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Introduction

In my previous paper [11], the dimension theory of a relatively semi-
orthocomplemented complete lattice (ef. [13]) with an equivalence relation
has been developed by the axiomatic treatement, which enables us to unify
the dimension theories of the von Neumann algebras and the continuous ge-
ometries. Our method is very similar to that of Loomis [8], but he treated
only the case where the lattice is orthocomplemented. Let L be a relatively
semi-orthocomplemented complete lattice where the semi-orthogonality 1 ”
satisfies the following condition: a; 1 a, as Lb=>a 1 b. It has been shown in
[11] that if there is an equivalence relation in L satisfying certain axioms
(denoted by (2, 8)—(2, &) in [11]) then there exist the dimension functions
with respect to this equivalence relation. In [12], this system of axioms was
modified for the purpose of giving simple conditions for a Baer *-ring under
which the lattice of projections of this ring has the dimension functions with
respect to the algebraic equivalence (or the *-equivalence) introduced by
Kaplansky. Indeed, these conditions are satisfied by the Baer *-rings con-
sidered by Kaplansky [6] and [7], and consequently by the AW*-algebras
and the von Neumann algebras.

Now, we consider the projectivity of an upper-continuous complemented
modular lattice for the purpose of generalizing the dimension theory of the
continuous geometries. The systems of axioms given in [11] and [12] include
the axiom of (complete or finite) additivity, but the above projectivity does
not generally satisfy this axiom. For this reason, in this paper we shall give
another system of axioms which is weaker than the systems in [12] and [8],
and we shall develop the dimension theory on L, which not only covers the
existing dimension theories of the Baer *-rings and the continuous geome-
tries but also throws light on the dimension theory of upper-continuous com-
plemented modular lattices.

In this paper, the system of axioms for equivalence relation is given as
follows:

(A)) a~0 implies a=0;

(Ay) if a~b;\Ub, then there exists a decomposition a=a;\Ua, with a;~b;
(=1, 2);

(B) if we put a=(@nb)Uay, b=>@Nb)\Uby, a\Ub=a,\Ub=a\"b, for any a, b,



370 Shtichir6 MAEDA

then there exist decompositions a,=ai\Ua?, by =507 b7 avb
such that a}~ay, bi~b,, a{~b] (see Fig. 1);

(C)) if a=\")uts, b=\"/4ba, as~Db, for every a and
alb,then a~b;

(Cf) if a=a1\'/a2, bzblObz, ai~b; (Z-_—l, 2), then
a~Db.

The projectivity in an upper-continuous com-
plemented modular lattice does not generally satisfy
(Cp), but we shall show (in §8) that (C;) may be omit-
ted if (B) is replaced by the following stronger axiom

ai=b7=0):

(B) If @ and b are perspective then a~b.

(In the previous papers [117] and [12], the axioms

(AD), (A, B), (C)), (Cy) are denoted by (2, B), (2, 7), (2, n), (2, 82), (2, &) res-
pectively.)

The dimension function on L having an equivalence relation “~” is a
mapping d on L into the set of non-negative continuous functions on the Bool-
ean space £, representing the relative center Z, with respect to “~”. It is
characterized by the following axioms:

(1°) If a~b then d(a)=d(b);

(2%) if a_L b then d(a\Ub)=d(a)+d(b);

3% if z € Z, then d(zNa)=X(z)d(a), where X(z) is the characteristic func-
tion of the compact, open subset of £ corresponding to z;

4°) if a>0 then d(a)>0;

(5°) if ais a finite element then d(s) is finite valued except on a set of
the first category.

Our main result is that if “~” satisfies the axioms (A,), (A,), (B), (C ), (Cp)
or the axioms (A,), (A,), (B), (C,) then we can construct on L the dimension
functions with respect to “~.

In §1, some properties of relatively semi-orthocomplemented complete
lattices are given. In §2, the relative center Z, with respect to an equivalence
relation “~” in L is defined. And, supposing that “~” satisfies (A;) and (A,),
we define the minimal element and the finite element, and it is proved that L
can be decomposed into five summands, which are finite of types I and II,
properly infinite of types I and II and of type III respectively.

In §§3-5, the axiom (B) is replaced by the following weaker one:

(B) If b is a complement of « and ¢ is a semi-orthocomplement of « then
b=c.

Supposing that “~ satisfies (A,), (A;) and (B'), the following property (de-
noted by (2, &) in [11] and [12]) is proved in §3:

B") If e(@)Ne(d)=0, then there exist a;, b; such that 0= a; <a, 035,50,
a1~b1.

If “~” satisfies (A)), (Ay), (B'), (C.) and (C;), then we can prove the com-

Fig. 1.
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parability theorems which play an important réle in the dimension theory.
But, in the case of AW*-algebras, it is not easy to show that the *-equivalence
satisfies (B'), though (B”) is easily proved. For this reason, some results im-
plied from the five axioms (A;), (A,), (B”), (C)), (C;) without (B") are gathered
in §4. These results will be useful not only in the following argument of our
dimension theory but also in proving that the *-equivalence in an AW*-
algebra satisfies (B') (actually satisfies (B)).

In §5, supposing that “~” satisfies moreover (B’), we prove the com-
parability theorems and also prove the complete additivity of “~” in the
finite case.

Besides the comparability theorems, the following theorem is important
in the dimension theory: If ¢ and b are finite then so is a\Ub. In §6, we show
that this theorem holds if and only if “~” satisfies moreover (B).

Supposing that “~” satisfies (A)), (A,), B), (C.), (Cy), our concluding
theorems concerning the existence and other properties of the dimension
functions can be proved in the same way as in [11], by using the results of
these sections. These theorems are stated in §7 without proofs.

In §8, we consider the axiom (B). We show that if “~” satisfies (A)),
(A,), (B), (C,) then we can define a new equivalence relation “* > satisfying
the above four axioms and moreover (C;). And, it is proved that, for both
the original and the new equivalence relations, the relative centers (resp. the
minimal elements, the finite elements, the summands of each type, the di-
mension functions) are the same, though their definitions depend on the equiv-
alence relations. This shows that (C;) may be omitted from our system if (B)
is replaced by (B). In this case, we can prove the following theorem by the
aid of (B): If L is finite then it is an upper-continuous complemented modular
lattice.

The examples of our axiomatic argument are given in §9 and §10.

It is shown in §9 that the projectivity in a complemented modular com-
plete lattice satisfies the axioms (A;), (A;) and (B), and that it satisfies more-
over (C)) if the lattice is upper-continuous or orthocomplemented (the semi-
orthogonality is defined by the independence or the orthogonality). This im-
plies that any upper-continuous complemented modular lattice and any ortho-
complemented modular complete lattice have the dimension functions with
respect to the projectivity. We note that Kaplansky’s theorem: “Any ortho-
complemented modular complete lattice is a continuous geometry” is a con-
sequence of our dimension theory.

It is shown in §10 that the algebraic equivalence in the lattice of princi-
pal right ideals of any upper-continuous regular ring or the lattice of projec-
tions of any complete *-regular ring (Kaplansky [6]) satisfies (A,), (Az) (B),
(C)) and (Cy), and that the *-equivalence in the lattice of projections of any
AW*-algebra does also. Hence, these lattices have dimension functions with
respect to the algebraic equivalence or the *-equivalence. These equivalences
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are defined by the algebraic structure, but our final result shows that each of
them coincides with an equivalence relation (called semi-projectivity) defined
by the lattice-structure.

§ 1 Semi-orthogonal relation

Let L be a lattice with 0. A semi-orthogonal relation “_L” in L is a binary
relation which satisfies the following axioms (see [138, §17):

(L1) ala implies a=0,

(L2) alb implies b1a,

(L3) alb,ag=a imply a,_Lb,

(L4) alb,a\Ublc imply alb\ec.
A subset S of L is called a semi-orthogonal family, in notation (a; a € S) L, if
for any pair of disjoint finite subsets Fy, F; of S it holds that \ /(a; a € F1) L\ J
(a; a € Fy). It is obvious that if S is a semi-orthogonal family then so is every
subset of S and that if every finite subset of S is a semi-orthogonal family
then so is S. The symbol & means the join of a semi-orthogonal family.

Lemma 1.1. Q) Leta; €L, 1<i<n. Ifa;\J...\Ua; La;s for everyi=1,...,
n—1, then (a;;1<:1<n)l.

(ii) Let S be a subset of L. If ay L\ J(a;a € F) whenever F is a finite subset
of S and ay € S—F, then (a;a€S) L.

Proor. The statement (i) can be proved by induction, because, if (ay,---,
a;) L for i<n then it is easy to prove (ai,---, a;+1) L by the axiom (_L4).

(ii) It follows from (i) that any finite subset of S is a semi-orthogonal
family and hence so is S.

Lemma 1.2. Let L be complete. If S, is a semi-orthogonal family for every
a€land {\')(a;a€S,); €I} is also, then \ J(S.; « € I) is also a semi-orthogonal
family.

Proor. In the case I={1, 2}, this lemma is easily proved by Lemma 1.1
(ii) and (_.4). Hence, in the general case, any finite subset of \ /(S,; ¢ € I) is
a semi-orthogonal family and then so is \ /(S,; « € I).

Let L be a lattice with 0,1 and have a semi-orthogonal relation. « € L is
called a semi-orthocomplement of a € L if a1 d', a\va’=1 (or simply aUad'=1).
L is called to be relatively semi-orthocomplemented if for every a, b € L with
a < b there exists ¢ € L with 5\ c=a (c is called a relative semi-orthocomplement
of b in a). The following statements are proved in [13, §27.

Lemma 1.3. Let L be a relatively semi-orthocomplemented lattice and Z be
its center. Amn element of L is in Z if and only if it has a unique complement.

Tureorem 1.1. Let L be a relatively semi-orthocomplemented complete lat-
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tice.

(i) The center Z of L is a complete Boolean sublattice of L.

(ii) Let as 1 a (i.e.{as} is an ascending set with the join a). If as € Z for
every 6 or b € Z, then asN\b 1 anb.

§ 2. Axiom A for equivalence relation

Hereafter, let L be a relatively semi-orthocomplemented complete lattice
and Z be its center.

Derinrrion 2.1, We assume that there is an equivalence relation “~” in
L. If a~b,<b in L, we shall write a<b. The set Z,={z € Z; a <Xz implies
o<z} is called a relative center with respect to the equivalence relation. Since
1 € Z, and since z, € Z, for every « implies [\, z, € Zy, for any « € L there is the
smallest element z € Z, such that «<<z. We shall denote it by e(z). It is
obvious that a~b implies e(a)=e(b).

Axiom A. We give the following axioms for equivalence relations in L.

(A) a~0 implies a=0.

(Ay) If a~b,\Ub, then there exists a decomposition a=a\Ja; with a;~b;
=1, 2).
Sometimes, we shall replace (A.) by the following stronger axiom:

(Ay) If a~\')uba then there ewists a decomposition a=\"/,ay With ay~bs
for every a.
These axioms are satisfied if the following one is satisfied. (L(0, a) denotes the
lattice {x € L; x<a}.)

(A) If a~> then there is a lattice-isomorphism @ of L(0, a) onto L(0, b)
such that @(x)~x for every x € L(0, a) and that x |y @(x) LI(y) (x, y € L(0, a)).

In this section we assume that there is an equivalence relation “~” in
L satisfying the axioms (A;) and (A;). The relative center has the following
properties.

Lemma 2.1. (i) Z, is a complete Boolean sublattice of L.
(1) e(\Juwaw)=\Js e(an).

(iii) If z € Z, then e(zNa)=zNe(a).

(iv) If a~b and z € Z, then zNa~zNb.

Proor. (i) Since z, € Z, implies "\, z, € Z, it suffices to show that z € Z,
implies 1—z€ Z,. If a~b<<1—z, then by (A;) there is b, <<b with b;~zNa,
and then it follows from z € Z, that b, <<z. Hence b; <zN\b=0, which implies
zNa=0 by (A;). Therefore ac=1—2)Na<1-—2z.

(i1) Itis obvious that \ /, a, <\ /. e(a.) <e(\Joan). Since \ J,e(as) € Zy by
(i), we have Uw e(aw):e(\jw o).

(iii) It is obvious that e(zna) <zNe(a). Since it follows from (ii) that
e(@)=ezNa)Ue((l—2)Na)<e(zNa)\J(1—z), we have zNe(a) Ze(zNa).



374 Shhichir6 MAEDA

(iv) Since a=(GNa) V(1 —2)Na), it follows from (A,) that there exists a
decomposition b="b,\Ub; with b;~zNa, bo~(1—z)Na. Since z and 1—z are in
Zy, we have b <z, b, <1—2z, which imply zN\b=0zNb;)\U(zNby)=b1~zNa.

