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§ 1. Introduction

During the past several decades, reaction-diffusion equations have been

proposed to understand spatio-temporal structures of nonlinear phenomena

arising in population ecology (Cantrell and Cosner [2], Kan-on and Yanagida

[25], Levin [29], Mimura et al. [33]-[37]), neurobiology (Henry [19]), fission

reactors (Leung [28]), chemical reactions (Fife [15], Smoller [42]), combus-

tions (Ei et al. [11]-[13]) and other applied sciences. For the qualitative

study of solutions of these equations, fruitful mathematical methods have been

extensively developed in the field of applied analysis (Ei [9], Ei and Mimura

[10], Mimura et al. [34], for instance).

Most of reaction-diffusion equations are described by the following

semilinear parabolic system of equations:

(1.1) ut = diυ(D(x9 u)Vu) + /(x, u), (ί, x)e(0, oo) x Ω,

where Ω is a bounded domain in R", u = (u u , um)eRm, D(x, u) is a

nonnegative definite matrix and / is a kinetic function from R" x Rm into

Rm. In most applications, D is a constant diagonal matrix and / is

independent of x. The resulting system is simply

(1.2) ut = DAu+f(u), (t, x)e(0, oo) x Ω.

The variables u usually denote the quantities such as densities of biological

populations in ecology, concentrations of substances in chemical reaction, for

instance. In qualitatively understanding the behavior of solutions to (1.1) or

(1.2), the studies of existence and stability of equilibrium and periodic solutions

to (1.1) and (1.2) are very important. In fact, it is known that stable spatially

inhomogeneous equilibrium solutions play, among other things, an important

role in the formation of patterns arising in reacting and diffusing medium.

As for stable spatially inhomogeneous equilibrium solutions, we have the

following problem: How is the relation between the stability of spatially

inhomogeneous equilibrium solutions and the shape of domain Ω. Along this
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line, Matano [31] and Casten and Holland [3] showed that any stable
equilibrium solution of the scalar equation of (1.2) with m = 1 is constant
under the zero-flux boundary condition if Ω is convex, that is, there exist no
stable spatially inhomogeneous equilibrium solutions. (We refer to Chafee [4]
in one dimension case). Under the same boundary conditions, Kishimoto and
Weinberger [27] extends this result to the system of (1.2) where / is restricted
to be (d/dUj)fi > 0 for i φj, under which (1.2) is called the cooperation-diffusion
system. The conclusion is also valid for (1.2) with m = 2 where (d/dUj)fi < 0
for iφj (Ϊ,7 = 1, 2), under which (1.2) is called the competition-diffusion
system. On the other hand, Matano and Mimura [32] and Jimbo [23]
showed that for some appropriate /, stable spatially inhomogeneous equilibrium
solutions of the competition-diffusion system with m = 2 exist in a suitable
dumbbell-shaped nonconvex domain under the zero-flux boundary conditions.
Since then, the dependency of spatial domains on equilibrium solutions of (1.2)
has been intensively investigated under the zero-flux or Dirichlet boundary
conditions (Dancer [7] and [8], Ei et al. [13], Keyfitz and Kuiper [26], Vegas
[44] and others). Hale and Vegas [16] and Vegas [43] first parametrized a
family of dumbbell-shaped domains which are introduced in [31] and
[32]. For this special type of domain, Hale and Vegas [16] and Jimbo [22]
studied the structure of equilibrium solutions of the scalar equation of (1.2)
when / takes εf with a small parameter ε, and Morita [39] showed that the
origional system (1.2) can be reduced to a finite dimensional ordinary
differential equations on a Lipschitz continuous invariant manifold. Fang [14]
and Mimura, Ei and Fang [38] studied in detail the dependency of the domain
Ω as well as the diffusion coefficients D on solutions of (1.2) and, as an
application, considered the bifurcation problem for the competition-diffusion
system with m = 2 when the shape of domain varies. Recently, Jimbo and
Morita [24] and Morita and Jimbo [40] have considered the system (1.2) on
a domain Ω which consists of many dumbbells connected by narrow handles.

From the aspect of the dependency of domain-shape on solutions, the
effect of tubular domains on solutions has been recently investigated. Let
p(x), xe[0, L] satisfying \px(x)\ = 1 be a smooth curve which does not intersect
itself in RN + 1, Nx an Λf-dimensional normal plane at p(x) and let qι(x) satisfying
|gf(x)| = 1 (i = 1,...,N) be an orthonormal basis of Nx. Also let Dx cz RN be
a simply connected bounded domain with smooth boundary. Nx and Dx are
assumed to depend on x smoothly. With a small parameter ε > 0, define
ΩεczRN+1 by

Ωε = {p(x) + εΣf=i>W«l)> = ( y i , - , ^ ) e D , , *e(0, L)}.

Yanagida [45] considered the following scalar equation in Ωε:
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ut = Au+f(u)9 (ί, x)e(0, oo) x Oε,

λ "~ Λ (ί, x)e(0, oo) x δΩε.

Using the upper- and lower-solution methods, he showed that if ψ(x) is an

asymptotically stable equilibrium solution of the following equation:

vt=— (a(x)υx)x + f(υ) for x e (0, L),
()

for x = 0, L,

where a(x) is the JV-dimensional volume of Dx9 then there exists a stable

equilibrium solution c/>(x, y) of (1.3) such that φ(x9 y)-^φ(x) as ε JO uniformly

in Ωε. This result suggests that when ε is sufficiently small, (1.4) is a nice

approximating equation to (1.3), but it was not justified.

However, from the view point of dynamical theory, Hale and Raugel [17]

quite recently have justified it for the scalar reaction-diffusion equation (1.3)

on Ωε in R N + 1 , N < 2. But this problem remains to be unsolved for the

system version of (1.2).

The purpose of this paper is to study this problem for the following

reaction-diffusion system with two components:

n *\ (ut = d1Au+f(u9v9x9y)9

(1.5) < (ί x, y)e(0, oo) x Ωε

lvt = d2Δv + 0(M, υ, x, y),

on the symmetric thin tubular domain ί 3 ε c R J V + 1 , where dί9 d2 are positive

constants and A = d2/dx2 + d2/δyj + —\-d2/dy^. The result of Yanagida

[45] suggests us that in the limit ε | 0 , (1.5) is reduced to the following system

in one dimensional space:

(1.6) { (ί,x)e(O, oo)x(0,L)

vt = -y- (a(x)vx)x + g(ΰ9 ϋ9 x, 0).

What we want to do here is to verify the validity that the dynamics of

solutions to the system (1.5) is approximated by those of the system (1.6) when

ε is sufficiently small. Furthermore, we want to show that if (1.6) has an

equilibrium solution (ΰ0, ϋ0) which is nondegenerate, then (1.5) has the

corresponding equilibrium solution (wε, υε) when ε > 0 is sufficiently small and

moreover, the stability of (wε, vε) in (1.5) is inherited to the stability of (M0, V0)
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in (1.6). The method which we use here is the inertial manifold approach

developed by Mallet-Paret and Sell [30] and Hale and Raugel [17].

Throughout the paper, we assume that (1.5) possesses a positively invariant

region, that is, there exists a region Σ c R m such that the solution of (1.5)

stays in Σ for its existing time interval if the initial and boundary values are

in Σ. If it is bounded, then it is well known that the global existence and

other dynamical properties such as the existence of compact attractors are

obtained [19]. For the construction of such invariant regions, we refer to

Chueh, Conley and Smoller [5], Smoller [42] and the references therein. In

practical applications, there is the situation where, with the initial and boundary

values in Σ, the solution globally exists and eventually enters into Σ although

it may be temporarily out of Σ. We call such Σ an asymptotically invariant

region. In Section 2, we give the formulation of the problem and show some

examples of systems which possess bounded invariant regions or bounded

asymptotically invariant regions.

In Section 3, we formulate the systems (1.5) and (1.6) in an abstract setting

and give some preliminaries for these systems.

In Section 4, we consider the eigenvalue problems corresponding to the

systems (1.5) and (1.6). Let {μM} (i = 1, 2, ) satisfying μεΛ < με2 < ••• be

the eigenvalues of the operator Bε in ί2ε, where Bε(u,v) = (—d1Δu + 0L1u,

— d2Δv + (x2v) with α l 5 α2 > 0 such that oc1/d1 = oc2/d2, and {μf} (ί = 1, 2, )

satisfying μ1 < μ2 < ••• be the eigenvalues of Bo in (0, L), where B0(u, v) =

(-(d1/a(x))(a(x)ux)x + oc1u, - (d2/a(x)){a(x)vx)x + OL2V). It is shown that

(1.7) limsup(μn+1- μn) = oo and με,m • μm as ε 1 0
w->oo

for any fixed raeN. This fact, toghther with other conditions, allows us to

use the existence theorem of inertial manifolds in Mallet-Paret and Sell

[30]. In Section 5, inertial manifolds for (1.5) and (1.6), say, W and 9Jt°, are

constructed as graphes Φε and Φ° over the finite dimensional linear space,

which is determined by the span of the eigenfunctions corresponding to the

first Ni eigenvalues of the operators Bε and Bo, respectively. By using (1.7),

the inertial manifolds W for (1.5) with sufficiently small ε > 0 and Wl° for

(1.6) can be constructed in the same finite dimensions. In Section 6, using

the techniques developed by Hale and Raugel [17], we show that Φε -> Φ°

as ε | 0 in C1-topology. As a result, one can find that the dynamics of the

original system (1.5) with sufficiently small ε > 0 on the inertial manifold yjlε

and the reduced system of (1.6) on the inertial manifold 9Jί° are governed by

the same finite dimensional ordinary differential equations. Unfortunately, the

dimensions of 90ΐε and 931° can not be determined easily.
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Finally, in Section 7, we discuss the relation between equilibrium solutions

of (1.5) and those of (1.6). Our discussion may also be extended to periodic

solutions.
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§2. Formulation of the problem and examples

We are concerned with the following reaction-diffusion system for two

components w, v e R:

du ,

-=dlΔu + / ( „ * ;*),
(2.1) J (ί x)e(O, oo) x Ωε,

dv
— = d2Δv + g(u, v; x),
ot

subject to one of the following three boundary conditions:

(2.2) - " = -^ = 0, (t; x)e(0, oo) x dΩε
dn dn

and

u = 0 on (dΩε)ί and — = 0 on (dΩF)2,
dn

(2.3)
— = 0 on dΩε
dn

and

u = 0 on (dΩX and — = 0 on (dΩε)2,
dn

dv
v = 0 on (δΩJi and — = 0 on (dΩε)2.

dn

Here, Ωε is a bounded domain with piecewise smooth boundary which is

defined as follows: Let D a RN be a bounded simply connected convex

domain with OeZλ r(s): [0, L] -> R+ belongs to C2-class and there exist

positive constants r l 5 r2 and r 3 such that
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rx < r(s) < r29 \r'(s)\ < r3, |r"(s)| < r 3 for se[0, L ] .

Let Ds = {(zu ",zN)eRN\{z1,'",zN)/r(s)eD} for se[0, L]. Define Ωε by

(2.5) ί2ε = {x = (s9 y) = (5, yl9...9yN)eRN+1\se(O, L), y/εeDs}

with a small parameter ε satisfying 0 < ε < ε0 (see Figure 1). The boundaries

^ and (dΩε)2 are

Figure 1. The domain shape of ΩE.

and
= {x =

(δΩε)2 = {x = (s,

= 0, L, y/εeDs}

L,

respectively, zί = 3 2 /δs 2 + d2/dy2

ί + ••• + 5 2 / 3 ^ . The functions f,g:RxR

x Q-+R belong to C 2 with respect to u, v and to WltCO(Q) with respect to

x, where Q is a bounded domain in RN+1 such that g=>c/.(f2ε) for

0 < ε < ε 0 . If the boundary condition takes either (2.3) or (2.4), we also

assume the compatibility condition

(2.6)
/(0,0;x) =

for xe(dΩε)ι.

We make the following assumption to the system (2.1):

[A] [0, X J x [0, K2~] is an invariant region (or asymptotically invariant

region) of the system (2.1) with (2.2) or (2.3) or (2.4) for any suitable

large Kί9 K2 > 0.

That is, if the initial values u(0), v(0) satisfy 0 < w(0) < K1 and 0 < ι?(0) < K2,

then there exists t0 > 0 (ί0 = 0 in the case when invariant region holds) such

that the solutions u(t)9 v(ή of (2.1) satisfy 0 < u(t) < Kλ and 0 < υ(t) < K2 for

t >t0.
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Let us show some examples.

