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1. Introduction

Let F(x) be a strictly increasing and continuously differentiable distribution
function (d.f.) on the real line R, and let /i(x)(resp. h(x)) be a continuous
and strictly increasing function on R+ = (0, oo)(resp. R) with h(R+) =
/?(resp. h(R) = R). Define a transformation ί(x, θ)(θ = (α, β, λ)eR+ x R x
[- oo, oo)) by

jα/φc)-/?, A - - 0 0 ,
U/z(x-A)-iS, Λ^ - oo.

Let 0 be a nonempty subset of R+ x R x [— oo, oo) and put Ĵ (6>) =
{F(ί(x,ί));Se6>}, being called a family of three-parameter d.f.'s which are
positive only to the right of a shifted origin. The family #"(/? + x R x R)
with h(x) = logx was considered in Finney [4].

Suppose that:
( i ) We have N different kinds of experiments on some characteristic X.
(ii) The transformed variable t{X9 θ) has a d.f. F.
(iii) In the ith experiment, nt objects are tested and information available

for each characteristic ^ ( l <j< nt) is only that its value lies in a
proper subinterval #fj. of R with nonempty interior.

The collection # = {̂ - 1 < ί < ΛΓ, 1 <j < nj is called a pooled interval-
censored (p.i.e.) data. When N = 1, the p.i.e. data # is simply called an
interval-censored (i.e.) data. The i.e. data # is called a grouped data if each
#1<7 belongs to a set of mutually disjoint intervals whose union is equal to
R. The p.i.e. data # is called a binary response data if each #fj. belongs to
a set of mutually disjoint two intervals, depending only on i, whose union is
equal to R.

There are various kinds of method for estimating the unknown true
parameter θ0 based on the p.i.e. data # (cf. [2], [9], [13]). In these methods,
an estimate θ of the unknown true parameter θ0 is defined by an optimal
solution of a minimizing problem. Hence there arises a problem whether such
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an estimate θ exists or not. No well-founded argument has been given for

this problem (cf. [1], [3], [4], [5], [12]). To solve this problem, Nakamura

([6] > [9], [10]) proposed a unified method, called the probability contents

boundary (PCB) analysis. Arrange all finite end points of #y's in order of

magnitude and denote them by x1 ?...,xm. The set {xj of these m end points

is called an window. Put F(Θ) = {{F(t{xl9 0)),...,F(ί(xm, 0))); θeΘ} and

dF(Θ) = Cl(F(Θ)) - F(Θ).

The set dF(Θ) is called the probability contents inner boundary (PCIB) of the

family ^{Θ) through the window {xj. In the PCB analysis, it is important

to analyze the structure of the PCIB dF(Θ)9 since the explicit representation

of the structure of the PCIB. dF(Θ) is very useful for deriving practical criteria

for the existence of some kinds of estimate such as maximum likelihood

estimate or least square estimate (cf. [10], [11]). The purpose of this paper

is to give the explicit representation of the structure of the PCIB

dF(R+ x R x R) through the window {xj.

In Section 2, a family ^(Θ) of three-parameter d.f.'s which are positive

only to the right of a shifted origin, this being one of the unknown parameters,

is introduced. The explicit representation of the structure of the PCIB

dF(R+ x R x R) are stated without proof. In Section 3, fundamental

properties of the PCIB dF(Θ) are prepared to prove results given in Section

2. In Section 4, the proofs of results stated in Section 2 are given.

2. Structure of the PCIB dF(Θ)

We shall determine the structure of the PCIB dF(Θ) through the window

{xj for Θ = R+ x R x [— oo, oo) and for Θ = R+ x R x R. Nakamura

([6], [7], [8]) determined the structure of the PCIB for many kinds of families

of d.f.'s. However, they do not cover the three-parameter families ^{R+ x

R xR) and &(R+ x R x [ - oo, oo)). Let us make the following two

conditions:

(A.I) The function h(s) (resp. h(s)) is twice continuously differentialbe on

/?+(resp. R) such that

( i ) hf(s)>0 and fc"(s) < 0 on /?+,

(ii) h(s) = o(h'(s))(s-> + 0),

(iii) hf(s) > 0 and h"{s) < 0 on R.