DerinitioN 2.2.  We shall write < b if for every z € Z, either zNna<zNb
or zNa=zNb=0. Obviously, « € b implies either a<b or a=b=0. It follows
from (A,) and (A,) that e <b< ¢<d implies ¢ <€ d and it follows from Lemma
2.1 (iv) that ¢« < b implies zNa <K zNb for z € Z,. We shall write a<b if for
every z € Z, either zna<zNb or zNa=zNb=0. «<b implies a <K b, implies
either a<b or «=b=0 and implies zNa<zNb for z € Z,, a<b<Lc=<d implies
a<d.

An element « € L is called to be minimal if a3 b implies b=0. It is ob-
vious that if ¢ is minimal and « > b then b is also minimal.

Lemva 2.2. The following statements are equivalent (cf. [10], Theorem
3.1).

(&)  a 18 minimal.

(B) a>bimplies b=0.

(v) b<a implies e(b)<e(a).

®) b<aimplies b=ec(b)Na.

&) Ifb,c<athen e(bNnc)=c(b)Nelc).

©) If bc<athen e(b)Nne(c)=0.

Proor. The implication («)=>(B) is obvious. (B)=>(y). It suffices to prove
that if b<<« and e(b)=c(c) then b=a. Let a=b"c. If znb+0 for z € Z, then
we have zNa>zNc¢ and if zN\b=0 then since zNe(a)=zNe()=e(zNb)=0 by
Lemma 2.1 we have zna=zNc=0. Hence a>¢, which implies c=0 by (5).
(v)=). Letb<aand c={1—ec())Na}\Ub. Since ¢c=<a and since it follows
from Lemma 2.1 that e(c)= {1 —e®)Ne(a)} Ue(b)=e(a), we have c=a by (7).
Hence e(b))na=e(b)Nc=>b. (8)=(x). If a>b, there is c<a with c~b and then
a»c. Since e(c)Na=c by (8) and e(c)N\c=c, we have either ¢ >c or c=0. But
¢ >>c does not hold, since ¢ > ¢;~c¢ implies c=c(c)Na=e(c;))Na=c; by (8). Hence
c=0 and then 6=0. Therefore the four statements («)— (8) are equivalent.

(8)=>(&). If b, c<<a then it follows from (§) that bnc=e(d)Nelc)Na, and
hence e(bNc)=e(b)Nelc)Nela)=ecd)Nelc). (&)=(&)is obvious. (O)=(y). If
b<a then putting a=5"c we have ¢c#+0. Since e(b)Ne(c)=0 by (&), we have
e(b)<e()\e(c)=e(a). This completes the proof.

Lemma 2.3.  If a € L is minimal, then L(0, a) is distributive, that is, a is a
D-element defined by Kaplansky ([6], p. 538).

Proor. It is obvious by (8) of Lemma 2.2 that the mapping b—e(b) gives
a lattice-isomorphism of L(0, ) into Z,. Hence L(0, «) is distributive.

Later, we shall give a condition under which the converse of Lemma 2.3
holds (see Lemma 3.3).
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Dermnirion 2.3. A subset {a,; @ € I} of L is called a homogeneous family
if it is a semi-orthogonal family and a,~as for every «, S € 1. It is called an
n-homogeneous family when the cardinal of 7 is n. A homogeneous family is
called to be zero if all its elements are zero.

An element « € L is called to be infinite if L(0, «) has a non-zero $§,-homo-
geneous family, and otherwise called to be finite. « € L is called to be simple
(Loomis [ 8], p. 6) if L(0, @) has no non-zero 2-homogeneous family. We have
the following implications: minimal=simple=finite. Because, the first im-
plication follows from (¢) of Lemma 2.2 and the second one is obvious. (We
shall show in the next section that the minimal element and the simple ele-
ment coincide under the condition that “~” satisfies the axiom (B’).)

If «<a then using (A,) repeatedly it is shown that « is infinite. Hence if
a is finite then a<a does not hold. If ¢ is simple and «~»5 then b is also simple
by (A,). (If (A,) is satisfied, the similar statement for finiteness holds.)

Lemma 2.4. Let a€ L and z, € Zy. If z,Na 1s minimal (resp. finite, simple)
for every «, then so is \ J, z.Na.

Proor. If z,na is minimal for every « and \ /, z,N\a>b then we have
2,Nb=0 for every « since z,Na>z,Nb. Hence b=\ /, z2,N\b=\J, (zNb)=0,
which shows that \ /, z,N\a is minimal. If z,Na is finite for every « and
L(0, \J, zsNa) has an §$o-homogeneous family {b;; 1<"i< oo}, then since {z,N
b;: 1<<i<oco} is an §§,-homogeneous family in L(0, z,N\a) we have z,N\b;=0.
Hence b;=\_/,(z.N\b;)=0, which shows that \ /, z, N\« is finite. The statement
for simple elements is proved similarly.

Derinirion 2.4, L is called to be of type I if it has a minimal element «
such that e(a)=1; of type II if it has no non-zero minimal element and has a
finite element b such that e(b)=1; of type III if it has no non-zero finite ele-
ment.

Lemma 2.5. There exists a unique decomposition 1=z Uz \Uzy in Zo such
that the summands L(0, z ), L(0, z;) and L(0, zy) are of type I, type II and type
IIT respectively.

Proor. Let z;=\/(e(a); a is minimal) and z*=\_/(e(b); b is finite). Since
Z, is a complete Boolean lattice by Lemma 2.1, we may write z, =\"/, z, Where
zo=e(a,) and a, is minimal. Putting ay=\ /. s, We have e(a))=z,; and since
zeNao=a, is minimal it follows from Lemma 2.4 that «, is minimal. Similarly
we have a finite element b, such that e(b))=z*. Putting z;=z"—z, (since
z;=z") and zp=1—z*, we have the desired decomposition. The uniqueness is
obvious.

DeriniTION 2.5. A non-zero element « € L is called to be properly infinite
if, for every z € Z,, zNa is either infinite or zero. It is obvious that if « <«
and ¢ =0 then « is properly infinite. L is called to be finite (resp. infinite,
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properly infinite) if so is 1 € L.

Lemma 2.6. For any a € L there exist ¢'(a), ¢™(a) € Z, having the following
properties:

1) Ve (@=c(a);

(2) ela)Na s finite;

B if e*(a)F=0 then e*(a)Na 1s properly infinite.
Then ¢ (a), e~(a) are uniquely determined.

Proor. Let ¢/(a)=\/(z € Zy; z<e(a), zNa is finite) and e*(a)=e(a)—e'(a).
It follows from Lemma 2.4 that e/(¢)Na is finite. If ¢”(a) =0, then it is easy
to show that ¢”(a)N\a is properly infinite. The uniqueness is obvious.

Cororrary. There exist a unique decomposition 1=¢'(1) e (1) in Z, such
that ¢/(1) is finite and °(1) is properly infinite or zero. If ¢*(1)=0, it is the
largest properly infinite element.

Proor. The first statement directly follows from the lemma. If a€lL
is properly infinite, then e/(1)Na is zero since it is finite. Hence a=e(1)N
a<e”(1).

The following theorem is a direct consequence of Lemmas 2.5 and 2.6 by
putting z, /\ef(l):z-’i ,zNe”(1)=z7, znf\ef(l):z{l, zgNe~(1)=z} (sz\ef(l):()).

Tueorem 2.1. There exists a unique decomposition 1=z, Uz7 Uz Uz Uzy
i Zy such that the summands L(0, z1), L(0,z3), L(0, z4), L(0, z5) and L(0, zy)
are respectively finite of type I, properly infinite of type I, finite of type II,
properly infinite of type II and of type III.

§ 3. Axiom B

Axiom B. We give the following axioms for equivalence relations in L.

(E) If a and b are perspective (i.e. they have a common complement),
then a~b.

B) If a=(@anb)Ja, b=(anb)\Ub,, a\Ub=ay\Ib=a\Ub,, then there exist
decompositions ay=ai\Uay, by=>0b1"Uby such that ai~as, bj~b, ay~by.

(B") Ifbisa complement of a and c is a semi-orthocomplement of a, then
b>=c.

B") If e(@)ne(d)=0, then there exist a;, by such that 0= a; <a, 03 b,=<b,
a;~ by.
It is obvious that (B) implies (B) (where o} =57 =0) and that (B) implies (B).
Remark that (B’) is equivalent to the following statement: a\Ub=a\c¢ im-
plies b=c. Because, if a\Ub=0¢"c and (B’) holds, then, putting b=(aNb)\"b,,
(a\Ub) > d=1, it is easy to show that b, is a complement of ¢\Ud and ¢ is a semi-
orthocomplement of a\"/d, whence ¢<b; <<b by (B’). The converse is obvious.

b3

Dermntrion 3.1,  Let L have an equivalence relation “~”. Two elements
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a, b € L are called to be unrelated if a; <a, by <<b, a;~b, imply a;=5b;=0. It is
obvious that e(a¢)N\e(b)=0=a and b are unrelated= aNb=0. The axiom (B")
is equivalent to the following statement: if ¢ and 5 are unrelated then e(a)N
e(b)=0. Supposing that “~ satisfies (A;) and (A,), it is obvious that if «
and b are unrelated and b >c then ¢ and ¢ are unrelated.

Lemma 8.1, Let “~7 satisfy (A)) and (A,). The following statements are
equivalent.

() “~7 satisfies (B").

(B) If two elements a and b are unrelated, then b << every complement of

(v) If two elements a and b are unrelated, them b << every semi-orthocom-
plement of a.

(8) For any a € L, there is the largest element o’ unrelated to a, and, a and
a are semi-orthogonal.

Proor. Let o’ be a complement of a. If e(a)Ne(d)=0 then since e(b)Na
=0 we have b <e(b)=c(b)Na'<a’. Hence (a) implies (B). (B)=(y) is trivial.

(v)=(@®). Let S be the set of all elements unrelated to ¢, and put o=\
(x; x € S). Then we have o’ € S, because, if a>c<a' and ¢’ is a semi-orthocom-
plement of ¢, then since ¢ and x € S are unrelated it follows from (v) that x<<¢’
for every x € S, and hence «'<<c’, which implies c=cNa’<<cNc'=0. Therefore
a’ is the largest element in S. We have a1l d since «'<< a semi-orthocom-
plement of ¢ by (v).

(®)=(a). Let a and b be unrelated. It follows from (8) that there is the
largest element o’ unrelated to ¢ and that there is the largest element o’ unre-
lated to «’. Then b<<d', a<<d"’ and it follows from (8) that «’ 1L «’. We shall
show that ¢’ € Z,. Let c be a complement of a’. Then ¢ and «" are unrelated,
because, if ¢c>x=<d/, then we have x<d' since x and « are unrelated, and
hence x<a'Nec=0. Hence ¢c<d", and we put c\’d=da". Then it follows from
a’ 1 a that dLcUd =1, which implies d=0 and c=d”. Hence & has a unique
complement &/, and then ¢ € Z by Lemma 1.3. Since x<d’ implies x<<d' as
shown above, we have ¢’ € Z,. Then we have e(b) <o and then e(a)Ne(d)=
e(ane())=0. This completes the proof.

Remark 3.1. Let “~” satisfy (A;) and (A»).

(i) If (B”) is satisfied, it is easy to show that e(a)=\/J(x € L; x<a) and
1—e(a) = the largest element unrelated to «. From the former equation it
follows that a € Z, if and only if x <« implies x<<a (a is invariant in the sense
of Loomis [8]).

(i) If (B”) is satisfied, it is easy to show that for any non-zero element
a =<z, there is a non-zero minimal element b with b= a. This fact implies by
Zorn’s lemma that for any element a <z, there is a decomposition a=\"/y ay
such that g, is minimal for every «.
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(ii1) If every element of L has a unique semi-orthocomplement, that is,
L is a relatively orthocomplemented complete lattice (see [10], Theorem 1),
then (B”) is equivalent to the following axiom:

‘(B{)’) If a and b are not orthogonal then there exist a;, by such that 0 =Fa;
<a, 02b; b, a;~b.
Because, by the assumption, (v) of Lemma 3.1 may be stated as follows: If
two elements ¢ and b are unrelated then 5 << the orthocomplement of a (which
means that « and b are orthogonal). (Bf) coincides with the axiom (D) of
Loomis [8].

Tureorem 3.1. If “~7” satisfies (A)) and (A,), then (B') is stronger than
B").

Proor. Supposing that (B') is satisfied, we shall prove (3) of Lemma 3.1.
Let ¢ and b be unrelated and «' be a complement of «. Putting o' \Ub=d"Uc,
we have ¢<b by (B’), and putting (¢'\Ub) U d=1, we have ¢\ d=<a by (B).
Hence a > c¢<b, which implies ¢c=0 and 6 <<'.

