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§0. Introduction

Given a CW-spectrum E we call a CVΓ-spectrum W E ̂ -injective if any map

f:X-+Y induces an epimorphism /*: [7, W] -» IX, W] whenever /*: E*X
-+ Ej.Y is a monomorphism [12, Definition 1 i)]. The well known ring spectra
E = S, HZ/p, MO, Ml/, MSP, KU, KO and XT satisfy some of nice properties
as stated in [1] or [2]. For example, E^E is flat as an E^-module, and the

product map VEF: E^E (x) π^F -» E^F is an isomorphism for any E-module
£*

spectrum F. Then E^X may be regarded as a comodule over the coalgebra
E^E. For such a nice ring spectrum E we gave the following characterization
in [17].

THEOREM 1. Let E be a ring spectrum satisfying the above two properties.
For a CW-spectrum W the following conditions are equivalent:

i) W is an E ̂ -injective spectrum,
ii) W is an E^-local spectrum such that E^W is injective as an E^E-comodule,
and
iii) the canonical morphίsm KE : [X, W~\ —> HomE^E(E^X, E^.W) is an isomor-
phism for any CW-spectrum X.

In this note we study X|-injective spectra for X^ = KU v KO v KT,
KU v K09 KU v KT, KO v XT, KU, KO and XT where XC7, KO and XT
denote the complex, the real and the self-conjugate X-spectrum respectively.
In particular, we give a X^-version of Theorem 1 as our main result (see
Theorem 2 below). For our purpose we use the Bousfield's abelian categories
CRT and ACRT [9, 2.1 and 5.5] whose objects M = {Mc, M*, Mτ} are
modelled on the united X-homologies K™TX = {KU^X, KO^X, KT^X} for
any CW-spectra X, although our category ACRT is somewhat different from
the Bousfield's one.

In §1 we first recall the abelian category CRT and then state several
homological properties of CRT established in [9, §2 and §3] for later use. In
§2 we introduce the abelian categories ^ = CR, CT, RT, C, R and T whose
objects M = {MH} are obtained by restricting their namesakes in CRT, of
which CR and C have already been done in [9, 4.1 and 4.7]. In §3 we give
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simple criteria for projective and injective objects in ^ (Theorems 3.1, 3.2, 3.3
and 3.4) by referring the CRTeases demonstrated in [9, Theorems 3.2 and 3.3].

In §4 we show that KU Λ SZ/200, KO Λ SZ/200 and KTA SZ/200 respec-
tively are never (KO v £7%-, (KU v KT)*- and (KU v KO)*-injective where
SZ/200 denotes the Moore spectrum of type Z/2°° (Lemma 4.3). This result
gives necessary and sufficient conditions under which a CW-spectrum Wis K*-
injective (Theorems 4.7 and 4.9). In §5 we introduce the abelian categories AΉ
consisting of objects M of ^ having a KO^KO-comodule structure when #
= CRT, CR, CT, RT, C, R and T, as the united K-homology K$RTX admits a
KO^KO-comodule structure. Although our category AΉ is not the quite
same as the abelian category A<S consisting of objects M of # with stable
Adams operations introduced in [9, 5.5], we use the same notation as
Bousfield's (see [8, §10]). In fact we can show the same result (Theorem 5.2)
that an object M in our category ACRT has injective dimension < 2 as
[9, Theorem 7.3] in Bousfield's category ACRT. We finally give the following
characterization as our main result (Theorem 5.8).

THEOREM 2. Let <$ denotes one of the abelian categories CRT, CR, CT,
RT, C, R and T. For a CW-spectrum W the following conditions are equivalent:

i) W is a K^-injective spectrum,
ii) W is a quasi KO-module spectrum such that K^W is injective in Ή,

iii) W is a KO^-local spectrum such that K^W is injective in A<&, and
iv) the canonical morphism τc|: [X, W] -^HomΛ^(K^X9 K^W) is an isomo-
rphism for any CW-spectrum X.

Here a quasi KO-module spectrum W is meant a KO-module spectrum
which is not necessarily assumed to be associative.

§1. The Bousfield's abelian category CRT

1.1. Let KU, KO and KT denote the complex, the real and the
self-conjugate K-spectrum respectively. In [9] KU is denoted by K and in
[5, 15 and 16] KT is denoted by KC. All of these periodic K-spectra are
commutative ring spectra and their coefficient rings are represented as follows :

(1.1) π*KO * Z[_BR, B^, ηR, ξ-]/{2ηR = 0, η\ = 0, ξ2 = 4BR, ηRξ = 0}

π*KT * Z\βτ, Bfl, ητ, ω^/{2ητ = 0, r\\ = 0, ω2 = 0, ητω = 0}

where Bcεπ2KU^Z, BReπsKO^Z, Bτεπ4KT^Z, ηReπ,KO^Z/2,

^Z/2, ξeπ4KO^Z and ωeπ3KT^Z. These coefficient rings
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π+KU, π^KO and π^KT will often be abbrebiated as Kiς, KO* and KT*
respectively.

We denote by P = C(η) and Q = C(η2) the cofibers of the stable Hopf map
η: Σ1 -+ Σ° of order 2 and its square η2: Σ2 -> Σ° respectively. The complex
K-spectrum KU and the self-conjugate K-spectrum KT have standard
decompositions KU ^ KO Λ P and KT^ KO Λ Q as KO-module spectra
([5] or [15]). Hereafter we shall often identify the periodic K-spectra KU and
KT with the smash products KO Λ P and KO Λ Q respectively. Since the
elementary spectra P and Q are self-dual [13], there exist duality isomorphisms

DP: [_Σ2X, KU Λ 7] -> IP Λ X, KO Λ 7]
(1-2)

DQ\ [Γ3x, KΓΛ y] -> [β Λ x, κo Λ y]

for any CJ^ spectra X and y
As relations among the periodic K-spectra KU, KO and KT we have

Anderson's cofiber sequences ([5] or [9]):

ϋ)

(1.3) iii)

Here ιj: Γ1 -+Σ° denotes the stable Hopf map of order 2, £c: Σ2KU->KU,
BR:Σ8KO^KO and BT:Σ

4KT^KT the periodicity maps, and i/^ Kt/
-^ KU and ^f 1: KT^KT the conjugation maps which are ring maps with
^-ι^-ι = l and ^f1^1 = 1. The maps c KO^KU, ε : K O ^ K T a n d
C: KT^ KL7 are ring maps with c = ζε, and the maps r: KU -> KO, τ: Z^KT
->• KO are merely KO-module maps and γ: KU -> Σ1KT is a KT-module map

with r = τy.
Let £ be a ring spectrum and F be an E-module spectrum equipped with a

structure map μ: F Λ E^F. For any CW-spectra X and y we consider the
homomorphism

assigning to each map /: X -» E Λ Y the induced homomorphism κF(f)^ in
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dimension n where κ F ( f ) = (μ Λ 1)(1 / \ f ) : F / \ X - + F Λ Y. For an abelian

group G we denote by SG the Moore spectrum of type G. Then there exist
universal coefficient sequences for the periodic X-spectra KU, KO and KT

([6] or [14]):

i) 0 -> Ext(Xt/5 X, G) -> [X, Xt/ Λ SG] -^-^ Hom(KU6X, G) -> 0

κo
(1.4) ii) 0 -> Ext(X03JT, G) -> [AT, XO Λ SG] -̂ -> Hom(X04 X, G) -> 0

KΓ

iii) 0 -» Ext(XT6JT, G) -> [X, XTΛ SG] -̂ U Hom(XT7X, G) -> 0

in which all of KU6SG9 X04SG and XT7SG are identified with G.

For any X0-module spectra W and Z we denote by [V^ Z]xo the
subgroup of [Wζ Z] consisting of all the homotopy classes of XO-module

maps. Consider the homomorphisms

Λ

i) klϋ : [W, KU Λ SG] 0̂ -> Hom(π6P Λ Hζ G)

(1.5) ii) kl° : [W, KO Λ SG]XO -> Hom(π4^, G)

iii) kψ\ [W9 KTΛ SG]KO -> Hom(π7β Λ Wζ G)

defined by *»(/) = (μF Λ l)φ(l Λ/),, ίcΓ(^) = ̂  and ίcfΓ(Λ) = (μ

(1 Λ h)+ where μp: P A KU -> KU and μβ: β Λ KΓ-> XT are associated with

the multiplications of KU and XT. As is easily checked, the above ίcf17, £4°
and fcf τ are isomorphisms for any XO-module spectrum W whenever the

abelian group G is divisible.

