shows that t¥ 2™ ¥%((— 1)"4™u)(t) = t¥ ~2™u(t) is nondecreasing in
[0, ©). If t =27 =T, then we can estimate as follows:

t—N+2m (ft
s¥71go(s, u(s)) ds
u(t) Jo
t—N+2m ft N1 t—N+2m t N1 N-2 “N+2
< sN1go(s, u(s))ds + s tu(s)s" T ™go(s, cs ™ ds
u(t)y Jo cu®) J.
t_N+2m N N—-1 1 ‘ N-1 -N+2
< s " lgo(s, u(s))ds + — | s" " 'gols, cs ™) ds.
u(t) JOo c

T

Noting that t"¥*2m/y(t) -0 as t - oo, and taking the upper limit as t — o,
we have

[o9]

1
s¥ 1 go(s, u(s))ds < —J SN 1go(s, sV M) ds.
C

T

t—N+2m t

lim su
1> P u(®) Jo
Since the right-hand side of the above inequality tends to 0 as t— oo, the
left-hand side is equal to 0, and hence

t—N+2m t

(5.30) lim sV 1g0(s, u(s))ds = 0.
=0 u(t) Jo
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In view of (5.29) and (5.30) there are L> 0 and T, = T; such that

o0

(5.31) u(t) < LI s lgo(s, u(s)ds, t2T,.

t

Then it follows from (5.27) and (5.31) that
LN—Z —N+2m ® 2m—1
go(t, u(®)) = St "go(t, ct )| 5" g0(s, u(s))ds
t
for t = T,, which implies that
K() = J s2m " 1go(s, u(s))ds
t
satisfies
L e N-1 ~N+2
K@) = - s 7 gol(s, cs ™)K (s)ds
CJ:

for t 2 T,. Noticing that K(t) is positive (see (5.29)) and nonincreasing on
[T;, o), we obtain

L [ o}
1< —f sV 1go(s, s~V 2m) ds
4 t

for t > T,, which contradicts the fact that the right-hand side approaches 0
as t - oo. Thus we conclude that if (0.1) has a positive radial entire solution
of class J,[int], then (5.25%) holds.

Similarly we can prove that if (0.1) has a negative radial entire solution
of class A [int], then (5.257) holds. The proof of Theorem 5.7 is complete.

THEOREM 5.8. Consider equation (5.19). Suppose that f, satisfies (5.12),
(5.13), (5.16)—(5.18). Then equation (5.19) has a radial entire solution of class
Ao [int] if and only if

N=2m+1,

j 2" fo(t, )| dt < o0 for some ¢ # 0,

1

(5.32)

J N7 folt, ct N2 dt =00 for all ¢ #0.
1

Proor. If there is a radial entire solution of (5.19) in X, [int], then, by
Theorems 5.1, 5.5 (or 5.6) and 5.7, the desired conclusion (5.32) holds.
Conversely, if (5.32) is satisfied, then (i) of Theorem 5.3 ensures the existence
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of a radial entire solution u of (5.19) such that u(t) # 0 for t = 0 and u(t) -0
as t— . By Theorem 5.2 (or 5.4), this solution u does not belong to
Ao [min] and therefore belongs to J[int]. This completes the proof of
Theorem 5.8.

Finally let us summarize some results on bounded radial entire solutions
with no zero on R" of the generalized Emden-Fowler equation

(5.33) (— D)™ 4™u = p(|x|)|ul’sgn u, xeRY,

where y>0 and peC[0, ), p(t)=0, £0 for t=0. They follow from
Theorem 4.4 with j =0, and Theorems 5.4, 5.6, 5.8 specialized to (5.33).

COROLLARY 5.9. (1) Let y>0, # 1. Equation (5.33) has a radial entire
solution u such that u(t) #0 for t =0 and

(5.34) lim u(t) exists and is a nonzero finite value
t—>

if and only if

0

(5.35) N22m+1 and J 2™~ 1p(t)dt < oo.
1

(ii) Let 0 <y < 1. Egquation (5.33) has a bounded radial entire solution u
such that u(t) #0 for t 20 and

(5.36) lim tY~2™y(t) exists and is a nonzero finite value
t— o

if and only if

(537 N=22m+1 and j N1y =2m (1) dt < 0.
1
(i) Let 0 <y < 1. Equation (533) has a bounded radial entire solution
u such that u(t) #0 for t 20 and

(5.38) lim u(t) =0, lim tN72my(t) = £
t— o0 t— o0
if and only if

0

(537) N22m+1, f

t?™~1p(t)dt < oo and J N 1=YN=2m () dt = oo.
1

1

COROLLARY 5.10. Let 0 <y < 1. All of the following statements are
equivalent :
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(i) equation (5.33) has a bounded radial entire solution which has no zero
in RY;
(ii) equation (5.33) has a radial entire solution which has no zero in R¥

and satisfies (5.34);
(ili) equation (5.33) has a radial entire solution which has no zero in RY

and satisfies lim ., ,u(|x|) = 0;
(iv) condition (5.35) is satisfied.