Lemma 3.2, Let “~7 satisfy (Ay), (Ay) and (B”). An element of L is mini-
mal if and only if it is simple.

Proor. If ¢ is simple and 5\ c<<q, then since b and ¢ are unrelated we
have e(b)ne(c)=0 by (B”’). Hence ¢ is minimal by Lemma 2.2. The converse
is obvious.

Lemma 3.3. (i) Let “~” satisfy (A)), (A,), (B”) and moreover the fol-
lowing condition:

P) If a,b are non-zero elements with a_L b, a~b then there exist non-zero
elements a; < a, by < b such that a; and b, are perspective.
Then it follows that

(P’ For any a €L, if b is in the center of L(0, a) then b=e(b)Na. (It is
easily seen that Z,=Z, by putting a=1. L is a Z,-lattice defined by F. Maeda
[1ol)

(ii) Let “~” satisfy (A)), (Ay) and (P"). An element of L is minimal if
and only if it is a D-element.

Proor. (i) Let b be in the center of L(0, ), and put a=b"c. If e(d)N
e(c) =0, it follows from (B”) and (P) that there exist non-zero elements b, <5,
¢1 <c such that b, and ¢, are perspective. Then, in L(0, a), since b, and ¢, are
perspective and since b is in the center, bn\b,=b, is perspective to b ¢, =0,
which implies 5,=0, a contradiction. Hence e(b)Ne(c)=0 and then e(d)Na=
(e()Nb)\U(e(d)Nc)=b.

(ii) If ais a D-element and b <<a, then since in L(0, ¢) any element is in
the center, it follows from (P’) that b=e(b)"\a. Hence « is minimal by Lemma
2.2. The converse is given by Lemma 2.4.
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§ 4. Axiom C

Axiom C. We give the following axioms for equivalence relations in L.

(C)) If a=\Jy ay b=\"/s buy, au~by for every a and a_Lb, then a~b (com-
plete additivity in the semi-orthogonal case).

Cp If a=a1\Yay, b=b1\Ubs, a;~b;(i=1, 2), then a~b (finite additivity).

Levmma 4.1, Let an equivalence relation “~> n L satisfy (A,), (Ay), (B”)
and (C)).

(1) If a1l b, then there exist decompositions a=a Ua'’, b=b"Ub" such that
a'~b,el@)Ne®”)=0.

(ii) If a L b, then there exists a decomposition 1=z,\"z,\Uzs i Z, such that
z21Na > z2iNb, zoNa<k zoNb, zsNa~z3N\b.  More simply, there exists z € Z, such
that zNa=zNb, 1—2)Na< (A —z)ND.

(i) If a=a1\Uaz, b=0b,"bs, a L b, a~b, a,~b, and tf a is finite, then a,~b,.

Proor. (i) Consider pairs of semi-orthogonal families {a,}, {b.} in L(0,
a), L(0, b) respectively such that a,~b, for every «. Among these there is a
maximal pair {a,; a € I}, {by; a € I} by Zorn’s lemma, and we put ¢’ =\"/ (au;
ael),b=\")(by; a€I)and a=a \Ua”’, b=b""Ub". Then since «”’ and b” are un-
related, it follows from (B”) that e(a”)Ne(®")=0. It follows from (C,) that
a'~b, since o’ 1LV,

(ii) Put z;=e(d"), zo=e(®”) and z;=1—(z,\Uz,). It follows from z;N\d"'=
z3Nb" =0 that zsNa=z3Nd' ~zsN\b'=z3nb. We can see that z;\a>z,Nb, be-
cause, if zN\z;Na”’+0(z € Z,;) then we have zN\z;N\a>zNzN\b since z;N\6" =0,
and if zN\z;Na”’=0 then zNzNa=zNz;N\b=0 since zNz;=e(zNz, Na’")=0.
Similarly we have z;N\a < z,Nb.

(iii) There is z € Z, such that zNax=zN\by, (1 —2)Na, <(1—2)Nby by (il).
If znay>zNb,, then, since zNa;~zNby, it follows from (C,) that zNa>zNb~
zNa, contradicting the finiteness of «. Hence zN\a;~zNby, and similarly we
have (1—z)Na;~ (1 —2z)Nby, since (1—z)Na;<(1—z)Nb, implies (1—2)Na<<
(1—=2)N"b~A—2)Na. Therefore a;~b,.

Lemma 4.2, Let “~” satisfy (Ap), (Ay), (B”) and (C,). If a=<z,, then
there exists a decomposition 1=\"/, z, in Z, such that each z,Na is the join of a
homogeneous family of minimal elements.

Proor. It suffices to show that, in Z,, for any non-zero element =<z,
there exists 0 %=z, <<z such that z;N\a is the join of a homogeneous family of
minimal elements. In (0, zN\a) there exists a maximal one {as} among hom-
ogeneous families of minimal elements. Put zna=\"/sas\Ub. It follows from
Lemma 4.1 that there is z; € Z; such that ziN\ag>z21Nb, (1 —z1)Nag (1 —2z1)Nb.
We have z;\b=0 since gz is minimal, and hence z;\zNa is the join of the
homogeneous family {z;\ag}. To complete the proof, it suffices to show that
ziNz==0. If we suppose that z;N\z=0, then we have ag, b="z=1-—z and
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hence a; < b, which contradicts that {as} is maximal.

FIFTH AXIOM FOR SEMI-ORTHOGONALITY. We give the following axiom for
semi-orthogonal relation “_ 7.

(L5) Ifas?taand as b for every & then a1 b.
If a complete lattice has a semi-orthogonal relation satisfying (_5), then it
is obvious that semi-orthogonal families have the following property: If S
is a semi-orthogonal family and S;, S, are disjoint subsets (not necessarily
finite) of S then \ J(a; a € S;) 1L\ J(a; a €S,).

In the remainder of this section we assume that, in a relatively semi-

orthocomplemented complete lattice L, the semi-orthogonal relation satisfies
(L5).

Lemma 4.3,  Let “~” satisfy (A)), (Ay), (B”) and (C,). If a<zn\Uzm, then
for any finite n there exists an n-homogeneous family with the join a. Lf a=zm,
then there exists an ¥§o-homogeneous family with the join a.

Proor. If ¢=0, the lemma is trivial. Let 0%-a¢<zp\Uzm. Since L(0, zn
U zm) has no non-zero minimal element, it has no non-zero simple element by
Lemma 3.2. Hence for any 0==b<zp\zg and for any finite », there exists
a non-zero n-homogeneous family in L(0, b). Using Zorn’s lemma, we can get
non-zero n-homogeneous families {a%; 1 <<i<<n} (« € I) such that the joins a,=
\"J(a%; 1<<i<n) (a € I) form a semi-orthogonal family and that a=\"/(a,; @ € D).
Putting a;=\"/(a%; a« € I) (1 <i<n), since (a%; 1 <i<n, a € [) L by Lemma 1.2,
it follows from (_L5) that (¢;; 1<i<<m)1. And then {a;} is a homogeneous
family by (C,) and its join is a. The second statement of the lemma can be
proved similarly, because L(0, zg) has no non-zero finite element.

Lemma 4.4. Let “~” satisfy (C)) and (C;). If {as; a €I} is a homo-
geneous family and a subset J of I has the same cardinal as I, then \./(aw; a€))

~\./(aw§ a €l

Proor. If I is finite, then the lemma is trivial since J=I. If I is in-
finite, then J can be divided into two parts Ji, J; such that both parts have the
same cardinal as I. It follows from (1 5) and (C,) that \'/(a,; @ € J1) ~\'/(au;
a € Jo))~\J(ay; a € )\ u(I—J)) since Ji, J» and J;\U(I—J) have the same cardinal
as I. We have \ /(a,; a € J)~\/(aw; a € I) by (C)).

Lemma 4.5,  Let “~” satisfy (Az), (C)) and (Cy). If azband aXb, then

a~>.

Proor. a>=b means that there is a; with a >a;~b. Put a=a;\Uc;. Since
a <X b~ay, there is a, with a~a; <a; and by (A;) there is a decomposition a,=
a3\Ucz With az~ay, cz~c;. Putting a;=a;\Uc,, we have a decomposition az;=a,
Ucey with ag~as, cs~c,. Repeating this, we have sequences {a,}, {c,} such that
Ay =Cps1\J Cpa1y Qa1 ~Qy_1, Cre1~Cp1. 1t is obvious that (c,; 1<n<eo) L. Put-
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ting a;=\"/(c,; 2<n< ) d, we have a=\"/(c,; 1 <n< =0)\Ud, and since \VICH
n=1,38,5, . ..)~\"J(c,; n=38,5,7,...) by Lemma 4.4, we have a~a,~b.

Lemma 4.6, Let “~” satisfy (A)), (Az), (C)) and (C)).

(1) An element a € L is finite if and only if a~ay <a implies a;=a, 1n
other words, a<a does not hold.

(ii) If a s finite and a~>b then b is also finite.

Proor. (i) Let {b;; 1 <<i< oo} be an §§,-homogeneous family in L(0, a).
Putting a=\"/(b;; 1 <<i< o) Uc and a;=\"/(b;; 2<<i< o) Uc, we have a;~a=
a;\Ub; by Lemma 4.4. Hence if a<a does not hold then 5, =0, which implies
that ¢ is finite. The converse is obvious. The statement (ii) is implied from
(i), since a~b and 5<b imply a<a.

RemaArk 4.1. Let “~” satisfy (A,), (A,), (B”), (C,) and (Cy). Using (B”)
and Lemma 4.6 (ii), it is easy to show that for any non-zero element a <z
there is a non-zero finite element  with 6=a. Hence, for any element o« <z
there is a decomposition a=\"/, a, such that a, is finite for every a.

Lemma 4.7. Let “~7 satisfy (Ay), (Ay), B"), (C)) and (C;). Ifa€lL is
properly infinite, then for any n<< 88, there exists an n-homogeneous family {a:}
with the join a such that a;~a.

Proor. We shall prove that for any non-zero element z € Z;, there exists
z0 € Zy with 0 %z, <z such that zyN\« is the join of an §§,-homogeneous family.
If zna=0, this is trivial. If zNa==0, then zN\¢ is infinite by the assumption,
i.e., there is an infinite homogeneous family {b,; « € I} in L(0, z"\a). We can
suppose that this family is maximal. Put znae=\")(b,; a« € I)\Ub. By Lemma
4.1, there is z; € Z; such that z;N\V'<z21Nb,, A —2)NE' =1 —2)Nb,. Putting
z0=z1Nz, we have zoNa==0; because, if z;N\zNa=0 then z;\V'=z"\b,=0 and
hence b’ > b,, which contradicts the maximality of {b,}. Since I is infinite, it
can be divided into a countably infinite number of parts I;(1 <i< co) such that
each I; has the same cardinal as I. Put ¢;=(z0N\b)\U\ J(zoNby; a € 1) and ¢;=
\J(z0Nby; a € I) for 2<<j<oo. Then zNa=\"/(c;; 1<<i< o) and since z,N\b’
< zNb, it follows from Lemmas 4.4 and 4.5 that {c;; 1 <i<oo} is a homo-
geneous family.

It follows from the above result that there is a decomposition 1=\"/;zs
in Z, such that zzN\a is the join of an §§,-homogeneous family {d%;1=i<oo}.
Putting di:—\./g d$ we have an $§$,-homogeneous family {d;; 1 <i<oo} with
the join a. If n<<%%,, {i} can be divided into n parts N, such that each N; has
the cardinal §§,. Putting a;=\"/(d;; i € N;), we have a=\"/; a; and a;~a for
every j by Lemma 4.4.

Lemma 4.8. Let “~” satisfy (Ay), (Ay), (B, (C) and (Cy).
(1) If a finite element a is the join of an n-homogeneous family of mini-
mal elements (n is necessarily finite), then L(0, a) has no non-zero n+ 1-homo-
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geneous family.

(i) If {a.} 1s a semi-orthogonal family in L(0, z,) and its join is a finite
element, then there exists a decomposition 1=\"Jszs in Z, such that, in every
L(0, zg), 25N ay 1S zero except a finite number of «.

(iii) If L is finite of type I, then it is continuous.

Proor. (i) Let {a;; 1<<i<n} be the given homogeneous family of mini-
mal elements with the join a and {b;; 1<<j <n+1} be a homogeneous family
in L(0, a). If we suppose that e(a;)Ne(b;)=0, then by (B”) there exists a non-
zero element ¢<q; with ¢<b;. Since @; is minimal it follows from (§) of
Lemma 2.2 that e(c)Na;=c. Hence e(c)Na;~cXe(c)Nb; for every i, j, and
hence e()Na<X\'/(e(c)Nbj; 1<j<n). Since it follows from c=0 that e(c)n
by+1 320, we have e(c)Na<e(c)Na, which contradicts the finiteness of a. There-
fore e(a;)Ne(b))=0, and we have b, =0 since e(a;)=e(a) =e(b).