EXAMPLE 1. (competition-diffusion system)

The first system is

du
— = dιΔu + (Ri(x) — a1(x)u — b1(x)v)u,

(2.7) \ / (t,x)e(0, oo)χβ e,
ov
— = d2Av + (R2(x) — b2(x)u — a2(x)v)v,
dt

which is called the competition-diffusion system with Gause-Lotka-Volterra

dynamics describing the dynamics of two competing species that move by

diffusion, where w(ί, x), v(t, x) are the population densities of two competing

species at position x and time ί, and dl9 d2 are the diffusion rates of two

species, respectively, a^x) (ΐ = 1, 2) are the intraspecific competition rates and

bι(x) (i = 1, 2) do the interspecific competition rates at position x. Ri(x)

(ί = 1, 2) are the intrinsic growth rates. All of the coefficients are positive

and bounded functions in Ωε but if the environment is homogeneous, these

are constants (Ahmad and Lazer [1], Pao [41], for instance).

It is easily found that [0, K J x [0, K2~\ is an invariant region of (2.7)

under the boundary conditions (2.2) for any large Kί9 K2 > 0 (Smoller [42]

or Leung [28]).

EXAMPLE 2. (prey-predator system)

The second system is

du 1 J / u \ mvu
— = άγΔu + r 1 )u -
dt \ K(x)J a + u

(2.8) \ (ί,x)e(0, oo)χβ e,
— = d2Δv + ( -R+ -u)v,
dt \ v )

where w, v are the densities of a prey species and its predator and dί9 d2 are

the diffusion rates, r is the intrinsic growth rate, K(x) is the carrying capacity,

and m is the maximum predation rate with intensity a. R is the death rate

and c is the growth rate by predation. All of the parameters are positive.

Then under the boundary conditions (2.2), it is obvious that [0, X J x [0, K2~\

is an invariant region of (2.8) for any large X 1 ? K2 > 0 satisfying K2 > cK^/R.

EXAMPLE 3. (liquids superconductivity system)

The third system is
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(2.9) { ^ (ί,x)e(O, oo)xβ e

— u2 — υ2)v,

which is proposed in the theory of superconductivity of liquids (Chueh, Conley

and Smoller [5]). Under the boundary conditions (2.2), it is known that

[0, JCJ x [0, K2~\ is an invariant region for any large Kί9 K2 > 0.

EXAMPLE 4. (combustion system)

The forth system is

dθ

(2.10) { l (ί,x)e(0, oo)xί2ε

— = dΔc -δcf(θ) + /(x),

which arises in the theory of combustion (Ei and Mimura [11] and the

references therein). Here, 0(ί, x) and c(ί, x) denote the nondimensionalized

temperature and concentration of fuel at position x and time ί, respectively.

The reaction term f(θ) takes f(θ) = exp(θ/(l + βθ)) with β some positive

constant, d and δ denote the diffusion rate of fuel and the thermal effect of

the reaction, respectively. I(x) (> 0) denotes the supply of fuel which satisfies

IeWlco(Q). The boundary conditions for (2.10) often take the following forms

dθ
θ = 0 on (dΩ^ and — = 0 on (δΩε)2,

dn
(2.11)

δc
— = 0 on δΩε.
δn

It is not so trivial to check that the problem (2.10), (2.11) satisfies the

assumption [A]. Therefore, we will show that (2.10), (2.11) possesses an

asymptotically invariant region. We take the initial conditions for (2.10) as

(2.12) 0(0, x) = 0o(x) > 0, c(0, x) = co(x) > 0, xeΩE,

where θ0 and c0 are bounded on Ωε. Noting that 1 <f(θ) < e1/β for θ > 0,

we can obtain the global existence of the solution of (2.10) ~ (2.12) in a

standard manner. Let 7 : = supxeQ I(x) > 0 and M x =I1/δ and consider the

following auxiliary equations for (c, θ):
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(2.13)

and

(2.14)

dc
— = dΛc — δc + Iί9 (ί, x)e(0, oo) x Ωε,
dt

(ί, x)e(0, oo) x δΩε,

c(0, x) = co(x) > 0

exp(l/β)c9 (ί, x)e(0, oo) x Ωe,

θ = 0 on (δΩJi and — = 0 on (3β ε) 2,

0(0, x) = 0o(x) > 0.

LEMMA 2.1. 0 <*0(f, x) < θ(t, x) and 0 < c(t, x) < c{t9 x) for all t > 0 and

xeΩε.

The proof is easily given by the minimum and maximum principles, so

we omit it.

LEMMA 2.2. If 0 < co(x) < K2 for some K2 > 0, then for any c* > 0,

there exists t0 = to(K2, c*) > 0 such that 0 < c(ί, x) < c* for t > t0 and xeΩε.

PROOF. By Lemma 2.1, it is sufficient to show c(ί, x) < c* for t > t0 for

some ί0. Let w(ί, x) = c* — c(ί, x). Then u satisfies the following equation:

(2.15)

( du

Jt

du

- δu (ί, 0, OO) X

= 0,

\ U{V, X) — C — C 0 (Xj,

(ί, x)e(0, oo) x dΩε,

xeΩε.

If w(0, x) > 0, then it follows from the minimum principle that u(t, x) > 0 and

so c(t, x) < c* for t > 0 and xeί2 ε . On the other hand, if ίnfxeΩεu(0, x) < 0,

we may consider the following equation:

(2.16)

—
dt

Using the fact that u(0) < 0 and u = 0 is not an equilibrium of (2.16), we
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know that there exists a finite t0 = to(K29 c*) > 0 such that u(ή increases in

[0, ί 0] and ΰ(t0) = 0. Putting v(t9 x) = ΰ(t) — u(t, x), we find that v satisfies

the following equation:

(2.17)

dυ

Jt

dυ

= dAv — δv, (t, x)e(0, oo) x Ωε,

(t, x)e(0, oo) x dΩε,

I υ(0, x) = M(0) - M(0, X) < 0, xeΩE.

The maximum principle indicates that u(ί, x) < 0 for ί > 0 and xeΩε.

Therefore ΰ(t) < u(t9 x) for t > 0 and xeΩεi and u(tθ9 x) > ΰ(t0) = 0. Applying

the minimum principle again to the following differential inequality:

> dAu — δu, (t, x)e(tθ9 oo) x ί2ε,

= 0, (ί, x)e(ί 0, oo) x dΩε,

ί du

~dt

du

d~n

I u(t0, x)>0,

we know that u(t, x) > 0 for t > t0 and xeΩE. That is c(ί, x) < c* for ί > ί0

and

LEMMA 2.3. Let cθ9 θoeLp(Ωε) with p > N + 1, then there are ICj > 0

independent of ε, θ0 and t, and t0 = ίo(ε, 0O) > 0 ŵc/z that 0 < ^(ί, x) < K® for

t >t0 and xeΩε.

PROOF. By Lemmas 2.1 and 2.2, we know that there is a finite t0 > 0

such that 0 < 0(ί, x) < 0(ί, x) and 0 < c{t, x) < c* for ί > t0 and xeί2 ε . Let

θ(t, x) be the solution of the following equation:

(2.18)

AΘ +
ot

θ = 0 on

θ(t09 X) = θ(t0, X),

exp(l/β)c*, (ί, x)G(ί0, oo) x β e ,

i and — = 0 on (dΩε)2,
dn

and let 0* be the equilibrium solution of (2.18), which is unique. Then

0 < θ(t, x) < θ(t, x) follows for t > t0 and xeΩε. Therefore, it is sufficient to

estimate θ{t, x).

Define the operator J*ε by ^ε{u1, u2) = (— Auί9 — dAu2) with u1 = 0 on
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{dΩε)lt — = 0 on (dΩε)2 and — = 0 on dΩε. Then it turns out that - ®ε
dn dn

generates a semigroup exp(— 0fiεi) in (Lp(Ωε))2 (Henry [19]). Let @(&ε) be

@(<ae) = Uul9 u2)e(W2^(Ω^)2\u1 = 0 o n (dΩε)u ^ = 0 on (dΩε)2 and ̂  = 0
t on on

on dΩε i. Then if (0O, co)G(Lp(ί2ε))2, we know that (0(ί), c(ί)), (0(ί), c(ή)

Define the operator j / e by srfεu= - Δu with w = 0 on (SQ^ and — = 0 on

in LP{Ωε). Letting the eigenvalues of s/ε be {2 } (i = 1, 2, ) satisfying

0 < λi < λ\ < -" and exp(— stfεt) be the semigroup generated by — j / ε , we

write (2.18) into an integral form:

θ(t) = e x p ( - ̂ ε ( ί - ίo))0(ίo) + I « c p ( - ̂ . ( ί - s))exp(l/β)c*ds.-ίoMίo)+ Γ

Letting #« = ^ ( J / ? ) with αe((N + l)/2p, 1) (Henry [19]), we have

\\θ{t)\\L- Z \\θ(t)\\Xΐ < cxexp{- λ\(t - t0)) | |0(to)| | ί r.

f'exp(-W-s

for some constants cx > 0 and c 2 > 0. Since (2.18) has the Lyapunov

functional

Vε(u)= (\Vu\2-exp(l/β)c*u)dx,

the dynamical theory (for example, see Matano [31]) shows that θ(t) converges

to an equilibrium solution θ^ of (2.18) as t -* oo. On the other hand, as (2.18)

has the unique equilibrium solution θ*, we know that \\θ(t) — θ*\\Loo^O as

ί->oo for any initial value θoeLp(Ωε) of (2.12). Therefore, if we can obtain

the upper-bound of 0* which is independent of ε, the proof of this lemma is

complete. If we can construct a bounded function U(x) independent of ε,

which satisfies

exp(l/β)c* <0 in Ωε,
(2.19)

dU
U > 0 on (δβJi and — > 0 on (dΩε)2,

dn

it is a super-solution of (2.10), (2.11). The construction of U(x) is done in a

similar manner to the one in Yanagida [45]. Let κι(ξ) (i = l, ,iV — 1) be

the orthogonal unit tangent vectors of d(εDs) in JV-dimensional y-space at
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ξeδ(εDs) (se(0, L)). Choose ξί ed(εDSl) for s1 very close to s such that ξ1 — ξ

is orthogonal to κι(ξ) (ΐ = 1, • • - , # - 1). Let

sι — s

and nQ be the outward normal unit vector in Λf-dimensional y-space at

d(εDs). Then it is known that κN(ξ) is a tangent vector on d(εDs), which is

represented as

with yι{ξ) = 1 + O(ε2) and γ2 = O(ε). Also let nD be the outward normal unit

vector in ΛΓ-dimensional y-space at dDs, a and b(s) the JV-dimensional volume

of D and the ΛM-dimensional volume of dDs, respectively, AN = d2/dy\ + ••• +

We choose V(s) as a bounded function satisfying

^) + exp{l/β)c*< - 1, se(0, L),
r N (5)

(2.20) ^
F(0)>0, V(L)>0.

For example, by taking V(s) = C — evs for s e (0, L) where C and v are

sufficiently large positive constants satisfying C > evL, it turns out that V{s)

satisfies (2.20).

Consider the following boundary value problem for any constant ζ:

NrΊs)
NW=—γV(s) + ζb(s)9 yeDs,

r(s)

Then it is shown in [45] that (2.21) has the solution

W[y) = - ί K(y, z)\^^ Vf(s) + ζb(s)\dz= - K(y,z)\^ψv'(s) + ζb(s)\ι

+ K(y, η) \ Ί-^- V'(s) + ζarN{s) \dη + c

for the Neumann function K(y9 z) and any constant c. We denote W(y) by

W{s, y9 ε) and define U(s, y) by U(s9 y) = V(s) + ε2W(s, y/ε, ε) in Ωε. Then,

in a similar manner to the one in [45], we know that U(s, y) = V(s}+ O(ε2) and

ΔU + exp(l/β)c* < - 1 + ζb(s) + O(ε) in Ωε,

d^ on (dΩε)2.
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Therefore, if ε > 0 and ζ > 0 are chosen to be sufficiently small, we find that

U(s, y) satisfies (2.19).

By using the above Lemmas, we arrive at the following result:

THEOREM 2.4. There exist positive constants K? and K2

 s u c n t n a t for any

K1 > K? and K2 > K°2, if 0 < θ{0) < Kί and 0 < c(0) < K2, then the solutions

θ(t) and c(t) of (2.10) - (2.12) satisfy

0 < θ(t) <KU 0 < c(t) < K2 for t>t1>0,

where tι = t1(ε, K2, θ0) < oo.

Theorem 2.4 immediately shows that (2.10), (2.11) has an asymptotically

invariant region.

