Structure of the probability contents inner boundary of some family of three-parameter distributions

Tadashi Nakamura and Takahisa Yokoyama (Received January 12, 1992)

1. Introduction

Let F(x) be a strictly increasing and continuously differentiable distribution function (d.f.) on the real line R, and let h(x) (resp. $\tilde{h}(x)$) be a continuous and strictly increasing function on $R_+ = (0, \infty)$ (resp. R) with $h(R_+) = R$ (resp. $\tilde{h}(R) = R$). Define a transformation $t(x, \theta)(\theta = (\alpha, \beta, \lambda) \in R_+ \times R \times \Gamma - \infty, \infty)$) by

$$t(x, \theta) = \begin{cases} \alpha \tilde{h}(x) - \beta, & \lambda = -\infty, \\ \alpha h(x - \lambda) - \beta, & \lambda \neq -\infty. \end{cases}$$

Let Θ be a nonempty subset of $\mathbf{R}_+ \times \mathbf{R} \times [-\infty, \infty)$ and put $\mathscr{F}(\Theta) = \{F(t(x, \theta)); \theta \in \Theta\}$, being called a family of three-parameter d.f.'s which are positive only to the right of a shifted origin. The family $\mathscr{F}(\mathbf{R}_+ \times \mathbf{R} \times \mathbf{R})$ with $h(x) = \log x$ was considered in Finney [4].

Suppose that:

- (i) We have N different kinds of experiments on some characteristic X.
- (ii) The transformed variable $t(X, \theta)$ has a d.f. F.
- (iii) In the *i*th experiment, n_i objects are tested and information available for each characteristic $X_{ij} (1 \le j \le n_i)$ is only that its value lies in a proper subinterval \mathcal{C}_{ij} of R with nonempty interior.

The collection $\mathscr{C} \equiv \{\mathscr{C}_{ij}; 1 \leq i \leq N, 1 \leq j \leq n_i\}$ is called a pooled intervalcensored (p.i.c.) data. When N=1, the p.i.c. data \mathscr{C} is simply called an interval-censored (i.c.) data. The i.c. data \mathscr{C} is called a grouped data if each \mathscr{C}_{1j} belongs to a set of mutually disjoint intervals whose union is equal to R. The p.i.c. data \mathscr{C} is called a binary response data if each \mathscr{C}_{ij} belongs to a set of mutually disjoint two intervals, depending only on i, whose union is equal to R.

There are various kinds of method for estimating the unknown true parameter θ_0 based on the p.i.c. data \mathscr{C} (cf. [2], [9], [13]). In these methods, an estimate $\hat{\theta}$ of the unknown true parameter θ_0 is defined by an optimal solution of a minimizing problem. Hence there arises a problem whether such

an estimate $\hat{\theta}$ exists or not. No well-founded argument has been given for this problem (cf. [1], [3], [4], [5], [12]). To solve this problem, Nakamura ([6], [9], [10]) proposed a unified method, called the *probability contents boundary* (PCB) analysis. Arrange all finite end points of \mathscr{C}_{ij} 's in order of magnitude and denote them by x_1, \ldots, x_m . The set $\{x_i\}$ of these m end points is called an window. Put $F(\Theta) = \{(F(t(x_1, \theta)), \ldots, F(t(x_m, \theta))); \theta \in \Theta\}$ and

$$\partial F(\Theta) = Cl(F(\Theta)) - F(\Theta).$$

The set $\partial F(\Theta)$ is called the *probability contents inner boundary* (PCIB) of the family $\mathcal{F}(\Theta)$ through the window $\{x_i\}$. In the PCB analysis, it is important to analyze the structure of the PCIB $\partial F(\Theta)$, since the explicit representation of the structure of the PCIB $\partial F(\Theta)$ is very useful for deriving practical criteria for the existence of some kinds of estimate such as maximum likelihood estimate or least square estimate (cf. [10], [11]). The purpose of this paper is to give the explicit representation of the structure of the PCIB $\partial F(R_+ \times R \times R)$ through the window $\{x_i\}$.

In Section 2, a family $\mathscr{F}(\Theta)$ of three-parameter d.f.'s which are positive only to the right of a shifted origin, this being one of the unknown parameters, is introduced. The explicit representation of the structure of the PCIB $\partial F(R_+ \times R \times R)$ are stated without proof. In Section 3, fundamental properties of the PCIB $\partial F(\Theta)$ are prepared to prove results given in Section 2. In Section 4, the proofs of results stated in Section 2 are given.