(i) Puta=\'/ya,. By Lemma 4.2, it suffices to show that if zN\a(z € Z)
is the join of a non-zero n-homogeneous family of minimal elements (» is ne-
cessarily finite) then there exists z, € Z, with 03z <<z such that zyN\a,=0
except a finite number of a,. Consider a non-zero homogeneous family {b;}
satisfying the following condition:

(*) For any b; there is a,, with b; <zNa,,.
It follows from (i) that the cardinal & of {b;} is smaller than n. Hence we can
choose the family with the largest k. Putting z,=e(b,), we can show that
z20Nay,=0 when a=F«q,, --a;; because if we suppose zyNa,F0, then e(d)N
e(zNayz)=z9Ne(a,) =0 and then there is ¢y <zNa, with 0==¢y<b,, which im-
plies that there are ¢,<<b, with ¢y~c, and hence {cy, c;,---¢;} is a k+ 1-homo-
geneous family satisfying (), a contradiction.

(iii) Let {a,; p<£} be a well-ordered ascending set with the join a (£ is
a limit ordinal), and we shall prove that a,N\btanb. We may assume that
if p is a limit ordinal then «,=\J(a,; v<p). Putting a,.1=qa,\Uc, for every
p< L2, we have (c,; p<£2) 1. It follows from (ii) that there is a decomposition
1=\"/s 75 in Z, such that, in every L(0, z5), zs"\c,=0 except a finite number of
¢,. Then, for every 3, it is easy to show that there is p(8) such that zzNa=
zgMaye), and hence we have zsN\a Nb=1z3 N ay@N b=2z3N\\J,(a,\b) <zsMNaNb.
Therefore we have anb=\"/s(zsNaNb)=\"/s(zsN\\J,(a,N\b)) =\Ju(a,N\b). Simi-
larly a, | @ implies a,\b | anb. This completes the proof.

Remark 4.2. Let “~” satisfy (A,)), (Az), (B”), (C)) and (C;). We can
prove the following statements by the similar methods as in Lemmas 4.13,
4.14 and 5.1 of [5], but the details are omitted.

(i) Let a=a1\Ua,=b;\Ub; and a;~b,. If a is finite and ¢<a semi-ortho-
complement of ¢ (in other words, « belongs to a 2-homogeneous family) then
az’\-‘bz.

(i) Let 0Zra=\//(a; 1=i< o) and put b,=\"/(a;; 1=<i<n), b, =\ (a;;
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n<i<oo) for 1<n<oo. If ais finite and ¢ X a semi-orthocomplement of a,
then it does not hold that 5, <%’ for all n.

(iii) Let “~” satisfy moreover (A,). If a=\"Jla;; 1=i <o), b=\")(b;;
1<<i < o) and a;~b; for every i, then there exists a decomposition 1=\"/sz, in
Z, such that zzNa~zsN\b for every f.

Lemma 4.9. Let “~” satisfy (Ay), (Ay), B"), (C)) and (Cp). If a=\"/(au;
a€l),alb, a~band if ais finite, then there exists a decomposition b=\"/(by;
a € I) such that a,~b, for every a € I.  In other words, (As) holds if a L b and a
s finite.

Proor. If I is finite, the lemma is trivial. Otherwise, let I be well-
ordered: I={p; p<£}, where £ is a limit ordinal. = We shall construct a
semi-orthogonal family {b,; p<£} in L(0, b) with b,~a, by transfinite induc-
tion. Suppose that {b,; v<p} has been constructed. Since \'/(b,; v<p)~\"/
(ay; Y<p) by (C), putting \'/(by; v<p) Wb, =b, it follows from Lemma 4.1 (iii)
that b,~\"/(a,; v=p). Hence there is b,<b, with b,~a,, and the construc-
tion is completed. Since \'/(b,; p<£2)~a~b by (C,) and since b is finite, we
have b=\"/(b,; p< £2).

Remark that the axiom (B’) is not assumed in this section. It will be as-
sumed in the following section.

§ 5. Comparability theorems

In this section, we assume that the semi-orthogonal relation in L satisfies
(.L5) and that the equivalence relation “~” in L satisfies the axioms (A,),
(Ay), (B), (C,) and (Cy).

Lemma 5.1. If each of a, b € L belongs to a 5-homogeneous family whose
join is a finite element, then a\Uub belongs to a 2-homogeneous family.

Proor. Putting (a¢\Ub) U d=1, there exists z € Z, such that zN\(a\Ubd) =
zNd, 1—2)N(aUb)X (1 —2z)Nd by Lemma 4.1 (ii). To prove the lemma, it suf-
fices to show that zN\(e\Ub)=0. Putting a\ub=a\Uc, it follows from Lemma
4.1 (ii) that the problem is reduced to the two cases: (i) a<¢, (ii) a=c. Case
(i). By the assumption there is a homogeneous family {b, b, b,, b3, b,} Whose
join & is finite. Since b>c¢>a by (B), we have zNd<zN (a\Ub)=(zNa)\J
(zNe) X (@Nb)\U(zNb) ~ (zNb3) U (zNby), and then (zN\by) O (zNby) U (zNb3)\Y
(eNby) = N(@Ub)\U(zNd)=z=>z"b. Hence we have zN\b=0 by the finite-
ness of b, and then zNa=0 and zN\(a\Ub)=0. Case (ii). By the assumption
there is a homogeneous family {a, a1, a2, as, as} Whose join is finite. We have
GENa)UzNe) X (zNa)\U(zNa;) since a>c. Hence it follows that zNe=0 in
the same way as above, and then znc¢=0 and zN\(a\Ub)=0.
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LemMA 5.2. If a=\"/s au, b=\"/u bay au~bs for every « and if each of a, b
belongs to a 5-homogeneous family whose join is a finite element, then a~b.

Proor. It follows from Lemma 5.1 that there exists ¢ € L such that ¢ L
a\Ub, c~a. Then, it follows from Lemma 4.9 that there is a decomposition
¢=\'/, ¢4 such that c,~a, for every «. We have b~ ¢ since b_Lc and b,~c,
for every «, and hence a~b.

Lemma 5.3, If a € L is minimal and e(a) <e(b), then a<b. If both of a,
b € L are minimal and e(a)=e(b), then a~>.

Proor. Let a be minimal and e(a) <e(b), and put a\Ub=a\Uc. By Lemma
4.1 (ii), there exists z € Z;, such that zna»zne, A—2)NaLA—2)Ne. We
have zN\c¢=0 since zN\a is minimal, and hence zN\a>zNb. It follows from (§)
of Lemma 2.2 that zN\b=c(@N\b)NzNa=zNe(b)Na=zNa. On the other hand,
we have (1—2)Na<(1—2)Nb since b>=c by (B’). Hence ¢ <b. Let, moreover,
b be minimal and e(a)=e(b). Putting 1 —2)Na~c<A-—-2z)Nb, it follows from
(8) of Lemma 2.2 that c=e(c)N(1—2)Nb=1—2z)Ne(a)Nb=(1—2z)Nb, which im-
plies a~b.

LemMa 54. If a=\"Jyau, b=\"/ubu, au~bs for every a, and if as, b, are
manimal for every « and a, b are finite, then a~b.

Proor. It follows from Lemma 4.8 (ii) that there is a decomposition 1=
\'J, zy in Z, such that the set I,= {«; z,N\a,= 0} is finite for every v. We may
suppose that e(z, Na,)=2, for « € I,, by choosing a finer decomposition in Z,.
Then, it follows from Lemma 5.3 that z, N\ ay ~ z, N\ ag~ z, N\ by~ 2, N b, for «,
B eI, We divide each I, into six disjoint parts I’ (1<{i <(5) and J, such that
I} have the same cardinal and J, has the cardinal <4 (I} and J, may be empty).
Putting a!=\"/(zy;N\aa; « € I}) and bi=\"/(zyN\ba; « € I}), we have a~ aj~bi~
b (1<i, j<5) by (Cy), and putting o'=\'/, a} and b'=\"/, bi, we have o'~a’ and
o'~ b’ by (C,). Then, it follows from Lemma 5.2 that o'~b" (1 <{;<(5). Next,
we denotes the elements {a,, bs; @ €J,} by {a%, b5 1<y <4} with o@) ~ b
(0 and 5%’ may be zero simultaneously). Putting «®=\"/,(z;na?’) and 6=
\Jy (z;NBY), it follows from Lemma 2.4 that ¢ and 5™ are minimal, and since
e(a™)=e (™) we have '~ b by Lemma 5.2. Therefore, we conclude a~ b,
since a=\"/(a;, a; 1<i <5, 1<<v<<4) and b=\"/(b;, b, 1 <i <5, 1 <v<4).

Now, we shall prove two comparability theorems.

Tureorem 5.1. For a, b € L, there exist decompositions a=a' a’, b=b""b"
such that o' ~b', ela”)Ne(d”)=0.

Proor. It follows from Theorem 2.1 that the problem is reduced to the
following three cases: L is respectively finite of type I, finite of type II and
properly infinite.
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(i) If there are a,, b; € L such that a; ~a, by ~b, a; 1 b1, then we have the
desired decompositions. Because, it follows from Lemma 4.1 (i) that there
exist decompositions a;=a{\Ual, b;=>b7Ub] such that ai ~bi, e(al) Ne(d])=0,
and then there exist decompositions a=a'Ua’, b=0"b" such that ¢~ ¥,
b ~pY (=1, 2).

(ii) If L is properly infinite, then by Lemma 4.7 there are ci, ¢, € L such
that 1=c;\Ucs~c; ~cy, and then a ¢, 8<c,. Hence, we have the desired
decompositions by (i).

(iii) Let L be finite of type II. It follows from Lemma 4.3 that there
exist decompositions a=\"/(a;; 1<{i<5), b=\"/(b;; 1 <<i <5) such that a; ~ a;,
bi~b;( 1=<i, j<5). It follows from Lemma 5.1 that there is ¢ € L such that
a1 X c 1 b, and hence, by (i), there exist decompositions a;=a}\) af, by =>b1\"b]
such that af ~ b7, e(a])Ne(d))=0. Then, there exist decompositions a;=a’\"a?,
bi=0b, " b} (2=<i<5) with a® ~a?, bV ~bY (v=1,2). Putting «=\"/; a,
b =\"/; b, we have a’~b" and e(a”)Ne(d”)=e(a}) Ne(®d})=0.

(iv) Let L be finite of type I. In the same way as in the proof (i) of
Lemma 4.1, we have decompositions a=\"/, a,\Ua’, b=\"/, b,\Ub” such that a,,
b, are minimal, a,~ b,, for every « and that e(a”)Ne(®”)=0. Putting o'=\"/,du,
b’ =\"/y bs, we have a'~0b" by Lemma 5.4.

TueoreEM 5.2. For a, b € L, there exists a decomposition 1=2z,\"z,\"z3 n Z,
such that z;N\a > z1N\b, z2Na<k zoNb, zaNa~zsN\b. More simply, there exists
z € Zy such that zNa=zNb, (1—z) NaX (1 —z)Nb.

This theorem is implied from Theorem 5.1 in the same way as Lemma
4.1 (ii), and the following lemma is implied from this theorem in the same
way as Lemma 4.1 (iii).

Levma 5.5, Let a\Ja,~b\Ub, and let a;\Ua, be finite. If a,~b, then
a2~b2.

Lemma 5.6. Let a, be L. If there ewists a decomposition 1=\"/, z, in Z,
such that z,N\a~ z,N\b for every o and if a is finite, then a~b.

Proor. It follows from Theorem 5.2 that there exists a decomposition
1=Zl\.JZz\./Z3 in Zy such that Z1f\(l>> zlf\b, sz\a<< Zz/\b, ng\CL"’Zgnb. If Za/M\ 21
Na>z,Nz; Nb, then z,N\z1N\a>z,N z1Na, contradicting the finiteness of a.
Hence we have z,N\z1N\a=z,Nz;N\b=0 for every «, and hence z;\a=zN\b=0.
Similarly, we have zznN\a=z,nb=0. Therefore a=z;N\a~z3"\b=b.

Lemma 5.7. Let Lbe of type I. If a=\"/y Gay b=\_Js by @u~ bs fOr every o
and if a is finite, then a~ b (hence b is finite).

Proor. It follows from Lemma 4.8 (ii) that there is a decomposition 1=
\'Js z5 in Z, such that, in every L(0, z,), zsNa, is zero except a finite number of
a,. Then zgNa~zN\b by (C;). Hence we have a~b by Lemma 5.6.
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Tueorem 5.3.  (Complete additivity in the finite case) a=\"/q du, b=\"/s ba,
a,~ by for every a and if a and b are finite, then a~b.