1.2. We first recall the abelian category CRT introduced by Bousfield

[9, 2.1]. For any CVF-spectrum X the united X-homology

K$RTX = {KU^X, KO^X, KT+X}

is just viewed as a model of an object of the abelian category CRT. An object

CRT is a triple M = {Mc, M*, Mτ] consisting of a XL/*-, KO^ and XT*-
module Mc, MΛ and Mτ equipped with operations below (1.6). Thus Mc, MR

and Mτ are united by the following XO^-module maps called operations:

(1.6)
ητ:Σ

lMτ ^MΓ, ω:Γ3MΓ-»Mτ, φf1:Mτ^

ε:MR-+Mτ, τ\ΣlMτ—*MR, ζ:Mτ^Mc and
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where (ΣnM)^ = M^.,,, which satisfy the following relations listed in [9, 1. 9]:

(1.7) i) 2ηR = 0, η\ = 0, ξ2 = 4BR, ηRξ = 0,

ii) 2ητ = 0, Y\\ = 0, ω2 = 0, ητω = 0,

iv) 1//Ϋ 1ψγ1 = 1, ψγ1Bτ = Bτψγl,

v) fηH = ηLf for any map /: MH -> ML where H, Le {C, R, T} and

vi) εBR = Bγε, τE\ = BRτ, ψjlε = ε, τ^f 1 = — τ,

viii) τε = ηR, τBTε = 0, ζ = τωε, BγετBγ1 = ετ + τy r,

ix) ζy = 0, y#cC = ^T, ω = BτyC and

x) ζετy = 1 + ψς 1, τyζε = 2, ετyζ = 1 + ψΫ1, yζετ = 1 — ψj1.

A morphism of CRT is a triple /= {/C,/Λ,/T} consisting of a
φ- and XT^-module map /c, /Λ and /τ which commute the above

operations.
An object M = {Mc, M*, MΓ} of CRT is called CRT-acyclic [9, 2.3] when

the three sequences

(1.8) i) •••—>Σ1MR-^->MR—> Mc r—L-*Σ2MR -^->ΣiMR—> •••

ii) >Σ2M

become exact in which c = ζε and r = τγ. For each XO-module spectrum W
the united homotopy π$RTW= [π^P Λ P ,̂ π^ W9 π^Q Λ W} is viewd as an
object of CRT and it is always CKΓ-acyclic. Obviously π$RTKO Λ X ^
K£*Γ* for any CW-spectrum X.

The united X-homologies of the elementary spectra 27°, P = C(η) and Q
= C(η2) are represented as follows [9, 2.4] :

(1.9) i) K00Σ°^Z{b}, KO,ΣQ^ZI2{ηRb], KO2Σ° ^ Z/2{η2

Rb},

K04Σ° * Z{ξb}9 KOnΣ° = 0 for n = 3, 5, 6 and 7,

KU0Σ° * Z{cb}, KU,Σ° = 0,
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° ^ Z/2{ητεb}, KT2Σ° = 0 and KT3Σ° ^ Z{ωεb}.

ii)

KT2P ^ Z{ετyb} and KT3P ^ Z{γBcb}.

iii) KT3ρ ^Z{b}®Z{ψϊlb}, KT4Q^Z{ετb}®Z/2{ητb}9

KT5Q * Z/2{ητετb}, KT6Q * Z{ωb}, KU3Q * Z{ζb},

KU^Q ^Z{ζετb}, K03Q * Z{τyζb},

K05Q^Z/2{ηRτb} and

For a graded abelian group G = {Gn} we denote by SG the wedge sum

v ΣnSGn of the suspended Moore spectra. A KO-module spectrum W is said
n

to be π^RT-free if it is expressed as a wedge sum of copies of the XO-module
spectra ΣnKU, ΣnKO and ΣnKT. A KO-module spectrum W is said to be a
π$RT-cofree if it is expressed as a wedge sum of KO-module spectra KU Λ SA,
KO Λ SB and KT/\SC where A = {Λj 0 <i<ι> B = {^}0<j<7 and C =
{Q}o<fc<3 are graded divisible. A free object of CKT is isomorphic in CRT
to a certain united homotopy π^.RTW with W π£RΓ-free, and dually a cofree
object of CRT is isomorphic in CRT to π^W with W π£*Γ-cofree.

1.3. We now recall several homological properties of the abelian category
CRT investigated in [9, §2 and §3]. Given an object N = {Nc, NR, Nτ} of
CRT we define three homomorphisms

(1.10) ii) eR : HomCRT(K™τΣ0

9 N) -> NR

iii) eτ : HomCRT(K™T

3 Q, N) -> AT?

by βc(/) =/c(M? ^(/) =/κ(fcκ) and er(/) =fτ(bτ) for each morphism / =
[fcJRJT] of CRT where bceXl/2P, bΛeX00Γ° and bτεKT3Q denote the
standard generators 6 given in (1.9). Because of (1.9) the united K-homologies
KlRTP, KlRTΣQ and K™TQ are determined completely by the standard
generators bc, bR and bτ. Hence we can easily see

LEMMA 1.1. The above ec, eR and eτ are all isomorphisms for any object N
of CRT.

By means of Lemma 1.1 there exists a π£*τ-free spectrum KO Λ X and an
epimorphism /: K$RTX -> JV in CRT for each object N of CRT. Thus the
abelian category CRT has enough projectives. In [9, Theorem 3.2] Bousfield
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has established a simple criterion for projective objects in CRT.

THEOREM 1.2 [9, Theorem 3.2]. For an object M = {Mc, M*, Mτ} of the
abelίan category CRT the following conditions are equivalent:

i) M is projective in CRT,

ii) M is CRT-acyclic with Mc free, and
iii) M is free in CRT, thus it is isomorphic in CRT to a direct sum K$RTP Λ

SA © K™TSB ® KlRTQ Λ SC where A = {Λjo<i<ι> B = {£;}0<;<7 and C =

{Q}o<fc<3 are graded free.

Given an object M = {Mc, MR, Mτ} of CRT and an abelian group G we
define three homomorphisms

i) φc : HomCKΓ(M, K™T

6P Λ SG) — * Hom(Mg, G)

(1.11) ii) φR: HomCΛΓ(M, K™T

4SG) — > Hom(M*, G)

iii) φτ: HomCRT(M, K™T

ΊQ Λ SG) — > Hom(Mj, G)

by φc(f) = ( μ p Λ l)*/o» <M/)=/o and <M/) = ()"Q Λ l)*/o for

morphism /= {fcJRJT} of CKΓ. Here μp: KU Λ P ̂  KU and μβ:
Q-^KT are associated with the multiplications of K17 and KT, and all of

KU6SG, KO4SG and KΓ7SG are identified with G as in (1.4).

When M = X^Γ

227"P, KSRTΓn or Kc^ΣnQ, the above φc, φR and φτ

admit the following factorizations:

Φc = κβUDpec> ΨR = κ%°DPeR and φτ = KjTDPeτ when M =

Ψc = ^f^^c j ΦΛ = ̂ 4°^ an(l ^T = κ*τeτ when M =

φc = κ%ϋDQec, φR = κ$0DQeR and φτ = κ*τDQeτ when M =

Here ec, eR and ^Γ are the isomorphisms defined in (1.10), κ%u, κ%° and κfr

are the epimorphisms appeared in (1.4) and Dp and DQ are the duality

isomorphisms given in (1.2). By virtue of these factorizations we can easily

show

LEMMA 1.3. For any object M of CRT, the above φc is always an
isomorphism, and both of φR and φτ are isomorphisms if the abelian group G is

2-divisible (see [9, 2.5]).

This implies that the united K-homologies K$RTZnP Λ SG, K™τΣnSG

and K^RTΣnQ Λ SG are injective in CRT whenever G is divisible. Moreover

there exists a π£*Γ-cofree spectrum KO Λ Y and a monomorphism /: M

-> K^RT Y in CRT for each object M of CRT. Thus the abelian category CRT

has enough injectives, too. In [9, Theorem 3.3] Bousfield has established a



280 Zen-ichi YOSIMURA

simple criterion for injective objects in CRT as a dual of Theorem 1.2.

THEOREM 1.4 [9, Theorem 3.3]. For an object M = {Mc, M*, Mτ} of the
abelian category CRT the following conditions are equivalent:

i) M is injective in CRT,

ii) M is CRT-acyclic with Mc divisible, and

iii) M is cofree in CRT, thus it is isomorphic in CRT to a direct sum K^RTP Λ

SA 0 K™TSB Θ K™TQ Λ SC where A = {Λj 0<i<ι , and C = {Ck}0<*<3 are
graded divisible 2-torsion and B = {#/}0<./<7 w graded divisible.

