Structure of the probability contents inner boundary of some family of three-parameter distributions

Tadashi Nakamura and Takahisa Yokoyama
(Received January 12, 1992)

1. Introduction

Let $F(x)$ be a strictly increasing and continuously differentiable distribution function (d.f.) on the real line \boldsymbol{R}, and let $h(x)$ (resp. $\tilde{h}(x))$ be a continuous and strictly increasing function on $\boldsymbol{R}_{+}=(0, \infty)($ resp. $\boldsymbol{R})$ with $h\left(\boldsymbol{R}_{+}\right)=$ $\boldsymbol{R}($ resp. $\tilde{h}(\boldsymbol{R})=\boldsymbol{R})$. Define a transformation $t(x, \theta)\left(\theta=(\alpha, \beta, \lambda) \in \boldsymbol{R}_{+} \times \boldsymbol{R} \times\right.$ $[-\infty, \infty)$) by

$$
t(x, \theta)= \begin{cases}\alpha \tilde{h}(x)-\beta, & \lambda=-\infty \\ \alpha h(x-\lambda)-\beta, & \lambda \neq-\infty\end{cases}
$$

Let Θ be a nonempty subset of $\boldsymbol{R}_{+} \times \boldsymbol{R} \times[-\infty, \infty)$ and put $\mathscr{F}(\Theta)=$ $\{F(t(x, \theta)) ; \theta \in \Theta\}$, being called a family of three-parameter d.f.'s which are positive only to the right of a shifted origin. The family $\mathscr{F}\left(\boldsymbol{R}_{+} \times \boldsymbol{R} \times \boldsymbol{R}\right)$ with $h(x)=\log x$ was considered in Finney [4].

Suppose that:
(i) We have N different kinds of experiments on some characteristic X.
(ii) The transformed variable $t(X, \theta)$ has a d.f. F.
(iii) In the i th experiment, n_{i} objects are tested and information available for each characteristic $X_{i j}\left(1 \leq j \leq n_{i}\right)$ is only that its value lies in a proper subinterval $\mathscr{C}_{i j}$ of \boldsymbol{R} with nonempty interior.

The collection $\mathscr{C} \equiv\left\{\mathscr{C}_{i j} ; 1 \leq i \leq N, 1 \leq j \leq n_{i}\right\}$ is called a pooled intervalcensored (p.i.c.) data. When $N=1$, the p.i.c. data \mathscr{C} is simply called an interval-censored (i.c.) data. The i.c. data \mathscr{C} is called a grouped data if each $\mathscr{C}_{1 j}$ belongs to a set of mutually disjoint intervals whose union is equal to \boldsymbol{R}. The p.i.c. data \mathscr{C} is called a binary response data if each $\mathscr{C}_{i j}$ belongs to a set of mutually disjoint two intervals, depending only on i, whose union is equal to \boldsymbol{R}.

There are various kinds of method for estimating the unknown true parameter θ_{0} based on the p.i.c. data \mathscr{C} (cf. [2], [9], [13]). In these methods, an estimate $\hat{\theta}$ of the unknown true parameter θ_{0} is defined by an optimal solution of a minimizing problem. Hence there arises a problem whether such
an estimate $\hat{\theta}$ exists or not. No well-founded argument has been given for this problem (cf. [1], [3], [4], [5], [12]). To solve this problem, Nakamura ([6], [9], [10]) proposed a unified method, called the probability contents boundary (PCB) analysis. Arrange all finite end points of $\mathscr{C}_{i j}$'s in order of magnitude and denote them by x_{1}, \ldots, x_{m}. The set $\left\{x_{i}\right\}$ of these m end points is called an window. Put $\boldsymbol{F}(\Theta)=\left\{\left(F\left(t\left(x_{1}, \theta\right)\right), \ldots, F\left(t\left(x_{m}, \theta\right)\right)\right) ; \theta \in \Theta\right\}$ and

$$
\partial \boldsymbol{F}(\Theta)=\operatorname{Cl}(\boldsymbol{F}(\Theta))-\boldsymbol{F}(\Theta)
$$

The set $\partial \boldsymbol{F}(\Theta)$ is called the probability contents inner boundary (PCIB) of the family $\mathscr{F}(\Theta)$ through the window $\left\{x_{i}\right\}$. In the PCB analysis, it is important to analyze the structure of the PCIB $\partial \boldsymbol{F}(\Theta)$, since the explicit representation of the structure of the $\operatorname{PCIB} . \partial \boldsymbol{F}(\Theta)$ is very useful for deriving practical criteria for the existence of some kinds of estimate such as maximum likelihood estimate or least square estimate (cf. [10], [11]). The purpose of this paper is to give the explicit representation of the structure of the PCIB $\partial \boldsymbol{F}\left(\boldsymbol{R}_{+} \times \boldsymbol{R} \times \boldsymbol{R}\right)$ through the window $\left\{x_{i}\right\}$.

In Section 2, a family $\mathscr{F}(\Theta)$ of three-parameter d.f.'s which are positive only to the right of a shifted origin, this being one of the unknown parameters, is introduced. The explicit representation of the structure of the PCIB $\partial \boldsymbol{F}\left(\boldsymbol{R}_{+} \times \boldsymbol{R} \times \boldsymbol{R}\right)$ are stated without proof. In Section 3, fundamental properties of the PCIB $\partial \boldsymbol{F}(\Theta)$ are prepared to prove results given in Section 2. In Section 4, the proofs of results stated in Section 2 are given.