Proor. If L is of type I, the statement holds by Lemma 5.7. Hence, it
suffices to prove the theorem when L is of type II. Then, for every « there
exists a b-homogeneous family {¢}); 1 <v<_5} with the join a, by Lemma 4.3,
and then by (A,) there exists a 5-homogeneous family {$%; 1<y <5} with
the join b, such that o®’~bP(1<v<5). Putting «=\"/,a% and 6*=\"/,
b, it follows that {a; 1<{v<{5} and {)*’; 1 <v <5} are homogeneous fam-
ilies with the joins « and b respectively. We have o~ 5" by Lemma 5.2,
and hence ¢~ b.

CoroLLARY. If “~7 satisfies moreover (A,), then it is completely additive.

Proor. If L is finite, the statement holds by the theorem. If L is pro-
perly infinite, then there are c, c; € L with 1=c¢;\Uc;~c; ~c; and then there
are o, b € L with a~d <c¢;, b~b'<c,. By (A,) there exist decompositions
a=\"/yal, b’ =\"/s b} such that aj~ a,, b,~ b, for every «, and hence we have
a~d~b~bby (C).

Lemma 5.8. Let L be finite. If a5t a and as X b for every 8, then a <X b.

Proor. We may assume that {8} is a well-ordered set {p; p<<&} where
£ is a limit ordinal (see [11], Lemma 3.2), and that if p is a limit ordinal then
a,=\J(ay; ¥ <p). Putting aq,.1=a,Uc, for every p<£, we have a semi-or-
thogonal family {c,; p<2} with \'/(¢;; v<p)=a,<b,\/(¢;; v<2)=a. Using
Theorem 5.3, it is easy to show by transfinite induction that there exists a
semi-orthogonal family {b,; p<<£} in L(0, ) such that b,~ ¢, for every p< £
(see [5], Lemma 6.4). Hence, we have a~\/(b,; p< £2)=<b by Theorem 5.3.

§ 6. The axiom (B)

Lemma 6.1. Let the semi-orthogonal relation in L satisfy ( L5) and “~>
be an equivalence relation in L satisfying (A.), (Az), (B, (C) and (C;). The
following five statements are equivalent.

() “~7” satisfies (B).

B If a1\Uay=b1\Ub,, then there exists z € Z, such that zNa, <zNby, (1—2)
f\az 2 (1 —Z)f\bz.

@) If a1\Vay=b1\Uby, ay ~ az, by ~ by, them a; ~b,. (In [11] this statement
is denoted by (2, £).)

©) If a1 L as, ai~ az and if a; is finite, then a;\"a; is finite.

©) If a=bUc, bz c and if a is properly infinite, then a~b.

Proor. (a)=>(B). Let ;U ay=05,"Uby,=u and put a,= (a1 b)\Ucy, b=
(@aNb)\Udy, a;\Uby=c\U by=0a;\Ud,. It follows from (B) that there exist de-
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compositions ¢;=ci{\Ucl, di=di\Ud] such that ci~c,, di~ds, ci~di. Put u=
(a1 Vb)) Uv. We have a;\U dy\Y v=a;\Uaz, which implies a,~ d,Uv by (B") and
Lemma 4.5. Similarly, c;\" b\ v=>5b,\Ub, implies b, ~ c;\Uv. It follows from
Theorem 5.2 that there is z € Z; such that zNci <zNdi, A—2)Nci =1 —2)Ndj.
Then, we have zN\a;=GENay; N b))\ zNc)\UEN)Z (N a Nb) O ENd)HY
(zNdy)=zNby, and since (1—z) Ncz =1 —2)Nd; we have (1—z)Naz~ ((1—=2)
Nd)\ (A —2)N2) (A —=2)Ne)\ I (A —2)Nv)~(1 —2)Nbs.

(B)=(7). Let a;\Uay=b1\Uby, ay ~ az, by~b,. (B) implies that there is z € Z,
such that zNa, LzNby, 1—2)Nay XA —2)Nby, and hence a; <b;. Similarly
we have a; = b,, and hence a; ~ b;.

(V)=0). Leta=a;\Uay, ai~a, and let «, be finite. There are b;, b, such
that e”(¢)Na= b\ by~ b, ~b; by Lemma 4.7, and hence b; ~e“(a)N\a; by (7).
We have e”(«)N\a; =0, since b; is properly infinite and g, is finite. Therefore
e“(@)Na=0, which means that « is finite.

(8)=(6). Let a=b\Uc,b>=c and let o be properly infinite. For z € Z,, there
are a,, a; with zNae=a; Yoy~ a; ~a, since zNa is properly infinite or zero.
Then, there are decompositions a;=b;Uc;(i=1,2) with b;~zN\b, c,~zNc. If
zNb is finite, then b,, b, are finite and b,\Ub, is also by (8), and then zNa is
finite since zNa~b,\Uc; Xb;\Ub,. Hence, zN\a=0 and zN\b=0, which shows
that b is properly infinite. There are &', b” with b=50"Ub"~b'~0" and then
a=b\"c¢<b\Uby=b, which implies a ~ b.

&)= (). Put a=(@nb)Uay, b=>@nb) b, a\Ub=a\U by=ay,\Ub. Then,
a1 = ag, by =by by (B), and (enbd) U a;\Ub,=a\Ub=(aNb)\Ub\Ua, implies a;\Ub,
~b1Ua, by (B) and Lemma 4.5. If ¢;\Ub, is finite, then, putting a;=a{\Ua],
by =b7\Ub] where a; ~ ay, b ~ b, we have a7 ~b] by Lemma 5.5, and hence («)
holds. When a;\Ub, is properly infinite, the problem is reduced to the fol-
lowing three cases by Theorem 5.2: (i) a; by, (ii) by K ay, (1ii) a1 = by, by = as.
Case (i). Since a, < a1 Kby X by, it follows from (&) that b ~b,\Uas~ a1\U by ~b,.
Putting a; =07\ a] where o} ~ a;, we have a7\ b, ~ a;\Ub, since a]\ b, =>by~a;
by, and hence b; ~ a{\Ub;, which implies that there is a decomposition b,=
b1 \Ub] such that b~b,, b{~a)j. Therefore () holds. Case (ii). Since b, <5,
<@y <X a;, we can prove («) in the similar way as (i). Case (iii). It follows
from (&) that a; ~ a;\ b, ~ b, Ua, ~b;. Since a; is properly infinite, there are
1, ¢a With a;=c;\Ucy~c1~c;. Then ¢; ~a; > b,, and then we have a decom-
position c¢;=ai\Uc; with a} ~b,. Putting c¢{\Uc;=af, we have a;=ai\Uaf, and
a) ~ a; since af =>c;~a;. Similarly, we have a decomposition b, =57\"b] with
b ~ az, b ~b;. Then af ~ b7, and hence («) holds.

In the remainder of this section, we assume that the semi-orthogonal re-
lation in L satisfies (1 5) and there is an equivalence relation “~” in L sat-
isfying the axioms (A,), (A,), (B), (C,) and (C)).

Tureorem 6.1. If a and b are finite, then so is a\Jb.

Proor. Let ¢ be the properly infinite part of a\Ub, i.e., c=e"(a\Ub) N\ (a\Ub).
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There are c;, ¢; with c¢=c¢;\Ucy~c1~c;. Putting a\vb=a\Ub,, we have b= b,
by (B). Since ¢;\Uco=(e"(a\Ub)Na)\J(e*(a\ub)Nb,), it follows from (B) of Lem-
ma 6.1 that there is z € Z, such that zN¢; KLzNe”(@Ub)Na, 1—2)Nce X (1—2)
Ne(a\Ub)Nb;. Since g, b; are finite and since ¢, ¢, are properly infinite (or
zero), we have zN\¢;=(1—2z)N¢, =0, which implies zN\c=(1—2z)Nc=0 and ¢=0.
This concludes that ¢\Ub is finite.

Lemma 6.2, If a;\Uay~by\Uby, a1 X by and if a; 18 finite, then az = b,.

Proor. If a;\Ua, is finite, the statement follows from Lemma 5.5. Let
a;\" a; be properly infinite. There is z € Z, with zNa; = zNay, A—2) N1 X
(1—z)Naz by Theorem 5.2, and then zN\(a;\Uay) is finite by Theorem 6.1, which
implies zN\(a;\Uaz)=0. Hence a; <ay, and it follows from (&) of Lemma 6.1
that ay ~ a,\Uay = bs.

LemMmaA 6.3. If each of a, b € L belongs to a 4-homogeneous family and if
a 18 finite, then a\Ub belongs to a 2-homogeneous family.

Proor. The problem is reduced to the following two cases by Theorem
5.1: (1) axXb, (ii) a=b. Case (i). There is a 4-homogeneous family {b, b,, b,
bs} by the assumption. Putting a\Ub=a;\Ub, we have a;<a, and putting
a1\°/b\'/0=1, b\./bIC/bz\./bs\T/d:l, we have Lll\:/C"" b C/bz\:/bs\yd Since a) <b
and since ¢, is finite, we have ¢ > b,\Ub3;\Ud = a;\Ub=a\Ub by Lemma 6.2. Hence
a\Ub belongs to a 2-homogeneous family. Case (ii). b is finite since a=b.
Hence we can prove the lemma in the similar way as Case ().

LemMa 6.4. If a=\"/y @, b=\"/u ba, au~ b, for every o and if a is finite,
then a~ b (hence b is finite).

Proor. If L is of type I, then the statement holds by Lemma 5.7. If L
is of type III, then =0, and then b=0 since b,=0 for every a. Let L be of
type II. The following statement is implied from Lemma 6.3 in the similar
way as Lemma 5.2: If a=\"/, au, b=\"/s ba, as ~ b, for every a, each of a, b be-
longs to a 4-homogeneous family and if « is finite then a~b. Hence the lem-
ma can be proved in the similar way as Theorem 5.3.

Lemma 6.5. Let as t a. If a; Kb for every § and if b is finite, then a <X b.

Proor. This can be proved in the similar way as Lemma 5.8, by the aid
of Lemma 6.4.

The last lemma will be used in the proof of the complete additivity of
dimension functions (Theorem 7.5).

§ 7. Dimension functions

Assume that the semi-orthogonal relation in L satisfies (1 5) and there
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is an equivalence relation “~” in L satisfying the axioms (A,), (A2), (B), (C)
and (Cy).

The arguments of preceding sections §§ 2—6 implies that all the lemmas
and theorems in §2, §3 of [11] hold, and hence the statements in this section
can be proved by the same methods as in §4, §5 of [11]. Here the proofs are
omitted.

Derinttion 7.1, For any « € L, the class {x € L; x~ a} is denoted by [a].
The set {[a]; a € L} is denoted by [L]. It follows from Lemma 4.5 that [L]
is partially ordered if [a¢]<{[b] is defined by ¢ <b, and it is easy to show that
[L] is a lattice, by Theorem 5.2. [L] is called a dimension lattice of L. [L]is
totally ordered if and only if Z,={0, 1}. If there exist a; € [a], b: € [b] With
a, L by, then [a]+[b] is defined by [a;\Wb,]. If a € L belongs to an n-homogen-
eous family with the join b, then n[«] is defined by [6] (0-[a]=[0]). We
write [¢]<L[b] if a<Kb.

Lemma 7.1. Let c € L be finite. For any a € L and for n, 0 <n<co, there
exists a unique element q,(c, a) € Z, satisfying the following condition:

2=qu(c, @) tf and only if n[zNc]<[zNa] (n[zNc] exists), where z € Z,.
Then, putting ri(c, a)=q.(c, @) —gu+1(c, @), the following equations hold:

[Tn(ca a) N a:l =n [Tn(ca a)f\ C] + I:p:l with [P]< [r,,(c, a) N C]:
1=go(c, ©)=\'J(ra(c, @); 0 <n<o2) U (e (@)N(1—e(e))).

We use Theorems 5.2 and 6.1 in the proof of this lemma.

Lemma 7.2:  Let h € L be a minimal element with e(h)=z; (k] is uniquely
determined by Lemma 5.3). For z € Z, with z <z, 2=<r.(b, o) if and only +f
nzNh]=[zNal, and ro(h, @)=z N\(1—e(a)).

CoroLLary. There exists a unique decomposition z; =\")(z{"; 1<n< o)
i Zo such that z{° is the join of an n-homogeneous family of minimal elements.
(Put 27 =ru(h, 1).)

DeriniTiOoN 7.2, Let £ be the representation space of the complete Bool-
ean lattice Z, ([9], Kap. I, §5). The compact open subset of £ corresponding
to z € Z, is denoted by E(z), and its characteristic function is denoted by X(z).
The complete lattice of all [0, coJ]-valued continuous functions on £ is denoted
by Z. A mapping d of L into Z is called a dimension function on L if it sat-
isfies the following conditions:

1°) If a~b then d(a)=d (),

2% if alb then d(a\Ub)=d(a)+d (),

B if z€ Zy then d(zNa)=X(z)d(a),

4%y if a>0 then d(a)>0,

(5°) if a is finite then d(a) is finite valued a.e. (a. e. means “except on a
set of the first category”).