1.4. For any CW-spectra X and 7 we consider the homomorphism

κ€RT: IX, KO Λ y]

assingning to each map /: X -> /CO Λ 7 the induced homomorphism κcκτ(f)

= [κκυ(f)*> κ*°(/)*, κκτ(f)J where κ κ ( f ) = (μ Λ 1)(1 Λ / ) : K Λ * ^ K Λ y
for K = KU, KO or KT. Compose φc, φR or φτ given in (1.11) after the
above KCRT when 7= P Λ SG, SG or Q Λ SG. Then it is easily checked that
κlυ = <PcκCRT> κ*° = <PRKCRT and ?cf τ = φτκ

CRT where κ£ L/, κ:f° and κ;f τ are
appeared in (1.4). For any XO-module spectrum W we next compose φc, φR

or φτ after the canonical homomorphism

CRT , KO Λ

when Y= P Λ SG, SG or β Λ 5G. Then it is immediate that κ%u = φcκξRΊ ',

^4° = ΨR^SRT and ?cf τ = φτ

κsRT where /cf17, ίcf ϋ and £f τ are appeared in
(1.5).

Hence Lemma 1.3 combined with (1.4) and (1.5) implies immediately

LEMMA 1.5. If a KO-module spectrum Z is n$RT -cofree, then
i) KCRT: IX, Z] -» HomCRT(KCRTX, π$RTZ) is an isomorphism for any CW-

spectrum X, and
ii) κc

s

RT: [W, Z~\κo -> HomCRΓ«
ΛΓ W, n™TZ) is an isomorphism for any KO-

module spectrum W.

Using Theorem 1.4 and Lemma 1.5 ii) we show

LEMMA 1.6. For each KO-module spectrum W there exist π$RT -cofree

spectra Z0 and Zί and a cofiber sequence W^> Z0 -> Zt of KO-module spectra
inducing a short exact sequence Q^>π$RTW-+ π£ΛΓZ0 -> π^RTZ1 ^0 in CRT.

PROOF. Choose divisible abelian groups A^O < i < 1), B, (0 <j < 7) and
Ck(0 < k < 3) so that πfP Λ W, πy+^and πfc + 3β Λ W^ are embedded into Ai9

Bj and Ck respectively. Setting Z0 = KU Λ SΛ v KO Λ SB v X Γ Λ SC with

,4 = {AJ, B = {Bj} and C = {Ck}, we get a KO-module map /: W-^ Z0 which
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induces a given monomorphism /#: π^RTW-^ π^RTZ0 by means of Lemma 1.5
/ Ί

ii). Consider the cofiber sequence W — > Z0 — >Y. Then the united homotopy

π*RTY is an acyclic object of CRT with π^P Λ Y divisible, although the cofiber

Y might not possess a KO-module structure which is associative. According to
Theorem 1.4 π£ΛIΎ is isomorphic in CRT to a certain united homotopy
π^RTZl with Zi π£ΛΓ-cofree. Using Lemma 1.5 ii) again we get a KO-module
map g : Z0 -> Zt whose induced homomorphism g^ : π£RΓZ0 -> π^KΓZ1

coincides with the epimorphism h^ : π£ΛΓZ0 -> π%RTY when π^Zi is identified

with n^RTY. Since the composite map g f : W^> Z0 ->Zt is trivial, there exists

a map k: 7-> Zj with kh = g, which is in fact an equivalence. Thus we have a
cofiber sequence W^> ZQ-+Z± of KO-module spectra as desired.

Puttting Lemma 1.5 i) and 1.6 together we can easily construct the

universal coefficient sequence given in [9, 9.6].

THEOREM 1.7. For a CW-spectrum X and a KO-module spectrum W9 there
exists a natural short exact sequence

0 -» ExtCRT(K™TX, π«/ι W) -» IX, W] -> HomCΛΓ(K^ΓX, <«Γ W) -» 0.

Combining Theorems 1.2 and 1.4 with Theorem 1.7 we immediately obtain

THEOREM 1.8 Let W be a KO-module spectrum.

i) If π^P /\ W is free, then W is π^RT-free, thus it is isomorphic as KO-

module spectra to a certain wedge sum KU A SA v KO Λ SB v KT A SC where
A = {^i}o<;<ι> B = {£,-}o<7-<7 and C = {C fc}0< fc<3 are graded free.

ii) If π^P Λ W is divisible, then W is π%.RT-cofree, thus it is isomorphic as
KO-module spectra to a certain wedge sum KU Λ SA v KO Λ SB v X T Λ SC

where A = {-4jo<i<i and C = {Cfc}0<k<3 are graded divisible 2-torsion and B
= {BJ}Q<J<Ί is graded divisible.

See [16, Theorems 2.4 and 3.4] for a direct proof.

§2. The abelian categories ^ derived from CRT

2.1. By replacing the united X-homologies K$RTX = {KU^X,

X} by the simpler X-homology object K™X = {KU*X9 KO^X}, KCJX =

{KU*X, KT^X} or KRTX - {KO^X, KT^X}, we here introduce new abelian

categories CR, CT and RT.
An object of CR is a pair M = (Mc, MR} consisting of a KU*- and KO^-

module Mc and MR equipped with the operations below (see [9, 3.7]). Thus

Mc and MR are united by the following KC^-module maps:
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Bc : Σ2MC -=> Mc, ψcl'Mc^* Mc, BR : Σ8MR ̂  M*, ηR :Σ
1MR^ MR

ξ:Σ4MR—>MR, c:MR—*Mc and r :M c — »M*

which satisfy the relations (1.7) i), iii) and moreover

(2.1) i) ηRBR = BRηR, cηR = 0, ηRr = 0,

ii) cBR = B4c, rB4 = BRr, ψc 1c = c, rψc1 = r and

iii) cr=l + ψϊ1,rc = 2, rBcc = η2

R, rB2

cc = ξ, rB^c = 0.

An object M = {Mc, MR} of CR is called CR-acyclic when the two

sequences

(2.2) i)

ii) ..

are exact. Obviously K$RP Λ X is CK-acyclic for any CW spectrum X, and

K$RSG is also CR-acyclic for any abelian group G. Let 0 -> M -> N -> L-» 0 be

a short exact sequence in CR. If M satisfies the condition (2.2) i), then the

sequence Q-+ηRMR -^ηRNR -+ηRLR ->0 becomes exact, too.

An object of CΓis a pair M = {Mc, Mτ} consisting of a Xt/^-and KT^-

module Mc and MΓ equipped with the operations below. Thus Mc and Mτ

are united by the following KO^-module maps:

T, ητ: Σ
1 Mτ -+ Mτ,

^Mτ, ζ : Mτ — >MC, γ:Mc-+Σ1Mτ and

ετ :Γ1MT^MΓ

which satisfy the relations (1.7) ii), iii), iv), vii), ix) and moreover

(2.3) i) ητBτ = Bτητ, Y\Ύ^V = ψflητ = ητ, ζητ = 0, ητy = 0,

ητετ = ετητ = ετετ,

ii) ετBj = β^ετ, φγ 1sτ = — ετψγl = ετ, BγετBγ1 = ετ + ητ and

iii) Cετy = 1 + φ~^ ετζy = 1 + ̂ -1, y(ετ = l _ ^-1.

An object M = {Mc, MΓ} of CT is called CT-acyclic when the two
sequences
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(2.4) i) ---- >MΓ^MC ^d-^c1), Σ2Mc^ΣίMτ^Σ1Mc-+

ii)

are exact. Obviously K^P Λ X is CT-acyclic for any CVF-spectrum A", and

K$TSH and K£Γβ Λ SG are CT-acyclic for any abelian groups H and G with
H uniquely 2-divisible. Let 0->M-»N->L->0 be a short exact sequence in
CT. If both M and N satisfy the condition (2.4) i), then the sequence 0 ->
ητM

τ -> ^ΓΛΓT -> ^yΓLΓ -> 0 becomes exact. We moreover note that γζ(Kerητ)
= 2yMc and yζ(Kerητ*Z/2) c >/ΓM

Γ when an object M = {Mc, Mτ} of CT

satisfies the condition (2.4) i).
An object of #Tis a pair M = {M*, Mτ} consisting of a KO*- and KT^-

module MR and MΓ equipped with the operations below. Thus MR and Mτ

are united by the following KO^-module maps:

τ :Σ1MT-^MR and yζ:Mτ-^Σ1Mτ

which satisfy the relations (1.7) i), ii), iv), vi), viii) and moreover

(2.5) i) ηRBR = BRηR, ητBτ = Bτητ, r\Ύ^ = Ψτ^r\τ = *lτ> &!R

τriτ = foτ, yζητ = 0 = ητyζ,

ii) yζBτ = Bτyζ = ω,^yζ=- γζfo 1 = - γζ, yζyζ = 0 and

iii) τyζε = 2, sτyζ = 1 + ψf l, yζετ = 1 - \j/γ l.