§3. Abstract formulation

In this section, we treat the system (2.1) ~ (2.4) in an abstract
setting. Taking the transformations

(3.1)

s = s,

yγ =εr(s)zί9

yN = εr(s)zN,

and letting V = \d/ds, d/dyl9'~,d/dyN) and Vz = '{d/ds, d/dzl9>~,d/dzN)9 we
know

where

J =
d(s,zl9 ' ,zN)

Vz = JΨ,

I \ 0 0

εrf(s)z1 εr(s) 0

εr'(s)z2 0 εr(s)

0 \
0

0

εr'(s)zN 0 0 ••• εr(s) '

Under the transformations (3.1), the system (2.1) becomes

- JSf^djM - αxM +fε(u9 υ; s, z),

(3.2) (ί s, z)e(0, oo) x fl

)v -(x2v + ge(u9 v; s, z),
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with Ω = (0, L) x D, where

&ε(d)u = - (d/rN(s))Vz • Γεu for d > 0, ε > 0

and

• δu „_, ./ 5u du \ \

ΓM =

5M du

\

δu N . . ( du δu

δs δz*

JV-2 du

ε2 δzι

JV-2 du

ε 2 δ z N

fe(u, υ;s,z) = / ( M , V; S, εr(s)z) + QCXU,

ge(u, v;s9z) = g(u9 v; s, εr(s)z) + ct2v

with α l 5 α2 > 0 satisfying oc1/d1 = 0L2/d2. The boundary conditions (2.2), (2.3)

and (2.4) become

(3.3)

(3.4)

and

(3.5)

—- = Γεwn = 0, — =0, (t;s,z)e(0, oo)x ΘΩ,
°nε dnε

u = 0 on {0, L} x D, — = 0 on (0, L) x 3D,
dnε

dv
— = 0 on dΩ
dnF

u = 0 on {0,L}xD, — = 0 on (0, L) x dD,
dnε

v = 0 on {0, L} x A — = 0 on (0, L) x 5D,
5n

respectively. Here n is the outward normal unit vector on dΩ.

The terms du/dzt (f = 1, 2, ,JV) should be very small formally as

ε JO. Because the diffusion in each direction of Z U JZJV is very large when

ε is sufficiently small, u and υ depend very small on zί9 ~9zN and the reduced

problem of (3.2) - (3.5) as ε J, 0 should be
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(3.6) (ί s)ε(O, oo)x(0,L),

)v - a2υ + go(u, v\ s),

(3.7) ^ = ^ = 0 , (t, s)e(0, oo) x {0, L},
dn dn

(3.8)

(3.9)

where

u

u

= 0,

= 0,

dv

~dn

v =

= 0, (ί,

: 0, (ί,

S)G(0, OO) x

S)G(0, OO) x

jS?o(d)l | = _ {d/rN{s))l_ (r^s)^) for d > 0,
ds\ ds)

fo(u, v; s) =f(u, v; 5, 0) + oqu,

go(u, v;s) = g(u, v;s9θ) + cc2υ

and n is the outward normal unit vector on d(0, L).

In order to know the relation between (3.2) ~ (3.5) and (3.6) — (3.9), it

will be convenient to rewrite the systems in an abstract form. We first consider

the system (3.2), (3.3). Let || | | 0 , β be the usual norm in L2(Ω). Let He(β)

α y/2
rN(s)u2 dsdz\ and the inner

Ω J

product <M, v}L = rN(s) uvdsdz. Also let (Hε(ί2))2 be (L2(Ω))2 equipped with
JΩ

the norm | | Φ | | H = ( | | M | | £ + ||f

< Φ l 9 Φ 2 > H = < u l 9 u2)L + <>

2 for Φ = {u,v) and the inner product

for Φλ = (w1? vx) and Φ2 = (u2, t?2). Let

be /ί 1{Ω) equipped with the norm | |u | | ε L =

du

dzN 0,Ω

1/2

1 du

0,Ω

and let (H^Ω)) 2 be (Hι(Ω))2 equipped with the norm

UH = (\\U\\IL + IMI £

2 L) 1 / 2 for Φ = (u9 υ). We define the gradient operator
\ in H\Ω) by

u = [ /d— -
r'(s) ( du

ff (z, —
du

ffj' εr(s)dzί' 'εr(s)dzN

for d > 0 and ε > 0. Here S£\n Φ means

for Φ = (u, v)e(H1(Ω))2.
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The bilinear forms a ε( , ) (i = 1,2) in (HX(Ω))2 and bε( , ) in (H^Ω))2 x

(H1(Ω))2 are respectively defined by

\ x + αt <κ, ι;>L (i = 1, 2)

for M, veHι{Ω) and

bε(Φi, Φ2) = a ε > i , M2) + a2(ι>l9 ι;2)

for Φ x = (w1? υx), Φ 2 = (M2, i ^ e ί H 1 ^ ) ) 2 , where

ύυ\x= [ rN(s)^1

ε

/2(di)u-^1

ε'
2(di)vdsdz.

JΩ

It turns out that aj( , ) (i = 1, 2) and bε( , ) are elliptic forms and, from

the assumptions on r(s), it follows that there exist εί > 0 (ε1 < ε0) and c1 > 0

and c2 > 0 such that for 0 < ε < βi

(3.10) cf | | i4 | | e

2

t L ^ai(M,M)^c | | | i i | | 2

L for usHγ{Ω) (i = 1, 2)

and

(3.11) c? | |Φ| | ε

2 , H <b £ (Φ, Φ ) < c | | | Φ | | ε

2

H for Φ e ^ 1 ^ ) ) 2 .

By using the above notations, operators Sj (i = 1, 2) in H1^) can be

defined by {Hε(ί2), H 1 ^ ) , aε( , )}, that is, we^(S^) if and only if (iff) the

functional aε(w, ) is continuous in H1^) with respect to the topology of Hε(ί2)

and <Ŝ w, w>L = aε(w, w). Similarly, an operator Bε in (H1(Ω))2 can be defined

by {(Hε(ί2))2, (H^Ω))2, bε( , )}, that is, Φ e ^ ( B ε ) iff the functional bε(Φ, ) is

continuous in (H^Ω))2 with respect to the topology of (Hε(ί2))2 and <BεΦ, ^ H

= bε(Φ, Ψ). By the Riesz Representation Theorem, the Green Formula and

regularity properties (see Hale and Raugel [17] and [18]), it turns out that Sε

and Bε are well defined with 0(Sj) - \ueH2(Ω)\y — = 0 on dΩ

+ oίiU and ®(BC) = ] φ = (M, ί;)G(H2(ί2))2|y — = 0 , y — = 0 on dΩ
I dn δn

and BeΦ'=(£fε(dί)u +aiiU, &ε{d2)v + OL2V), respectively, where y is the trace

operator on dΩ. Moreover, it follows from (3.10) and (3.11) that there is a

constant c > 0 such that

\\u\\ε,L<c\\Sεu\\L for ue@(Sε) (i = 1, 2)

and

< c Ί | B ε Φ | | H for
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We note that Sε (i = 1, 2) and Bε are self-adjoint, positive and sectorial

operators in H1(Ω) and {H\Ω))2, respectively (See Henry [19]). The

fractional powers of Sε and Bε can be defined and Ye* = ^((S ε)
1 / 2) is HX(Ω)

equipped with the norm

and Xε = ^(B ε

1 / 2) is {Hι{Ω)f equipped with the norm

| | Φ | | ε , x = | |B β

1 / 2 Φ| | H = (bε(Φ, Φ))1/2( = (ae

1(iι, u) + aε

2(t;, v))1'2)

for Φ = (u, v). The following inequalities follow from (3.10) and (3.11):

(3.12) c1\\u\\e9L^\\u\\BtYt^c2\\u\\etL f o r w e Y j (i = 1, 2)

and

(3.13) ^ | | Φ | | ε , H < | | Φ | | ε , x < c 2 | | Φ | | ε ) H for Φ e X ε .

We next consider the system (3.6), (3.7). Let || | | l s / and || | | l j H o be the

usual norm in H 1(0, L) and the usual product norm in ( f ί^O, L ) ) 2 ,

respectively. Let H o ( 0 , L) be L 2 (0, L) equipped with the n o r m | | M | | 0 , / =a h \ l / 2 ΓL

rN(s)u2ds\ and the inner product <M, t>> 0,/= rN(s)uvds. Also let

(H o (0, L)f be (L2(0, L)) 2 equipped with the norm || Φ | | 0 , H o = {\\u\\2

0J + || vH2,,)1'2

for Φ = (w, v) and the inner product < Φ 1 ? Φ 2 > O , H O = <uu «2>o,/ + <vu ^2>o,/

for Φγ = (uί9 Vi), Φ2 = (u2, v2). We define the bilinear forms a ι

0( , ) (i = 1, 2)

in (JFJ^O, L)) 2 and b o ( , ) in ( H ^ O , L)) 2 x (H^O, L ) ) 2 , respectively, by

^ 9 ^
ds ds 10>/

for M, yeH^O, L) and

M ^ i , φ 2) = ai(w l9 u2) + ag(ι;1? ι;2)

for Φx = (M l, i J , Φ 2 . = (M2, ̂ G ί i f ^ O , L))2.

It is known that ao( , ) {i = 1, 2) and bo( , ) are elliptic forms and

there are positive constants c 3 and c 4 such that

(3.14) c i l l i i l l f . ^ a ^ ^ ^ c J l l t t l l ^ for M e H 1 ( 0 , L ) (i = 1, 2)

and

(3.15) c 2 | | Φ | | 2 , H o < bo(Φ, Φ) < c 2 | | Φ | | 2 , H o for ΦeiH^O, L))2.

Operators S[> (i = 1, 2) in H\^L) can be defined by {Ho(0, L), if1 (0, L),

a(,( , )}, that is, UE@(SQ) iff the functional aj)(w, ) is continuous in H 1(0, L)
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with respect to the topology of Ho(0, L) and <SQW, w}OtI = ΛQ(U, W). Similarly,

an operator Bo in (if^O, L))2 can be defined by {'(Ho(0, L))2, (if^O, L))2,

bo( , )}, that is, Φε^(B 0 ) iff the functional bo(Φ, •) is continuous in

(JJ^O, L))2 with respect to the topology of (Ho(0, L))2 and <B0Φ, ^> 0 > H o =

bo(Φ, Ψ). By the Riesz Representation Theorem, the Green Formula and

regularity properties (see Hale and Raugel [17] and [18]), we find that Sj,

and Bo are well defined with ^(Sy = \ueH2(0, L)\γ — = 0 when s = 0, L

t 3
Jί?0(di)iι + αitt and ®(B0) = j φ = (u, i;)e(iί2(0, L))2|y — = 0, y ~ = 0

( dn δn
when s = 0, L> and B 0Φ = (^(dju + O^M, ^?0(rf2)^ + α2u), respectively, where

y is the trace operator on 5(0, L). Moreover, there is a constant c > 0 such

that

I M I i , / < c Ί | S ^ | | 0 , , for ue&iS'o) (i = 1, 2)

and

It is known that So (i = 1, 2) and Bo are self-adjoint, positive and sectorial

operators in ff^O, L) and (iί^O, L))2, respectively. Yl

0 = ^((S^)112) is

/^(O, L) equipped with the norm

1/2

and Xo = ^(Bέ / 2) is (iϊ^O, L))2 equipped with the norm

l|Φ|lo.x = IIBέ/2Φ|lo,H0 = (»>o(Φ, Φ)) 1 / 2( = (aJ(u, II) + ag(i;, v))1'2)

for Φ = (M, V). The following inequalities follow from (3.14) and (3.15):

(3.16) C S H I I I I L J ^ I I I I I I O . Y I ^ ^ I I M I I ^ ioτueY0 (i = 1, 2)

and

(3.17) c 3 | | Φ | | l s H o < I | Φ | I O , X < C 4 | | Φ | I I , H O f o r φ e X o

Similar abstract formulations can be given to (3.2), (3.4) and (3.6), (3.8) as

well as to (3.2), (3.5) and (3.6), (3.9). We only note that for the former case,

Hι(Ω) for ί = l and (H^fl)) 2 are replaced by V0(Ω) and V0(Ω) x HX(Ω)9

respectively, where V0(Ω) = {ueH^Ω^u = 0 on {0, L] x D}9 and H^O, L) for

i = l and (H^O, L))2 are replaced by Vo(0, L) and Vo(09 L) x H^O, L),
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respectively, where Vo(0, L) = {ueH^O, L)\u = 0 on {0,L}}. For the latter

case, H^Ω) for i = 1, 2 and {H^Ω))2 are replaced by V0(Ω) and (V0(Ω))\ and

H^O, L) for i = l, 2 and (/^(O, L))2 are replaced by Fo(0, L) and (^(ί2))2,

respectively. All the notations are needed not to be changed without

confusions. We only note, for example, that Bε and B o are defined by

{(Hε(ί2))2, V0(Ω) x HX(Ω)9 bε( , )} and {(Ho(0, L))2, Vo(0, L) x ff^O, L),

bo( , )}, respectively for the former case and defined by {(Hε(ί2))2, (V0(Ω))2,

bε( , )} and {(Ho(0,L))2, (Voφ, L))2, bo( , )}, respectively for the latter.