2. Structure of the PCIB $\partial F(\Theta)$

We shall determine the structure of the PCIB $\partial F(\Theta)$ through the window $\{x_i\}$ for $\Theta = R_+ \times R \times [-\infty, \infty)$ and for $\Theta = R_+ \times R \times R$. Nakamura ([6], [7], [8]) determined the structure of the PCIB for many kinds of families of d.f.'s. However, they do not cover the three-parameter families $\mathscr{F}(R_+ \times R \times R)$ and $\mathscr{F}(R_+ \times R \times R)$ and $\mathscr{F}(R_+ \times R \times R)$. Let us make the following two conditions:

- (A.1) The function h(s) (resp. $\tilde{h}(s)$) is twice continuously differentiable on R_+ (resp. R) such that
 - (i) h'(s) > 0 and h''(s) < 0 on R_+ ,
 - (ii) $h(s) = o(h'(s))(s \to +0),$
 - (iii) $\tilde{h}'(s) > 0$ and $\tilde{h}''(s) \le 0$ on R.
- (A.2) There exist a function a(s) on R_+ , a positive function b(s) on R_+ , a differentiable function c(s) on R_+ and a function w(s) on R such that
 - (i) c'(s) > 0 and $c(s) = o(1)(s \to +0)$,
 - (ii) for every fixed $x \in \mathbb{R}$,

$$R(x, s) = (h(x + 1/s) - a(s))/b(s) - \tilde{h}(x) - w(x)c(s)$$

is differentiable on the positive part of a neighbourhood of 0,

(iii) for every fixed $x \in \mathbb{R}$, $R(x, s) = o(1)(s \to +0)$ and $R'(x, s) = o(c'(s))(s \to +0)$.

In order to give an explicit representation of the structure of the PCIB, let

us put
$$\mathbf{a}_{i} = (0, ..., 0, 1, ..., 1), 0 \le i \le m; \mathbf{b}_{i}(z) = (0, ..., 0, z, 1, ..., 1), 1 \le i \le m;$$

 $0 < z < 1 \text{ and } \mathbf{c}_{i}(z, z') = (0, ..., 0, z, z', ..., z'), 1 \le i \le m - 1; 0 \le z < z' < 1.$

Now we can state our main results.

THEOREM 2.1. Let conditions (A.1) and (A.2) be satisfied. Then

$$\partial F(\mathbf{R}_{+} \times \mathbf{R} \times [-\infty, \infty)) = (\bigcup_{i=0}^{m-1} \{\mathbf{a}_{i}\}) \cup \{z\mathbf{a}_{0}; 0 < z < 1\}$$

$$\cup (\bigcup_{i=1}^{m-1} \{\mathbf{b}_{i}(z); 0 < z < 1\})$$

$$\cup (\bigcup_{i=1}^{m-2} \{\mathbf{c}_{i}(0, z'); 0 < z' < 1\})$$

$$\cup (\bigcup_{i=0}^{m-3} \{\mathbf{c}_{i+1}(z, z'); 0 < z < z' < 1\}).$$

THEOREM 2.2. Let conditions (A.1) and (A.2) be satisfied. Then

$$\partial F(\mathbf{R}_{+} \times \mathbf{R} \times \mathbf{R}) = (\bigcup_{i=0}^{m-1} \{a_{i}\}) \cup \{za_{0}; 0 < z < 1\}$$

$$\cup (\bigcup_{i=1}^{m-1} \{b_{i}(z); 0 < z < 1\})$$

$$\cup (\bigcup_{i=1}^{m-2} \{c_{i}(0, z'); 0 < z' < 1\})$$

$$\cup (\bigcup_{i=0}^{m-3} \{c_{i+1}(z, z'); 0 < z < z' < 1\})$$

$$\cup F(\mathbf{R}_{+} \times \mathbf{R} \times \{-\infty\}).$$

Consider the maximum likelihood estimation for example. Roughly speaking, the PCB analysis asserts that a necessary and sufficient condition for the existence of a maximum likelihood estimate (MLE) is that the supremum of the log-likelihood L(z) over $F(\Theta)$ is greater than the supremum of the log-likelihood L(z) over $\partial F(\Theta)$ (see [6], [9], [10], [11] for detailed discussions on the PCB analysis). To find a practical criterion for the existence of an MLE, we have to evaluate the value of the supremum of the log-likelihood L(z) over $\partial F(\Theta)$. Hence the explicit representation of the PCIB plays an important role in this stage.

3. Fundamental properties of the PCIB $\partial F(\Theta)$

To state fundamental properties of the PCIB $\partial F(\Theta)$, we prepare some notation and results. For notational simplicity, put $\Theta_0 = R_+ \times R \times [-\infty, \infty)$,

$$\Theta_1 = \mathbf{R}_+ \times \mathbf{R} \times \mathbf{R}, \ \Theta_2 = \mathbf{R}_+ \times \mathbf{R} \times \{-\infty\}$$
 and $F(x, \theta) = F(t(x, \theta)),$ and define $F(\theta) = (F(x_1, \theta), \dots, F(x_m, \theta)), \ \theta \in \mathbf{R}_+ \times \mathbf{R} \times [-\infty, \infty).$

Recall that $\mathscr{F}(\Theta_i) = \{F(t(x, \theta)); \theta \in \Theta_i\}, i = 0, 1, 2$. Hereafter the symbol " $\lim_{n \to \infty}$ " is used instead of " $\lim_{n \to \infty}$ " and conditions (A.1) and (A.2) are assumed to be satisfied.