It follows from (1°), (2°) that any dimension function defines an order- and ad-
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dition-preserving mapping of [L] into Z. This mapping is one-to-one in the
finite case, as stated below. If Z,={0, 1}, then since £ is a one-point set, d
is numerical valued (Z=[0, ).

Using Lemmas 7.1 and 7.2 we can prove the following theorem.

TreorEM 7.1. (Existence) There exists a dimension function d on L such
that d(h)=X(z;), d(zf)=X(z}) (A is a minimal element with e(h)=z).

Tueorem 7.2. Let d be a dimension function on L.

(1) da)(0)=0 on L—E(e(a)) (o € 2), 0<d(a) (0)< = a.e. on E(/(a)), d(a)
(w)=oc0 on E(e~(a)). Especially, the converses of (4°) and (5°) hold.

(ii) If a (or b) is finite, then a>>b (resp. ~, <) is equivalent to d(a)>d(b)
(resp. =, <).

(iil) d(aUb)+d(and)<d(a)+d(b) for any a, b € L.

The statement (iii) is easily implied from (B'). If “~” satisfies (B), then
the equality d(a\Ub)+d(anb)=d(a)+d () holds.

Tueorem 7.8. (Uniqueness in a certain sense) If d., d, are dimension
Sunctions on L, then there exists a function f€Z, 0<f(0)<oo a.e. such that
di(a)=f+ dy(a) for every a € L.

Cororrary. Let z;=0 and let do be a dimension function on L. There
exists a one-to-one correspondence between the dimension functions d on L and
the functions f € Z with 0<f(w)< o a.e., where the correspondence is given by
the equation d(a)=f - do(a) for every a € L.

DeriniTion 7.3. A dimension function d on L is called to be normalized if
d(h)=X(z;) and d(zf)=%X(z}), as in Theorem 7.1. A normalized dimension
function is uniquely determined if z;=0. Z; denotes the set of f € Z such that

fl0)=0,1,...,n on E(z{"),
=0,1, ..., o on E(z7”),
<1on E(z{l),
=0, oo on E(zp).
It is a complete sublattice of Z.

Turorem 7.4. If d is a normalized dimension function, then the image of
d 18 equal to Z;.

Cororrary. {[a]; a is finite} s lattice-isomorphic to {f€ Z.; f(o)<oo
a.e.}. Especially if L is finite, then [ L] ts lattice-isomorphic to the complete
lattice Z; (addition-preserving).

Tueorem 7.5. Let d be a dimension function on L. If as 1 a then d(as) t
d(a). Especially, d is completely additive, i.e., if a=\")(as; @ € I) then d(a)=>]
(d(aa); a € I) (=the join of all finite sums >3; d(ay,)).
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§ 8. The axiom (1_3)

DeriniTion 8.1. Let “~” be an equivalence relation in L. We define a
new relation “2” as follows: a2 b if there exist decompositions a=\"/(a;;
1<i<n), b=\"/(b;; 1 <i<n) such that a; ~ b, for every i.

We shall show that if “~” satisfies (A,) and (B) then “.+” is an equiva-

lence relation.

Lemma 8.1.  Let “~” satisfy (A) and (B). If\'J(a:; 1<i<m)=\"/(b;;
1<j<n), then there exist decompositions a;=\"/(a;;; 1<j<n), b;=\/(bi;; 1=
i < m) such that a;j~b;; for every i, j.

Proor. We shall prove the lemma by induction. Let a=a;\Ua;=>5b,\Ub,,
and put ¢, =bi=a1N\ by, ay=ay;1\Jays, by=b11 U by;. Putting a; Ub,=da"\U b=
a;\Ub, we have a;;~d, by~b by (B). Putting (a;\Ubi)\Uc=a, we have a; b’
Ue=a;\Uaz, o \Ub;\Uc=b; \Ub, and hence ay~b'\Uc, by~d \Uc by (B). By
(A,), there exist decompositions a;=az \Uags, bo=b2 \Uby, such that ay ~b,
aga~¢, biz~ad, bps~c. We have a;; ~b;; for every i, j, and hence the lemma
holds when m =n=2. Suppose that the lemma holds when the number of «;
is <m and the number of b; is <n. Let\/(a;; 1<<i <m+1)=\"/(b;; 1=<j<n).
Putting c=a,,"Uan.1, we have the following decompositions by the assumption:
a;=\Nai;; 17 <n) A=Zi<m—1), c=\"/(c;; 1= =), b;=\"/(bi;; 1<i<m—1)
U d;(1<j<n), where a;;~b;; and c;~d;. And, since a,\Uau=c=\"/(c;;
1<j=<n), we have the following decompasitions: a,= \/(am,, 1<j<n), am1
=\ (@ns1, ;3 1<j=<n), ¢;=cmn;\Jcme1,j> WheETe amj~ Cmj, Gni1,;~Cme1,;. Since
c; ~d;, there are decompositions d;=b,;\U by.1,; such that b,; ~ cuj, bme1, i~
¢m+1,j. Hence we have the desired decompositions of a;, b,, When \'/(a;;
1<i<m)=\"J(b;; 1< j=n+1), we have the same argument as above. There-
fore the lemma holds for any m, n.

Tueorem 8.1. (i) Let “~ satisfy (A,) and (B). Then “2.” is an equiva-
lence relation satisfying (Az), (B) and (C)), and the relative center with respect
to “2. coincides with Z, (=the relative center with respect to “~").

(ii) Let “~” satisfy moreover (A,). Then “L” also satisfies (A,). If
a b and z € Z, then zNa<zNb. The notions of minimal element, simple ele-
ment and type I do not change when “~" is replaced by “ <.

(iii) Let “~” satisfy moreover (C,). Then “” also satisfies (C,). If
atband albthen a~b. The notions of homogeneous family, finite element,

properly infinite element, type II and type III do not change when “~" 1is re-
placed by “., :

Proor. (i) It is obvious that “<.” is symmetric and reflexive. It is easy
to prove by Lemma 8.1 that “+” is transitive, which concludes that it is an
equivalence relation. It is obvious that “+” satisfies (C;) and the relative
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center coincides with Z,. Using Lemma 8.1, it is easy to show that “+”
satisfies (A,). “+” satisfies (B) since a~b implies ¢+ b. The statements
(ii), (iii) are easily proved.

[13

Remark that the finiteness of a € L is equivalent to “a £ b<e implies
a=b" by Lemma 4.6 (i), but not equivalent to “a ~b<a implies a=>".

We assume that the semi-orthogonality in L satisfies (L 5) and that there
is an equivalence relation “~” in L satisfying the axioms (A;), (A,), (B) and
(C,). Then, “£” is an equivalence relation satisfying (A,), (Ay), (B), (C,)
and (C;) by Theorem 8.1, and hence all the lemimas and theorems in the pre-
ceding sections (§§ 4—7) are available, replacing “~” by “+”. ‘Remark that
the notion of dimension function (Definition 7.2) does not change when “~”
is replaced by “<.”. Because, the condition “if a~b then d(a)=d ()’ is
equivalent to “if ¢+ b then d(a)=d ()’ by the aid of the condition “if a_Lb
then d(a\Ub)=d(a)+d(b)”.

Furthermore, we shall prove some theorems by the aid of (B). We have
the following type of comparability theorem.

Tueorem 8.2. For any a, b € L, there exist decompositions a= (anb) U d
Ud’, b=(anb) b Ub"” such that o'~b', e(a’)Ne(®”)=0.

Proor. Putting a=(anb)Ua;, b=(anb)\Ub;, we have a;N\b,=a;\aNbNb;
—0. Then, putting a\Ub,—a;\Uc, it follows from (B) that b, ~c. It follows
from Lemma 4.1 (i) that there exist decompositions a;=da'\Ud”, c=c U’ such
that o' ~ ¢, e(@”)Ne(c’)=0, and then there is a decomposition b, =54""b" such
that b’ ~ ¢, b’~¢”. Hence we have the desired decompositions.

This theorem implies directly that Theorem 5.1 holds if “~” is replaced
by “L”.

Tureorem 8.3. If L is finite then it 1s an upper-continuous complemented
modular lattice. If L is finite of type I then it is a continuous geometry of
type I

Proor. Replacing “~” by “.L”, we may assume that “~> satisfies (C;)
besides (A;), (A,), (B), (C,). If a=<lc, then x=(a\Ub)Nc and y=a\U(bNc) are
perspective and x=>y. Hence, it follows from (B) and the finiteness that x=y,
which implies that L is modular. We shall show that as 1« implies asN\b
tanb. Putting a=(anNb)Ud, we have a; X (asN\b)\Uad'; because, putting a;=
(asN\b) ey, (anb)\Uas=(aNb)\JUc,;, We have c;~c, <da’ by (B). Hence a5 <\ /s
(asnb)Uda’ for every &, which implies a X\ J5(asN\b)\Ua’ by Lemma 5.8. We
have a=\Js;(asN\b)\Ua’ by the finiteness, and hence anb=\J;(a;N\b). Hence
L is upper-continuous.

If L is finite of type I, then it is continuous by Lemma 4.8 (iii), and hence
it is a continuous geometry. Furthermore, it follows from Remark 8.1 (ii)
that 1 is the join of a set of minimal elements and it follows from Lemma 2.3
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that our minimal element is minimal in the sense of continuous geometry
(see [10], Remark 3.2). Hence, L is a continuous geometry of type I. This
completes the proof.

In many examples, the equivalence relations satisfy (B) (see §9 and §10),
but we remark that the equi-dimensionality in an affine geometry does not
satisfy (B) though it satisfies (A), (B), (C,) and (C/).

§ 9. Example 1. Projectivity in modular lattices

Let L be a relatively semi-orthocomplemented complete lattice and as-
sume that L is modular.

DeriniTiON 9.1. Two elements a, b € L are called to be independent if
anb=0. The independence satisfies the four axioms for semi-orthogonality
since L is modular ([13], §1), but we shall distinguish it from the semi-or-
thogonality in L. A subset S of L is called an independent family if \ J(a;
a € F1) N\\J(a; a € F,)=0 for any pair of disjoint finite subsets F7, F, of S. Con-
cerning independent families, we have the similar arguments as Lemmas 1.1
and 1.2. S is called a residually independent family if an\ /(b €S; ba)=0
for every a € S (see Amemiya-Halperin [1], §3). It is obvious that any re-
sidually independent family is independent and any finite independent family
is residually indendent.

In this section, the equivalence relation in L is defined by the projectiv-
ity, i.e., a~b if there exists a finite sequence {ay, a1,---a,} such that a;,=a,
a,=b and that a;_; and «; are perspective (1<<i<<n). a, b€ L are called to be
+-projective if a < b (Definition 8.1). It is obvious that the relative center
coincides with the center Z and that the axioms (A,) and (B) are satisfied.
We shall show that (A,) is also satisfied. If a~b=5b,"Ub,, then there is a
projective mapping T of L(0, b) onto L(0, a), which is a lattice-isomorphism
since L is modular. Hence Tb,VTb;=Tb=a, Tby\Tby=0. Putting a,=Tb
and a=a;\Uay, we have a; ~b;(i=1,2) since a, and Tb, are perspective. Hence
(A,) is satisfied. Therefore, all the lemmas and theorems in §2 are valid,
especially, L can be decomposed into five summands, which are finite of type
I, properly infinite of type I, finite of type II, properly infinite of type II and
type III respectively. By the argument of §3, the minimal element coincides
with the simple element, and it also coincides with the D-element since the
projectivity satisfies the condition (P) of Lemma 3.3 (see [9], Kap. II, Satz
3.5).

Derintrion 9.2. A relatively semi-orthocomplemented complete lattice
is called an MD-lattice if it is modular and the following conditions are sat-
isfied:

(1) The semi-orthogonality satisfies the axiom (_L5) (see §4),
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2) if a=\"/, as, b=\"/s ba, a, and b, are perspective for every « and o
b=0, then ¢ and b are perspective.

We shall have two examples of the MD-lattice, i.e., the upper-continuous
complented modular lattice and the orthocomplemented modular complete lat-
tice.

ExamprLE 1.1. Let L be an upper-continuous complemented modular lat-
tice. The semi-orthogonality in L is defined by anb =0 (the semi-orthogo-
nality and the independence coincide). Since L is upper-continuous, the con-
dition (1) is satisfied. We shall show that (2) is satisfied. There exists «,
such that a,\"x,=b,\" % =0a,\Ub,, since a, and b, are perspective. Since anbd
=0, {a4, by; a € I} is a semi-orthogonal family by Lemma 1.2 and then so is
{as\Uby; € I}. Hence, {a,, %,; o € I} and {b,, x,; a € I} are also semi-orthogonal
families by Lemma 1.2, and putting x=\/, x., we have anx=bNx=0 by (_L5).
Then ¢ and b are perspective, since a\ux=b\Ux. Therefore, L is an MD-lat-
tice. In this case, the projectivity satisfies (A).