§4. Eigenvalue problems

Let {μn} and {ωn} (n = 1, 2, ) be the eigenvalues and the corresponding

eigenfunctions of B o normalized in (Ho(0, L)) 2. It is known that 0 < μλ

< μ2 < ••• and μn -> oo as n -> oo. Consider the following eigenvalue problem

associated with the operator S j :

(4.1) - A - ( r ^ ί s ) ^ + Λ l </> = Aφ in (0, L)

Λ)
with the homogeneous Neumann boundary conditions

(4.2) 0,(0) = φs(L) = 0

or the Dirichlet boundary conditions

(4.3)

Let {AM} and {(/>„} ( n = l , 2 , ) be the eigenvalues and the corresponding

eigenfunctions of (4.1) normalized in Ho(0, L). It is known that λi is simple

and 0 < λ1 < λ2 < ••• with λn -> oo as n -• oo.

By the transformation φ = (rN(s))1/2φ, (4.1) - (4.3) becomes

(4.4) φ s s - h(s)φ + — φ = 0 in (0, L),

(4.5) φs(0) - βoφ(0) = 0, φs(L) - β,φ(L) = 0,

(4.6) Φ(0) = 0, φ(L) = 0,

where Λ(s) = (N/2)(ΛΓ/2 - l)(r'/r)2 + (N/2)r"/r + α, j»0 = (N/2)(r//r)(0), j?! =

(JV/2)(r'/r)(L). It follows from Hochstadt [21] that there are functions i\(/l)

and P2(λ) bounded for all λ such that

for (4.4), (4.5)
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and

siniLy/λ/dl) = P2(λ)/^fλ for (4.4), (4.6).

Letting Ly/λjd[ = π(n 4- v), we have

. . . _x P^d^in 4- v)2/L2)
sm (πv) = (— 1) ,

y/d1π(n + v)/L

which has a unique solution vn in (- 1/2, 1/2) satisfying lίm^^ vn = 0 when
/? is sufficiently large. We thus know that for any δ > 0, there exists No > 0
such that

(4.7) —ίy- (rc — (5)2 < λn< —^- (n 4- 5)2 for n > No.

Let {λξ} and {</>,f} (π = 1, 2, •••) be the eigenvalues and the corresponding
eigenfunctions of (4.1) normalized in Ho(0, L) with the boundary conditions
(4.2) (or (4.3)) associated with the operator SQ. The inequality (4.7) also holds
for λξ for large n. Note that the sequence of eigenvalues {μ1? μ2,

 m} of Bo

a r e r e a r r a n g e m e n t of {λl9 λ 2 , - -} l){dλf, dλ2, --}, w h e r e d = d2/d1. T h u s w e

know that the multiplicity of μt is at most two and the corresponding
normalized eigenfunction is (Φn, 0) or (0, Φξ).

For sufficiently large k, n(> No), let λn^1 < dλξ < λn.

(i) If λn^1 < dλξ < {λn-x 4- λJ/2, we have

λn-dλξ>(λn-λn_1)/2>d1n/L2

and

dλξ+1 - dλξ > 2dάγkjL2 > ^d1d2n/L2,

by using the estimate (4.7).

(ii) If (λn-ί + λn)/2 < dλξ < λn, we have

dλξ-λn_1>(λn-λn_ι)/2>dιn/L2

and

dλϊλξ

also by (4.7).

Thus we obtain the following result:

LEMMA 4.1. The multiplicity of the eigenvalue μn of Bo is at most two
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and limsup^n (μn + 1 - μn) = GO.

We will discuss the relation between the eigenvalues of Bε and B o . Let

{λεn} and {</>ε,M} ( n = l , 2, ) be the eigenvalues and the corresponding

eigenfunctions of the following eigenvalue problem associated with the operator

(4.8) ^?ε(dι)φ + (x1φ = λφ in Ω

with the homogeneous Neumann boundary condition

(4.9) — = 0 . on dΩ
dnε

or the mixed boundary conditions

(4.10) φ = 0 on {0 ,L}xD, — = 0 on (0, L) x δD,
dnε

where φ is normalized in H ε(ί2). It is known that 0 < λεΛ < λε 2 < ••• and

K,n ~* °° a s w->°o. We will show the following result:

LEMMA 4.2. For any positive integer Nί9 there exists ε2 = s2{N1) > 0 such

that for 0 < ε < ε2,

(4.11) φεJ τ=Φj

J\D\
<cλNlε

holds for some positive constant c, where \D\ is the N-dimensional volume of D.

Thus, for sufficiently small ε, we know that λεJ is simple and that for

any K > 0 there are a positive integer N2 and ε3 = ε3(N2) > 0 such that

(4.12) infθίείεΛλB,N2+l ~ KN2) ^ K

holds.

The gap property of eigenvalues of Bε follows from Lemma 4.2. Let

{μεn} and {ωεn} (n = 1, 2, ) be the eigenvalues and the corresponding

eigenfunctions of Bε which is normalized in (Hε(f2))2. Similarly, let {λεn} and

{Φε,n} (n = 1' 2'"*) ^ e t n e eigenvalues and the corresponding eigenfunctions of

(4.8), which is normalized in Hε(ί2), with the boundary condition (4.9) or (4.10)

associated with the operator Sε. Note that {με?1, με,2> } are rearrangement

of {λεΛ, λε>2, }u{dAftl, dλξ2,-"} and that the multiplicity of μεn is at most

two and ωεn is (φEψm, 0) or (0, φε;k). The following result is obtained by

Lemma 4.2:
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THEOREM 4.3. For any positive integer Nί9 there exists ε4 = ε4(AΓ1) > 0

such that for 0 < ε < ε4,

(4.13)
1

ω,
ε,X

<cμNίε

holds for some positive constant c. Also for any K > 0 there are a positive

integer N3 and ε5 = £5(N3) > 0 such that

(4.14)

holds.

K

Next we will prove Lemma 4.2. To do it, the following three Lemmas

are needed.

LEMMA 4.4. For any WEH1(Ω):

(4.15)

holds for some positive constant c, where (Jiw)(s) = (1/\D\) w(s, z)dz and Y

Y i %.τ2

or Y .
PROOF. For any weC°°(ί5), we have

dxvΓ dxv
w(s, zί9 z29'~,zN) = w(s, τ 1 ? Z29~',ZN) + V (s' ^i» ^ 2 r ,̂ iv

ΓZ1 5w
= w(s, τ l 9 τ 2 , z 3 , ,z iV) + — (s, ξ l 5 z29"-,zN)dξί

J n ^ 1

f Z 2 5w
— - ( 5 , τ 1 ? ξ 2 , z 3 , ,z iV

τ2 5Z2

= w(s, τ 1 ? τ 2 , ,τN) + 7,

- ΓZ1 5w fZ2 dw
w h e r e / = - — ( 5 , ξί9 z 2 , , z N ) d ξ 1 + T — ( s , τ l 9 ξ2, z 3 , - , z N ) d ξ 2 + ••• +

(s, τ 1 ? τ 2 , , τ i V _ 1 , ξN)dξN. Taking the spatial average of the above

equality on D with respect to zί9- 9zN9 we have

(J(w)(s) = w(s9τl9τ29' '9τN) +— Tdzίdz2- dzN

\V\ JD

and
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(4.16) -
vφ, zu -,zN)-(Jίw)(s) = I -

-
ldz1' -dzN.

Then let us take the spatial average of (4.16) on D with respect to τ 1 ? ,τ N . It

follows that

w(s, zu...,zN)-(Jΐw)(s) =

1

\D\2
ldzx •"dzNdτ1 -- dτN.

D*D

Also by taking the integration on Ω of the above equality with respect to

s,zί9...9zN, we have

w - 0,Ω ^ C l
dw

0,Ω

dw

dzN 0,Ω.

for some positive constant c

| |w — Mw\L < c2\\w —

<ce\\w\\EfY

Therefore we know

dw
0,Ω •

0,Ω

dw

dzN 0,Ω

for some positive constants c 2 and c, by using (3.12) and the definition of

|| | |β i L. Since C°°(ί5) is dense in H\Ω), (4.15) holds for any weH\Ω).

We define the inverse of S[ and S{> (ί = 1, 2) by

(Sg)"1^ = w iff aε(w, υ) = <w, v}L for any veYι

ε

and

^ = w iff ao(w, v) = <M, vyOtI for any

respectively. The Lax-Milgram Theorem shows that (S^)"1 and ( S Q ) " 1 are

well defined. By using regularity properties (see Hale and Raugel [17] and

[18]), we know that (Sj)"1 e JSP(Hβ(β); H2(Ω)) and (S^)"1 e ^ ( H o ( 0 , L);

f/2(0, L)). Therefore, it turns out that (S^)"1 and ( S Q ) " 1 are both compact

operators from Ŷ  and Y*o into Ŷ  and Y{,, respectively.

LEMMA 4.5. (Hale and Raugel [17]) There are ε6 > 0

constant c5 such that
.swrze positive

ii (sir IKSίjΓ1
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holds for 0 < ε < ε6.

LEMMA 4.6. There exists some positive constant c6 such that for 0 < ε < ε6

and any /zeHo(0, L),

II((SD"' - (Sί,)"X)Λ lle.Yi < c6β IIΛ Ho.j (i = 1, 2).

PROOF. We note that heHo(0, L) is considered as an element in Hε(ί2)

and

(4.17) aoUSy-1/*, κ) = <Λ, u\tI for t ie i ί^O, L),

(4.18) a ε ( ( S r ^ , w) = <A, w>L for w e / / 1 ^ ) .

It follows from (4.17) that

L d du CL CL

d1r
N(s)τ((S\)Γ

1h)--ds + a1\ rN(s)((S\))-1h)uds=\ rN(s)huds.
o as ds Jo Jo

Substituting u = \ w(s, z)dz into the above, we have
JD

I d1r
N(s)-((Si

oy
1h) — dsdz + oc, \ rN(s)((S{,)"Λh)wdsdz = \ rN(s)hwdsdz

JΩ ds ds JΩ JΩ

and then

JΩ ds J X \ J dZj

By using (4.18) and letting w = ((S ε)"1 - ( S Q ) " 1 ) / ! in the above, we obtain

••"•'• -1 -(SίΓ^hLr <c

for some positive constants c and d. Here we used (3.12) and Lemma

4.5. Thus, Lemma 4.6 immediately follows.

PROOF OF LEMMA 4.2. The proof consists of three steps.

Step I : Let λj and φj be one of the eigenvalues and the corresponding

normalized eigenfunctions of So (i = 1, 2). We will prove that there is only

one simple eigenvalue λεJ of Sε in a small neighborhood of λj for sufficiently

small ε and the corresponding normalized eigenfunction φεJ with the property

that λεJ->λj and φεJ^(l/^\D])φj as εJ,O. We now define the operators ^ 0

and 9 t by

^ 0 : R x Y 0 >RxY0 with ?0(τ,u) = (ζ0(u-φj), u-φύ-'u)
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and

^:UxYi > U x Yl with ^e(τ, w) = (ζε(w - φj), w - φi)'1 w),

where £0(M) = λJx2ίQ{μ9 φ3) and ζε(w) = λjx2ίε{w9 φ3). The norms in HxYJ,

and UxY[ are defined by ||(τ, u) | | 0 = M + HMIIO.Y* and ||(τ, w)||ε = | τ | +

| |w||ε?Yi, respectively. It is known that po(λj9 φ3) = 0 and that if ^ ε(τ, w) = 0,

then τ is an eigenvalue of Sε with the corresponding eigenfunction w. From

Lemmas 4.4, 4.5 and 4.6, the following result holds:

LEMMA 4.7. (Hale and Raugel [17]) Dpo(λj9 φ3) is an isomorphism from U x Y*o

into itself and there are εOj > 0 and y0 > 0 such that for

0 < ε < εOj, D<?ε(λj, φj) is invertible and

γε = \\(D?ε(λj9 φj))'1 W^RxY^RxYi) < 7o

We introduce the following notations: δε = \\?E(λj9 φj)\\ε9 βε{η) =

sup{\\D?ε(τ, w) - Dpε(λj, ^ )||^(Rχγi,Rχγi)|(τ, w)e&(ε, λp φ}\ η)}9 where 38(ε, λj9

φj 9 η) = {(τ, w)eU x Y<| ||(τ, w) - (λj9 φj)\\ε < η}.

LEMMA 4.8. (Crouzeix [6]) If 2γεβε(2γεδε) < 1, then for any η > 0 satisfying

yεβεW < 1 and n ^ 2yε(5ε, ^ ε(τ, w) = 0 has only one solution (τε, wε)

in &(ε, λj, φj\ η). Moreover, τε is a simple eigenvalue of Sε and

Since the proof is directly obtained by using the contraction mapping

theorem, we omit it.