The following result, due to Nakamura [8], is useful.

PROPOSITION 3.1. The set $\bigcap_{j=1}^{2} \{ \theta \in \mathbf{R}_{+} \times \mathbf{R} \times [s, t]; u_{j} \leq F(t(x_{i_{j}}, \theta)) \leq u'_{j} \}$ is compact for every set of pairs (u_{j}, u'_{j}) with $0 < u_{j} \leq u'_{j} < u_{j+1} < 1, j = 1, 2, (i_{1}, i_{2})$ with $1 \leq i_{1} < i_{2} \leq m$ and (s, t) with $s = t = -\infty$ or $-\infty < s \leq t < x_{i_{1}}$.

We give four properties of $\partial F(\Theta)$.

LEMMA 3.1. Let $1 \le i < j \le m$ and let $\{\theta_n = (\alpha_n, \beta_n, \lambda_n)\}$ be a sequence in Θ_0 such that $\lim_n \lambda_n = -\infty$, $t_i = \lim_n t(x_i, \theta_n)$ and $t_j = \lim_n t(x_j, \theta_n)$. If $-\infty < t_i \le t_j < \infty$ or $-\infty < t_i < t_j = \infty$, then

$$\lim_{n} t(x, \theta_{n}) = t_{i} + \frac{\tilde{h}(x) - \tilde{h}(x_{i})}{\tilde{h}(x_{i}) - \tilde{h}(x_{i})} (t_{j} - t_{i})$$

for all $x \in \mathbb{R}$.

PROOF. Choose $x \in \mathbb{R}$. We may assume that $\lambda_n < \min(x, x_1)$ for all $n = 1, 2, \ldots$ Define $r_n(x) = (t(x, \theta_n) - t(x_i, \theta_n))/(t(x_j, \theta_n) - t(x_i, \theta_n))$, and put $s_n = -1/\lambda_n$ if $\lambda_n \neq -\infty$ and $s_n = 0$ if $\lambda_n = -\infty$. In case $s_n = 0$,

$$r_n(x) = \frac{\tilde{h}(x) - \tilde{h}(x_i)}{\tilde{h}(x_i) - \tilde{h}(x_i)}.$$

In case $s_n > 0$, by (ii) of (A.2),

$$r_n(x) = \frac{h(x+1/s_n) - h(x_i+1/s_n)}{h(x_j+1/s_n) - h(x_i+1/s_n)}$$

$$= \frac{\tilde{h}(x) - \tilde{h}(x_i) + (w(x) - w(x_i))c(s_n) + R(x, s_n) - R(x_i, s_n)}{\tilde{h}(x_i) - \tilde{h}(x_i) + (w(x_i) - w(x_i))c(s_n) + R(x_i, s_n) - R(x_i, s_n)}$$

By (i) and (iii) of (A.2), we obtain $\lim_n r_n(x) = (\tilde{h}(x) - \tilde{h}(x_i))/(\tilde{h}(x_j) - \tilde{h}(x_i))$. This and the relation

$$(3.1) t(x, \theta_n) = t(x_i, \theta_n) + r_n(x)(t(x_j, \theta_n) - t(x_i, \theta_n))$$

prove the lemma.

REMARK. Here we adopt the computational rule: $0 \cdot \infty = \infty \cdot 0 = 0$.

LEMMA 3.2. Let $1 \le i < j \le m$ and let $\{\theta_n = (\alpha_n, \beta_n, \lambda_n)\}$ be a sequence in Θ_0 such that $\lambda_n < x_i$ for all n, $\lim_n \lambda_n = x_i$, $t_i = \lim_n t(x_i, \theta_n)$ and $t_j = \lim_n t(x_j, \theta_n)$. If $-\infty < t_i \le t_j < \infty$ or $-\infty < t_i < t_j = \infty$, then

$$\lim_{n} t(x, \theta_n) = t_i$$
 for all $x > x_i$.

PROOF. Let $r_n(x)$ be the same as in the proof of Lemma 3.1. It can be easily seen that $\lim_n r_n(x) = 1$, since $\lim_{s \to 0} h(s) = -\infty$. This, together with the relation (3.1), proves the lemma.