2. Structure of the PCIB $\partial \boldsymbol{F}(\boldsymbol{\Theta})$

We shall determine the structure of the PCIB $\partial \boldsymbol{F}(\Theta)$ through the window $\left\{x_{i}\right\}$ for $\boldsymbol{\Theta}=\boldsymbol{R}_{+} \times \boldsymbol{R} \times[-\infty, \infty)$ and for $\boldsymbol{\Theta}=\boldsymbol{R}_{+} \times \boldsymbol{R} \times \boldsymbol{R}$. Nakamura ([6], [7], [8]) determined the structure of the PCIB for many kinds of families of d.f.'s. However, they do not cover the three-parameter families $\mathscr{F}\left(\boldsymbol{R}_{+} \times\right.$ $\boldsymbol{R} \times \boldsymbol{R})$ and $\mathscr{F}\left(\boldsymbol{R}_{+} \times \boldsymbol{R} \times[-\infty, \infty)\right.$). Let us make the following two conditions:
(A.1) The function $h(s)$ (resp. $\tilde{h}(s)$) is twice continuously differentialbe on \boldsymbol{R}_{+}(resp. \boldsymbol{R}) such that
(i) $h^{\prime}(s)>0$ and $h^{\prime \prime}(s)<0$ on \boldsymbol{R}_{+},
(ii) $h(s)=o\left(h^{\prime}(s)\right)(s \rightarrow+0)$,
(iii) $\tilde{h}^{\prime}(s)>0$ and $\tilde{h}^{\prime \prime}(s) \leq 0$ on \boldsymbol{R}.
(A.2) There exist a function $a(s)$ on \boldsymbol{R}_{+}, a positive function $b(s)$ on \boldsymbol{R}_{+}, a differentiable function $c(s)$ on \boldsymbol{R}_{+}and a function $w(s)$ on \boldsymbol{R} such that
(i) $c^{\prime}(s)>0$ and $c(s)=o(1)(s \rightarrow+0)$,
(ii) for every fixed $x \in \boldsymbol{R}$,

$$
R(x, s)=(h(x+1 / s)-a(s)) / b(s)-\tilde{h}(x)-w(x) c(s)
$$

is differentiable on the positive part of a neighbourhood of 0 ,
(iii) for every fixed $x \in \boldsymbol{R}, \quad R(x, s)=o(1)(s \rightarrow+0) \quad$ and $\quad R^{\prime}(x, s)=$ $o\left(c^{\prime}(s)\right)(s \rightarrow+0)$.
In order to give an explicit representation of the structure of the PCIB, let us put $\boldsymbol{a}_{i}=(\overbrace{0, \ldots, 0}^{i}, \overbrace{1, \ldots, 1}^{m-i}), 0 \leq i \leq m ; \boldsymbol{b}_{i}(z)=(\overbrace{0, \ldots, 0}^{i-1}, z, \overbrace{1, \ldots, 1}^{m-i}), 1 \leq i \leq m ;$ $0<z<1$ and $\boldsymbol{c}_{i}\left(z, z^{\prime}\right)=(\overbrace{0, \ldots, 0}^{i-1}, z, \overbrace{z^{\prime}, \ldots, z^{\prime}}^{m-i}), 1 \leq i \leq m-1 ; 0 \leq z<z^{\prime}<1$.

Now we can state our main results.
Theorem 2.1. Let conditions (A.1) and (A.2) be satisfied. Then

$$
\begin{aligned}
\partial \boldsymbol{F}\left(\boldsymbol{R}_{+} \times \boldsymbol{R} \times[-\infty, \infty)\right)= & \left(\bigcup_{i=0}^{m-1}\left\{\boldsymbol{a}_{i}\right\}\right) \cup\left\{z \boldsymbol{a}_{0} ; 0<z<1\right\} \\
& \cup\left(\bigcup_{i=1}^{m-1}\left\{\boldsymbol{b}_{i}(z) ; 0<z<1\right\}\right) \\
& \cup\left(\bigcup_{i=1}^{m-2}\left\{\boldsymbol{c}_{i}\left(0, z^{\prime}\right) ; 0<z^{\prime}<1\right\}\right) \\
& \cup\left(\bigcup_{i=0}^{m-3}\left\{\boldsymbol{c}_{i+1}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\}\right) .
\end{aligned}
$$

Theorem 2.2. Let conditions (A.1) and (A.2) be satisfied. Then

$$
\begin{aligned}
\partial \boldsymbol{F}\left(\boldsymbol{R}_{+} \times \boldsymbol{R} \times \boldsymbol{R}\right)= & \left(\bigcup_{i=0}^{m-1}\left\{\boldsymbol{a}_{i}\right\}\right) \cup\left\{z \boldsymbol{a}_{0} ; 0<z<1\right\} \\
& \cup\left(\bigcup_{i=1}^{m-1}\left\{\boldsymbol{b}_{i}(z) ; 0<z<1\right\}\right) \\
& \cup\left(\bigcup_{i=1}^{m-2}\left\{\boldsymbol{c}_{i}\left(0, z^{\prime}\right) ; 0<z^{\prime}<1\right\}\right) \\
& \cup\left(\bigcup_{i=0}^{m-3}\left\{\boldsymbol{c}_{i+1}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\}\right) \\
& \cup \boldsymbol{F}\left(\boldsymbol{R}_{+} \times \boldsymbol{R} \times\{-\infty\}\right) .
\end{aligned}
$$

Consider the maximum likelihood estimation for example. Roughly speaking, the PCB analysis asserts that a necessary and sufficient condition for the existence of a maximum likelihood estimate (MLE) is that the supremum of the log-likelihood $L(z)$ over $\boldsymbol{F}(\Theta)$ is greater than the supremum of the log-likelihood $L(z)$ over $\partial \boldsymbol{F}(\Theta)$ (see [6], [9], [10], [11] for detailed discussions on the PCB analysis). To find a practical criterion for the existence of an MLE, we have to evaluate the value of the supremum of the log-likelihood $L(\boldsymbol{z})$ over $\partial \boldsymbol{F}(\Theta)$. Hence the explicit representation of the PCIB plays an important role in this stage.

3. Fundamental properties of the $\operatorname{PCIB} \partial \boldsymbol{F}(\Theta)$

To state fundamental properties of the PCIB $\partial \boldsymbol{F}(\Theta)$, we prepare some notation and results. For notational simplicity, put $\Theta_{0}=\boldsymbol{R}_{+} \times \boldsymbol{R} \times[-\infty, \infty)$,
$\Theta_{1}=\boldsymbol{R}_{+} \times \boldsymbol{R} \times \boldsymbol{R}, \Theta_{2}=\boldsymbol{R}_{+} \times \boldsymbol{R} \times\{-\infty\}$ and $F(x, \theta)=F(t(x, \theta))$, and define

$$
\boldsymbol{F}(\theta)=\left(F\left(x_{1}, \theta\right), \ldots, F\left(x_{m}, \theta\right)\right), \theta \in \boldsymbol{R}_{+} \times \boldsymbol{R} \times[-\infty, \infty)
$$

Recall that $\mathscr{F}\left(\Theta_{i}\right)=\left\{F(t(x, \theta)) ; \theta \in \Theta_{i}\right\}, \quad i=0,1,2$. Hereafter the symbol " $\lim _{n}$ " is used instead of " $\lim _{n \rightarrow \infty}$ " and conditions (A.1) and (A.2) are assumed to be satisfied.