Since pε(λj9 φj) = ?0(λj> Φj) + (O, ^((SΌ)"1 - (Si)"1)^;), it follows from

Lemma 4.6 that δε < cελj for some positive constant c and 0 < ε < ε6. Also

since

% ε ( τ , w)(v, υ) = (ζe(υ)> » ~ ΦiΓ'v - v(Si)"'w),
we have

j ? (/>,) - % ε ( τ , w))(v, i;) = (0, (τ - λ^T'v - viS^HΦj ~ w)).

Therefore, by Lemma 4.5, we have βε(η) < c'η for some positive constant d

and 0 < ε < ε6. Then we can use Lemma 4.8 by choosing η = ηlj = \/(2γod)9

εlj > 0 and 4γlcdειjλj < 1 and therefore we know that ^ ε(τ, w) = 0 has only

one solution (λεJ, wεj) in 38(ε, λj9 φjm

9 ηltJ) for 0 < ε < εlj9 and that λεj is

simple and

(4.19) \λεJ - λj\ + || w e J - ^ | | e f Y ί < cyoλjε, 0 < ε < εUj.

We normalize wεj by letting φεj = wεJ/\\wεj\\L so that | |φ ε , ; | |L = 1. It follows

from (4.19) that
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Using \\Φj\\L = ^\D\\\φj\\0J = ^\DU we have

1

J\\L\ ^ cγoλjε for 0 < £ < ε w .

for 0 < ε <Φj

for some positive constants c and ε 2 J .

Step I I : For any positive integer Nί9 let ε 2 = mm{ε 2 > 1 , ε2,2? >ε2,iVi} It
follows from the results in Step I that for 0 < ε < ε 2 , Sg has simple eigenvalues

λBt!,...,λBtNι in 0lγ

Nχ = U7=i C^ - î,7> λj + »7i,jll a n d

ί < \ λ ε J - λj\ cλ*

for some positive constant c.

Step III. Letting <%2

Nι = (0, λ± - ηltlM{J^l2(λJ.1 + ηuj-u λj - ηUJ))9 we

will prove that S* has no eigenvalue in 0t\x when ε is sufficiently

small. Suppose that this is not true, then threre exists a sequence {επ} (επJ,0

as n-»oo) such that λεnsSt^x is the eigenvalue of S n̂. Letting φεn be the

corresponding eigenfunction of Sι

εn normalized in Hε n(Ώ), then we have

Ϊ II Φen J = en> ΦUL = Kn <

for some positive constant c. Therefore | |φ ε J | ε n > L

 a r e uniformly bounded and

by the compactness of (S^)"1 there exists a subsequence of {εn}, also denoted

by {επ}, such that λEn -+ λ0 and φεn->φ0 strongly in Hi(Ω) for some λoe0t^^

and φoeHi(Ω) with \\ΦO\\O,Ω^ ® horn the normality of φEn. By the definition

of II ||ε,Lί w e know that φo(s, z) = φo(s) does not depend on zί9...,zN. Thus

it follows from Lemmas 4.5 and 4.6 that

as n oo.

Together with φεn = λεn(St

εn)~iφεn, we have φ0 = λo(Si

o)~1φo. That is, Sι

oφo

= λoφo which implies that λ0 is an eigenvalue of SQ with the corresponding

eigenfunction φ0. This is a contradiction so that we find that the conclusion

is true.

§5. Existence of inertial manifolds

We rewrite the systems (3.2) - (3.5) and (3.6) - (3.9) as the following

abstract forms:
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Γ l / f = - B β l / + F β ( l/), ί > 0 ,

and

( 5 2 ) Γl/ f =-B o l/ + Fo(t/), ί>0,

ll/(0) = t/oeKI,

respect ive ly, w h e r e U = (u, υ)9 Fe(U)(s, z) = (fε(u9 υ; s9 z), gε(u, v; s, z)), F0(U)(s)

= ( / 0 ( M , U; 5), go(u, υ; s)) a n d K, = {(u, υ)\0 <u< Kί9 0<v < K2}. B e c a u s e

[A] holds for (5.1), we can modify the nonlinear terms Fε outside K, as follows:

for 0 < ε < ε4, Fε satisfies

(5.3) Fε{U) = 0 if UeKu = {(u,v)\- 1 < u < K, + 1, - 1 < v < K2 + 1},

(5.4) sup{ |F β ( l / ) | , | i )F e ( l / ) | , | ί ) 2 F β ( l / ) | }^M 1 for ί/eR 2 ,

(5.5) IF^U,) - Fε(U2)\ ^M.IU,- U2\, \Fε(U)\ <M1\U\ + M2

for U, Ul9 U2eR2

for some positive constants Mx and M 2 uniformly with respect to (s, z), since

we only want to discuss the dynamics of bounded solutions of (5.1). Since

/ and g belong to Wlt(X>(Ω), the following inequality holds for some positive

constants c6 and cη:

(5.6) l | F ε ( l / ) - F 0 ( l / ) | | H < c 6 ε | | L / | | H + c7ε for Ue(L2(Ω))2.

We will discuss (5.1) only, because (5.2) can be considered similarly. We

want to construct inertial manifold for the following initial value problem of

(5.1):

( 5 7 ) fl/ f=-BεI/ + Fβ(l/), ί>0,

ll/(0)=t/06KInKIII,

where KΠI = {Ue\ε

Ptβ\ \\U\\Xspβ < K3}. Here, \p%β = 0(Bf) when Bε is consi-

dered as an operator in (LP(Ω))2 with \\U\\Xεpβ= ||Bf l/| | ( L P ( β ) )2, p > N + 1 and

βe((p + N + l)/2p, 1). Fix Kl9 K2 and K3 sufficiently large. Then we know

that there exists a unique global solution U(t) of (5.7) such that [/(fJeC^flΌ, 00),

Xε)Π^(Bε) (Henry [19]) and that U(t)eK^Kπ) if the system (5.7) has the

(asymptotically) invariant region assumed in [A]. Moreover, the following

result holds (for example, Ei and Mimura [11]):

LEMMA 5.1. There exists a positive constant c such that any solution U(t)

of (5.7) satisfies

i(β))2^c for ί > 0 .
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By Theorem 4.3, we know that for any large μ > 0 there exist some

positive integer Nx and ε4(N1) > 0 such that μNι < μ < μNί + 1 and μεNι < μ

<με,Nι + ι for 0 < ε < ε 4 . Let yε

μ = span{ωεtί9~ 9ωεtNι} and W* = (V*)1

= clspan{ωεj\j > ΛfJ. We define P* and Q* be the natural projection from

(Hε(ί2))2 into V* and Q* = I - P«, respectively. Let p = Pε

μU and q = Qε

μU.

Then (5.7) can be written as

( 5 8 ) ffc = Bεp + P^(Fε(p, q))9

where Fε(p, q) means Fε(p + q). Let θ: [0, oo) -• [0, 1] be a smooth function

such that θ{ξ)=l if 0 < ξ < K4(max{K1 + 1, K2 + I})2 and 0(£) = 0 if

f > 4K4_(max{K1 + 1, K2 + I})2, where X 4 > 1 is a sufficiently large fixed

constant. By following Mallet-Paret and Sell [30], (5.8) can be rewritten as

ί 5 9 ) ίPt = ~ BeP + θ(\\p\\2

H)Fμ(FE(Pi q)) EE

\ B + θ(\\||έ)Qβ

μ(Fe(p, q)) = -

LEMMA 5.2. Let U(t) be a solution of (5.9). For 0 < ε < ε4 ί/zere exists

t1 > 0

PROOF. Rewrite (5.9) as

Ut= -BεU + θ(\\p || i)Fε{U).

Then we have

\ τllc/WllH + <Bet/, uyH = (θ(\\P\\2

i)Fε(U), uyH.
2 at

It follows from the modification of Fε that there exists some positive constant

c such that

\ ~ II ί/(ί)|β + α|| £/(ί)||έ < a/21| U{t)\\ϊ + ^

where a = min{al9 a 2}. Therefore, by using the Grownwall inequality, we

have

II C/WIIH < II U0\\He-«t/2 + c' < -K^maxiK, + 1, K2 + I})2 for ί > ί t

for some positive constants d and ίx and sufficiently large K4(> 1).
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Lemma 5.2 implies that the attractors of (5.8) and (5.9) coincide with each

other. In order to use the existence theorem of inertial manifolds in

Mallet-Paret and Sell [30], we introduce some notations. Let

Ku = Kur){U\\\U\\iCHΩ))2<R,}

for fixed large positive constants Rί9 R2 and R3. Note that for U, V and

Ό + Ve(Aε>μ x C ε ' μ)nKπ,

F3(U + V)(x) - Fε(U)(x) - (ΌFε(U))(x)V(x)

= Γ lΌFε(U + τV)(x) - ΌFe(U)(x)]V(x)dτ
Jo

and that | | l / | | H ->0 implies \U(x)\-^0 in Ω. Then it follows from the

modification of Fε that for any η > 0, there is δ > 0 such that

\\Fe(U + V) - Fε(U) - D F β ( l 7 ) 7 | | H < η \\ V\\H

if \\V\\H<δ and that

| |DF e(l7) - ΌFε(V)\\^mEiΩ))2ΛHε(Ω))2) < η

if || U — V\\H<δ. Therefore, we obtain the following two lemmas.

LEMMA 5.3. (Regularity Condition) # , and $ε are C1 in (Aεφ x C ε ' μ ) n K π

for 0 < ε < ε 4 .

LEMMA 5.4. (Dissipative Condition) If Rγ> 2y/κ4max{K1 + 1, K2 + 1},

then %ε{p, 0) = 0 and <p, ̂ ε ( p , 0)>H < 0 for pecl(\ε

μ\Aε^).

LEMMA 5.5. (Sobolev Condition) For any R1 > 0 there exists R2 such that

if p o e A ^ and p(t; p0, 0 ) G A £ ' / X in [0, ί o ] for t0 > 0, then q(t; p0, 0)GC ε ' μ in

[0, ί 0 ] for R2>R°2 and 0<ε< ε 4 .

PROOF. Letting exp(— Bεή be the semigroup generated by — Bε, we know

that for Ue(Hε(Ω))\

(5.10) \\exp(- Bεt)Qε

μU\\H < e-«\\U\\B9 t > 0,

and

(5.11) \\Bl/2exp(- Bεt)Qε

μU\\H < μ^2b(μt)\\U\\Hi t > 0,

where
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τ)-^2 in (0,1/2],
b(τ) = ,

[~τ in [1/2, oo)

and c1/2b(ct)dt = 2(ce) 1 / 2 . By using arguments similar to the one in
Jo

Mallet-Paret and Sell [30] or Hale and Raugel [17], we know that when

Fε(U) takes Fε(U) for the Neumann boundary conditions or Fε(U) — Fε(0)

for the mixed boundary conditions, F ε(l/)e^(B ε

1 / 2) holds if

Moreover, there are positive constants M 3 and M 4 such that

(5.12) || Bε

1 / 2Fε(ί/)| |H ^ M31| Bε

1/2 U||H + M 4 for

for both boundary conditions and especially

(5.13) l|Bε

1/2Fε(0)||H < M 4 for the mixed boundary conditions.

Let μ > max{\ + Ml9 1 + 2M3}. Then q(t; p0, 0) satifies the following

integral equation:

_ Γ 2

Jo ' μ

We thus have

| | 4 ( ί ) L < I e~'*t-a){M1R1+ M1\\q(s)\\H + \Ω\ιl2M2)ds, ί e [0 , ί o ]
Jo

and then by using the Grownwall inequality,

(5.15) \\q(t)\\u < l—(MxRx + |^ | 1 / 2 M 2 ) , ίe[0, ίo].
μ- M1

Applying Bε

1/2 to the formula (5.14), we obtain

Substituting (5.15) into it, we have

(5.16) l |B ε

1 / 2 ^( ί) | | H <M 5 μ- 1 / 2 , ί e [ 0 , ί o ]

for some positive constant M 5 . On the other hand, we know

(5.17) HBβ

1 / 2p(ί) | |H^μ 1 / 2Λi, ί e [ 0 , ί o ] .