LEMMA 3.3. Let $z = (z_1, ..., z_m) \in \partial F(\Theta_0)$. Then there exists no triple (i_1, i_2, i_3) with $1 \le i_1 < i_2 < i_3 \le m$ such that $0 < z_{i_1} = z_{i_2} < z_{i_3} < 1$.

PROOF. Since $z \in \partial F(\Theta_0)$, we can choose a sequence $\{\theta_n = (\alpha_n, \beta_n, \lambda_n)\}$ in Θ_0 such that $\lim_n F(\theta_n) = z$ and $\lim_n \lambda_n = \hat{\lambda}$. Assume that there exists a triple (i_1, i_2, i_3) such that $1 \le i_1 < i_2 < i_3 \le m$ and $0 < z_{i_1} = z_{i_2} < z_{i_3} < 1$. For simplicity, put $x_j' = x_{i_j}$ and $v_j = z_{i_j}$, $1 \le j \le 3$. Denote by $F^{-1}(z)$ the inverse function of F(x). It is obvious that $\lim_n t(x_j', \theta_n) = F^{-1}(v_j)$, $1 \le j \le 3$, since $t(x_j', \theta_n) = F^{-1}(F(t(x_j', \theta_n)))$. The inequalities $0 < v_1 < 1$ mean that $-\infty \le \hat{\lambda} \le x_1'$ and $\lambda_n < x_1'$ for sufficiently large n. If $\hat{\lambda} = x_1'$, then, by Lemma 3.2, $t_2 = t_3$. This is a contradiction. If $\hat{\lambda} = -\infty$, then, by Lemma 3.1, $t_2 = t_1 + (\tilde{h}(x_2) - \tilde{h}(x_1))(\tilde{h}(x_3) - \tilde{h}(x_1))^{-1}(t_3 - t_1)$. This contradicts the fact $t_1 = t_2$. Consider the case $-\infty < \hat{\lambda} < x_1'$. Choose a positive number δ so that $2\delta < \min(x_1' - \hat{\lambda}, v_1, v_3 - v_2, 1 - v_3)$. Put $\Theta' = \{\theta \in R_+ \times R \times [\hat{\lambda} - \delta, \hat{\lambda} + \delta]; v_1 - \delta \le F(x_1', \theta) \le v_1 + \delta\} \cap \{\theta \in R_+ \times R \times [\hat{\lambda} - \delta, \hat{\lambda} + \delta]; v_3 - \delta \le F(x_3', \theta) \le v_3 + \delta\}$. By Proposition 3.1, Θ' is compact. Since $\theta_n \in \Theta'$ for sufficiently large n, there exists $\theta' \in R_+ \times R \times [\hat{\lambda} - \delta, \hat{\lambda} + \delta]$ such that $F(\theta') = z$. This contradicts $z \in \partial F(\Theta_0)$.

Lemma 3.4. Let $\mathbf{z}=(z_1,\ldots,z_m)\in\partial F(\Theta_0)$ with $z_m=1$. Then there exists no pair (i_1,i_2) such that $1\leq i_1< i_2\leq m-1$ and $0< z_{i_1}\leq z_{i_2}<1$.

PROOF. Since $z \in \partial F(\Theta_0)$, we can choose a sequence $\{\theta_n = (\alpha_n, \beta_n, \lambda_n)\}$ in Θ_0 such that $\lim_n F(\theta_n) = z$ and $\lim_n \lambda_n = \hat{\lambda}$. Assume that there exists a pair (i_1, i_2) such that $1 \le i_1 < i_2 \le m-1$ and $0 < z_{i_1} \le z_{i_2} < 1$. For simplicity, put $x_j' = x_{i_j}$ and $v_j = z_{i_j}$, j = 1, 2. Denote by $F^{-1}(z)$ the inverse function of F(x). It is obvious that $t_j \equiv \lim_n t(x_j', \theta_n) = F^{-1}(v_j)$, j = 1, 2, since $t(x_j', \theta_n) = F^{-1}(F(x_j', \theta_n))$. The inequalities $0 < v_1 < 1$ imply that $-\infty \le \hat{\lambda} \le x_1'$ and $\lambda_n < x_1'$ for sufficiently large n. If $\hat{\lambda} = x_1'$, then by Lemma 3.2, $\lim_n t(x_m, \theta_n) = F^{-1}(v_2)$. This contradicts $z_m = 1$. If $\hat{\lambda} = -\infty$, then, by Lemma 3.1, $\lim_n t(x_m, \theta_n)$ is finite. This also contradicts $z_m = 1$. Consider the case $-\infty < \hat{\lambda} < x_1'$. From relations

$$\alpha_n = \frac{t(x_2', \, \theta_n) - t(x_1', \, \theta_n)}{h(x_2' - \lambda_n) - h(x_1' - \lambda_n)}$$
 and $\beta_n = \alpha_n h(x_1' - \lambda_n) - t(x_1', \, \theta_n)$,

it follows that

$$\hat{\alpha} = \lim_{n} \alpha_{n} = \frac{F^{-1}(v_{2}) - F^{-1}(v_{1})}{h(x'_{2} - \hat{\lambda}) - h(x'_{1} - \hat{\lambda})}$$

and

$$\hat{\beta} = \lim_{n} \beta_{n} = \hat{\alpha}h(x'_{1} - \hat{\lambda}) - F^{-1}(v_{1}).$$