The following result, due to Nakamura [8], is useful.
Proposition 3.1. The set $\bigcap_{j=1}^{2}\left\{\theta \in \boldsymbol{R}_{+} \times \boldsymbol{R} \times[s, t] ; u_{j} \leq F\left(t\left(x_{i_{j}}, \theta\right)\right) \leq u_{j}^{\prime}\right\}$ is compact for every set of pairs $\left(u_{j}, u_{j}^{\prime}\right)$ with $0<u_{j} \leq u_{j}^{\prime}<u_{j+1}<1, j=1,2$, $\left(i_{1}, i_{2}\right)$ with $1 \leq i_{1}<i_{2} \leq m$ and (s, t) with $s=t=-\infty$ or $-\infty<s \leq t<x_{i_{1}}$.

We give four properties of $\partial \boldsymbol{F}(\Theta)$.
Lemma 3.1. Let $1 \leq i<j \leq m$ and let $\left\{\theta_{n}=\left(\alpha_{n}, \beta_{n}, \lambda_{n}\right)\right\}$ be a sequence in Θ_{0} such that $\lim _{n} \lambda_{n}=-\infty, \quad t_{i}=\lim _{n} t\left(x_{i}, \theta_{n}\right)$ and $t_{j}=\lim _{n} t\left(x_{j}, \theta_{n}\right)$. If $-\infty<t_{i} \leq t_{j}<\infty$ or $-\infty<t_{i}<t_{j}=\infty$, then

$$
\lim _{n} t\left(x, \theta_{n}\right)=t_{i}+\frac{\tilde{h}(x)-\tilde{h}\left(x_{i}\right)}{\tilde{h}\left(x_{j}\right)-\tilde{h}\left(x_{i}\right)}\left(t_{j}-t_{i}\right)
$$

for all $x \in \boldsymbol{R}$.
Proof. Choose $x \in \boldsymbol{R}$. We may assume that $\lambda_{n}<\min \left(x, x_{1}\right)$ for all $n=1,2, \ldots$ Define $r_{n}(x)=\left(t\left(x, \theta_{n}\right)-t\left(x_{i}, \theta_{n}\right)\right) /\left(t\left(x_{j}, \theta_{n}\right)-t\left(x_{i}, \theta_{n}\right)\right)$, and put $s_{n}=-1 / \lambda_{n}$ if $\lambda_{n} \neq-\infty$ and $s_{n}=0$ if $\lambda_{n}=-\infty$. In case $s_{n}=0$,

$$
r_{n}(x)=\frac{\tilde{h}(x)-\tilde{h}\left(x_{i}\right)}{\tilde{h}\left(x_{j}\right)-\tilde{h}\left(x_{i}\right)}
$$

In case $s_{n}>0$, by (ii) of (A.2),

$$
\begin{aligned}
r_{n}(x) & =\frac{h\left(x+1 / s_{n}\right)-h\left(x_{i}+1 / s_{n}\right)}{h\left(x_{j}+1 / s_{n}\right)-h\left(x_{i}+1 / s_{n}\right)} \\
& =\frac{\tilde{h}(x)-\tilde{h}\left(x_{i}\right)+\left(w(x)-w\left(x_{i}\right)\right) c\left(s_{n}\right)+R\left(x, s_{n}\right)-R\left(x_{i}, s_{n}\right)}{\tilde{h}\left(x_{j}\right)-\tilde{h}\left(x_{i}\right)+\left(w\left(x_{j}\right)-w\left(x_{i}\right)\right) c\left(s_{n}\right)+R\left(x_{j}, s_{n}\right)-R\left(x_{i}, s_{n}\right)},
\end{aligned}
$$

By (i) and (iii) of (A.2), we obtain $\lim _{n} r_{n}(x)=\left(\tilde{h}(x)-\tilde{h}\left(x_{i}\right)\right) /\left(\tilde{h}\left(x_{j}\right)-\tilde{h}\left(x_{i}\right)\right)$. This and the relation

$$
\begin{equation*}
t\left(x, \theta_{n}\right)=t\left(x_{i}, \theta_{n}\right)+r_{n}(x)\left(t\left(x_{j}, \theta_{n}\right)-t\left(x_{i}, \theta_{n}\right)\right) \tag{3.1}
\end{equation*}
$$

prove the lemma.
Remark. Here we adopt the computational rule: $0 \cdot \infty=\infty \cdot 0=0$.

Lemma 3.2. Let $1 \leq i<j \leq m$ and let $\left\{\theta_{n}=\left(\alpha_{n}, \beta_{n}, \lambda_{n}\right)\right\}$ be a sequence in Θ_{0} such that $\lambda_{n}<x_{i}$ for all $n, \lim _{n} \lambda_{n}=x_{i}, t_{i}=\lim _{n} t\left(x_{i}, \theta_{n}\right)$ and $t_{j}=\lim _{n} t\left(x_{j}, \theta_{n}\right)$. If $-\infty<t_{i} \leq t_{j}<\infty$ or $-\infty<t_{i}<t_{j}=\infty$, then

$$
\lim _{n} t\left(x, \theta_{n}\right)=t_{j} \quad \text { for all } x>x_{i} .
$$

Proof. Let $r_{n}(x)$ be the same as in the proof of Lemma 3.1. It can be easily seen that $\lim _{n} r_{n}(x)=1$, since $\lim _{s \times 0} h(s)=-\infty$. This, together with the relation (3.1), proves the lemma.

Lemma 3.3. Let $z=\left(z_{1}, \ldots, z_{m}\right) \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$. Then there exists no triple $\left(i_{1}, i_{2}, i_{3}\right)$ with $1 \leq i_{1}<i_{2}<i_{3} \leq m$ such that $0<z_{i_{1}}=z_{i_{2}}<z_{i_{3}}<1$.