An object M = {M*, MT} of RT is called RTF-acyclίc when the two
sequences

(2.6)F i) ---- .i ̂ ^^M^-^M7-^^^^^^^1]^^^...

ii) ---- ^ MΓ/Im^yΓ -̂  Σ1Mτ/lmητ -^ Σ2Mτ/lmητ — > -

are exact, and in addition

iii) yζ(Kπητ) ci 2MΓ.

For any 2-torsion free abelian group G, KRTSG and X^ΓQ Λ 5G are RTF-
acyclic.

An object M = {M*, Mτ} of RT is called RTracyclic when the two

sequences
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(2.6), i) ---- >Σ2M

ii)

are exact, and in addition

iii) yC(Kerf/ r*Z/2) c ητM
τ.

For any 2-divisible abelian group G, KRTSG and KRTQ/\ SG are RTracyclic.

2.2. To deal with only the much simpler X-homology KU^X, KO^X or

X, we next introduce new abelian categories C, R and T.

An object of C is a X U+ -module Mc equipped with operations

c -BC:Σ
2MC^MC and i/^1 : M

satisfying the relation (1.7) iii) (see [9, 4.1]). An object Mc of C is called C-

acyclic (or Inυ-acyclic [9, 3.5]) when the sequence

(2.7)

is exact. Obviously KU^P Λ X is C-acyclic for any CVF-spectrum X.

An object of R is just a KO^ -module MR whose operations

BR:ΣSMR^*MR, ηR:ΣlMR^MR and ξ:Σ4MR— > MR

satisfy the relation (1.7) i).

An object of T is a KT^ -module Mτ equipped with the following

operations

BT:Σ
4MT^+MT, ητ:Σ

1Mτ — >MΓ, ω:Σ3Mτ — > MΓ, ̂ l : MΓ ^>MΓ,

ε τ i Γ ^ 7 — >MΓ and yζ:Mτ^Σ1Mτ

which satisfy the relations (1.7) ii), iv) and moreover

(2.8) i) ητBτ = Bτητ, ητψτl = ψτlr1τ = *1τ> >?rετ = ετr1τ = ετετ>

ητjζ = 0 = yζτ/Γ.

ii) ετ5^ = 5^ετ, ^rf 1ετ = — ετ^f x = ετ, BτετBγl = ετ + ητ,

iii) yζBΓ =B T yC = ω, ^ f 1 y ί = - y C ^ ί 1 = - y C , vCyC = 0 and

iv) ετyζ = I + ψf1, γζετ = I - ψf1.
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An object MΓ of T is called TF-acyclic when the two sequences

(2.9)F i)

ii)

are exact, and in addition

iii) γζ(Kerητ) c 2MΓ.

For any 2-torsion free abelian group G, KT^Q A SG is TF-acyclic.
An object M τ of T is called Tracyclic when the two sequences

(2.9), i)

ii)

are exact, and in addition

iii) yC(Kerf/Γ*Z/2)

For any 2-divisible abelian group G, KT^Q A SG is T7-acyclic.

2.3. Let V denote one of the abelian categories CR, CT, RT, C, R and T.

As in the CRT case a XO-module spectrum VF is said to be n^-free if it has
the following form: W=KU A SA v KO Λ S£, KU Λ SA v KTΛ SC, KO Λ
SBvKTΛ SC, KU Λ S4, KO Λ 5B or KTΛ SC according as * = CR, CT,

ΛΓ, C, Λ or T, where A = {Ai}0^i9 B = {Bj}^^1 and C = {C fc}0< fc<3

are all graded free. Dually a KO-module spectrum W is said to be πζ-cofree if
it has the following form: W= KU A SA v KO A SB, KU A SA v KT A SC v

KO A SD, KO A SB v KTA SC, KU A SA v KO A SD, KO A SB or KT A

SC v JCO Λ SD according as <g = CR, CT, RT, C, R or T, where A = {>ljo<i<ι
and C = {C fc}0<k<3 are graded divisible 2-torsion, 5 = {βJ }0<J<7 is graded

divisible and D = {^j}o<j<3 is graded divisible 2-torsion free.
A free object of # is isomorphic in ^ to a certain homotopy π^ WK with

VF π^-free, and a co/r^e object of # is isomorphic to π| VF with VF π^-cofree.

We shall later use the following result similar to [9, Proposition 3.11] for a

CjRT-acyclic object M.

LEMMA 2.1. i) Let M = {Mc, MR} be an object of CR satisfying the

condition (2.2) i). Then ηRMR = 0 if and only if Mc is C-acyclic.
ii) Let M = {Mc, MΓ} be an object of CT satisfying the condition (2.4)

i). Then ητM
τ = 0 if and only if Mc is C-acyclic.
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iii) Let M = {MR, Mτ} be an object of RT satisfying the condition (2.6)F

i). Then ηRMR = 0 if and only if η2

RMR = 0 and ητετMτ = 0.

PROOF, i) The "only if" part is easy. To prove the converse we take an

arbitrary elment x e MR. Then it is expressed as x = ry + ηRz for some y e Mc

and zeMR. So we see that ηRx = ηRz and ηRx = 0. This means that
ηRx = 0 as desired,

ii) and iii) are easily shown by routine arguments.

Let M = {Mc, MΛ, Mτ} be an acyclic object of CRT such that anyone of
Mc, MR and Mτ is uniquely 2-divisible. Then the others of them are
uniquely 2-divisible and hence ηR = 0 and ητ = 0. So we obtain natural
decompositions M* ^ (Mτ)+ ^ (Mc)+, Mc ^ (Mc) + ® (Mc)~ ^ MR Θ Σ2MR

and Mτ * (MΓ)+ θ (Mτ)~ ^MR®Σ~1MR where (Me)* - Ker(l ± fal) c
Mc and (M7)* = Ker(l ± ^f x ) c: Mτ. Moreover there exists uniquely a
periodicity operation B1

R

/2:Σ4MR -» M* satisfying ε£j/2 = £τε, £j/2τ = τ£Γ

and B^BΪJ2 = BR. Replacing Mc and Mτ by M*Θ^2M* and MΛ0

Σ~1MR respectively we can rewrite the operations of M in (1.6) as follows
(cf. [9,4.2]):

Bc(x, y) = (By, x), BR(z) = B2(z\ Bτ(u, w) = (Bu, Bw),

<Ac Xfc ^ = (x, - y\ Ψϊ^u, w) = (M, - w), ηR(z) = 0, ητ(u9 w) = 0,

ε(z) = (z, 0), f («, w) = (w, 0), y(x, y) - (0, 2x) and τ(w, w) - w

in which (x, y) e M£ 0 M£_2, z e M^, (M, w) e M£ θ MR

 + 1 and the periodicity
operation B\l2 is abbreviated as J5.

This implies easily

LEMMA 2.2. Let <β be one of the abelian categories CR, CT, RT, C, R and
T, and M = {MH} be a %>-acyclic object such that anyone of the entries MH of
M is uniquely 2-divisible. Then M is extended to a certain CRT-acyclic object
pM = (Mc, M*, MΓ}.

By combining the above lemma with Lemma 1.3 we can show

COROLLARY 2.3. Let %> and M be ones stated in the above lemma. Then
M is isomorphic in <$ to the K-homology K^SD where D = {Mj*}0<7 <3.

§3. Projective and infective objects in ̂

3.1. We now give criteria for projective objects in the abelian categories
CR, CT and RT introduced in the previous section corresponding to Theorem
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1.2 for the abelian category CRT (see [9, Proposition 4.8] in the CR case).

THEOREM 3.1. (1) Let <£ be the abelian category CR or CT. For an
object M of ^ the following conditions are equivalent :

i) M is projectίυe in Ή,
ii) M is %> -acyclic with Mc free, and

iii) M is free in %>.
(2) For an object M of the abelian category RT the following conditions are

equivalent :
i) M is projectίve in RT,

ii) M is RTp-acyclic with MR/lmηR and Mτ/lmητ free, and
iii) M is free in RT.