Hence $-\infty < \lim_n t(x_m, \theta_n) = t(x_m, (\hat{\alpha}, \hat{\beta}, \hat{\lambda})) < \infty$, which contradicts $z_m = 1$. This completes the proof.

4. Proofs of Theorems 2.1 and 2.2

In this section we shall prove Theorems 2.1 and 2.2. To do this, we prepare some notation and results. Let us put

$$\begin{aligned} \mathbf{d}_{ijk}(z,z') &= (\overbrace{0,\dots,0}^{i},\overbrace{z,\dots,z}^{j},\overbrace{z',\dots,z'}^{k},\overbrace{1,\dots,1}^{m-i-j-k}), \\ &0 \leq z \leq z' \leq 1\,;\, i \geq 0\,;\, j \geq 0\,;\, k \geq 0\,;\, i+j+k \leq m, \\ &\mathcal{A}_{3} &= (\bigcup_{j+k=m;j,k\geq 1} \left\{ \mathbf{d}_{0jk}(z,z');\, 0 \leq z \leq z' \leq 1 \right\}) \\ & \cup (\bigcup_{i+j+k=m;i,j,k\geq 1} \left\{ \mathbf{d}_{ijk}(z,z');\, 0 < z < z' \leq 1 \right\}) \\ & \cup (\bigcup_{j+k< m;j,k\geq 1} \left\{ \mathbf{d}_{0jk}(z,z');\, 0 \leq z < z' < 1 \right\}) \\ & \cup (\bigcup_{i+j+k< m;i,i,k\geq 1} \left\{ \mathbf{d}_{ijk}(z,z');\, 0 < z < z' < 1 \right\}), \end{aligned}$$

where the union over the null index set is the empty set (ϕ) .

The following result, due to Nakamura [8], is useful to represent the structure of the PCIB $\partial F(\Theta_0)$ explicitly.

Proposition 4.1. Let Θ be a subset of Θ_0 . The relation $\partial F(\Theta) \subset \mathscr{A}_3$ holds if

$$Cl(F(\bigcap_{j=1}^{3} \{\theta \in \Theta ; u_j \le F(t(x_{i_j}, \theta)) \le u'_j\})) \subset F(\Theta)$$

for every set of pairs (u_j, u_j') , $1 \le j \le 3$, with $0 < u_j \le u_j' < u_{j+1} < 1$ and of triples (i_1, i_2, i_3) with $1 \le i_1 < i_2 < i_3 \le m$.

The following lemma gives some information about the structure of $\partial F(\Theta_0)$ and $\partial F(\Theta_1)$.

LEMMA 4.1. The following relations hold:

- (i) $\partial \mathbf{F}(\boldsymbol{\Theta}_0) \subset \mathcal{A}_3$.
- (ii) $\partial \mathbf{F}(\mathbf{\Theta}_1) = \partial \mathbf{F}(\mathbf{\Theta}_0) \cup \mathbf{F}(\mathbf{\Theta}_2).$