Proof. Since $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$, we can choose a sequence $\left\{\theta_{n}=\left(\alpha_{n}, \beta_{n}, \lambda_{n}\right)\right\}$ in Θ_{0} such that $\lim _{n} \boldsymbol{F}\left(\theta_{n}\right)=\boldsymbol{z}$ and $\lim _{n} \lambda_{n}=\hat{\lambda}$. Assume that there exists a triple $\left(i_{1}, i_{2}, i_{3}\right)$ such that $1 \leq i_{1}<i_{2}<i_{3} \leq m$ and $0<z_{i_{1}}=z_{i_{2}}<z_{i_{3}}<1$. For simplicity, put $x_{j}^{\prime}=x_{i_{j}}$ and $v_{j}=z_{i_{j}}, 1 \leq j \leq 3$. Denote by $F^{-1}(z)$ the inverse function of $F(x)$. It is obvious that $\lim _{n} t\left(x_{j}^{\prime}, \theta_{n}\right)=F^{-1}\left(v_{j}\right), 1 \leq j \leq 3$, since $t\left(x_{j}^{\prime}, \theta_{n}\right)=F^{-1}\left(F\left(t\left(x_{j}^{\prime}, \theta_{n}\right)\right)\right)$. The inequalities $0<v_{1}<1$ mean that $-\infty \leq \hat{\lambda}$ $\leq x_{1}^{\prime}$ and $\lambda_{n}<x_{1}^{\prime}$ for sufficiently large n. If $\hat{\lambda}=x_{1}^{\prime}$, then, by Lemma 3.2, $t_{2}=t_{3}$. This is a contradiction. If $\hat{\lambda}=-\infty$, then, by Lemma 3.1, $t_{2}=t_{1}+\left(\tilde{h}\left(x_{2}\right)-\tilde{h}\left(x_{1}\right)\right)\left(\tilde{h}\left(x_{3}\right)-\tilde{h}\left(x_{1}\right)\right)^{-1}\left(t_{3}-t_{1}\right)$. This contradicts the fact $t_{1}=t_{2}$. Consider the case $-\infty<\hat{\lambda}<x_{1}^{\prime}$. Choose a positive number δ so that $2 \delta<\min \left(x_{1}^{\prime}-\hat{\lambda}, v_{1}, v_{3}-v_{2}, 1-v_{3}\right)$. Put $\Theta^{\prime}=\left\{\theta \in \boldsymbol{R}_{+} \times \boldsymbol{R} \times[\hat{\lambda}-\delta\right.$, $\left.\hat{\lambda}+\delta] ; \quad v_{1}-\delta \leq F\left(x_{1}^{\prime}, \quad \theta\right) \leq v_{1}+\delta\right\} \cap\left\{\theta \in \boldsymbol{R}_{+} \times \boldsymbol{R} \times[\hat{\lambda}-\delta, \quad \hat{\lambda}+\delta] ; \quad v_{3}-\delta\right.$ $\left.\leq F\left(x_{3}^{\prime}, \theta\right) \leq v_{3}+\delta\right\}$. By Proposition 3.1, Θ^{\prime} is compact. Since $\theta_{n} \in \Theta^{\prime}$ for sufficiently large n, there exists $\theta^{\prime} \in \boldsymbol{R}_{+} \times \boldsymbol{R} \times[\hat{\lambda}-\delta, \hat{\lambda}+\delta]$ such that $\boldsymbol{F}\left(\theta^{\prime}\right)=\boldsymbol{z}$. This contradicts $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$.

Lemma 3.4. Let $\boldsymbol{z}=\left(z_{1}, \ldots, z_{m}\right) \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$ with $z_{m}=1$. Then there exists no pair $\left(i_{1}, i_{2}\right)$ such that $1 \leq i_{1}<i_{2} \leq m-1$ and $0<z_{i_{1}} \leq z_{i_{2}}<1$.

Proof. Since $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$, we can choose a sequence $\left\{\theta_{n}=\left(\alpha_{n}, \beta_{n}, \lambda_{n}\right)\right\}$ in Θ_{0} such that $\lim _{n} \boldsymbol{F}\left(\theta_{n}\right)=\boldsymbol{z}$ and $\lim _{n} \lambda_{n}=\hat{\lambda}$. Assume that there exists a pair (i_{1}, i_{2}) such that $1 \leq i_{1}<i_{2} \leq m-1$ and $0<z_{i_{1}} \leq z_{i_{2}}<1$. For simplicity, put $x_{j}^{\prime}=x_{i_{j}}$ and $v_{j}=z_{i_{j}}, j=1,2$. Denote by $F^{-1}(z)$ the inverse function of $F(x)$. It is obvious that $t_{j} \equiv \lim _{n} t\left(x_{j}^{\prime}, \theta_{n}\right)=F^{-1}\left(v_{j}\right), j=1,2$, since $t\left(x_{j}^{\prime}, \theta_{n}\right)$ $=F^{-1}\left(F\left(x_{j}^{\prime}, \theta_{n}\right)\right)$. The inequalities $0<v_{1}<1$ imply that $-\infty \leq \hat{\lambda} \leq x_{1}^{\prime}$ and $\lambda_{n}<x_{1}^{\prime}$ for sufficiently large n. If $\hat{\lambda}=x_{1}^{\prime}$, then by Lemma $3.2, \lim _{n} t\left(x_{m}, \theta_{n}\right)$ $=F^{-1}\left(v_{2}\right)$. This contradicts $z_{m}=1$. If $\hat{\lambda}=-\infty$, then, by Lemma 3.1, $\lim _{n} t\left(x_{m}, \theta_{n}\right)$ is finite. This also contradicts $z_{m}=1$. Consider the case $-\infty<\hat{\lambda}<x_{1}^{\prime}$. From relations

$$
\alpha_{n}=\frac{t\left(x_{2}^{\prime}, \theta_{n}\right)-t\left(x_{1}^{\prime}, \theta_{n}\right)}{h\left(x_{2}^{\prime}-\lambda_{n}\right)-h\left(x_{1}^{\prime}-\lambda_{n}\right)} \quad \text { and } \quad \beta_{n}=\alpha_{n} h\left(x_{1}^{\prime}-\lambda_{n}\right)-t\left(x_{1}^{\prime}, \theta_{n}\right)
$$

it follows that

$$
\hat{\alpha}=\lim _{n} \alpha_{n}=\frac{F^{-1}\left(v_{2}\right)-F^{-1}\left(v_{1}\right)}{h\left(x_{2}^{\prime}-\hat{\lambda}\right)-h\left(x_{1}^{\prime}-\hat{\lambda}\right)}
$$

and

$$
\hat{\beta}=\lim _{n} \beta_{n}=\hat{\alpha} h\left(x_{1}^{\prime}-\hat{\lambda}\right)-F^{-1}\left(v_{1}\right) .
$$