PROOF. It is straightforward to prove (1) by using the method developed
in [9, Proof of Theorem 3.2]. In order to prove (2) we mimic the Bousfield's
method with a minor device. It is sufficient to show only the implication ii)

-.iii).
Decompose the free abelian group M%/Imητ as G φ ι//f *G ® i+ H 0 Γ/

where G 0 ^f 1 G, i+ H and i" / respectively denote G 0 G with ψf *
interchanging summands, H with ψΫ1 = 1 and / with \j/γ 1 = — 1. The
homomorphism ηR: MQ ->Mf is factorized through (Mj) + /Im^Γ as

where (M%) + /Imητ ^ A + G 0 i + H with A + G = {(0, ^f lg)e G Θ Φr *G}.
Choose a decomposition i + H^B®C®D so that ηRτB £ B (x) Z/2 ̂
ηRτ(Ml)+/η2

RM$, ηRτC ^ C ® Z/2 ^ η2

RMζ and fy κ τD = 0. Setting C =

0 Z{cy}, we get an element my e MQ such that εmy - cy e J + G © D for each y
y

as 2(Mj)+ c εMo Since {ηRmγ} forms a basis of ηRM$, we may regard as

C=0Z{εm y } . Consider the homomorphism /: K*TSC -> M defined by
y

f(by,R) = my for each y where SC = v Z1® and bγtReKO0Σy denotes the

standard generator. As is easily seen, / is a monomorphism. Denote by M
= {MR, MT} the cokernel of the map /. Then the short exact sequences 0
->KTkSC/Imητ^MΪ/lmητ^MΪ/Imητ^>Q and Q-> KOjSC/ImηR-^ Mf/

lmηR -> Mf/lmηR -> 0 are evidently split except k = 3 mod 4 and j = 4 mod 8.
The homomorphism y£: Mj/Im//Γ-> Mΐ. l/lmητ restricted to G@i + H gives
rise to an isomor-phism yζ: G 0 i + H ->yC(Mj/Im^/r). On the other hand,
yC(Mj/Im^Γ) is a direct summand of M1L1/lmητ under the condition (2.6)F

ii) and the freeness of Mτ/lmητ. Hence the above former sequence becomes
split even if k = 3 mod 4. To observe that the lattter sequence is split when
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7 = 4 mod 8, we next show that ε: M* -> Mj reduces to a monomorphism
ε: MR/lmηR -> M%/Imητ. Take an arbitrary element x^MR with εxe
ητMz, and then choose an element xeMR projecting to xeM*. The
homomorphism ε: K04SC -+KT4SC is just multiplication by 2 on C and
ε: Mj/ImT/K -+Ml/Imητ is a monomorphism. So there exists an element ye
K00SC with 2x -fR(ξy)εηRM$. Then it follows immediately that εx -
BτεfR(y)eητMl and hence ηRfR(y) = 0. Taking an element / eK00SC with
2y' = y, we see easily that x — fκ(ζy') εηRMR, thus xeηRMR as desired.
Consequently we obtain a RTF-acyclic object M = {MΛ, MΓ} such that
MR/lmηR and MΓ/ImfyΓ are free and ηRMR = 0. Repeat this construction
in successive dimensions to give finally a RTF-acyclic object N = {NR, Nτ}
with NR/lmηR and Nτ/lmητ free, and η2

RNR = Q.
Next decompose the free abelian group NQ/lmητ as G®ψγ1G ®ί +H ®

i~I. The homomorphism ητετ: NQ/lmηT^Nl restricted to G gives rise to
an isomorphism ητετ: G(x)Z/2 -^ηTετ(NQ/lmηT) under the conditions (2.6)F

ii) and iii). Set G = ® Z{0σ} and consider the homomorphism ft: KRT

+^Q Λ
σ

SG-+N defined by /z(feσ Γ) = ^σ for each σ where 5G = v Σ% and fcσ τEKT3Q
' σ '

Λ Σ% denotes the standard generator as given in (1.9) iii). It is evident that h
is a monomorphism. Denote by j: N^/lmητ -> Gφψ^G the canonical
projection, which gives a left inverse of /ij: KT3Q Λ SG ^ G0 i/^G-»Nj/

The compositions yζnjετ: ΛΓl1/Im^ τ-^KT2β Λ SG ̂  G and ετπjyζ:
-^KT4Q Λ 5G/Imf/Γ ^ G give left inverses of /ιl t and hi respectively,

where π: G © ^ r f 1 G - > G denotes the projection onto the first factor. Denote
by N = {NR, Nτ} the cokernel of the map h. Then the short exact sequences
0-»K7; + 3ρ Λ SG/Imητ->Nτ/Imητ^Nτ/Imητ^>Q and hence O-^KO^β
Λ SG/lmηR -+ NR/lmηR -> NR/lmηR -> 0 are split. Consequently we obtain a
£7>acyclic object N = {NR, Nτ} such that NR/lmηR and Nτ/lmητ are
free, N%/Imητ ^ (N%/Imητ)

+ 0 (JVj/ImιyΓ)~, η2

RNR = 0 and ητετN^ = Q.
Repeat this construction in successive dimensions to give finally a RTF-acylic
object L={L*, LΓ} with LR and LΓ free and Lτ * (Lτ)+ ® (LΓ)~. Here
Lemma 2.1 iii) is needed to observe that ηRLR — 0 and hence both LR and LΓ

are free. Under the condition (2.6)F an arbitrary element xeLT is expressed as
a sum εry + γζz for some y, zeLT. Then a routine computation shows that
Lτ is always 2-divisible and hence it must be trivial. Thus the original object
M is free in RT.

3.2. As a dual of Theorem 3.1 we next give criteria for injective objects in
the abelian categories CR, CT and RT corresponding to Theorem 1.4 for the
abelian category CRT (see [9, Proposition 4.9] in the CR case).
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THEOREM 3.2. (1) Let <β be the abelian category CR or CT. For an
object M of Ή the following conditions are equivalent:

i) M is injective in #,

ii) M is ^-acyclic with Mc divisible, and
iii) M is cofree in Ή.

(2) For an object M of the abelian category RT the following conditions are

equivalent:
i) M is injective in RT,

ii) M is RTracyclic with Ker^Λ and Kerτ/Γ divisible , and

iii) M is cofree in RT.

PROOF. It is straightforward to prove (1) by using the method in [9, Proof
of Theorem 3.3]. In order to prove (2) we mimic the Bousfield's method with a

minor device as in the proof of Theorem 3.1 (2). It is sufficient to show only

the implication ii)->iii).
Let D be a divisible 2-torsion group with ηRM* ̂  D*Z/2. Choose an

epimorphism α': (Ker^R)3 -»D extending the identity on ηRM* when ηRM* is

identified with D*Z/2, and then extend it to an epimorphism α: Mf ->D. By

means of the ΛT-version of Lemma 1.3 we get a homomorphism /: M->

K$τ

+! SD such that /f: Mf -> K04SD ^ D is just the above α. It is easily seen

that/ is an epimorphism. Denote by M = {M*, MΓ} the kernel of the map /

and by ήR and ήτ the Hopf operations of MR and Mτ with emphasis. Notice

that f f : ί/i^M? -> KOj+1SD*Z/2 ^ D*Z/2 is an epimorphism when j = 2 or

3, and moreover fl: εηRM* -+KT3SD*Z/2 ^ D*Z/2 is an epimorphism.

Then the short exact sequences 0^(Ker?7R)J-^(Ker^R)J->(Ker^)J+1 ̂ 0 and
0^>(Keτήτ)k-+(Kerητ)k^>(KQτη1

R)k+1 ->0 are evidently split except j= — \

mod 8 and k= — 1 mod 4, in which the Hopf operations of KO^SD and
KT^SD are written as η% and η%. For an arbitrary element xeM^1 with
/JRX = 0 there exists an element y e Ml with ητy = 0 such that x injects into

τBγ ly e Mi! and 2fl(y) = 0 because τBf 1 : Ker^yr -> Ker^y^ is an epimorphism

and τ#f 1 : KT3SD ->• K00SD is multiplication by 2 on D. We can now replace

the old y by a new one satisfying fl (y) = 0, by using the restricted epimorphism

fl\ εηRM% -+KT3SD*Z/2. Thus τBγl: (Kerτ/T)2 -^(KQΐήR)_1 is an epimo-

rphism. This implies that the above remaining sequences are both split, too.

Consequently we obtain a #Γracyclic object M = {MR, MΓ} such that Ker?/κ

and Ker//Γ are divisible and fjRM* = 0. Repeat this construction in successive

dimensions to give finally a RTracyc\ic object N = (N*, ΛΓΓ} with Ker^ and

Kerf/Γ divisible, and ηRNR = 0.