PROOF. Proof of (i): Note that $F(\Theta_0) = \{F(\theta); \theta \in \Theta_0\}$ and $\partial F(\Theta_0) = Cl(F(\Theta_0)) - F(\Theta_0)$. Let $0 < u_j \le u_j' < u_{j+1} < 1$, $1 \le j \le 3$, and let $1 \le i_1 < i_2 < i_3 \le m$. Put $\Omega = \bigcap_{j=1}^3 \{\theta \in \Theta_0; u_j \le F(x_j', \theta) \le u_j'\}$, where $x_j' = x_{i_j}$. Choose a sequence $\{z_n\}$ in $F(\Omega)$ such that $\lim_n z_n = z$ and choose $\theta_n = (\alpha_n, \beta_n, \lambda_n)$ in Ω so that $z_n = F(\theta_n)$, $n = 1, 2, \ldots$ Without loss of generality, we may assume that $\lim_n \theta_n = \hat{\theta} = (\hat{\alpha}, \hat{\beta}, \hat{\lambda}) \in [0, \infty] \times \overline{R} \times \overline{R}$ and $\lim_n (t(x_1', \theta_n), t(x_2', \theta_n), t(x_3', \theta_n)) = (t_1, t_2, t_3) \in \mathbb{R}^3$. Note that $-\infty < t_1 < t_2 < t_3 < \infty$. From $\theta_n \in \Omega$, it follows that $\lambda_n < x_1'$ for all n. Consider the case $-\infty < \hat{\lambda} \le x_1'$. By Proposition 3.1, the set $\Omega_1 \equiv \bigcap_{j=2}^3 \{\theta \in \mathbb{R}_+ \times \mathbb{R} \times [\hat{\lambda} - 1, (x_1' + x_2')/2]; u_j \le F(x_j', \theta) \le u_j'\}$ is compact. Hence $\hat{\theta} \in \Theta_1$, since $\theta_n \in \Omega_1$ for sufficiently large n. Thus $z = F(\hat{\theta}) \in F(\Omega_1) \subset F(\Theta_0)$. Consider the case $\hat{\lambda} = -\infty$. By choosing a suitable subsequence of $\{\theta_n\}$, we may assume that $\lambda_n = -\infty$ for all n or $\lambda_n \ne -\infty$ for all n. If $\lambda_n = -\infty$ for all n, then $\theta_n \in \bigcap_{j=1}^2 \{\theta \in \Theta_2; u_j \le F(x_j', \theta) \le u_j'\}$ for all n. By Proposition 3.1, $\hat{\theta} \in \Theta_2 \subset \Theta_0$. Hence $z = F(\hat{\theta}) \in F(\Theta_0)$. Assume that $\lambda_n \ne -\infty$ for all n. By Lemma 3.1,

$$\lim_{n} t(x, \theta_n) = \alpha^* \tilde{h}(x) - \beta^*$$
 for every $x \in \mathbb{R}$,

where $\alpha^* = (t_2 - t_1)/(\tilde{h}(x_2') - \tilde{h}(x_1'))$ and $\beta^* = \alpha^* \tilde{h}(x_1') - t_1$. Hence $z = F((\alpha^*, \beta^*, -\infty)) \in F(\Theta_2)$. Thus $Cl(F(\Omega)) \subset F(\Theta_0)$. From Proposition 4.1, the relation (i) follows.

Proof of (ii): Recall that $\partial F(\Theta_i) = Cl(F(\Theta_i)) - F(\Theta_i)$, i = 1, 2. To show the inclusion $\partial F(\Theta_0) \cup F(\Theta_2) \subset \partial F(\Theta_1)$, define a path $\theta(\lambda) = (\alpha(\lambda), \beta(\lambda), \lambda)$ on $(-\infty, x_1)$ by

$$\alpha(\lambda) = \frac{t_2 - t_1}{h(x_2 - \lambda) - h(x_1 - \lambda)},$$

$$\beta(\lambda) = \alpha(\lambda)h(x_1 - \lambda) - t_1,$$

for every pair $(t_1, t_2) \in \mathbf{R} \times \mathbf{R}$ with $t_1 \le t_2$. It is easily seen that, with $\alpha = (t_2 - t_1)/(\tilde{h}(x_2) - \tilde{h}(x_1))$ and $\beta = \alpha \tilde{h}(x_1) - t_1$,

$$\lim_{\lambda \to -\infty} t(x, \, \theta(\lambda)) = \alpha \tilde{h}(x) - \beta \qquad \text{for all } x \in \mathbf{R}.$$

This implies that $F(\Theta_2) \subset Cl(F(\Theta_1))$. Because of $m \geq 3$ and (A.1), $F(\Theta_1) \cap F(\Theta_2) = \phi$ and hence $F(\Theta_2) \subset \partial F(\Theta_1)$. Let $z \in \partial F(\Theta_0)$. There exists a sequence $\{z_n\}$ in $F(\Theta_0)$ such that $\lim_n z_n = z$. Choose $\theta_n = (\alpha_n, \beta_n, \lambda_n) \in \Theta_0$, so that $F(\theta_n) = z_n$, $n = 1, 2, \ldots$ If $\lambda_n \neq -\infty$ for infinitely many n, then $\theta_n \in \Theta_1$ for infinitely many n and hence $z \in \partial F(\Theta_1)$. Consider the case where $\lambda_n = -\infty$

for sufficiently many n. In this case, we may assume that $\lambda_n = -\infty$ for all n. Since $\theta_n \in \Theta_2$ and $F(\Theta_2) \subset \partial F(\Theta_1)$, we have $z \in Cl(F(\Theta_1))$. Hence $z \in \partial F(\Theta_1)$. This proves the desired inclusion. Note that $F(\Theta_0) = F(\Theta_1) \cup F(\Theta_2)$. Let $z \in \partial F(\Theta_1)$. There exists a sequence $\{z_n\}$ in $F(\Theta_1)$ such that $\lim_n z_n = z$. If $z \notin F(\Theta_0)$, then $z \in \partial F(\Theta_0)$. If $z \in F(\Theta_0)$, then $z \in F(\Theta_2)$, since $z \notin F(\Theta_1)$. This proves the converse inclusion.