ExampLE 1.2. Let L be an orthocomplemented modular complete lattice.
The semi-orthogonality in L is defined by the orthogonality. The condition
(1) is satisfied since any element has a unique semi-orthocomplement (=or-
thocomplement). We shall show that (2) is satisfied. There exists x, such that
O \J Xy =b o \J %y =00 \I by auN\x,=bsNx,=0, since a, and b, are perspective. Put-
ting x=\, x,, we have a\Ux=>buUx. Since L is modular, a " x=0(as; a=B)
Vag) Nx =\ (aa; @ FB) U (\J(as; aFB)\Ux)Nag) Nz But, since {\/(au;
aZFR), \J(ba; a3 B), ag, bg} is an independent family, we have \ J(a,\Vba; a==3)
N(ag\Jbg)=0, and hence {\J(a,\Ux,; a =), as, x5} is an independent family,
which implies that (\/(ay; aF BV x) Nag=(\J(as U x4; @B\ x5) N ag =0.
Hence an x=\J(a.; a FB)Nx for every 3, which implies that anx=<"/\g\J
(as; £ B). But, since \ J(ay; @ == B)=apNa (af is the orthocomplement of a;),
we have N\g\J(as; e FB)=\sag N a=(\Jsag)* Na=a*Na=0. Hence aNx=0
and similarly b\ x=0, which concludes that ¢ and b are perspective. There-
fore L is an MD-lattice.

In an MD-lattice L, the projectivity “~ satisfies (A;), (A,) and (B), and
we shall show that it also satisfies (C,) and that L has the dimension func-
tions.

Lemma 9.1.  In a modular lattice with zero,

1) 4f both a and b are perspective to c and if (a\Jc)Nb=0 then a and b are
perspective (Amemi:a-Halperin [1], p. 484);

(i) af {a, b, ¢} is an independent family and if o« and b are perspective
then a\Uc and b\Uc are perspective (von Neumann [15], Part I, Theorem 3.5).

Lemma 9.2, If a relatively semi-orthocomplemented complete lattice L is
modular, then for any residually independent family {a.; a € I} in L there
exists a semi-orthogonal family {b,; o € I} such that a, and b, are perspective
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and that \'/, be=\s da.

Proor. Let I be well-ordered: I={p; p<&}. Put \J(ay; v<p)=c¢, for
p=8(c=0) and c,.1=c,\Ub, for p< L. Then, it is obvious that {b,; p<&} is
a semi-orthogonal family. Since {a,; y<{p} is a residually independent family
with the join c,.;, we have ¢,N\a,=0, ¢,\Ja,=c,.;. Hence a, and b, are pers-
pective. It is easy to show that \'/, b,=co=\, a,.

CoroLrLARY. If a relatively semi-orthocomplemented complete lattice L s
modular and if the semi-orthogonality satisfies (1 5), then the projectivity <~

satisfies (A,).

Proor. Let a~\'/,b, and let T be the projective mapping of L(0, \'/, b,)
onto L(0, ¢). Since {b,} is residually independent by (_L5), so is {Tb,}, and
hence by the lemma there exists a semi-orthogonal family {a,} with the join
a such that a, and Tb, are perspective, whence a, ~ b,.

Levmma 9.3. Let L be an MD-lattice and a, b€ L. If a~b (projective) and
anb=0, then a and b are perspective.

Proor. Let ¢=+0 and let T be the projective mapping of L(0, a) onto
L0, 5). By [9], Kap. II, Satz 3.5, there exists non-zero element q, in L(0, a)
such that T is a perspective mapping of L(0, a;) onto L(0, Ta;). Hence if we
choose a maximal semi-orthogonal family {a,} in L(0, «) such that T is a pers-
pective mapping of L(0, a,) onto L(0, Ta,) for every a, then we have a=\"/, a,.
Since {a,} is residually independent by the condition (1) of the MD-lattice,
{Ta,} is also, and hence by Lemma 9.2 there exists a semi-orthogonal family
{b,} with the join b such that b, and Ta, are perspective. Since (b,\J Ta,)N
. <bNa=0, a, and b, are perspective by Lemma 9.1 (i). Hence « and b are
perspective by the condition (2) of the MD-lattice.

Lemva 9.4, In an MD-lattice, the projectivity satisfies the axioms (A,),
(A2), (B), (CL), and the +-projectivity satisfies (A,), (Az), (B), (C)), (Cy).

Proor. It was already shown that the projectivity satisfies (A,), (A,)
and (B). We shall show that (C,) is satisfied. If a=\"/, du, b=\"/u buy tw~ bs
and ¢_ b, then a, and b, are perspective by Lemma 9.3, and hence ¢ and 5 are
perspective by the condition (2). Hence a~b. The second statement is im-
plied from Theorem 8.1.

By this lemma, the arguments of §§ 4-6 are available for the +-projec-
tivity. The arguments of §7 and §8 implies that

Traeorem 9.1. If L is an MD-lattice and “~ is defined by the projectivity,
then there exist dimension functions on L (Definition 7.2) with the properties
stated 1n Theorems 7.2—17.5.

Remark that Theorem 7.2 (ii) holds by the property “if ¢ b and a is
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finite then a ~ 4”, which will be proved by Lemma 9.5 below. It follows from
Theorem 8.3 that

TueoreMm 9.2. If an MD-lattice L is finite, i.e., L includes no infinite semi-
orthogonal family of paitrwise perspective non-zero elements, then L is upper-
continuous. If L is finite of type I, then it is a continuous geometry of type I.

CororLrary. (Kaplansky’s theorem) Any orthocomplemented modular com-
plete lattice is a continuous geometry.

Proor. It follows from Amemiya-Halperin [1], Appendix (p. 516) that
any orthocomplemented modular completé lattice is finite. Hence, it is upper-
continuous by the theorem, and is also lower-continuous by the duality.

Remark 9.1. Let L be a finite MD-lattice. Since L is upper-continuous,
any independent family in L is residually independent. Hence, it follows
from Lemma 9.2, that L includes no infinte independent family of pairwise
perspective non-zero elements.

In the case of the MD-lattice, we have the following type of comparabi-
lity theorem.

Turorem 9.3. For any elements a, b of an MD-lattice, there exist decom-

positions a=a \Ua"’, b=b""b" such that a’ and b are perspective and that e(a’)
Ne@®”)=0. (Remark that Z,=2.)

Proor. By Theorem 8.2, there exist decompositions a=(anb)\Uai\Uad",
b=(anb)\Ub;\Ub"” such that o) ~b}, e(d”’)Ne(®”’)=0. Since a;N\b;=0, &} and ¥}
are perspective by Lemma 9.3, and {a}, b7, an\b} is an independent family
since (a;\J(anb))Nb; <anbi;=0. Hence, putting o’=(@@Nb)dy, b'=>aNb)\Ib],
o and b’ are perspective by Lemma 9.1 (ii).

This comparability theorem implies the following lemma.

Lemma 9.5. Let L be a relatively semi-orthocomplemented complete lattice
where the semi-orthogonality satisfies (_L5), and let “~’’ be an equivalence re-
lation in L satisfying (A;), (Ay), (B), (C,) and (C)).

(D) If L s finite and Zo=Z, then “~ coincides with the perspectivity.

(ii) Let “~” satisfy moreover the condition (P’) of Lemma 3.3. If a~b
and if a 1s finite, them a and b are perspective.

Proor. (i) Let L be finite and Z,=Z. L is an upper-continuous com-
plemented modular lattice by Theorem 8.3. Let a~b. It follows from Theo-
rem 9.3 that there exist decompositions a=a"Ua”, b=5b""b" such that o’ and
b’ are perspective and that e(a”)Ne(®”)=0, since Z,=Z. Since e(a’)Nb"’'=0,
we have e(d)Na~e(a")Nb=e(ad")Nb'~e(a”’)Nd'. By the finiteness, we have
e(@)Na=e(ad’)Nd’, which implies ¢’’=0. Similarly we have 5”=0, and hence
a and b are perspective. The converse follows from (B).
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(ii) Let a~©b and q be finite. It follows from Theorem 6.1 that a\Ub is
finite. In L'=L(0, a\Ub), “~ satisfies (A)), (Ay), (B), (C,) and (C;). It fol-
lows from (P’) that, in I/, the relative center with respect to “~” coincides
with the center. Hence « and b are perspective by (i).

CoroLrary. Let “~” satisfy (A,), (Ay), (B) and (C)).

(i) If L is finite and Zy=Z, then “ ., “~ and the perspectivity coincide.

(ii) Let “~” satisfy moreover (P’). If a b and if a is finite, then a and
b are perspective (hence a~b).

Returning to the MD-lattice, we get some conditions equivalent to the
finiteness as follows.

Tueorem 9.4.  Let L be an MD-lattice. The following four statements are
equivalent.

(a) L 1s finite.

(B) The projectivity and the perspectivity coincide, in other words, the
perspectivity 1s transitive.

(v) The projectivity and the +-projectivity coimcide, in other words, the
projectivity s additive.

(8) The projectivity is subtractive, i.e., if a1\Jas~ b \Ub, and a, ~ b, then
az ~ bz.

Proor. It follows from Corollary (i) of Lemma 9.5 that («) impies (B3)
(and (7). ‘

(B)=(3). Since the projectivity “~> satisfies (A,), it suffices to prove
that a; U a,=b; Vb, =a, a;~b; imply a; ~b,. 1t follows from (B) that «; and b,
have a common complement ¢ in L(0, ). Hence ay ~ ¢~ bs.

@®)=(v). Let a;Llay b, Lb; and a;~b; (i=1,2). Putting a1V ax U d =
b1\ Ub, b =1, it follows from (8) that a;\Ua’ ~ b, U’ and that o’ ~b. Hence
al\'Jaz ~b1\./b2 by (8) again.

W=(@). If aL1, thena~1 by (v), and then g=1 since 1 is the only
element perspective to 1. Hence L is finite, by Lemma 4.6 (i).

CoroLLARY. If an upper-continuous complemented modular lattice is §§o-
lower-continuous, ti.e., a;\Jb | a\Ub holds for any descending sequence a; | a, then
it is finite and the perspectivity, the projectivity and the +-projectivity coin-
cide.

Proor. The finiteness is proved in the same way as [9], Kap. IV, Satz
2.1. The last statement follows from the theorem.

Finally, we shall show an example given by Halperin [4], where the re-
lative center does not generally coincide with the center.

ExamprLe 1.3. Let L be a continuous geometry. L is a finite MD-lattice
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where the semi-orthogonality is defined by the independence and where the
theorem of the superposition of decompositions holds ([4], Theorem 3.1). Let
G be a group of lattice-automorphisms of L. We denote ¢.2 b if there exist de-
compositions a=\"/, a., b=\"/, b, such that, for every «, b, is perspective to 7, a,
for some T, € G. Then, it follows from the theorem of the superposition of
decompositions that “.<” is an equivalence relation satisfying (A,) ([4], Theo-
rem 4.1). It is obvious that “<” satisfies (A)), (B), (C,) and (C;) (moreover
it is completely additive obviously). It is easy to prove that the relative cen-
ter with respect to “.£” is equal to {z € Z; Tz=z for every T € G}. Hence if
L is irreducible under G then it has numerical dimension functions.

§ 10. Example 2. Baer rings and Baer *-rings

Let % be a ring with unity. The set of all idempotents of % is denoted
by I(2), and the set of all principal right ideals e (denoted by (e),) generated
by e € I() is denoted by R; (). If A is a Baer ring, then K;(?) coincides
with the set of all right annihilators and it forms a relatively semi-orthocom-
plemented complete lattice by [137], Theorem 4.

Two elements e, f € I(A) are called to be algebraically equivalent, in nota-
tion e~ f, if there exist x, y € A with xy=e, yx=f (we may assume x € e A f,
v € f2Ae). Since (e;),=(ez), implies e; < e;, we can define the algebraic equiva-
lence in R; () as follows: (e), < (f), if e f.