Decompose the divisible abelian group (Ker^yr)3 c N3 as G ® ψ^G ®

i+ H 0 i ~ / with G 2-torsion. For arbitrary element x 6 ΛΓf there exists an
element y e N3 with ητy = 0 and ητx = yζy under the condition (2.6), ii).
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Since Ker^/r is divisible, the old y can be replaced by a new one satisfying
2y = 0. Then the homomorphism ητετ: Nl -+ N% is mapped onto zl + G*Z/2
under the condition (2.6)/ iii), thus ηTετNl = A + G*Z/2. Choose an
epimorphism β:Nl-+G®ψjίG extending the canonical projectionj: (Kerf/Γ)3

-+G®ψγίG. By use of the ΛT-version of Lemma 1.3 we get a homomor-
phism ft: N -> KRT

+4Q Λ SG such that (μQ Λ 1)̂  = (μfl Λ !)„/?: N^ -> KT7SG

^G where μQ: XT Λ Q-^KT is the pairing appeared in (1.11). It is not
difficult to see that ft is an epimorphism because G has only 2-torsion. Denote
by N = {NR, Nτ} the kernel of the epimorphism h and by ηR and ητ the
Hopf operations of NR and Nτ. Since ft induces epimorphisms ft: Kerfy r*Z/2
->Kerf7r*Z/2 and ft: Kerτ/Λ*Z/2 -^Ker^*Z/2, the short exact sequences 0
-» Ker/7Γ -> Kerf/τ -> Ker^ -» 0 and 0 -> Ker//R -> Kerf/R -> Kerfy^->0 are
split where the Hopf operations of KT^Q Λ SG and KO^Q Λ SG are written as
η? and 77^. Consequently we obtain a RΓracyclic object N = {]VΛ, NΓ} such

that Ker/7R and Ker//τ are divisible, (Ker?/Γ)3 ^ (Ker/yT)3

f Θ(KerίjΓ)J, ίi^/VΛ

= 0 and ήτετNl = 0. Repeat this construction in successive dimensions to
give finally a .RTj-acyclic object L= {LR, 17} with LR and LT divisible and
Lτ ^ (Lτ)+ 0(LΓ)~. However Lτ and hence LR must be 2-torsion free since
an element x eLT with 2x = 0 belongs to (LΓ)+ n(LT)~ = {0}. By applying the
RT-version of Lemma 1.3 (or Corollary 2.3) we observe that the final object

L is isomorphic in RT to the cofree object KRTSB with B = {£f}0<j<3-
Thus the original object M is cofree in RT.

3.3. We finally give the corresponding results for the abelian categories C,
R and T to Theorems 1.2 and 1.4 in the CRT case (see [9, Propositions 3.6 and
3.8] in the C case).

THEOREM 3.3. (1) For an object Mc of the abelian category C the
following conditions are equivalent:

i) Mc is projective in C,
ii) Mc is C-acyclic and free, and

iii) Mc is free in C.
(2) For an object MR of the abelian category R the following conditions are

equivalent:
i) MR is projective in R,

ii) MR is projective as an KO^-module, and
iii) MR is free in R.

(3) For an object Mτ of the abelian category T the following conditions are
equivalent:

i) Mτ is projective in T,
ii) Mτ is Tp-acyclic with Mτ/lmητ free, and

iii) Mτ is free in T.
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PROOF. (1) has already been shown in [9, Proposition 3.6], and (3) is
immediately done by using the method in the proof of Theorem 3.1.

(2) It is sufficient to show only the implication ii) -> iii). Set Mc =

KU+ (x) MR and Mτ = KT* (x) MR for a projective KO^-module MR. Then
KO* KO*

the triple M = {Mc, MR, Mτ} is viewed as a CRT-acyclic object with Mc

free. According to Theorem 1.2 the object M is free in CRT. From Lemma
4.5 below it follows that the projective KO^-module MR is certainly isomorphic

in R to some free object KO^SB with B = {£/}0<./<7 free.

THEOREM 3.4. (1) For an object Mc of the abelίan category C the
following conditions are equivalent:

i) Mc is infective in C,
ii) Mc is C-acyclic and divisible, and

iii) Mc is cofree in C.
(2) For an object MR of the abelίan category R the following conditions are

equivalent:
i) MR is injective in R,

ii) MR is injective as a KO ^-module, and
iii) MR is cofree in R.

(3) For an object Mτ of the abelian category T the following conditions are
equivalent:

i) MΓ is injective in T,
ii) Mτ is Tj -acyclic with Kerf/Γ divisible, and

iii) Mτ is cofree in T.

PROOF. (1) has already been shown in [9, Proposition 3.8], and (3) is
immediately done by using the proof of Theorem 3.2.

(2) It is sufficient to show only the implication ii) -> iii). Set Mc

= Homκo,(KU^ MR) and Mτ = Uomκo^(KT^ MR) for an injective KO^
module M*. Then the triple M = {Mc, M*, Mτ} is viewed as a CKT-acyclic
object with Mc divisible. Theorem 1.4 combined with Lemma 4.4 below
asserts that the XO^-module MR is certainly isomorphic in R to some cofree
object KO^SB with B = {5J}0<;<7 divisible.

§4. A^-injective spectra

4.1. Let us denote hereafter by ^ one of the abelian categories CRT, CR,

CT, RT9 C, R and Γ. Given CPΓ-spectra X and Ya map /: X -> Y is said to be
K^,-monic if it induces a monomorphism /^: K^X -> K% Y. We call a CW-
spectrum W K^-injective ([12] or [17]) if any A^ -monic map f:X-+Y induces
an epimorphism f*:\_Y,.W\-*{_X, W\ (see [9, §9] for a different definition
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which is equivalent to ours). In the above definitions K^ may be regarded as
the following KO-module spectrum: K* = KU v KO v KT, KU v KO,
KU v KT, KO v KT, KU, KO or KT according as V = CRT, CR, CT, RT9 C,

R or T. If a CW-spectrum W is K^-injective, then it is a quasi KO-module
spectrum by [17, Lemma 1.4]. Here we mean by a quasi E-module spectrum
W an E-module spectrum which is not necessarily associative for a fixed ring

spectrum E. Thus the map / Λ 1: W^> E A W admits a left inverse μ: E A W
-> W where / : 5 -> £ denotes the unit of E.

As a special case of [17, Proposition 1.6] we have the following result (see
also [17, Proposition 3.7 ii)] when V = C, R and T).

LEMMA 4.1. A CW-spectrum W is K^-injective if and only if it is a retract
of a certain extended KO-module spectrum KO Λ Y which is n^-cofree.

Using [4, Theorem 2.8] and [3, Theorem 2.2] together we show

LEMMA 4.2. i) Let K denote the periodic K-spectrum KU or KO. Then
the smash product K Λ K is decomposed as a K-module spectrum into the wedge
sum v K of countable copies of K.

ii) The smash product KT A KT is decomposed as a XT-module spectrum
into the wedge sum ( v KT) v ( v Σ3KT) of countable copies of KΎand Σ3KT.

PROOF, i) Recall [4, Theorem 2.8] that the product map v π^KO®
KO0KO-+KOχKO is an isomorphism. Set G = KO0KO, which is torsion
free by [4, Proposition 2.1], and then choose a KO-module map g: KO Λ SG
-> KO Λ KO inducing the above isomorphism v in the homotopy. Using the
homotopy equivalence g the smash product KU Λ KU is written into the
wedge sum KU Λ SG v Σ2KU Λ SG as a KU-modulε spectrum. This implies
that G = KO0KO is exactly countable free because KU0KU is so according to
[3, Theorem 2.2]. The result is now easy.

ii) follows immediately from i) since the smash product KT A KT is
written as a KT-module spectrum into the wedge sum KT A KO v Σ3KTA

KO.

4.2. We now prove the following result as is expected.

LEMMA 4.3. Let G be a divisible 2-torsion group. Then
i) KU A SG is never K*τ-injective,

ii) KO A SG is never K^1Γ-injective, and
iii) X T Λ SG is never K™-injective.

PROOF. It is sufficient to show our result for G = Z/2°°.
i) Assume that KU A SZ/200 is K£τ-injective. The map y A 1: KU A

SZ/2-+Σ1KTA SZ/2 is K£Γ-monic since y+\ KU^SZ/2 -^KT^SZ/2 is a
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monomorphism. So there exists a map f:Σ1KT^SZ/2^KU/\SZ/2cc

such that the composite map f(y/\ 1): KU Λ SZ/2 -+KU Λ SZ/200 is the
canonical map 1 Λ i2 associated with the inclusion Z/2 -»Z/2°°. Obviously
the map / induces a monomorphism /*: KT^SZ/I-* KU2SZ/2C0. However
this is a contradiction because ητ^.: KT0SZ/2 -^KT^SZ/2 is an isomorphism

and Kl/iSZ/200 = 0.

ii) Assume that KO Λ SZ/200 is K£Γ-injective. Since the map ε Λ 1: KO
Λ SZ/2->KTΛ SZ/2 is K£Γ-monic, there exists a map 0: KTΛ SZ/2->KO

Λ SZ/200 such that the composite map 0(εΛ 1): KO Λ SZ/2^KO Λ SZ/200

coincides with the canonical map 1 Λ i2. Obviously the map g induces an
isomorphism 0%: KT3SZ/2 -> K03SZ/2CC. However this is a contradiction

because ηR*: K03SZ/2ao-+K04SZ/2ΰ° is a monomorphism and f/T s | c: KT3SZ/2
-^KT4SZ/2 is trivial.

iii) Assume that KT/\SZ/2CC is K£*-injective. Since (ετBc1)*:
KU^ + 2SZ/2^KT^SZ/2 is trivial, the map (- τ Λ 1, τf l f 1 Λ 1): KTΛ SZ/2

^(^'^O v Γ3KO) Λ 5Z/2 becomes KO^-monic by (1.3) iv). On the other
hand, the map 1 Λ ίp Λ 1: X Γ Λ SZ/2^>KT/\ P Λ SZ/2 is evidently KU*-
monic. So there exists a map Λ: (KΓΛ P v Z^KO v Z3XO) Λ SZ/2-+KT
Λ SZ/200 such that the composite map Λ(l Λ ί p Λ 1, — τ Λ 1, τBf x Λ 1):

KT/\ SZ/2-+KTΛ SZ/200 coincides with the canonical map 1 Λ ί2. Obviously

the map h induces an epimorphism h^: KT2P Λ 5Z/2 0 K03SZ/2 -+ KT2SZ/

2°°. How-ever the above fc* must be trivial because ητ*: KT2P Λ SZ/2->
KT3P A S Z / 2 is trivial, ί/Γ5|£: KT2SZ/2°° ->XT35Z/200 is a monomorphism,

>/κ*' K02SZ/2 -̂  K03SZ/2 is an epimorphism and KT1SZ/2(X> = 0. This is a

contradiction.