6. Supplementary results
In this section we consider the equation
(6.1 (— D™4™u + ofy(|x], u)=0, xeR",

where m=22, N=3,0=+1o0or 6 = —1 and f; is continuous on [0, o), and
state some results on the existence and asymptotic behavior of its radial entire
solutions which can be obtained by suitably combining the theorems given in
Sections 4 and 5. For simplicity it is assumed that

6.2) ufot, u)>0 for t =20, u#0.

For equation (6.1), the integral condition of the type

(6.3); I g2m=D=1) f(t, ct?)|dt < 0 for some ¢ # 0
V]
plays an important rule. Here j is an integer with 0 <j<m — 1.
Let f, be strictly superlinear on [0, 00) x R, that is, let f, satisfy the
condition

(6.4) there exists a number y > 1 such that
lul ™71 fot, W = |07 fo(t, v)|  for £ 20, uv>0, |u < [v].
Then, noting that
eI fo (8, 297D S 27D fo(e, et

for t 21 and ¢ # 0, we find that (6.3); implies (6.3);_,; and in particular (6.3);
implies (6.3);~,, (6.3);-4,..., and so on. We observe that, under the
dimensional condition N = 2m + 1, the following statements hold:

(i) (6.1) has a radial entire solution of class X; (1 £j<m—1) if and
only if (—1Y*'¢ =1 and (6.3);_, holds (see Theorem 4.10);

(ii) (6.1) has a radial entire solution of class A such that lim,_ ,u(t)
€R — {0} if and only if ¢ = — 1 and (6.3), holds (see Theorem 4.4 with j = 0);

(iij) (6.1) has a radial entire solution of class J,, such that lim,_  u (t)/
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t?™m~De R — {0} if and only if (— 1)"**6 = 1 and (6.3),,_; holds (see Theorem
4.7 with j = m).

Taking these facts into account and recalling the decomposition of X
mentioned just before Theorem 2.2, we have the following theorems.

THEOREM 6.1. Consider equation (6.1). Suppose that m is even, 6 = + 1,
N=2m+ 1 and that f, satisfies (6.2) and (6.4). Then equation (6.1) has a
radial entire solution with no zero in RY if and only if

J t2m 1 f, (¢t c)dt < o for some c #0.
0

THEOREM 6.2. Consider equation (6.1). Suppose that N =2m+ 1 and
that f, satisfies (6.2) and (6.4). Then the condition

oo}
J 2"l fot, o)ldt =00  for all ¢ #0
0
is necessary and sufficient in order that the following situation occurs:

(i) for m even and o = + 1, each radial entire solution of (6.1) has at
least one zero;

(ii) for m odd and o = — 1, each radial entire solution u of (6.1) with no
zero satisfies lim,_, ,u(t) =0;
(iii) for m even and 6 = — 1, each radial entire solution u of (6.1) with no

zero satisfies either lim,_, (u(t) = 0 or lim,_, |u(t)|/*™ D = + o0;
(iv) for m odd and o = + 1, each radial entire solution u of (6.1) with no
zero satisfies lim,_, . |u(t)|/*™ D = + oo.

Next consider the case where f, satisfies the conditions

(6.5) liTo u lfot,u)= + © for fixed t = 0;
(6.6) |folt, Wl = [ fot, v)]  for 120, uv>0, [u] < |v]; and
6.7) there exists a number 7, 0 <y < 1, such that

|u|_y|f0(t9 u)l g |U‘_y|f0(t’ U)I fOl' t g 0) uv > 0, Iul é |D|'
In this case, the condition

N=2m—j)+ 1 and
(6.8); .
j 2m=D=1| f(t, ct?)|dt < o0 for some ¢ # 0

0

is crucial. It is easy to see that (6.8); implies (6.8);, ,; and hence (6.8); implies
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(6.8);+2, (6.8);4+4,..., and so on. Furthermore,

(i) equation (6.1) has a radial entire solution of class #; (0 <j<m—1)
if and omly if (—1Y*'e=1 and (6.8); holds (see Theorem 4.12 for
1<j<m—1 and Theorem 5.6 for j =0);

(ii) equation (6.1) has a radial entire solution of class Jf, such that
lim,_, u(t)/t*™ YeR — {0} if and only if (—1)"*'6 =1 and (6.8),_; holds
(see Theorem 4.7 with j = m).

Then the following theorems can be shown without difficulty.

THEOREM 6.3. Consider equation (6.1). Suppose that (— 1)"o = 1 and that
fo satisfies (6.2), (6.5)(6.7). Then equation (6.1) has a radial entire solution
with no zero in RN if and only if

J‘ tlfolt, ct?™ Vdt < 0 for some c #0.
0

THEOREM 6.4. Consider equation (6.1). Suppose that f, satisfies (6.2),
(6.5)—(6.7). Then the condition

J tlfolt, ct?™"V)dt =0  for all c#0

0

is necessary and sufficient for the following situation to occur:
(1) for the case of (— 1)"o =1, each radial entire solution of (6.1) has

at least one zero;
(ii) for the case of (— 1)""'¢ =1, each radial entire solution u of (6.1)

with no zero satisfies lim,_, |u(t)|/t>*™ 1 = + o0.
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