(A.2) There exist a function a(s) on R+, a positive function b(s) on /?+, a

differentiable function c(s) on R+ and a function w(s) on R such that

( i ) c'(s) > 0 and φ ) = o(l)(s -• + 0),

(ii) for every fixed xeR,
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R(x, s) = (h(x + ί/s) - a{s))/b{s) - h{x) - w(x)φ)

is differentiable on the positive part of a neighbourhood of 0,

(iii) for every fixed xeR, R(x, s) = o(l)(s -* + 0) and R'(x, s) =

In order to give an explicit representation of the structure of the PCIB, let
i m — i i — 1 m — i

u s p u t ax = ( 0 , . . . , 0 , 1 , . . . , 1 ) , 0 < i < m \ A f ( z ) = ( 0 , . . . , 0 , z , 1 , . . . , 1 ) , l < i < m ;
i — 1 m — i

0 < z < 1 and c£(z, z') = (0,...,0, z, z',...,z'), 1 < i < m - 1 0 < z < z' < 1.

Now we can state our main results.

THEOREM 2.1. Le/ conditions (A.I) <2«d (A.2) &£ satisfied. Then

dF(R+ x Λ x [ - oo, oo)) = (UΓ=V W ) U { z α 0 ; 0 < z < 1}

THEOREM 2.2. Let conditions (A.I) and (A.2) fo? satisfied. Then

dF(R+ xRxR) = (\JTJo1 k } ) U {zα0 0 < z < 1}

U(UΓ="o3k + 1 ( z , z ' ) ; 0 < z < / < l } )

[}F{R+ x R x {- oo}).

Consider the maximum likelihood estimation for example. Roughly

speaking, the PCB analysis asserts that a necessary and sufficient condition

for the existence of a maximum likelihood estimate (MLE) is that the supremum

of the log-likelihood L(z) over F(Θ) is greater than the supremum of the

log-likelihood L(z) over dF(Θ) (see [6], [9], [10], [11] for detailed discussions

on the PCB analysis). To find a practical criterion for the existence of an

MLE, we have to evaluate the value of the supremum of the log-likelihood

L(z) over dF(Θ). Hence the explicit representation of the PCIB plays an

important role in this stage.

3. Fundamental properties of the PCIB dF(Θ)

To state fundamental properties of the PCIB dF(Θ), we prepare some

notation and results. For notational simplicity, put Θo — R+ x R x [— oo, oo),
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1 = R+ x R x R,Θ2 = R+ x R x {- 00} and F{x, θ) = F(ί(x, 0)), and define

F(θ) = (F(xl9 β)9...9F{xm9 θ)\ ΘGR+ x R x [ - 00, 00).

Recall that &(Θ^ = {F(t(x9 θ))\ 0 e θ £ } , i = 0, 1, 2. Hereafter the symbol

"limπ" is used instead of " l i m , , ^ " and conditions (A.I) and (A.2) are assumed

to be satisfied.

The following result, due to Nakamura [8], is useful.

PROPOSITION 3.1. The set f]j=1{θeR+ x R x [5, ί] Uj < F(t(xij9 θ)) < u }

is compact for every set of pairs (uj9 wj) with 0 < u} <u'} < uj+ί < 1, j = 1, 2,

(iί9 i2) with 1 < iι < i2 < m and(s, t) with s = t = — 00 or — 00 < s < t < xir

We give four properties of dF(Θ).

LEMMA 3.1. Let 1 < i <j < m and let {θn = (αn, βn, λn)} be a sequence in

Θo such that \imnλn = - 00, t( = limnt(xh θn) and ti = l i m ^ ί ^ , θn). If

— 00 < tt < tj < 00 or — 00 < tι < tj = 00, then

for all xeR.