When the Neumann boundary conditions are imposed, applying Bε to the
formula (5.14), we have
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BBq{t) = \B^2exp(- Bβ(ί - s))B^2(β(||p(s)||S)Q«(Fβ(p(s), q(s))))ds
Jo

and then by using (5.16) and (5.17)

[μ1/2b(μ(t - s))[M 3 WB"2p(s)\\B + M 3

o

6 + M 7 μ " 1 / 2 , ί e [ 0 , ί o ]

|Bβ<z(ί)||e < [
Jo

for some positive constants M 6 and M 7 . When the mixed boundary

conditions are imposed, the above estimate can be similarly obtained by

showing the additional term

Γ
Jo

B\'2exp(- Bβ(ί -

is bounded by some constant indepedently of μ and t. Therefore, by choosing

R2 sufficiently large, we have

l|B ε4(r)llH<#2, ί e [ 0 , t o ]

LEMMA 5.6. (Linear Stability Condition) For any Rί9R2>0 and

0 < ε < ε 4 , if the constant I satisfies I >sup{\\Ό<gε(p9 q)\\^i(fle{Ω))2ΛHeiΩ))2)\(p9 q)

e(Aε'μ x Cε>μ)nK,,}, then there exists Λ>21 such that (q, Bεq}H >

PROOF. Since

p9 q)(p9 σ) = 2D0(||p| |2)</?, p)HQε

μFε(p, q) - 0( | |p | |£)Q'DF e (p, q)(p9 σ)9

we know that

I I D ^ i n /7ΉI -, , < Ί ϊun(\Q'\\R M ίr l O l W 2 4- M r
II *~* ^ε\r "> H) II J^((H (ί2)) 2 (H (Ω))2) — ^^^y VI ^ I / 1 ^ •" 1 v Ί I " ^ I / T^ JVI ^ c

for some positive constant c. On the other hand, we know

<g, Bεg>H > μll^llπ for geW£ni^(B ε) and 0 < ε < ε4.

Thus, the proof can be shown by choosing μ to be sufficiently large.

Let p and σ satisfy the following equations:

(5.18)

andlet I = - ( | | σ | | 2

I - | | p | | 2 ) . It is known that Γ = <σ, - B ε σ + D^ ε(p, q)(p, σ)>H

', q)(p,σ)>w
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L E M M A 5.7. ( U n i f o r m C o n e C o n d i t i o n ) For any R2>0 and Ri>

2^/^4max{K1 + 1, K2 + 1}, there exists a positive integer N1 such that for

0 < ε < εΛNJ, (p, tf)e((Ae " x Cε'«)U(V* x {0}))nKπ, pe\ε

μ and

satisfying (5.18), if | | p | | H = | |σ | | H = 1, //zέw we W e Γ < - 1.

PROOF. We rewrite Γ as

where

H = 2θ'(\\p\\^)(p, ρ>H(Fε(p, q), σ - p}H + θ(\\p\\^){ΌFε(p, q)(p, σ), σ - p>H.

By using the modification of Fε(p, q), we find | H | < M 8 for some constant

M 8 > 0 independently of ε and μ. Thus we know that

Γ < - με,Nι + l + με,Nι + M 8

Since Theorem 4.3 shows that there is a positive integer Nί such that

με,N! + i — με,Ni ^ ^ 8 + 1 for 0 < ε < ε 4(N 1),

we immediately find that Γ < — 1.

REMARK 5.8. More precisely speaking, it can be shown by Theorem 4.3

that there is a positive integer Nι such that Γ < — 2 M 8 for 0 < ε < ε4(Λf1).

A similar argument can be done to the case when ε = 0. We only note

that \ μ and W^ are defined as V° = spαn{ω1/λ/^DJJ ,ω i V l/N/ίDJ}, W£

= clspan{cuj/y/\D~\\j > ΛΓj, respectively, and that (5.8) is modified by

multiplying 0(|| y/|Ό|PIIO,HO) ^n p l a c e °f ^(IIPIIH) That is, we may consider
the following equation in place of (5.9):

(5.9)' \ P t = -
lqt=-Boq + θ(\\j\D\p\\lHo)Q°μ(Fo(p, q)) = - Boq + 90(p, q).

The results similar to Lemmas 5.2 - 5.7 hold for (5.9)'.

By applying the result in Mallet-Paret and Sell [30] to the above, we

find that the following existence theorem of inertial manifolds holds, where

|| || means || | |H or || | |O f H o.

THEOREM 5.9. There is a positive integer N1 such that for 0 < ε < ε4(AΓ1),

there exists a C1-function Φε:\ε

μ^>Wμ with HDΦ^I^ ε = sup{ \\ΌΦε(p)p \\ \p,

peYε

μ, | |p | | < 1} < 1 satisfying Φε(p)eCε>μ for peVε

μ, suppΦεeAε>μ, and

9Jtε = graph Φε is an invariant manifold of (5.9) ((5.9)' if ε = 0), which is locally

attracting in the sense that if U(t) is the solution of (5.9) ((5.9)' if ε = 0) and
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U(t)eEε>μ = {(p, q)eAε>μ x Cε μ | | |g|| < distfa bodryAε<μ)}, then

dist(U(t),W) <2e~κt diamCε>μ <cR2e~κt for t > 0,

where K and c are positive constants independent of ε, μ and t.

REMARK 5.10. Let (p(ί), q(ή) (-00 < t < 00) be the solution of (5.9) or

(5.9)' for 0 < ε < εJΛ^). If (p(ί), q(t))eAε>μ x C ε '" for all t, then (p(ί), <z(ί))e$0ϊε

holds for all ί. Especially, if (p, ^) is a bounded equilibrium solution of (5.9)

or (5.9)', then (p, ^)G$Rε for some appropriate constants μ, # ! and K2.

Let SDΪQ a n d 3Mε denote respectively Vε and the image of WQ under the

flow of (5.9) (or (5.9)0 at time t. It is shown by Mallet-Paret and Sell [30]

that there exists a Lipschitz continuous function Φε

t: Vε -• Wε with the

Lipschitz constant less than 1 such that Wt = graph Φ\. The following results

which are obtained in [30] will be useful in the next section.

PROPOSITION 5.11.

(i) ||Φε(p) - Φ ε(p)| |H ^ MR2e~κt holds for t > 0, 0 < ε < ε4 and peV ε , where

M is some positive constant independent of ε and μ.

(ii) Let τ > 0 be a given small constant. Then for any η > 0 there is a positive

integer N2 such that for any integer m, it holds that Φ\m + ̂ 2)τGCλ and

- ΌΦε(p)p\\H <η\\p\\Hfor0<ε< ε4 and p, peV ε .

§6. Reduced forms

We know in the previous section that (5.9) and (5.9)' on the inertial

manifolds W and 9Ji° are

(6.1) — = &t(p, Φε(p)) for peVε

μ

and

(6.2) — = #o(P> Φ°(p)) for peV^,

respectively. Define π ε : Vε -• RNί for 0 < ε < ε4(ΛT1) by πε(p) = β = {β1, , βNι)

G RN l for p = £^= i βjωεj> a n < i π o : ^μ ~̂  RN l by πo(p) = β e RNl for p =

^ N 1

7 . By letting Φ*ε(β) = Φε{πε

 1 /?) and Φ*°(β) = Φ°(π0

 xβ), (6.1)

and (6.2) can be written as

(6.3) ^ = π&fr^β, Φ*ε(β)) Ξ
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and

(6.4) ^ = π o ^ o ( π o - x β,
at

respectively. Let Bro = {βeRNι\\β\ <r0}, where | | is the usual norm in

RNί. By using the similar argument to the one in Hale and Raugel [17], we

will show the following result:

THEOREM 6.1. There exists rξ > 0 such that for ro>rξ, Φ*ε -+ Φ*° in

CHBro'ΛL2(Ω))2) as s 10.

The above result implies that &*-+&£ holds in C 1 ^ ; RN l) as εjO.

PROOF OF THEOREM 6.1. The following two lemmas are obtained from

Proposition 5.11 and Theorem 4.3:

LEMMA 6.2. For any η > 0, there is t0 = to(η) > 0 such that for β, βeRNί

and 0 < ε < ε4,

|| φ**{β) - φ*o{β) | |H < 1 + || φf:[β)

and

\\ΌΦ**(β)β -ΌΦ*°(β)β\\H<η-\~β\
o

LEMMA 6.3. There exists a constant c8 > 0 swc/z that for 0 < ε < ε4

L/e(H0(0,L))2,

From now on, we will omit μ from superscripts and subscripts for

simplicity only. Let us introduce the following notations: For βeRN\ let

Uε(t; β) = (pε(t; β), qε{t; β)) be the solution of (5.9) or (5.9)' with the initial

value l/ε(0; β) = (π^β, 0) for 0 < ε < ε4. For ί0 > 0, which was stated in

Lemma .6.2, there exists δε(β)eRNl such that Uε(t0; δε(β)) = (π^β, Φ*ε(β))

^(π^βiΦKπ^β))). For simplicity, we write Ue(t; δε(β)), pε(t;δε(β)),

qε(t;δε(β)) as Uε(t), pε(t), qε(t) and U°(t; δε(β)), p°(t; δε(β)), q°(t;δε(β)) as

l/°(ί), p°(t), q°(t), respectively.

LEMMA 6.4. Let 0 < ε < ε4. If βeBro, then

mαx{| |B εl/
ε(ί) | |H, IIBot/°(t)HO,H0} ^ max{2μe^r0, μRx + R2} for t > 0.

PROOF. It there is t1 > 0 such that



Inertial manifold theory and equations on thin tubular domains 493

r0, μR, + R2} > μR, + R2,

it follows from

that

| |p ε(ί 1)| |H> JR 1 or \\Bεq
ε(t1)\\H>R2.

In the former case, since R{ > 2^JΊ<ϊArmax{Kι + 1, K2 + 1}, t/ε satisfies

Ut=-BeU

and then

(pε(ί))f = - Bεp
ε(ί),

if ί is close to ίx but t < t1. It implies that

for some positive constant μ0 > 0 as long as JJε

t = — Bε U
ε holds. On the

other hand, ||pε(ί)||H > #i implies L/ ε =-B ε L/ ε , if t closes to ί but
t < t. Therefore, we have

Uε

t = -BEUε for 0 < ί < i : .

Thus it follows from the initial value <f (0, <5ε(/?)) = 0 that

qε{t) = 0 for 0 < t < tx

and

\\π;1δε{β)\\*= l l p ε ( 0 ) | | H > l l p β ( ί i ) l l n ^ - | | B β p β ( ί 1 ) | | H

— II R Γ/εί'/- ΊII ^ 0pμtor
— ~\\aεu \τl)\\H > z e r0-

μ
That is, if r0 is chosen sufficiently large, we find

(6.5) K - ^ ί / f l L > 2^ ί or 0 > max{Rl9 \β\}2e^.

We note that since Rx > 2jl^^max{Kx + 1, K2 + 1}, £/ε(ί) satisfies

l / ^ - B . 1 7

as long as ||/?ε(ί)llH > ^i> a n d when it holds, we find that qε(t) = 0 and
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Since (6.5) leads to \\pε(t0)\\H > e-μt0\\π;ιδε{β)\\H > 2RU we have

qε(t) = 0 and \\pε(ή\\H> e-^Wπ^δ^β)^ for 0 < t < t0.

Especially, when t = f0, we know by the above inequality and (6.5) that

This is a contradiction to ||pε(ί0)llH = W71^1 β\\π = \β\

The latter case does not occur because || 6 ^ ( ^ ) 1 ^ < R2 holds for

H p e ( ί i ) L ^ K i by Lemma 5.5.
As the case when ε = 0 can be studied similarly, we omit its discussion.

REMARK 6.5. B " 1 and B Q 1 can be defined in a similar way to (S^)"1

and ( S Q ) " 1 (i = 1, 2) and by Lemma 4.5, B " 1 and B Q 1 are respectively

uniformly bounded in j£?((Hε(ί2))2; (H2(Ω))2) and i?((Ho(0, L)) 2 ; (# 2 (0, L))2)

for 0 < ε < ε 6 . It is thus shown that they are compact operators from Xε

and Xo into Xε and Xo, respectively. Together with Lemma 6.4, we have

(6.6) max{\\ ί/ε(ί)||H, || U°{t)\\0tBo} < c9 for t > 0

for some positive constant c9 which may depend on ί0, μ and r0.

LEMMA 6.6. Let 0 < ε < ε4. If βeBro, then

|| Uε(t) - U°(t)\\H < c^yfi?"* holds for 0 < t < ί0,

where c 1 0 and c11 are positive constants which may depend on ί0, μ and r0.