Hence $-\infty<\lim _{n} t\left(x_{m}, \theta_{n}\right)=t\left(x_{m},(\hat{\alpha}, \hat{\beta}, \hat{\lambda})\right)<\infty$, which contradicts $z_{m}=1$. This completes the proof.

4. Proofs of Theorems 2.1 and 2.2

In this section we shall prove Theorems 2.1 and 2.2. To do this, we prepare some notation and results. Let us put

$$
\begin{aligned}
\boldsymbol{d}_{i j k}\left(z, z^{\prime}\right)= & (\overbrace{0, \ldots, 0}^{i}, \overbrace{z, \ldots, z}^{j}, \overbrace{z^{\prime}, \ldots, z^{\prime}}^{k}, \overbrace{1, \ldots, 1}^{m-i-i-k}), \\
& 0 \leq z \leq z^{\prime} \leq 1 ; i \geq 0 ; j \geq 0 ; k \geq 0 ; i+j+k \leq m, \\
\mathscr{A}_{3}= & \left(\cup_{j+k=m ; j, k \geq 1}\left\{\boldsymbol{d}_{0 j k}\left(z, z^{\prime}\right) ; 0 \leq z \leq z^{\prime} \leq 1\right\}\right) \\
& \cup\left(\cup_{i+j+k=m ; i, j, k \geq 1}\left\{\boldsymbol{d}_{i j k}\left(z, z^{\prime}\right) ; 0<z<z^{\prime} \leq 1\right\}\right) \\
& U\left(\cup_{j+k<m ; j, k \geq 1}\left\{\boldsymbol{d}_{0 j k}\left(z, z^{\prime}\right) ; 0 \leq z<z^{\prime}<1\right\}\right) \\
& U\left(\cup_{i+j+k<m ; i, j, k \geq 1}\left\{\boldsymbol{d}_{i j k}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\}\right),
\end{aligned}
$$

where the union over the null index set is the empty set (ϕ).
The following result, due to Nakamura [8], is useful to represent the structure of the PCIB $\partial \boldsymbol{F}\left(\Theta_{0}\right)$ explicitly.

Proposition 4.1. Let Θ be a subset of Θ_{0}. The relation $\partial \boldsymbol{F}(\Theta) \subset \mathscr{A}_{3}$ holds if

$$
C l\left(\boldsymbol{F}\left(\bigcap_{j=1}^{3}\left\{\theta \in \Theta ; u_{j} \leq F\left(t\left(x_{i j}, \theta\right)\right) \leq u_{j}^{\prime}\right\}\right)\right) \subset \boldsymbol{F}(\Theta)
$$

for every set of pairs $\left(u_{j}, u_{j}^{\prime}\right), 1 \leq j \leq 3$, with $0<u_{j} \leq u_{j}^{\prime}<u_{j+1}<1$ and of triples $\left(i_{1}, i_{2}, i_{3}\right)$ with $1 \leq i_{1}<i_{2}<i_{3} \leq m$.

The following lemma gives some information about the structure of $\partial \boldsymbol{F}\left(\Theta_{0}\right)$ and $\partial \boldsymbol{F}\left(\Theta_{1}\right)$.

Lemma 4.1. The following relations hold:
(i) $\quad \partial F\left(\Theta_{0}\right) \subset \mathscr{A}_{3}$.
(ii) $\quad \partial \boldsymbol{F}\left(\Theta_{1}\right)=\partial \boldsymbol{F}\left(\Theta_{0}\right) \cup \boldsymbol{F}\left(\Theta_{2}\right)$.

Proof. Proof of (i): Note that $\boldsymbol{F}\left(\Theta_{0}\right)=\left\{F(\theta) ; \theta \in \Theta_{0}\right\}$ and $\partial \boldsymbol{F}\left(\Theta_{0}\right)$ $=C l\left(\boldsymbol{F}\left(\Theta_{0}\right)\right)-\boldsymbol{F}\left(\Theta_{0}\right)$. Let $0<u_{j} \leq u_{j}^{\prime}<u_{j+1}<1,1 \leq j \leq 3$, and let $1 \leq i_{1}<$ $i_{2}<i_{3} \leq m$. Put $\Omega=\bigcap_{j=1}^{3}\left\{\theta \in \Theta_{0} ; u_{j} \leq F\left(x_{j}^{\prime}, \theta\right) \leq u_{j}^{\prime}\right\}$, where $x_{j}^{\prime}=x_{i_{j}}$. Choose a sequence $\left\{z_{n}\right\}$ in $\boldsymbol{F}(\Omega)$ such that $\lim _{n} z_{n}=\boldsymbol{z}$ and choose $\theta_{n}=\left(\alpha_{n}, \beta_{n}, \lambda_{n}\right)$ in Ω so that $z_{n}=\boldsymbol{F}\left(\theta_{n}\right), n=1,2, \ldots$. Without loss of generality, we may assume that $\lim _{n} \theta_{n}=\hat{\theta}=(\hat{\alpha}, \hat{\beta}, \hat{\lambda}) \in[0, \infty] \times \overline{\boldsymbol{R}} \times \overline{\boldsymbol{R}}$ and $\lim _{n}\left(t\left(x_{1}^{\prime}, \theta_{n}\right), t\left(x_{2}^{\prime}, \theta_{n}\right), t\left(x_{3}^{\prime}, \theta_{n}\right)\right)$ $=\left(t_{1}, t_{2}, t_{3}\right) \in \boldsymbol{R}^{3}$. Note that $-\infty<t_{1}<t_{2}<t_{3}<\infty$. From $\theta_{n} \in \Omega$, it follows that $\lambda_{n}<x_{1}^{\prime}$ for all n. Consider the case $-\infty<\hat{\lambda} \leq x_{1}^{\prime}$. By Proposition 3.1, the set $\Omega_{1} \equiv \bigcap_{j=2}^{3}\left\{\theta \in \boldsymbol{R}_{+} \times \boldsymbol{R} \times\left[\hat{\lambda}-1,\left(x_{1}^{\prime}+x_{2}^{\prime}\right) / 2\right] ; u_{j} \leq F\left(x_{j}^{\prime}, \theta\right) \leq u_{j}^{\prime}\right\}$ is compact. Hence $\hat{\theta} \in \Theta_{1}$, since $\theta_{n} \in \Omega_{1}$ for sufficiently large n. Thus $z=\boldsymbol{F}(\hat{\theta}) \in$ $\boldsymbol{F}\left(\Omega_{1}\right) \subset \boldsymbol{F}\left(\Theta_{0}\right)$. Consider the case $\hat{\lambda}=-\infty$. By choosing a suitable subsequence of $\left\{\theta_{n}\right\}$, we may assume that $\lambda_{n}=-\infty$ for all n or $\lambda_{n} \neq-\infty$ for all n. If $\lambda_{n}=-\infty$ for all n, then $\theta_{n} \in \bigcap_{j=1}^{2}\left\{\theta \in \Theta_{2} ; u_{j} \leq F\left(x_{j}^{\prime}, \theta\right) \leq u_{j}^{\prime}\right\}$ for all n. By Proposition 3.1, $\hat{\theta} \in \Theta_{2} \subset \Theta_{0}$. Hence $z=\boldsymbol{F}(\hat{\theta}) \in \boldsymbol{F}\left(\Theta_{0}\right)$. Assume that $\lambda_{n} \neq-\infty$ for all n. By Lemma 3.1,