PROOF. Choose xeR. We may assume that λn < min(x, xx) for all

n = 1, 2,.... Define rn(x) = (ί(χ, 0J - t{xi9 θn))/(t(xp θn) - t(xi9 θn))9 and put

sn = — l/λn if λn φ — oo and sn = 0 if λn = — oo. In case sn = 0,

In case sn > 0, by (ii) of (A.2),

h(x + l/sJ-h(Xι+l/sJ
r"X h(xj+l/sJ-h{Xι + l/sJ

= Hx) - Hxd + (w(x) - wjx^φ,,) + R(x, sn) - R(xh sn)

h(Xj) - h(xt) + (w{Xj) - w(x;))φn) + R(xj, sn) - R(xh sn)'

By (i) and (iii) of (A.2), we obtain limπ rπ(x) = (h(x) - fr(x,))/{fi(Xj) - h(x,)) This

and the relation

(3.1) t(x, θn) = t(xh θn) + rn(x)(t(xp θn) - t(xt, θn))

prove the lemma.

REMARK. Here we adopt the computational rule: 0 oo = oo 0 = 0.
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LEMMA 3.2. Let l<i<j<m and let {θn = (απ, βn, λn)} be a sequence in Θo

such that λn < xt for all n, limn λn = xi9 tx = limn t(xh θn) and t} = limπ t(xj9 θn).

If — oo < t{ < tj < oo or — oo < tt < tj = QO, then

limn ί(x, θn) = tj for all x > xt.

PROOF. Let rn(x) be the same as in the proof of Lemma 3.1. It can be

easily seen that limnrn(x)= 1, since lim s^ 0 h(s) = — oo. This, together with

the relation (3.1), proves the lemma.

LEMMA 3.3. Let z = (z1,...,zJe3iF(<90). Then there exists no triple

0Ί> *2> h) with 1 < ii < H < i3 <m such that 0 < zh = zi2 < zh < 1.

PROOF. Since zedF(Θ0), we can choose a sequence {θn = (αn, βni λn)} in

Θo such that limπ F(θn) = z and limπ λn = X. Assume that there exists a triple

(h, in h) suc^ t r i a t 1 ^ h < h <i3 <m and 0 < zh = zh < zh < 1. For

simplicity, put x] = xtj and Vj = zij9 1 <j < 3. Denote by F~1(z) the inverse

function of F(x). It is obvious that limn ί(xj, θn) = F " 1 ^ ) , 1 < ; < 3, since

ί(xj, βπ) = F ' ^ F ^ x j , βn))). The inequalities 0 < vx < 1 mean that - oo < X

< x[ and Λ.π < x[ for sufficiently large π. If X = x[, then, by Lemma 3.2,

ί2 = ί3. This is a contradiction. If 1 = — oo, then, by Lemma 3.1,

t2 = tx + (/z(x2) — /J(xi))(/5(x3) - Mx1))~1(ί3 — ί j . This contradicts the fact

tλ = t2. Consider the case — oo < X < x[. Choose a positive number δ so

that 2(5 < min(x; - X, υί9 v3 - υ2, 1 - v3). Put θ' = {θeR+ x R x [>ί - 5,

1 + ^ ] ; i ^ - ^ F C x i , 0 ) ^ t ? ! +^}n{0G/?+ x Λ x [ > t - δ , X + δ]; v3 - δ

<F(x'39θ)<v3 + δ}. By Proposition 3.1, & is compact. Since θneθ' for

sufficiently large n, there exists θ' eR+ x R x [X — δ, X + δ] such that F(#') = z.

This contradicts zedF(Θ0).