PROOF. Note that U°(t) satisfies

= _ Bol/° + »(|| V/ΓDΪP0 llg.oo)̂ o(t/0)-
at

Taking the inner product with he(Hι(Q, L))2, we have

(6.7) (^f-,h) = ~K(U\ h)
\ dt /

f
Letting h = w(s, z)ds for we(H1(Ω))2 and substituting it into (6.7), we have

J
D

w) + be(U°, w) = (θ(\\^\D\po\\lHΰ)Fo(U°), w>H
/
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where U° = ((U°)l9 (l/°)2) and w- = ((w)1? (w)2). On the other hand, using

( , w | + bε((7ε, w) = <^( | | /7 £ | |H)F £ (L/ £ ), W ) H ,

we have

- (L/ε - (7°), w ) + bε{Uε - U°9 w)
dt

= <θ(\\pe\\2»)Fε(Uε) - θ(\\J\D\p°\\lHo)F0(U0), W>H

Putting w = ί/ε — U° in the above formula, we obtain

for some positive constants c1 and c2. Here we know

and by Lemma 6.3

||ί>ε(ί; δ°(β)) - p°(t; δe(β))\\H < ||PεL/°(r; δ'(β)) - P°C/°(ί;

+ \\P*W(t;δ°(β))-P°U0(t;δ°(β))K

< c3εμ\\ U°(t; ^(j8))|lolHo + II ̂ ε W - U°(t)\\H

for some positive constant c 3 . By using Remark 6.5, we thus obtain

for some positive constant c 4 . Substituting it into (6.8), we have

(6.9) i || W - U°||2 < c5ε + c61| W - U° \\2

H

dt

for some positive constants c 5 and c 6 . Since Theorem 4.3 indicates that

L/ε(0; <5ε(i?)) = π^δ'iβ), 17°(O; 5ε()β)) = π^ 1<5ε(i?) and || ί/ε(0) - C/°(0)||H < c7ε

for some positive constant c 7 , it follows from (6.9) and the Grownwall

inequality that there are c 1 0 , c u > 0 such that Lemma 6.6 holds.
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LEMMA 6.7. Φ*ε-> Φ*° in C(B ro, (L2(Ω))2) as ε | 0 .

PROOF. Since Φ° has a Lipschitz constant less than 1, we know

IIKε(β) - K°(β)\\u < \\K(πrf(t0; m)) - < W ° ( ί 0 ; δε(β)))\\H

+ Wπ^β - p°(t0; δ*(β))\\H

- U°(t0; δε(β))\\H +

\\pε(to;δε(β))-po(to;δ
£(β))\J

for some positive constant c. On the other hand, it follows that

\\pε(t0; δε(β)) - p°(ί0; δε(β))\\H < c'εμ\\ U°(t0; δε(β))\\0,Ho

+ llc/ε(ί0)-(70(gιιH

for some positive constant d. We thus obtain

|| t/0(ί0)||o.Ho) + C2 II ̂ β(ίθ) - l

for some positive constants cx and c 2 . Therefore, by using Lemma 6.2, Remark

6.5 and Lemma 6.6, the conclusion holds.

We next show that Φ*ε^>Φ*° in C 1 ^ , (L2(ί2))2) as ε | 0 .

LEMMA 6.8. For αwy /̂ > 0, there are t0 — to(η) > 0 and ε7(iV1) > 0

for 0 < ε <

- DΦ* o (π o p°( ί o ;

for β,βeRN>, βeBro.

PROOF. Since Φ*° belongs to C 1 , we find that DΦ*° is uniformly

continuous from B 2 r o into i f (R N l , W°). Thus for any η > 0, there is

v = v(ιy) > 0 such that if β1, β2eB2ro and {β1 - β2\ < v, then

(6.10) || DΦ 'tf1) - D Φ f ^ l l ^ . ^ w o ) < J
o

holds. On the other hand, noting by Theorem 4.3, Lemmas 6.6 and 6.7 that

there are positive constants c l 5 c 2 and c 3 such that
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\β - πop°(to; δε(β))\ = \\π^β - p°(t0; δε(β))\\0Mo

< Cί \\π;β - π^βU + c 2 | |p ε ( ί 0 ; δε(β)) - p°(ί0;

<c3^ε for βeBro,

we can choose εΊ(N1) sufficiently small such that

\β-πop°(to;δ
ε(β))\<v.

The conclusion follows immediately from (6.10) and Lemma 6.2.

In order to estimate | |DΦ* ε(π ε/? ε(ί0; δε(β)))β - ΌΦ*°(πop°(to; δε(β)))β\\H,

we will give the precise expressions of D Φ * ε and DΦ*° . We note that

Pit) = ττ;Pe(ί; β)β and σ(t) = —qε(t; β)β satisfy the equations
cβ oβ

( 6 Π ) {Pt = Ό^ε(p(t;β), q*(t;β))(p,σ)

\σt = - BEσ + Ό$ε(pε(t; β)9 q
ε(t; β)){p, σ)

with the initial data ρ(0) = π~1β and σ(0) = 0, and that the backward uniqueness

of solutions of (6.11) holds. Let us show that — pε(t; β)e^{RNl, Vε) is
dβ d

invertible for any t > 0. In fact, if there is tί > 0 such that —pε(t1;β)β = O9

dβ

since σ(0) = 0, ρ(0) = πε'
1β which imply | |σ(0)| |H < | |p(0)| |H, we have by

Lemma 5.7 that || ̂ ( ί i ) | | H < ||/δ(ίi)||H which implies σ(ίx) = 0. The uniqueness

of solutions of (6.11) shows that p(t) = σ(t) = 0 in [0, ί x ] . Especially,
p(0) = π~ιβ = 0 gives β = 0. It turns out that —p ε(t; β) is invertible. Since

dβ
q ε(ί' ; β) = Φ*ε(πεp

c{t' β)) for t' > 0, we have

(6.12) DΦ,ΐε(πePε(f;i5)) = Γ^ ε(t ';iβ)lΓ^p ε(ί ';iS)l ^ 1 for ε>o.

We simply write pε(t;δ%β)), q£(t;δε(β)) and p°{t; δ*(β)), q°(t;δε(β)) as

pε(ί), qε(t) and p°(t), q°(t) as before. Let (pε(ί; β), σε(ί; β)) be the solution of

the equations

( 6 1 3 )

1 B + D ^ ( ε ( ί ) ε(ί)) (p, σ)

with the initial values

^) = 0, pe(0; β) = π,"1 Γ^p ε ( t 0 ; y)l ^ for ε > 0
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a n d Yd Ί " 1

σ°(0 ;β) = 0, / ( O β) = πo~ ' \ - p°(t0 γ) π0"»β.

We know that

and

Therefore, it follows from the above formula and (6.12) that

p*{to;~β) = π;ι~β for ε > 0,

σ ε ( t 0 ; β) = ΌΦ*%πεp*(t0; δε(β)))β for ε > 0

a n d

σo(to;β) = ΌΦ*o(πop°(to;δ°(β)))~β-

It is sufficient to estimate | |σ ε ( ί 0 ; β) — σ°(t 0 ; β)\\H in order to estimate

| | D Φ * / ( π ε ί / ( ί 0 ; δ°(β)))β - DΦ*°(πoP°(to; δ*(β)))~β\\H.

LEMMA 6.9. Let \β\ < 1. Then for 0 < ί < ί0 α«ί/ 0 < ε < ε 7,

(6.14) | |σ ε(t; ^ ) | | H < | |p ε (t; jj)| |H < e<"+<)'o,

(6.15) IIPE(ί;^)L,H

(6.16)

hold for some positive constants c[ and cr

2.

PROOF. Since σε(0, β) = 0, p ε(0; ^) ^ 0 so that | |σ ε(0; /Q||H < | |p ε (0; j»)||H,

we have by Lemma 5.7 that | |σ ε(ί; ^ ) | | H < \\pε(t; β)\\H. A similar argument

to the one in Mallet-Paret and Sell [30] shows that

\\pε(t; β)\\H < \\pε(tol J 8 ) I I H ^ + C ; ) ' ° < eiμ+c[)t0 in [0, ί 0 ]
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for some positive constant c[, which implies that (6.14) holds. (6.15) is obvious

since | |B ε

1 / 2p ε(ί; j8)||H < y/μ\\pε(t; β)Wu holds. (6.16) immediately follows from

the Grownwall inequality by taking the inner product of the second equation

of (6.13) with Bεσ
ε(t;β).

LEMMA 6.10. Let \β\ < 1. Then for 0 < ε < ε7,

(6.17) \\σε(to;β)-σ°(to;β)\\H<c'3ε
Kί

holds for some positive constants c'3 and κί.

PROOF. Let

φo(t) = po(t;β) + σ°(t;β),

p(t) =P'(t;βj-Vφ0(t),

σ(t) = σc(t;β)-Q°φ°(t).

We know that

| |σ ε(ί 0; ~β) - σ°(t0; β)\\B < | |σ(ί) | |H + II(Pε - P0)<A°(OIIH

and by Lemma 6.3 and (6.14) that

(6.18) \\σε(to;β)-σ°(to;β)\\ιι<cιε+ | |σ(ί o ) | | H

for some positive constant cι. Thus it is sufficient to estimate | |σ(t o ) | | H . Note

by Theorem 4.3, Lemma 6.3 and (6.14) that

for some positive constant c 2 . Then if ||σ(to)llH ^ II Pί^o)IIH> (6.17) is clear. We

next consider the case when ||/o(to)||H < | |σ(t o ) | | H . Let ϊ(p(ί), σ(ή) = (||σ(f)||έ

- IIP(0IIH)/2 and suppose that ϊ(p(ί), σ(ί)) > 0 for ί e ^ , ί 0] with tx > 0 and

ϊ(β(ti), σ(ίi)) = 0. (If I(p(t), σ(t)) > 0 in [0, t 0 ] , let t, = 0). Using the

argument used in the proof of Lemma 6.6 on (6.13), we have

<Ψ?(t), W>H + bε(φ°(t), w)

= - 2ΌΘ(\\^\D\po(ή\\lHo)(J\D\p°(t), p°(t; β)yo,HO<Fo(U°{t)), w>H

- θ(\\^\D\p0(t)\\lHo)φF0(U0(t))φ°(t), w>H

where φ°(t) = ((φ\, (φ%)e(H1(0, L))2, w = ( W , , M 2 )e( f ί ' ( f l ) ) 2 . Letting

w = σ(t) and w = p(i) in the above formula, respectively, we have
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~ϊ(p(ί),<τ(t))U(1at

!)>H - <Λ(ίi), p(ti)>H = - < B

ε σ, σ>H + <B8p, p>H

|IH)<P", P > H < W ) , β - σ)a

+ θ(\\p*\\2

H)φFt(U°)(p + σ),β- σ)H + Gx,

where

), ^ - p>H

e(||Ίlέ)<DF(l/ε)lA°, σ -

By using the gaps of eigenvalues of Bε, we have

(6.19)

Recall that Uε{ή and U°(t) are uniformly bounded in (L°°(ί2))2 for 0 < ε < ε7

and t > 0. Then by using Lemmas 6.3 ~ 6.6 and 6.9, we have

for some positive constants c 3 , c 4 and /c2. Substituting it into (6.19) and using

Γ(p(ίi), σ(ίx)) > 0, we obtain

(6.20) ll<r(ίi)llH ^ c5ε
K3 for some cS9 κ3 > 0.

Also, by (6.13), we have

1 d

2 at

- θ{\\tf\\&φFε{υ>){p + σ), σ)H + G 2,

where

G , =
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It follows from the modification of Fε, Remark 5.8 and ||p(ί)HH ^ II^WIIH for

ίi < t < t0 that there is some positive constant M 9 such that

(6.21) ^ I | σ ( ί ) | | i ^ - M 9 | | σ ( ί ) | | έ + | G 2 | for te[tl9to]
2 at

holds. G2 can be estimated in a similar way to G1 so that there are some

positive constants c6 and cη such that

| G 2 | < c 6 ε K 2 | | σ ( ί ) | | H + c 7 V

/ ε for ί e [ ί l s ί 0]

holds. Substituting it into (6.21), we have

^ | | σ ( ί ) l l H ^ c 8 | | σ ( ) | l i + c 9 ε^ for t e [ i l 9 ί 0]
dt

for some positive constants c 8 , c 9 and κ 4. Therefore, we find by (6.20) that

holds for some positive constants c 1 0 and κ5. So that (6.17) follows from the

above inequality and (6.18). Thus, Lemma 6.10 is proved.

We know that Φ* ε -+ Φ*° in C^B^, {L2(Ω))2) as ε 10 follows from Lemma

6.8 and Lemma 6.10. Thus, the proof of Theorem 6.1 is complete.

§7. Equilibrium solutions problem

We now investigate the relation between two solutions of the systems

(3.2)-(3.5) and (3.6) - (3.9). Let U? and Uξ be respectively equilibrium

solutions of (3.2) with the boundary condition (3.3) or (3.4) or (3.5) and of

(3.6) with the boundary condition (3.7) or (3.8) or (3.9). The linearized

eigenvalue problems of (3.2) around (7ε* and (3.6) around U$ are described by

(7.1) - Bε W+ ΌFε(U?) W= -μW

and

(7.2) - B0W+ ΌF0(Uξ)W= - μW.
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U* (resp. Uξ) is said to be nondegenerate if (7.1) (resp. (7.2)) has no zero

eigenvalue. We show the following result.