By the relation $\{b_m(z); 0 \le z < 1\} \cup \{d_{m-211}(z, z'); 0 < z < z' < 1\} \subset F(\Theta_0)$ and by Lemmas 3.3 and 3.4, we have

LEMMA 4.2. The following relations hold:

(i)
$$\partial F(\Theta_0) \cap (\bigcup_{j+k=m; j,k \geq 1} \{ \boldsymbol{d}_{0jk}(z,z'); 0 \leq z \leq z' \leq 1 \})$$

$$\subset (\bigcup_{i=0}^{m-1} \{ \boldsymbol{a}_i \}) \cup \{ \boldsymbol{b}_1(z); 0 < z < 1 \} \cup \{ z \boldsymbol{a}_0; 0 < z < 1 \}$$

$$\cup (\bigcup_{i=1}^{m-2} \{ \boldsymbol{c}_i(0,z'); 0 < z' < 1 \})$$

$$\cup \{ \boldsymbol{c}_1(z,z'); 0 < z < z' < 1 \}.$$

(ii)
$$\partial F(\Theta_0) \cap (\bigcup_{i+j+k=m; i,j,k \ge 1} \{ \boldsymbol{d}_{ijk}(z, z'); \ 0 < z < z' \le 1 \})$$

$$\subset (\bigcup_{i=2}^{m-2} \{ \boldsymbol{b}_i(z); \ 0 < z < 1 \})$$

$$\cup (\bigcup_{i=1}^{m-3} \{ \boldsymbol{c}_{i+1}(z, z'); \ 0 < z < z' < 1 \}).$$

(iii)
$$\partial F(\Theta_0) \cap (\bigcup_{j+k < m; j,k \ge 1} \{ d_{0jk}(z, z'); 0 \le z < z' < 1 \})$$

 $\subset \bigcup_{j=2}^{m-1} \{ b_j(z'); 0 < z' < 1 \}.$

(iv)
$$\partial F(\Theta_0) \cap \left(\bigcup_{i+j+k < m; i,j,k \ge 1} \left\{ d_{ijk}(z,z'); \ 0 < z < z' < 1 \right\} \right) = \phi.$$

With the aid of Lemmas 4.1 and 4.2, we have

LEMMA 4.3. The following relation holds:

$$\begin{split} \partial F(\Theta_0) &\subset (\bigcup_{i=0}^{m-1} \left\{ \boldsymbol{a}_i \right\}) \cup \left\{ z \boldsymbol{a}_0 \, ; \, 0 < z < 1 \right\} \\ & \cup (\bigcup_{i=1}^{m-1} \left\{ \boldsymbol{b}_i(z) \, ; \, 0 < z < 1 \right\}) \\ & \cup (\bigcup_{i=1}^{m-2} \left\{ \boldsymbol{c}_i(0, \, z') \, ; \, 0 < z' < 1 \right\}) \\ & \cup (\bigcup_{i=0}^{m-3} \left\{ \boldsymbol{c}_{i+1}(z, \, z') \, ; \, 0 < z < z' < 1 \right\}). \end{split}$$

We shall represent the structure of $\partial F(\Theta_0)$ explicitly. For each pair (x, x') with $-\infty < x < x' < \infty$ and for each pair (t, t') with $-\infty < t < t' < \infty$, define a path $\theta(\lambda) = (\alpha(\lambda), \beta(\lambda), \lambda)(\lambda \in (-\infty, x))$ by

(4.1)
$$\alpha(\lambda) = \alpha(\lambda; x, x', t, t') = \frac{t' - t}{h(x' - \lambda) - h(x - \lambda)},$$

(4.2)
$$\beta(\lambda) = \beta(\lambda; x, x', t, t') = \alpha(\lambda)h(x - \lambda) - t.$$

Note that $t(x, \theta(\lambda)) = t$ and $t(x', \theta(\lambda)) = t'$ for all $\lambda \in (-\infty, x)$. Now we are in position to prove Theorems 2.1 and 2.2.

PROOF OF THEOREM 2.1: Put $x_0 = -\infty$. To show $\{a_0, ..., a_{m-1}\} \subset \partial F(\Theta_0)$, choose (α_i, λ_i) , $0 \le i \le m-1$, so that $x_i < \lambda_i < x_{i+1}$ and $\alpha_i > 0$. It is easy to see that $\lim_{\beta \to -\infty} F((\alpha_1, \beta, \lambda_i)) = a_i$, and that $a_i \notin F(\Theta_0)$. Hence $a_i \in \partial F(\Theta_0)$ for all i = 0, ..., m-1.