LEMMA 3.4. Let z = (z1,...,zJe<9F(<90) w/ϊΛ zm = 1. Then there exists

no pair (iί9 ί2) such that 1 < i\ < i2 < m — 1 am/ 0 < zh < zh < 1.

PROOF. Since zedF(Θ0), we can choose a sequence {#„ = (απ, jSπ, Aπ)} in

<90 such that limπ F(0J = z and limπ Aπ = X. Assume that there exists a pair

(il9 i2) such that 1 < i1 < i2 < m — 1 and 0 < zh < zi2 < 1. For simplicity, put

Xj = xtj and Vj = zij9 j = 1, 2. Denote by F~1(z) the inverse function of

F(x). It is obvious that tj = limn ί(xj, 0J = F - 1 ( i ; ; ) , = 1, 2, since ί(xj, 0Π)

= F - 1 ( F ( x j , 0Π)). The inequalities 0 < vί < 1 imply that — oo < X < x[ and

λn < x[ for sufficiently large n. If X = x[9 then by Lemma 3.2, limπ ί(xm, θn)

= F~1(v2). This contradicts zm = 1. If X = — oo, then, by Lemma 3.1,

limn ί(xm, ^J is finite. This also contradicts zm = 1. Consider the case

— oo < X < x[. From relations



454 Tadashi NAKAMURA and Takahisa YOKOYAMA

t(x'29 θn)-t(x[, θn)

a n d

it follows that

ά = l i m M α M =n n h(xf

2 - X ) - h(x[ - X)

and

β = \imnβn = ah{xf

1-X)-F-\υι).

Hence — oo < limM t(xm, θn) = t(xm, (ά, β, X)) < oo, which contradicts zm = 1.

This completes the proof.

4. Proofs of Theorems 2.1 and 2.2

In this section we shall prove Theorems 2.1 and 2.2. To do this, we

prepare some notation and results. Let us put

i j k m — i— ΐ — k

dίjk(z, z') = (0,...,0, z~^Γz, z^Γz', 1,..., 1),

0 < z < z' < l;i> O j >O;k>O;i+j + k< m,

z, z'); 0 < z < z' < 1})

K J » ( Z Z ' ) ; 0 < z < z' < 1})

U(Uj+*< m ; M >i {^/t(z, z'); 0 < z < z' < 1})

U(Ui+i + *<m;i,Ma:l i
diJk(Z> Z ' ) ; 0 < Z < Z' < 1}),

where the union over the null index set is the empty set (φ).

The following result, due to Nakamura [8], is useful to represent the

structure of the PCIB dF(θ0) explicitly.

PROPOSITION 4.1. Let Θ be a subset of Θo. The relation δF(Θ) a &ί3

holds if

Cl(F(Γ\]= Λθeθ ujί F(t(xtj, θ)) < wj})) <= F(θ)

for every set of pairs (Uj, wj), 1 <j<3, with 0 < Uj < u'j < uj+ί < 1 and of

triples (il9 ί2, ί^) with 1 < ix < i2 < i3 < m.

The following lemma gives some information about the structure of dF(Θ0)

and dF(θx).

LEMMA 4.1. The following relations hold:
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(i)

(ii) dF(θ1) = dF{θ0)[)F(θ2).

PROOF. Proof of (i): Note that F{θ0) = {F(θ); θeθ0} and dF{Θ0)

= Cl(F(θ0)) - F(θ0). Let 0<Uj< u] < uj+1 < 1, 1 <j < 3, and let 1 < ix <

i2 < i3 < m. Put ί2 = f]]= x {θeθ0 u,- < F(xj, θ) < u }, where xj = x i y Choose

a sequence {zπ} in F(Ω) such that limn zπ = z and choose #„ = (απ, /?„, λπ) in Ω so

that zn = F(θn)9 n= 1, 2,.... Without loss of generality, we may assume that

lim, θn = θ = (α, A l)e[0, o o ] x ί x ί a n d limM (ί(χi, 0J, ί(x^, 0J, ί(x3, βj)