THEOREM 7.1. Let Uξ be a nondegenerate equilibrium solution of (3.6)

with (3.7) (or (3.8) or (3.9)) satisfying 0 < U$ < K* in (0, L). Then there is

ε8 > 0 such that for 0 < ε < ε8 there exists a nondegenerate equilibrium solution

U* of (3.2) with (3.3) {or (3.4) or (3.5)) satisfying 0 < C/*(s, z) < R* /w ί2 swc/z

that Uf->U$ in (L2(Ω))2 and ί/*(s, z)-> l/£(s) m ί2 as εjO. Moreover, let

the eigenvalues of (7.2) and (7.1) fe {μj (i = 1, 2, ) (Reμ x < R e μ 2 < •••) ««<i

{μUt} ( ΐ = l , 2 , - ) ( R e / ι l i β ^ R e / i 2 i e ^ . ). ΓAβ/i

(i) Tf R e μ x > 0, ί Λ ^ there is μ* > 0 .swc/z //*α/ R e μ 1 > ε > μ* for 0 < ε < ε 8 .

(ii) If Reμm < 0, RQμm+1 > 0 for some positive integer m and at least one of

{μ l5 ,μOT} is simple, then there exists an eigenvalue μmi ε such that

Reμ T O l i f i <0 /or 0 < ε < ε8.

PROOF. Let Uξ = /?* + ^ = P^(7* + Qjt/J, we know that (pj, ςfg) is a

nondegenerate equilibrium solution of the system

(73) J
U B + Q°μ(F0{p9q))

for appropriate constants X 4 , K1 ? .R2 and μ, and that (pg,

by Remark 5.10. We will show that p$ is a nondegenerate equilibrium solution

of the equation

(7.4) d-l = &0{p, Φ°(p)) = # 0 (p).
at

In fact, if pj is degenerate, then we find that there exists p e V ° such that

Dp ^o(Po)P = 0. That is,

(7.5) D p ^ 0 ( p * , Φ°(|7S))p + D?J*o(PS, Φ°(p*))DΦ°(pS)p = 0.

Since graph Φ° is invariant with respect to (7.3), we have

ΛΦ°(P)\ = - B 0 Φ » + S0(p, Φ°(p)),

which implies

DΦ°(p)# 0(p, φθ(p)) = - B0Φ°(p) + » 0(p, φ

The linear variational equation of the above formula is
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p, Φ°(p))p + ΌqP0(p, Φ°(p))DΦ°(p)p)

= - B0ΌΦ°(p)p + Όp90{p9 Φ°(p))p + Όq90(p9 Φ°(p))DΦ°(p)p

for pe\°μ.

Letting p = β, σ = DΦ°(pg)p, we know by (7.5) that

(7.7) D^o(p*,Φ°(p*))(p,<?) = 0.

Also, letting p = pg, p = p = p in (7.6), we know by (7.7) that

(7.8) - B0DΦ°(p*)p + D ^ 0 ( p * , Φ°(pJ))(p, σ) = 0.

Thus, (7.7) and (7.8) lead to that (pj, qξ) = (pξ, Φ°(p*)) is a degenerate

equilibrium solution of (7.3). However, It is a contradiction to our hypothesis,

so that pg is a nondegenerate equilibrium solution of (7.4).

Since Φ*ε ^ Φ*° in Cx(Bro9 (L2(Ω))2) and &*->&* in C x(B r o, RN l) as

ε 10, we know by the Implicit Function Theorem that there is εx > 0 such

that for 0 < ε < ε1 ? there exists an equilibrium solution pf of (6.1), satisfying

Pt^Po i n (L2(Ω))2 as ε | 0 . It is natural to consider that an element of

(L2(0, L))2 is taken as the one in (L2(ί2))2. Letting Uf = pf + Φε(pf), we

know that U* is an equilibrium solution of (5.8) and Of -• Uξ in (L2(ί2))2

as ε JO. In order to show that U*(s, z) -> U$(s) in Ω as ε JO, we will show

that l/JeίC^O, L))2, l / f e ί C 1 ^ ) ) 2 and there is M* > 0 such that

(7.9) | |l/J|| (ct(o.L))2<M* and || l/*| | ( Ci ( f l ) ) 2 < M* for 0 < ε < ε - χ .

Because of t/J e(L2(0, L))2, we know that l/J can be considered as an

equilibrium solution of the integral form of (7.3)

= exp(- Bot)U(0) + [ exp(- B0(ί -
Jo

and ί/JeX(

α

0,L) = ®(BJ) with αe(3/4, 1). Also we have

(t — sf

for some positive constant c (Henry [19]). By using X(

α

0,L) c (Cv(0, ^ ) ) 2 with

0 < v < 2α — 1/2, we know that L/JeίC^O, L))2 and || ί/J | | ( C i ( 0 L ) ) 2 < M 1 0 for

some positive constant M 1 0 .

Next we discuss Uf which can be considered as an equilibrium solution

of the integral form of (5.8)

(7.10) U(t) = exp(- Bεt)U(0) + [exp(- Be(ί - s)),
Jo
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Since U* -• U$ in (L2(ί2))2 as ε JO, we know that U?e(L2(Ω))2 and there are

ε2 > 0 and M1 > 0 such that || Uf | |H < M1 for 0 < ε < έ2. It follows from

U* = B^F^U*) and the boundedness of B " 1 that || U*\\(HHΩ))2 < c1M1 holds

for some positive constant cί.

When N < 3, since # 2(ί2) c L«(f2) for 1 < q < oo, we have U*e(Lq(Ω))2

for g > 5. We take Bε as an operator in (Lq(Ω))2 with q > 5 and let

X* = @(Bζ) with its norm \\U\\^q = | |B;i/ | | ( L β ( β ) ) 2 , where ae((q + N + l)/2g, 1).

Then by using

for some positive constant c2 independently of ε (Henry [19]), we have

|| U*\\atq < M2 for some positive constant M 2 . Since X£ c (C1(Ω))2, we know

that || U* ||(ci(β))2 ^ M3 holds for some positive constant M 3 independently of ε.

We now consider the case when N > 3. By the Sobolev Imbedding

Theorem, we know H2(Ω) c LP(Ω) with 1/p > 1/2 - 2/(N + 1). When N < 5,

using Ufe{H2{Ω))2 c ( ί / 1 ^ ) ) 2 with 1/(N + 1) > 1//?! > 1/2 - 2/(N + 1), and

arguing as before with replacing (q, α) by (pl9 αx) with αx £((/?! + N + l)/2/71? 1),

we know that t/feXj; c {C\Ω))2 and || t/*| | ( Ci ( Λ ) )2 < M 4 hold for some

positive constant M 4 . Otherwise, setting l/pt = l/2 — 2/(N + 1), αi = (N + 1)/

(Λf + 2), we have U?eX«p\ c (LP2(ί2))2 with l/p 2 > l/p x - 2 a i / ( N + 1) =

1/2 - 2/(N + 1) - 2/(JV + 2). When 6 < ΛΓ < 9, using [/* G(LP2(ί2))2 with

1/(JV + 1) > l/p 2 > 1/2 - 2/(AΓ + 1) - 2/(N + 2), and arguing as before with

replacing (g, α) by (p2, oc2) with α2e((/72 + N + l)/2p 2 ? 1), we know that

(7*eX^ c (C1(Ω))2 and || (7ε* ||(ci(β))2 ^ ^?5 ^°ld f° r some positive constant

M 5 . Otherwise, setting l/p 2 = 1/2 - 2/(JV + 1) - 2/(JV + 2), α2 = (N + 1)/

(ΛΓ + 2), we have I/*eX£ c (LP3(ί2))2 with l/p 3 > l/p 2 - 2α2/(ΛΓ + 1) =

1/2 - 2/(N + 1) - 4/(N + 2). When 9 < JV < 12, using U?e(LP3(Ω))2 with

l/(iV + 1) > l/p 3 > 1/2 - 2/(N + 1) - 4/(N + 2), and arguing as before with

replacing (q, α) by (p3, α3) with α3e((/73 + N + l)/2p 3, 1), we know that U*e

X ^ c ί C H β ) ) 2 and || t/*| | ( Ci ( β ) )2 < M 6 hold for some positive constant M 6 .

Otherwise, setting l/p 3 = 1/2 - 2/(N + 1) - 4/(N + 2), α3 = (ΛΓ + l)/(N + 2),

we have U?eX«Pl cz (LP4(Ω))2 with l/p 4 > l/p 3 - 2α3/(ΛΓ + 1)= 1/2- 2/{N + 1)

— 6/(iV + 2). Taking the above arguments step by step at most /c-times where

l / ( Λ ί + l ) > l / 2 - 2 / ( Λ Γ + l ) - 2 ( / c - l ) / ( i V + 2), we arrive at || Uf \\{Cι(Ω))2 < M *

for some positive constant M*. By (7.9), it can be easily shown that

U*(s, z) -+ U$(s) in Ω as ε JO which implies that 0 < U*(s, z) < R* in Ω.

We next consider the eigenvalue problems of (7.1) and (7.2). First,
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suppose that (i) does not hold. Then there exists {εn} with εn J,0 as n -> oo

such that R e μ l ε n -• 0 as n -• oo. Let ωlEn be the eigenfunction corresponding

to μUfSn normalized in (Hε(ί2))2. Since 0 < U*(s, z) < R* for sufficiently small

ε and

(7.11) Bβnω l i β n = ΌFEn(Ul)ωUEn + μ l f β f i ω l i β n ,

we know that |μ l f l ϊ n | is uniformly bounded for large n. Moreover, since

Ci l |ω l f εJ| e

2

t H < bεn(ω1>εM, ωUEn) = <B ε nω 1 ? ε n, co l j £ n>H,

we also know that | |ω x ε n | | ε H is uniformly bounded for large n. Therefore, it

follows from the compactness of B ε

- 1 that there exists a subsequence of {εn}

(denoted also by εn) such that for some μ * e C and ωe(H1(Ω))2, μλ εn ->μ*

and ω l j f i n -> ω* strongly in (iί 1(Ω)) 2 as n -> oo. Here we know that Reμ* = 0

and | | ω * | | H φ 0. It follows from the definition of || ||ε H that ω*(s, z) = ω*(s)

does not depend on z, that is, ω*G(H1(0, L))2 and | |ω* | | 0 j H o Φ 0. By using

a similar argument to the one in Lemma 4.6, we know that

(7.12) 1KB;1 - B o V l l ^ x < c 6ε| | w| | 0 i H o for W G ( H O ( 0 , L)) 2, 0 < ε < ε6

holds for some positive constants ε6 and c6. Thus the limit εJ,0 in (7.11) leads

to

ω* = Bo1(DFo(US)ω* + μ*ω*).

Thus it turns out that μ* is an eigenvalue of (7.2) with Re μ* = 0 and ω* is

its eigenfunction. This is a contradiction to our hypothesis, which implies

that (i) holds. A similar argument to the above can also show that U* is

nondegenerate.

For the proof of (ii), let μmi and ωm2 be a simple eigenvalue with Reμm 2 < 0

and its eigenfunction normalized in (Ho(0, L))2, respectively. In a similar

manner to the one in the Step I of the proof of Lemma 4.2, we will show

that Bε has an eigenvalue μmi>ε in the small neighborhood of μm2 for sufficiently

small ε, which satisfies μmuε->μm2 as εJ,O. We define the operators /0 and

/ . by

/ 0 ; C x Xo > C x Xo with / 0 ( τ , w)

= (Co(w - ωm2), w - τBo x w - Bo

and

/ ε : C x Xε > C x Xε with / ε (τ, w)

= (ζε(w - ωW2), w-τB 'w- B
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where ζo(w) = μ~fbo{w, ωmi) and ζε(w) = μ~^bB(w, ωm2) and the norms of

C x Xo and C x Xε are defined by ||(τ, w) | | 0 0 = M + IMIo.x and ||(τ, w)||eβ

= lτl + llwL,x> respectively. It is known that fo{μm2, ωm2) = 0 and that if τ

and w satisfy βE(τ, w) = 0, then τ is an eigenvalue of (7.1) and w is its

eigenfunction. Noting that Lemmas 4.4,4.5 and 4.6 hold for weX ε, Bε, we

know that Lemmas 4.7 and 4.8 also hold for f0 and fε. Therefore, by

choosing ε3 and ηm2 sufficiently small, we find that jfε(τ9 w) = 0 has only

one solution (μTOltε, ωmuε) in {(τ, w)eC x Xε| ||(τ, w) - (μm2, ω m 2 ) | | ε ε < ηm2} for

0 < ε < ε3, satisfying μ m i , ε ->μ m 2 as εJ,O. Thus it turns out that μmiE is the

eigenvalue of (7.1) with R e μ W i ε < 0 for sufficiently small ε. The proof of

Theorem 7.1 is complete.
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