To prove $\{za_0; 0 < z < 1\} \subset \partial F(\Theta_0)$, put $x' = x_1$ and $t' = F^{-1}(z)$. Choose x and t so that $-\infty < x < x'$ and $-\infty < t < t'$. Let $\theta(\lambda)$ be the path defined by (4.1) and (4.2). Lemma 3.2 shows that $\lim_{\lambda \to x} t(x_i, \theta(\lambda)) = t'$ for all $i = 1, \ldots, m$. Hence $\lim_{\lambda \to x} F(\theta(\lambda)) = za_0$. Noting that $za_0 \notin F(\Theta_0)$, we have the desired inclusion.

To prove $\bigcup_{i=1}^{m-1} \{ \boldsymbol{b}_i(z); 0 < z < 1 \} \subset \partial \boldsymbol{F}(\Theta_0)$, let $1 \le i \le m-1$ and 0 < z < 1. Choose λ so that $x_{i-1} < \lambda < x_i$ and put $\beta(\lambda) = \alpha h(x_i - \lambda) - F^{-1}(z)$. Then $t(x, (\alpha, \beta(\lambda), \lambda)) = F^{-1}(z) + \alpha(h(x - \lambda) - h(x_i - \lambda))$ for all $x > \lambda$. Hence $\lim_{\alpha \to \infty} \boldsymbol{F}((\alpha, \beta(\lambda), \lambda)) = \boldsymbol{b}_i(z)$. Since $\boldsymbol{b}_i(z) \notin \boldsymbol{F}(\Theta_0)$, the desired inclusion is established.

To prove $\bigcup_{i=0}^{m-3} \{c_{i+1}(z,z'); 0 < z < z' < 1\} \subset \partial F(\Theta_0)$, let $0 \le i \le m-3$, $x_i < \lambda < x_{i+1}$ and 0 < z < z' < 1. Put $x = x_{i+1}$, $x' = x_{i+2}$, $t = F^{-1}(z)$ and $t' = F^{-1}(z')$. Let $\theta(\lambda)$ be the path defined by (4.1) and (4.2). Then $t(x,\theta(\lambda))=t$ and $t(x',\theta(\lambda))=t'$ for all $\lambda < x$. By Lemma 3.2, $\lim_{\lambda \to x} F(\theta(\lambda))=c_{i+1}(z,z')$. The desired inclusion follows from $c_{i+1}(z,z') \notin F(\Theta_0)$. By the same argument as above, we can prove $\bigcup_{i=1}^{m-2} \{c_i(0,z'); 0 < z' < 1\} \subset \partial F(\Theta_0)$. This completes the proof.

PROOF OF THEOREM 2.2: Theorem 2.2 follows immediately from Lemma 4.1 and Theorem 2.1.

References

- [1] N. P. Archer, Maximum likelihood estimation with Weibull models when the data are grouped, Commun. Statist.-Theor. Meth., 11 (1982), 199-207.
- [2] J. Berkson, Minimum chi-square, not maximum likelihood, Ann. Statist., 8 (1980), 457–469.
- [3] R. C. H. Chen and N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, Math. Report 82-1, Cardiff: University of Wales Institute of Science and Technology, 1982.
- [4] D. J. Finney, Probit analysis, Cambridge University Press, 1971.
- [5] D. A. Griffiths, Interval estimation for the three-parameter lognormal distribution via the likelihood function, Appl. Statist., 29 (1980), 58-68.
- [6] T. Nakamura, Existence theorems of maximum likelihood estimates from a generalized censored data sample, Ann. Inst. Statist. Math., 36 (1984), 375–393.
- [7] T. Nakamura, Probability contents boundary analysis, In Statistical Theory and Data

- Analysis (K. Matushita, ed.), North-Holland, 1985, 485-497.
- [8] T. Nakamura, Probability contents inner boundary of interval-censored data, Keio Science and Technology Reports, 38 (1985), 1-13.
- [9] T. Nakamura and C.-S. Lee, Criteria for existence of a minimum contrast estimate from a polled grouped data, Mem. Fac. Sci. Shimane Univ., 24 (1991), 127-138.
- [10] T. Nakamura, Existence of maximum likelihood estimates for interval-censored data from some three-parameter models with shifted origin, J. R. Statist. Soc. B, 53 (1991), 211-220.
- [11] T. Nakamura and C.-S. Lee, On the existence of a minimum contrast estimate in binary response model, to appear in Ann. Inst. Statist. Math., 1993.
- [12] R. L. Prentice, A generalization of the probit and logit methods for dose response curves, Biometrics, 32 (1976), 761–768.
- [13] C. R. Rao, Linear statistical inference and its applications 2nd ed., John Wiley & Sons, New York, 1973.

Department of Information Science
Faculty of Science
Shimane University
Matsue 690, Japan