Using the argument developed in the proof of Lemma 4.3 ii) and iii) we can

immediately show the following result, which was needed in the proof of
Theorem 3.4 (2).

LEMMA 4.4. Let G be a divisible 2-torsion group. Then neither KU^SG nor

KT^SG is ίnjective as a KO ^.-module, and KU^SG is not infective as a KT#-

module.

Let G be a divisible 2-torsion free group. Then the extended XO-module

spectrum KO Λ SG admits a unique £T-module structure such that the

composite map yζε Λ 1: KO Λ SG -> Σ1KT /\ SG is a KT-module map.

Although the XT-module spectrum KO Λ SG is KΓ^-injective, its homotopy

KO^SG is never injective as a KT^-module.
By a dual argument to the proof of Lemma 4.3 (or Lemma 4.4) we can

easily show the following result, which was needed in the proof of Theorem 3.3

(2).
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LEMMA 4.5. Neither π^KU nor π^KT is projective as a KO ^-module, and

n^KU is not projective as a KT^.-module.

4.3. Combining Theorem 1.8 with Lemma 4.3 we obtain a stronger result

than Lemma 4.1 when W is a KO-module spectrum.

PROPOSITION 4.6. Let W be KO-module spectrum. Then W is K^-ίnjective

if and only if it is n^-cofree.

PROOF. It is sufficient to show the "only if" part. If a KO-module
spectrum W is K^-injective, then π^P Λ W is divisible by means of Lemma
4.1. Then Theorem 1.8 asserts that the KO-module spectrum W is π$RT-

cofree. So we can easily observe that W is in fact π^-cofree by virtue of

Lemma 4.3.

By using Lemmas 4.1 and 4.2 and Proposition 4.6 we show

THEOREM 4.7. The following three conditions are equivalent:

i) W is a K^.-injectίve spectrum,

ii) W is a quasi KO-module spectrum such that KO Λ W is K^-injective, and

iii) W is a quasi KO-module spectrum such that KO Λ W is π^-cofree.

PROOF. If a KO-module spectrum Z is π^-cofree, then the smash product

KO Λ Z is also π|-cofree by virtue of Lemma 4.2 i) for K = KO. Therefore the

implication i)->ϋ) follows from Lemma 4.1. The inverse implication ii)->i) is

immediate. On the other hand, the condition ii) is equivalent to iii) because of

Proposition 4.6.

When # = R, RT or CRT we have

LEMMA 4.8. Let W be a KO-module spectrum. Then

i) W is KO ^-infective if and only if n^W is ίnjective as a KO ^.-module.

ii) W is K*7-injective if and only ifn^Q Λ W is infective as a KT^-module.

iii) W is K^RT-injective if and only if π^P Λ W is divisible.

PROOF. The "only if" part is evident by Proposition 4.6.

The "if" part: i) When π^ W is injective as a KO^-module, there exists a
natural isomorphism K™: \_X, W] -> Hom^KO**, π^W) for any CW-
spectrum X. Hence the result is immediate.

ii) Similarly we see that Q Λ W is KT^-injective when n^Q Λ W is
injective as a KT^-module. From Lemma 4.1 it follows that π^P Λ W is
divisible because P Λ W is a retract of P Λ Q Λ W. Thus the KO-module

spectrum W is π£ΛT-cofree by means of Theorem 1.8. So it is in fact n*T-
cofree by virtue of Lemma 4.3 since Q Λ W is KT^-injective.

iii) is immediate by use of Theorem 1.8.
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Combining Theorem 4.7 with Lemma 4.8 we can easily show

THEOREM 4.9. A CW-spectrum W is K^-ίnjectίve if and only if it satisfies

the following condition according as % = CRT, CR, CT, RT, C, R or T:

i) W is a quasi KO-module spectrum such that KV^W is divisible,

ii) W is a quasi KO-module spectrum such that KU^W is divisible and

ηRKO4ί.1W^^ηRKO^W^^ηRKO^ + 1W is exact,

iii) W is a quasi KT-module spectrum such that KU^W is divisible,

iv) W is a quasi KO-module spectrum such that KT# W is injective as a

module,

v) W is a quasi KU-module spectrum such that KU^W is divisible,

vi) W is a quasi KO-module spectrum such that KO# W is injective as a

module, or

vii) W is a quasi KT-module spectrum such that KT^W is injective as a

module.

§5. The abelian categories A<£ of KO^ Λ6>-comodules

5.1. For any CW-spectrum X the united X-homology K^RTX = {KU^X,

KO^X, KT^X} admits a KO^ KO-comodule structure. Its comodule structure

map ψx = {φc

x, \I/R, ψ$} : K™TX -* K*RTKO ^X^-KO^KO® K$RTX is
κo*

induced by the left unit map 1 Λ / : KO -> KO Λ KO. In particular, ψξ is the

left unit map ηL: π^KO -> KO^KO when X = S, the sphere spectrum. Recall

that the product map v : K00KO (x) π^KO -> KO^KO is an isomorphism and

KO0KO is countable free. Choose a countable free basis {zn} of KO0KO with

z0 = ηLι and fix it. Set ηLξ = £zn ® knξ e K00KO ® π4KO for the generator
n

ξeπ4KO where fcπ's are integers with fc0=.l. Thus ηLξ = ^knηRξ zπ e

K04KO where ηR: π^KO -> KO^KO denotes the right unit map and "•"
stands for multiplication in KO^KO.

In order to introduce the abelian categories A%> consisting of objects M of

# having a XO^XO-comodule structure when <β = CRT, CR, CT, RT, C, R

and T, we first represent the operations of K^RTKO Λ X in terms of those of

K^RTX. The operations of K^RTKO Λ AT is written as / in place of / in
distinction from those of K^RTX.

LEMMA 5.1. When KCRTKO Λ X is identified with KO^KO (x) K™TX, the
K n

operations f of K^RTKO Λ X is expressed as follows:

i) /= I®/ when f=ηR, ητ, Ψc^Ψr^^ ε' C, τ^f1 or yBc,

n) /=/(g) 1 when f=BR or ξ,

iii) Bc = 1 ® Bc + X zn ® an(l + φc l)Bc,
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iv) Bτ = Σzn®knBτ
n

where {zn} is a fixed countable free basis of K00KO, kn is the integer determined

by the equality ηLξ = Σzn® knζ ana an is a certain integer depending on the
n

integer kn and the multiplication of KU.

PROOF, i) follows immediately since the operations given in i) are all

represented by maps among Σn, ΣnP and ΣnQ smashed with KO. On the

other hand, ii) is easy because the comodule structure map ψ$: KO^X ->

KO^KO Λ X ^ KO+KO (x) KO^X is a left XO^-module homomorphism.
κo*

iii) Let μ : P Λ P -> KO Λ P denotes the map associated with the multipli-

cation of KU. By a routine computation we can easily observe that 8μ: P Λ P

-> KO Λ P is at least decomposed as a sum (i Λ l)α + a(\ Λ iP)ξ(jP Λ jp) for

some map α : P Λ P -> P and some integer a where ip : Σ° -> P and jp : P -> Σ2

denote the bottom cell inclusion and the top cell projection. In the above

observation we may use the group structures [P, ΣnP~\ and [P Λ P, Γ"P]

calculated in [10, Lemmas 3.2 and 3.6] (and [11, Proposition 2.9]). Such a

map α and an integer a are uniquely chosen. Recall that the periodicity

generator Bceπ2KU is induced by a certain map βeπ2P with jpβ = 2. Since

8μ(0 Λ 1) = (i Λ l)α(j? Λ 1) + 2aξ Λ ipjp, we obtain that %Bc(h) = (α Λ l)^(β Λ
1 Λ 1)^/1 + 2aξ'(iPjP Λ 1)^/1 for each element heKO^P^X, in which ξ

stands for left multiplication by ξeπ4KO. Hence it follows immediately that

8Bc(g ®h) = g® 8Bc(h) + 2a(ηLξ -ηRξ)-g® (iPjP Λ 1)^/1 for each element g ®

hεKO*KO®KO*P AX.
κo*

Take g = z0 = i Λ ιeKO0KO and h = bceKU2P the standard generator

given in (1.9) ii). Then the above equality implies that £ ηRζ-zn®akn(\ +

Ψcl}Bcl(bc}= X zn®2akn(\ + ̂  ̂ BMeKO^KO® KU^P is divided by
n*0 XO*

4 because c£ = 2B^. Therefore akn is divided by 2 except n = 0. Consequently

the previous equality is rewritten as Bc(g ®8h) = g® Bc($h) + Σ zn-g ®
nΦQ

an(\ + ψc 1)Bc(%h) where 2an = akn for n φ 0. This asserts that iii) is valid
whenever KU^X is 2-di visible. In fact iii) becomes always valid for any CW-
spectrum X because there exists a monomorphism /: K^RTX -+K^RTY for

some π£*τ-cofree KO Λ Y.