= (*i, ί2» t3)eR3- N o t e that - oo < ίx < ί2 < ί3 < oo. From θneΩ, it follows

that λn < x[ for all n. Consider the case — oo < X < x[. By Proposition 3.1,

the set Ωx = (]]=2 {θeR+ x ί x [ l - l , (x[ + x2)/2] ^ < F(xj, 0) < wj} ^ is

compact. Hence Oeθί9 since θneΩ1 for sufficiently large n. Thus z = f 0 ) e

F(ΩX) a F(Θ0). Consider the case X = — oo. By choosing a suitable subse-

quence of {#„}, we may assume that λn = — oo for all n or λn φ — oo for all

n. If λ n = - o o for all π, then βMeΠj?=i {^eβ 2 ; M7-^ F(xj, 0) ^ MJ} for all

n. By Proposition 3.1, θeθ2c:Θ0. Hence z = F(θ)eF(Θ0). Assume that

λnφ — CO for all π. By Lemma 3.1,

limπ ί(x, θn) = α*/ϊ(x) — jS* for every xeR,

where α* = (ί2 - ί!)/(fi(x2) - h(x[)) and jS* = α*fi(xi) - ίx. Hence z =

F((α*, )8*, - oo))GF(6>2). Thus Cl(F(Ω)) a F(θ0). From Proposition 4.1, the

relation (i) follows.

Proof of (ii): Recall that dF(θ^ = Cl(F{θ$) ~ F(Θt), i = 1, 2. To show

the inclusion dF{θo)uF(θ2) c SFίβJ, define a path β(λ) = (α(λ), J8(λ), λ) on

( - oo, Xi) by

h(x2 - λ) - h{x1 - λ)

= oi{λ)h{xι-λ)-tu

for every pair (t1,t2)eRxR with tί<t2. It is easily seen that, with

α = (ί 2 — tί)/(h(x2) — Mxi)) and β = ahix^) — ί l 5

lim t(x9 θ(λ)) = afί(x) - β for all xe/? .

This implies that F(Θ2) cz CliFiθj)). Because of m > 3 and (A.I),

nF(Θ2) = φ and hence F(6>2) cz dF(θx). Let ze5F(β 0)- τ h e r e exists a

sequence {zn} in F(θ 0 ) such that limM zn = z. Choose 0n = (αn, βn9 λn)eΘ0, so

that F ^ J = zn9 n = 1, 2,.... If /lπ ^ — oo for infinitely many n, then θneΘi

for infinitely many rc and hence z e dF(θ2). Consider the case where λn = — oo



456 Tadashi NAKAMURA and Takahisa YOKOYAMA

for sufficiently many n. In this case, we may assume that λn = — oo for all

n. Since θneθ2 and F(Θ2)<= dFiβJ, we have jeC/(F(6Ί)). Hence zedFiΘJ.

This proves the desired inclusion. Note that F(Θ0) = F(Θ1)uF{Θ2). Let

zedFiθi). There exists a sequence {zn} in FiΘJ such that limπ zn = z- If

zφF(θ0), then zedF(θ0). If zε/^Θo), then ze/χ<92), since zφFiθJ. This

proves the converse inclusion.

By the relation {bm(z); 0 < z < 1} u {4.-211(2. z'); 0 < z < z' < 1} c f(6»0)

and by Lemmas 3.3 and 3.4, we have

LEMMA 4.2. The following relations hold:

( i ) dF(<90)n(U;+*=m ; j,*>i I ' M * , * '); 0 < z < z' < 1})

<= (UΓ̂ Γo1 k } )U {Aiίz); 0 < z < 1} U{zαo; 0 < z < 1}

U(UΓ="i 2 k-(0,z ') ;0<z'<l})

U{Ci(z, z ' ) ; 0 < z < z ' < 1}.