$$
\lim _{n} t\left(x, \theta_{n}\right)=\alpha^{*} \tilde{h}(x)-\beta^{*} \quad \text { for every } \quad x \in \boldsymbol{R},
$$

where $\quad \alpha^{*}=\left(t_{2}-t_{1}\right) /\left(\tilde{h}\left(x_{2}^{\prime}\right)-\tilde{h}\left(x_{1}^{\prime}\right)\right) \quad$ and $\quad \beta^{*}=\alpha^{*} \tilde{h}\left(x_{1}^{\prime}\right)-t_{1}$. Hence $z=$ $\boldsymbol{F}\left(\left(\alpha^{*}, \beta^{*},-\infty\right)\right) \in \boldsymbol{F}\left(\Theta_{2}\right)$. Thus $C l(\boldsymbol{F}(\Omega)) \subset \boldsymbol{F}\left(\Theta_{0}\right)$. From Proposition 4.1, the relation (i) follows.

Proof of (ii): Recall that $\partial \boldsymbol{F}\left(\Theta_{i}\right)=C l\left(\boldsymbol{F}\left(\Theta_{i}\right)\right)-\boldsymbol{F}\left(\Theta_{i}\right), i=1,2$. To show the inclusion $\partial \boldsymbol{F}\left(\Theta_{0}\right) \cup \boldsymbol{F}\left(\Theta_{2}\right) \subset \partial \boldsymbol{F}\left(\Theta_{1}\right)$, define a path $\theta(\lambda)=(\alpha(\lambda), \beta(\lambda), \lambda)$ on $\left(-\infty, x_{1}\right)$ by

$$
\begin{aligned}
& \alpha(\lambda)=\frac{t_{2}-t_{1}}{h\left(x_{2}-\lambda\right)-h\left(x_{1}-\lambda\right)}, \\
& \beta(\lambda)=\alpha(\lambda) h\left(x_{1}-\lambda\right)-t_{1},
\end{aligned}
$$

for every pair $\left(t_{1}, t_{2}\right) \in \boldsymbol{R} \times \boldsymbol{R}$ with $t_{1} \leq t_{2}$. It is easily seen that, with $\alpha=\left(t_{2}-t_{1}\right) /\left(\tilde{h}\left(x_{2}\right)-\tilde{h}\left(x_{1}\right)\right)$ and $\beta=\alpha \tilde{h}\left(x_{1}\right)-t_{1}$,

$$
\lim _{\lambda \rightarrow-\infty} t(x, \theta(\lambda))=\alpha \tilde{h}(x)-\beta \quad \text { for all } x \in \boldsymbol{R} .
$$

This implies that $\boldsymbol{F}\left(\Theta_{2}\right) \subset C l\left(\boldsymbol{F}\left(\Theta_{1}\right)\right)$. Because of $m \geq 3$ and (A.1), $\boldsymbol{F}\left(\Theta_{1}\right)$ $\cap \boldsymbol{F}\left(\Theta_{2}\right)=\phi$ and hence $\boldsymbol{F}\left(\Theta_{2}\right) \subset \partial \boldsymbol{F}\left(\Theta_{1}\right)$. Let $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$. There exists a sequence $\left\{z_{n}\right\}$ in $\boldsymbol{F}\left(\Theta_{0}\right)$ such that $\lim _{n} z_{n}=\boldsymbol{z}$. Choose $\theta_{n}=\left(\alpha_{n}, \beta_{n}, \lambda_{n}\right) \in \Theta_{0}$, so that $\boldsymbol{F}\left(\theta_{n}\right)=\boldsymbol{z}_{n}, n=1,2, \ldots$. If $\lambda_{n} \neq-\infty$ for infinitely many n, then $\theta_{n} \in \Theta_{1}$ for infinitely many n and hence $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{1}\right)$. Consider the case where $\lambda_{n}=-\infty$
for sufficiently many n. In this case, we may assume that $\lambda_{n}=-\infty$ for all n. Since $\theta_{n} \in \Theta_{2}$ and $\boldsymbol{F}\left(\Theta_{2}\right) \subset \partial \boldsymbol{F}\left(\Theta_{1}\right)$, we have $\boldsymbol{z} \in \operatorname{Cl}\left(\boldsymbol{F}\left(\Theta_{1}\right)\right)$. Hence $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{1}\right)$. This proves the desired inclusion. Note that $\boldsymbol{F}\left(\Theta_{0}\right)=\boldsymbol{F}\left(\Theta_{1}\right) \cup \boldsymbol{F}\left(\Theta_{2}\right)$. Let $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{1}\right)$. There exists a sequence $\left\{\boldsymbol{z}_{n}\right\}$ in $\boldsymbol{F}\left(\Theta_{1}\right)$ such that $\lim _{n} z_{n}=\boldsymbol{z}$. If $\boldsymbol{z} \notin \boldsymbol{F}\left(\Theta_{0}\right)$, then $\boldsymbol{z} \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$. If $\boldsymbol{z} \in \boldsymbol{F}\left(\Theta_{0}\right)$, then $\boldsymbol{z} \in \boldsymbol{F}\left(\Theta_{2}\right)$, since $\boldsymbol{z} \notin \boldsymbol{F}\left(\Theta_{1}\right)$. This proves the converse inclusion.