iv) The multiplication of KT is induced by a certain pairing m: Q Λ <2 ->

β. Note that ι^J(5Γ) = J|zn (x) /cΠBΓ e K00KO ®π4KT because εξ = 2BT.
n

Then it is easily seen that Bτ(g ®h) = Σzn'9® knBT(h) for each element g ®
n

Λ X.
κo*
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5.2. For an object M = {MH} of #, KO^KO (g) M = {KO^KO (g) MH} is
KO* KO*

viewed as an object of # whose operation are represented by those of M as
given in Lemma 5.1, where ^ = CRT, CR, CT, RT, C, R or T. An object of

A<β is an object M = {MH} of # equipped with a XO^XO-comodule structure

map ψM = {I//M} : M -> KO^KO (g) M which commutes all the operations of M
κo*

(cf. [9, 5.5]). A morphism of A<6 is a morphism /= {/H} of # compatible

with the comodule structure maps. Whenever an object M is injective in #,

its extended comodule KO^KO (x) M is injective in A<£. Therefore the abelian
κo*

category AΉ has enough injectives.

Fix a positive integer r such that it is congruent to + 3 modulo 8 when p
= 2, and it generates the group of the units of Z/p2 when p is an odd

prime. For each prime p we can form the sequence of CVF-spectra

(5.1) SKZ(p) -±+ KOZ(p} &^> KOZ(p) -«-> SQ

with trivial compositions (see [7, Theorem 4.3] or [9, 8.4]). Here SKZ(p) is the

XOZ(p)j|:-localization of the sphere spectrum 5, ψr

R is the stable Adams

operation, the map ιp is induced by the unit i: S-> KO and the map q is
associated with the inclusion q^ : Z(p} a Q in the homotopy group. Since the

cofiber of the map ιp coincides with the fiber of the map q, the above sequence

(5.1) gives rise to the following fundamental exact sequence

(5.2)

Q->π™τSZ(p) Λ W-+π™τKOZ(p} Λ W^π™τKOZ(p) Λ W^τffτSQ Λ W^O

for any π^Γ-cofree XO-module spectrum W.
For each object M in ACRT we consider the sequence

KO*KO (x) M M f r A l - l ) , ® ! XO^XO (g) M
(p)

KO* XO*

where M(p) = M ® Z(p) and ^M(p) = ^M ® 1 for the KO* XO-comodule

structure map ψM of M. Denote by C(M(P)) the cokernel of the endomorphism

(̂  Λ 1 - 1)* ® 1 on KO^KO (g) M(p). From (5.2) it follows that

(5.3) C(K™TX(P}) ^ K™TX ® Q if KOΛX is πlRT-cofree.

Choose a short exact sequence 0 -> M -> K$RT KO Λ Jί -* ΛΓ -̂  0 in

with XO Λ AT π£KΓ-cofree. Then an easy argument using the fundamental

exact sequence (5.2) shows that the sequence
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(5.4) 0 — » M(p} — > KO^KO <g> M(p} — > KO^KO (x) M(p) -̂  C(M(p)) — > 0
KO* κ0*

is exact in ACRT. Moreover (5.3) implies that C(M(P)) is a β-module because
XO Λ KO Λ X is π£*Γ-cofree by virtue of Lemma 4.2 i). Therefore the

composite morphism

(5.5) M (x) Q *M*g > KO^KO (x) (M (x) β) -̂  C(M(P))
KO*

becomes an isomorphism in ACRT. Thus we obtain a fundamental exact

sequence

(5.6) 0 — > M(JI) — > KO^KO (x) M(p) — * KO^KO (x) M(p) — > M (x) ρ — > 0.
KO* £0*

By means of Theorem 1.4 and (5.5) we observe that

(5.7) M®Q is injectίve in ACRT if it is CRT-acyclic.

Using the fundamental exact sequence (5.6) for each prime p and (5.7) as in

the proof of [9, Theorem 7.3] we can easily show

THEOREM 5.2. For each object M in ACRT, its injective dimension is at

most 2 whenever M is CRT-acyclic.

5.3. Owing to [12, Proposition 7] (or [17, Proposition 1.1] we have

PROPOSITION 5.3. A CW-spectrum W is K^-injective if and only if the
canonical morphism κ;f : [Jf, W~\ ^ Hom^K^Jf, K^W) is a monomorphism for

any CW-spectrum X.

We here give a few results concerning X^-injective spectra, which

correspond to [17, Propositions 2.3, 2.4 and 2.5].

PROPOSITION 5.4. If a CW-spectrum W is K^-injective, then it is a quasi

KO-module spectrum such that K% W is injective in A%> and κ:| : [X, W~\ ->
HomA^(K^X , K^W) is an isomorphism for any CW-spectrum X.

PROOF. By virtue of Lemma 4.1 it is sufficient to show our result for any
π^-cofree Z. Let Z be a XO-module spectrum which is π^-cofree. Then the
homotopy π^Z is cofree in # and hence it is injective in <£. Since the X-

homology K%Z is isomorphic in AV to the extended comodule KO^KO (x)

, it is certainly injective in A$. By the ^-version of Lemma 1.5 we observe
that ιcγ: [X, Z] -> Hom^β^ Jf, K%Z) is an isomorphism for any CW-spectrum

X. Then it is immediate that κ\ : [_X, Z] -> Hom^(K^, K%Z) is an
isomorphism for any CPF-spectrum X.
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Making use of Proposition 5.4 we can prove the following results by quite
similar arguments to [17, Propositions 2.4 and 2.5].

PROPOSITION 5.5. If Wis a KO^-local spectrum such that K^W is injective

in A<g, then it is a K^-injectίve spectrum and κ^\[_X, W] -> HomAv(K*X, K^W)
is an isomorphism for any CW-spectrum X (see [9, Lemma 9.3]).

PROPOSITION 5.6. For each injective object I of A%, there exists a K%-

injective spectrum Wf whose K-homology K<^Wl is isomorphic in A<β to the

injective object I (see [9, Lemma 9.2]).

Putting the above results together we obtain the following characteriz-

ations of K* -injective spectra (cf. [9, §9]).

THEOREM 5.7. For a KO-module spectrum W the following three conditions

are equivalent:
i) W is a K^.-injective spectrum,

ii) W is a π^-cofree spectrum, and
iii) π^W is injective in %>'.

PROOF. The implication i)->ϋ) follows from Proposition 4.6, and the
implication ii) -> iii) is immediate. On the other hand, the implication iii) -»i) is

shown by use of Proposition 5.5 because K^Wis injective in A<# when π^VFis

injective in .̂ To show the final implication we may instead use Proposition

4.6 combined with Theorems 1.4, 3.2 and 3.4 by the aid of the ^-version of
Lemma 1.5.

THEOREM 5.8. For a CW-spectrum W the following six conditions are all

equivalent:

i) W is a K^-injective spectrum,

ii) W is a quasi KO-module spectrum such that K^ W is injective in #,
iii) W is a quasi KO-module spectrum such that K^ W is injective in AΉ,
iv) W is a K^-local spectrum such that K^ W is injective in A$,
v) Kl\[_X,W]^}lomA<t(KlX,KlW) is an isomorphism for any CW-

spectrum X, and
vi) Kf: [*, W]^HomAv(KlX, K^W) is a monomorphism for any CW-

spectrum X.

PROOF. The implications i) -> iii) -> iv) -> i) and i) -> v) -> vi) -* i) follow

immediately from Propositions 5.3, 5.4 and 5.5. On the other hand, Theorem

4.7 combined with Theorem 5.7 shows the equivalence between i) and ii).
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