(ίi) dF(Θ0)(\{{ji+j+k=m.iJykil {dijk(z, z'); 0 < z < z' < 1})

(iii) dF(Θo)n({Jj+k<m.j^1{dOjk(z, z'); 0 < z < z' < 1})

^UΓ="21{*J ( z ' ) ; 0 < z ' < i } .

(iv) dF(θo)ί){\Ji+J+k<miUtklίl {diJk(z, z'); 0 < z < z' < 1}) = φ.

With the aid of Lemmas 4.1 and 4.2, we have

LEMMA 4.3. The following relation holds:

dF(θ0) <= (UΓ=V W ) U {zα0; 0 < z < 1}

u(UΓ="i 1 {A,ω;θ<z<i} )

U(UΓ="i 2 {c i (0,z');0<z'<l})

U(UΓ="o 3 {c ί + i (z ,z ' ) ;0<z<z '< l } ) .

We shall represent the structure of dF(Θ0) explicitly. For each pair (x, x')

with — o o < x < x ' < o o and for each pair (ί, t') with — 00 < t < t' < 00, define

a path 0(Λ) = (a(λ), β(λ), λ)(λe(- 00, x)) by

ί' — ί
(4.1) α(l) = α(/l;x, x', ί, ί') =

h(x' -λ)- h(x - λ)'

(4.2) β(λ) = β{λ x, x', t, ί') = α(A)/i(x - A) - f.
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Note that t(x, θ(λ)) = t and t(x\ θ(λ)) = t' for all λe(- oo, x).

Now we are in position to prove Theorems 2.1 and 2.2.

PROOF OF THEOREM 2.1: Put x 0 = - oo. To show {αo,...,αm_1} c

<9F(<90), choose (αi5 Af), 0 < i < m — 1, so that x{ < λf < x i + 1 and αf > 0. It is

easy to see that l i m ^ . ^ F((a1, β, λ^) = ah and that a^F(0o). Hence

aiedF(Θ0) for all i = 0,...,m - 1.

To prove {za0; 0 < z < 1} c dF(Θ0), put x' = xx and ί' = i 7 " 1 (z) . Choose

x and t so that — oo < x < x' and — oo < t < t'. Let θ(λ) be the path defined

by (4.1) and (4.2). Lemma 3.2 shows that \imλ_>xt{xh θ(λ)) = t' for all

i = l , . . . , m . Hence limλ^xF(θ(λ)) = za0. Noting that zaoφF(Θo), we have

the desired inclusion.

To prove (JΓ=V {bi(z) 0 < z < 1} c: dF(θ0), let 1 < i < m - 1 and 0 < z < 1.

Choose λ so that xI _ 1 < A < x ί and put β(λ) = ah{xi - λ) - F'1^)- Then

ί(x, (α, jβ(/l), A)) = F'Hz) + Φ(x -λ)- h(xi - λ)) for all x > λ. Hence

l i m ^ ^ F((α, β(/l), A)) = Af(z). Since bi(z)φF{Θ0), the desired inclusion is

established.

To prove (JΓ=~o3 {c i + 1 (z, z') 0 < z < zr < 1} c dF(θ0), let 0 < i < m - 3,

x f < λ < x i + 1 and 0 < z < z' < 1. Put x = xi+ί9 x' = xi + 2, t = F~1(z) and

tf = F-1{z'). Let θ(λ) be the path defined by (4.1) and (4.2). Then

ί(x, θ{λ)) = t and t{x\ θ{λ)) = t' for all λ < x. By Lemma 3.2, l i m ^ F(θ(λ))

= c i + 1(z, z') The desired inclusion follows from ci + 1(z9 z')φF(θ0). By the

same argument as above, we can prove (JΓ=~i2 {^(0, z'); 0 < z' < 1} c dF(Θ0).

This completes the proof.

PROOF OF THEOREM 2.2: Theorem 2.2 follows immediately from Lemma

4.1 and Theorem 2.1.
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