By the relation $\left\{\boldsymbol{b}_{m}(z) ; 0 \leq z<1\right\} \cup\left\{\boldsymbol{d}_{m-211}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\} \subset \boldsymbol{F}\left(\Theta_{0}\right)$ and by Lemmas 3.3 and 3.4, we have

Lemma 4.2. The following relations hold:

$$
\begin{align*}
\partial \boldsymbol{F}\left(\Theta_{0}\right) \cap & \left(\bigcup_{j+k=m ; j, k \geq 1}\left\{\boldsymbol{d}_{0 j k}\left(z, z^{\prime}\right) ; 0 \leq z \leq z^{\prime} \leq 1\right\}\right) \tag{i}\\
& \subset\left(\bigcup_{i=0}^{m-1}\left\{\boldsymbol{a}_{i}\right\}\right) \cup\left\{\boldsymbol{b}_{1}(z) ; 0<z<1\right\} \cup\left\{z \boldsymbol{a}_{0} ; 0<z<1\right\} \\
& \cup\left(\bigcup_{i=1}^{m-2}\left\{\boldsymbol{c}_{i}\left(0, z^{\prime}\right) ; 0<z^{\prime}<1\right\}\right) \\
& \cup\left\{\boldsymbol{c}_{1}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\} .
\end{align*}
$$

(ii) $\quad \partial \boldsymbol{F}\left(\Theta_{0}\right) \cap\left(\bigcup_{i+j+k=m ; i, j, k \geq 1}\left\{\boldsymbol{d}_{i j k}\left(z, z^{\prime}\right) ; 0<z<z^{\prime} \leq 1\right\}\right)$

$$
\begin{aligned}
\subset & \left(\bigcup_{i=2}^{m-2}\left\{\boldsymbol{b}_{i}(z) ; 0<z<1\right\}\right) \\
& \cup\left(\bigcup_{i=1}^{m-3}\left\{\boldsymbol{c}_{i+1}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\}\right)
\end{aligned}
$$

(iii) $\quad \partial \boldsymbol{F}\left(\Theta_{0}\right) \cap\left(\bigcup_{j+k<m ; j, k \geq 1}\left\{\boldsymbol{d}_{0 j k}\left(z, z^{\prime}\right) ; 0 \leq z<z^{\prime}<1\right\}\right)$

$$
\subset \bigcup_{j=2}^{m-1}\left\{\boldsymbol{b}_{j}\left(z^{\prime}\right) ; 0<z^{\prime}<1\right\} .
$$

(iv) $\quad \partial \boldsymbol{F}\left(\Theta_{0}\right) \cap\left(\bigcup_{i+j+k<m ; i, j, k \geq 1}\left\{\boldsymbol{d}_{i j k}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\}\right)=\phi$.

With the aid of Lemmas 4.1 and 4.2, we have
Lemma 4.3. The following relation holds:

$$
\begin{aligned}
\partial \boldsymbol{F}\left(\Theta_{0}\right) \subset & \left(\bigcup_{i=0}^{m-1}\left\{\boldsymbol{a}_{i}\right\}\right) \cup\left\{z \boldsymbol{a}_{0} ; 0<z<1\right\} \\
& \cup\left(\bigcup_{i=1}^{m-1}\left\{\boldsymbol{b}_{i}(z) ; 0<z<1\right\}\right) \\
& U\left(\bigcup_{i=1}^{m-2}\left\{\boldsymbol{c}_{i}\left(0, z^{\prime}\right) ; 0<z^{\prime}<1\right\}\right) \\
& U\left(\bigcup_{i=0}^{m-3}\left\{\boldsymbol{c}_{i+1}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\}\right) .
\end{aligned}
$$

We shall represent the structure of $\partial \boldsymbol{F}\left(\Theta_{0}\right)$ explicitly. For each pair (x, x^{\prime}) with $-\infty<x<x^{\prime}<\infty$ and for each pair $\left(t, t^{\prime}\right)$ with $-\infty<t<t^{\prime}<\infty$, define a path $\theta(\lambda)=(\alpha(\lambda), \beta(\lambda), \lambda)(\lambda \in(-\infty, x))$ by

$$
\begin{align*}
& \alpha(\lambda)=\alpha\left(\lambda ; x, x^{\prime}, t, t^{\prime}\right)=\frac{t^{\prime}-t}{h\left(x^{\prime}-\lambda\right)-h(x-\lambda)} \tag{4.1}\\
& \beta(\lambda)=\beta\left(\lambda ; x, x^{\prime}, t, t^{\prime}\right)=\alpha(\lambda) h(x-\lambda)-t \tag{4.2}
\end{align*}
$$

Note that $t(x, \theta(\lambda))=t$ and $t\left(x^{\prime}, \theta(\lambda)\right)=t^{\prime}$ for all $\lambda \in(-\infty, x)$.
Now we are in position to prove Theorems 2.1 and 2.2.
Proof of Theorem 2.1: Put $x_{0}=-\infty$. To show $\left\{\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{m-1}\right\} \subset$ $\partial \boldsymbol{F}\left(\Theta_{0}\right)$, choose $\left(\alpha_{i}, \lambda_{i}\right), 0 \leq i \leq m-1$, so that $x_{i}<\lambda_{i}<x_{i+1}$ and $\alpha_{i}>0$. It is easy to see that $\lim _{\beta \rightarrow-\infty} \boldsymbol{F}\left(\left(\alpha_{1}, \beta, \lambda_{i}\right)\right)=\boldsymbol{a}_{i}$, and that $\boldsymbol{a}_{i} \notin \boldsymbol{F}\left(\Theta_{0}\right)$. Hence $\boldsymbol{a}_{i} \in \partial \boldsymbol{F}\left(\Theta_{0}\right)$ for all $i=0, \ldots, m-1$.

To prove $\left\{z \boldsymbol{a}_{0} ; 0<z<1\right\} \subset \partial \boldsymbol{F}\left(\Theta_{0}\right)$, put $x^{\prime}=x_{1}$ and $t^{\prime}=F^{-1}(z)$. Choose x and t so that $-\infty<x<x^{\prime}$ and $-\infty<t<t^{\prime}$. Let $\theta(\lambda)$ be the path defined by (4.1) and (4.2). Lemma 3.2 shows that $\lim _{\lambda \rightarrow x} t\left(x_{i}, \theta(\lambda)\right)=t^{\prime}$ for all $i=1, \ldots, m$. Hence $\lim _{\lambda \rightarrow x} \boldsymbol{F}(\theta(\lambda))=z \boldsymbol{a}_{0}$. Noting that $z \boldsymbol{a}_{0} \notin \boldsymbol{F}\left(\Theta_{0}\right)$, we have the desired inclusion.

To prove $\bigcup_{i=1}^{m-1}\left\{\boldsymbol{b}_{i}(z) ; 0<z<1\right\} \subset \partial \boldsymbol{F}\left(\Theta_{0}\right)$, let $1 \leq i \leq m-1$ and $0<z<1$. Choose λ so that $x_{i-1}<\lambda<x_{i}$ and put $\beta(\lambda)=\alpha h\left(x_{i}-\lambda\right)-F^{-1}(z)$. Then $t(x,(\alpha, \beta(\lambda), \lambda))=F^{-1}(z)+\alpha\left(h(x-\lambda)-h\left(x_{i}-\lambda\right)\right) \quad$ for \quad all $\quad x>\lambda$. Hence $\lim _{\alpha \rightarrow \infty} \boldsymbol{F}((\alpha, \beta(\lambda), \lambda))=\boldsymbol{b}_{\boldsymbol{i}}(z)$. Since $\boldsymbol{b}_{i}(z) \notin \boldsymbol{F}\left(\Theta_{0}\right)$, the desired inclusion is established.

To prove $\bigcup_{i=0}^{m-3}\left\{\boldsymbol{c}_{i+1}\left(z, z^{\prime}\right) ; 0<z<z^{\prime}<1\right\} \subset \partial \boldsymbol{F}\left(\Theta_{0}\right)$, let $0 \leq i \leq m-3$, $x_{i}<\lambda<x_{i+1}$ and $0<z<z^{\prime}<1$. Put $x=x_{i+1}, x^{\prime}=x_{i+2}, t=F^{-1}(z)$ and $t^{\prime}=F^{-1}\left(z^{\prime}\right)$. Let $\theta(\lambda)$ be the path defined by (4.1) and (4.2). Then $t(x, \theta(\lambda))=t$ and $t\left(x^{\prime}, \theta(\lambda)\right)=t^{\prime}$ for all $\lambda<x$. By Lemma 3.2, $\lim _{\lambda \rightarrow x} \boldsymbol{F}(\theta(\lambda))$ $=\boldsymbol{c}_{i+1}\left(z, z^{\prime}\right)$. The desired inclusion follows from $\boldsymbol{c}_{i+1}\left(z, z^{\prime}\right) \notin \boldsymbol{F}\left(\Theta_{0}\right)$. By the same argument as above, we can prove $\bigcup_{i=1}^{m-2}\left\{\boldsymbol{c}_{i}\left(0, z^{\prime}\right) ; 0<z^{\prime}<1\right\} \subset \partial \boldsymbol{F}\left(\Theta_{0}\right)$. This completes the proof.

Proof of Theorem 2.2: Theorem 2.2 follows immediately from Lemma 4.1 and Theorem 2.1.

References

[1] N. P. Archer, Maximum likelihood estimation with Weibull models when the data are grouped, Commun. Statist. -Theor. Meth., 11 (1982), 199-207.
[2] J. Berkson, Minimum chi-square, not maximum likelihood, Ann. Statist., 8 (1980), 457-469.
[3] R.C. H. Chen and N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, Math. Report 82-1, Cardiff: University of Wales Institute of Science and Technology, 1982.
[4] D. J. Finney, Probit analysis, Cambridge University Press, 1971.
[5] D. A. Griffiths, Interval estimation for the three-parameter lognormal distribution via the likelihood function, Appl. Statist., 29 (1980), 58-68.
[6] T. Nakamura, Existence theorems of maximum likelihood estimates from a generalized censored data sample, Ann. Inst. Statist. Math., 36 (1984), 375-393.
[7] T. Nakamura, Probability contents boundary analysis, In Statistical Theory and Data

Analysis (K. Matushita, ed.), North-Holland, 1985, 485-497.
[8] T. Nakamura, Probability contents inner boundary of interval-censored data, Keio Science and Technology Reports, 38 (1985), 1-13.
[9] T. Nakamura and C.-S. Lee, Criteria for existence of a minimum contrast estimate from a polled grouped data, Mem. Fac. Sci. Shimane Univ., 24 (1991), 127-138.
[10] T. Nakamura, Existence of maximum likelihood estimates for interval-censored data from some three-parameter models with shifted origin, J. R. Statist. Soc. B, 53 (1991), 211-220.
[11] T. Nakamura and C.-S. Lee, On the existence of a minimum contrast estimate in binary response model, to appear in Ann. Inst. Statist. Math., 1993.
[12] R. L. Prentice, A generalization of the probit and logit methods for dose response curves, Biometrics, 32 (1976), 761-768.
[13] C. R. Rao, Linear statistical inference and its applications 2nd ed., John Wiley \& Sons, New York, 1973.

Department of Information Science
Faculty of Science
Shimane University
Matsue 690, Japan