It is easy to show that the relative center with respect to “<” coincides
with the center Z of R;(Q), since (e¢), € Z if and only if ¢ is in the center of
A ([14], Theorem 2.1). “<” satisfies the axiom (A), since (e), ~ (f), if and
only if (e), and (f), are isomorphic right 2-modules (Kaplansky [7], Chap. I,
Lemma 1); and hence all the lemmas and theorem of § 2 are available. Es-
pecially, &;Q) can be decomposed into direct summands of five types by
Theorem 2.1, and hence 2 can be also.

e € IQ) is called to be abelian (Kaplansky [7], Chap. I, Definition 4) if
the idempotents of ee mutually commute. It is easy to show that e € I(20)
is abelian if and only if (e), is a D-element, and hence it follows from Lemma
2.4 that if (e), is minimal then e is abelian (see [10], Theorem 5.5). We know
that the converse is valid if the condition (P’) in Lemma 3.3 is satisfied, in
other words, if ;) is a Z,-lattice. It is shown by [7], Chap. III, Exercise
that if 9 has no nilpotent ideals then ;) is a Z,-lattice. Concerning this,
we have the following remarks.

Remark 10.1. (i) A ring U with unity has no nilpotent ideals if and only
if xAx=0 implies x=0. Proof. The “only if” part is obvious, since xAx=0
implies (AxA)*=0. Now, suppose that xAx=0 implies x=0. If y € A belongs
to a nilpotent ideal, then (2y2)*"=0 for some n. Since (Ay2)*" " AQAyA)*" ' =
Ay )™, we have (AyA)*"'=0 by the assumption, and repeating this, we have
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AyA=0. Hence A has no nilpotent ideals.

(ii) The center 3 of a Baer ring 2 is also a Baer ring and the lattice
I1(8) (isomorphic to R;(B)) is isomorphic to the center of &;(®l) ([14], Theo-
rem 2.1, Corollary 1). Since I(3) is complete, for every x € 2 there is the
smallest element & € I(8) such that ix=x. This element # is called the central
cover of x (by Kaplansky [7]), and is denoted by C(x). Remark that if ¢ € I(20)
then (C(e)),=e((e),) in the sense of Definition 2.1.

The following eight statements are equivalent.

(a) A has no nilpotent ideals.

(B) For any right ideal &, the right annihilator (&) of & is a direct sum-
mund, i.e., there is 4 € 1(83) such that (#),=(&)".

(B) For any e € I(), the right annihilator ((e),)” is a direct summund.

(v) For x, y €A, xAy=0 implies yAx=0.

(") Fore, feIQ), e2Af=0 implies fAe=0.

(6) For x, y €2, xAy=0 implies C(x) C(y)=0.

(&) Fore, feIQU),eAf=0 implies C(e) C(f)=0.

(&) For x,y €, xAy=yAx=0 implies C(x) C(y)=0.

And, the following two statements are equivalent.

(&) Fore, feIQ), eAf=fAe=0 implies C(e) C(f)=0.

(&) If eeI(A) and if f is a central idempotent of e then there exists
h € 1(8) such that f=he. In other words, R; () is a Z,-lattice.

Proof. First, we shall show that the six statements (B), (8'), (v), ('), (8),
(8') are equivalent. The implications (8)=(B"), (")="), (§)=(8") are trivial.
We shall prove (8)=>(8). It follows from (B3) that for x € U there exists 4 € I(8)
such that (2),=(x2), and then it follows from xA=0 that C(x) <1—A. If 2y
=0, then y € (%), and hence C(y)=h. Therefore C(x) C(y)=0. The implica-
tion (8)=(8") can be proved similarly. The implications (§)=(v) and (§)=(vy")
is obvious since yAx=yC(y)AC(x)x=yAC(x)C(y)x. We shall show that (v')
=(A), which concludes the equivalence of the six statements. The right an-
nihilator of a right ideal & is of the form (4),, A € I(20), since U is a Baer ring.
Since AL ErL=0, we have Ar(h),, which implies (1—-4)A~L=0. It follows
from (v’) that A (1 —A)=0. Hence (1—~h)xh=hx(1—h)=0 for every x €,
which implies xA=hxh=hx. Therefore s € 3. Next, we shall prove the im-
plications (8)=(&)=(a)=(y). (8)=(&) is trivial. (&) implies (@) by (i), since
it follows from (&) that xWx=0 implies C(x)=0 (hence x=0). («) implies
(7), because if xAy=0 then (AyAxA)*=0, which implies yAx=0 by ().

The equivalence of (&) and (¢) is proved as follows. (&)=(¢). If fisa
central idempotent of 2e, then we have (e—f)UAf=(e—f)eWef=(e—f) feAe=0
and similarly fA(e—f)=0. Since e—fe I(), it follows from (&) that C(f)
(e—f)=0, and hence f=C(f)e. ()=(&). If eAf=fAUe=0, then, putting g=
e+f, we have g€ I() and gxg=exe+fxf for every x €. Hence, egng=
exe=gxge, which means that e is a central idempotent of g g. By (¢), there
exists 4 € I(8) such that e=hg. It follows from he=e that C(e) <, and it fol-



400 Shaichiré6 MAEpA

lows from #Zf=hg—he=0 that C(f)<1—hk. Therefore C(e)C(f)=0. This
completes the proof.

From the trivial implication (&)=(¢’) it follows that if a Baer ring 2 has
no nilpotent ideals then &; () is a Z,-lattice and then “(e), is minimal ©e is
abelian”.

It is obvious that the algebraic equivalence “<” in R;(?) satisfies the
axiom (Cy), but “<” satisfies neither (B) nor (C,) in general. We shall give
an equivalent condition to that “<” satisfies (B). The set of right (resp. left)
idempotents of x € A is denoted by RI(x) (resp. LI(x)), i.e., RI(x)= {e € I(); ()
=(x)}, LI(x)={e € I); (e)'=(x)'} (see [14], §4). Since ey, e; € RI(x) (0T e}, e,
€ LI(x)) implies e; <~ e;, we shall write RI(x) < LI(x) if there are e € RI(x), f€
LI(x) with e~ f. It follows from the proof of [14], Lemma 4.4 (i) that RI(x)
£ LI(x) if and only if there exists a relatively regular element u € 2 such that
() =), (x))=@w)'. (Especially, if x is relatively regular then RI(x) < LI(x).)

€ a »
~

Lemma 10.1. Let U be a Baer ring. The algebraic equivalence m
R () satisfies the axiom (B) if and only if U satisfies the following condition:
(BY) RI(x)~ LI(%) for every x € I* (), where I* Q)= {ef; e, f € IQD}.

Proor. Let “<” satisfy (B). If x € I*(), e € RI(x), f€ LI(%), then it fol-
lows from [14], Theorem 4.1 (i) that (¢), and (f), are perspective in R;(2D),
whence ¢-< f by (B). Hence (B®) holds. Conversely, let % satisfy (B%). If (e),
and (f), are perspective, then it follows from [14 ], Theorem 4.1 (ii) that there
are x, y € I*(2) such that e € RI(%), f€ RI(y), (x))=(y). We have RI(x)< LI(x)
=LI(y)~RI(y) by (B%), which implies (¢),~(f),.

Remark 10.2. (i) It follows from [14], Lemma 4.1 that “<” in &R0

satisfies (B') if and only if 2 satisfies the following condition: RI(x)iLI(x) for
every x € I?(20).

(i) In[12] and [14], Baer rings (or Rickart rings) satisfying the fol-
lowing condition (stronger than (B%)) are treated.

(B RI(x) < LI(x) for every x € L.

If a Baer ring ¥ satifies (B%), then it has no nilpotent ideals. Because, if x%x
=0, then, since there is a relatively regular element » with ()" =(x)", @)'=(x)
by (B%), we have u2%u=0, which implies u=0 by the relative regularity of u,
and hence x=0.

(iii) By [14], Lemma 4.3, “<” in &;() has the following property: If
(e), L(f)r and (e),~(f),, then (e), and (f), are perspective. It follows from
Lemma 3.3 (i) that if U satisfies (B?), then R, () is a Z,-lattice, because the
above property implies (P).

(iv) In order that R,(2) have dimension functions with respect to [*<”,
it suffices that the following three statements hold: (1) U satisfies (B%), (2)
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the semi-orthogonality in R;() satisfies (1 5), (3) “<” satisfies the axiom
C.

ExamrLe 2.1. (Complete regular ring, upper-continuous regular ring) If A
is a regular ring with unity, then ®;() coincides with the set of all principal
right ideals and it forms a complemented modular lattice. A regular ring
A with unity is called a complete (resp. upper-continuous, continuous) regular
ring if the lattice &; (W) is complete (resp. upper-continuous, continuous). Let
2 be a complete regular ring. It follows from [14], Lemma 1.3 that 2 is a
Baer ring and it follows from the last remark of [13] that the semi-orthogo-
nality in &;() coincides with the independence (see Definition 9.1). Since
any regular ring satisfies (B%), the algebraic equivalence “<” in R;(2) sat-
isfies the axioms (A) and (B). On the other hand, the projectivity in R;(20)
(denoted by “~?) also satisfies (A) and (B) since ®&,;() is modular (see §9).
Obviously, (e), ~ (f), implies (e), < (f),, and the converse is true if (e), L (f),
(Remark 10.2 (ii)). Hence, the minimal (resp. finite, properly infinite) ele-
ments are the same for both equivalences.

Let A be an upper-continuous regular ring. Since the semi-orthogonality
in R; () coincides with the independence, it satisfies (_L5) by the upper-con-
tinuity of R;(). “<” satisfies (C,) since the projectivity satisfies (C,) by
Lemma 9.4. Hence, ;) has dimension functions with respect to “<”. We
shall show later that “<” coincides with the +4--projectivity.

Let 2 be a Baer *-ring. Then, the set P() of all projections of 2 forms
a lattice isomorphic to &;(A). Furthermore, P() has an orthogonal relation
and is a relatively orthocomplemented complete lattice (see [14], §6). As the
canonical semi-orthogonality in P(2), let us take this orthogonality (P(?0) has
another semi-orthogonality, induced from ;). Then, it is not valid in
general that the algebraic equivalence “<” satisfies (A). But, it satisfies
(A,) obviously and satisfies (A;) by [12], Lemma 2.3, and hence all the lem-
mas and theorem of §2 are available. In 2, xx*=0 implies x=0 by [ 7], Chap.
III, Proposition 2. From this property and Remark 9.1 (i) it follows that 2A
has no nilpotent ideals (x2x=0 implies xx*xx*=0, whence xx™=0 and x=0).
Hence, P() is a Z,-lattice and e € P() is minimal if and only if e is abelian.
(e € PQQ) is abelian if and only if the projections of e2e mutually commute.
See [7], Chap. III.) The semi-orthogonality in P() satisfies (1 5) since it is
defined by the orthogonality. It follows from [12], Lemma 2.8 that if “<”
satisfies (B) then it satisfies (C,) also. Hence, in order that P() have di-
mension functions with respect to “<” it suffices that A satisfies (B*) ([12],
Theorem 2.1 (i)).

ExamprLe 2.2. (Complete *-regular ring) A complete *-regular ring A
(Kaplansky [6]) is a regular Baer *-ring, and vice versa. Since 2 is regular,
(B9 is satisfied. Hence, in P(0), the algebraic equivalence “<” satisfies (A,),
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(Ay), (B), (C)), (Cy), and P(A) has dimension functions with respect to “<”.
Since P() is finite by [6], Theorem 1, P(20) is upper-continuous and modular
by Theorem 8.3, and it is lower-continuous by the duality. Therefore P()
is a continuous geometry ([6], Theorem 3), and it follows from Lemma 9.5 (i)
that “<£” coincides with the perspectivity.

Let % be a Baer *-ring. In PQl), we can define another equivalence re-
lation as follows: e, f € P(2) are called to be *-equivalent, in notation ¢ L f, if
there exists w € A with ww™=e, w*w=f. 'An element w € U is called a partial
wsometry (Berberian [2], p. 500) if ww™ € PQD) (or equivalently w*w € PQL)).
Any partial isometry w is relatively regular since ww*w=w. The right (resp.
left) projection of x € % is denoted by RP(x) (resp. LP(x)). It is easy to show
that RP(x) ¥ LP(x) if and only if there exists a partial isometry w such that
() =), (x))=w)". It is obvious that the relative center with respect to
“%” coincides with the center of P() and that “*” satisfies (A) and (Cy).
It follows from [12], Lemma 2.7 that “%” satisfies (C,). Hence, in order
that P() have dimension functions with respect to “%” it suffices that “X”
satisfies (B).

Lemma 10.2. Let 2 be a Baer *-ring. The following statements are equiva-
lent.

(@) The *-equivalence “X” im P) satisfies (B).

(B) “X” satisfies (B).

(v) “X” satisfies (B').

(B*) RP(x) X LP(x) for every x € P*(), where P*(Q)= {ef; e, f € PQD}.

Proor. The equivalence of («) and (B*) can be proved in the similar way
as Lemma 10.1, by the aid of [14], Theorem 6.3. The implications (a)=(3)
=(v) are trivial. We can show that (B*) is equivalent to the condition: RP(x)
% LP(x) for every x € P?(Y); because, it follows from RP(x)=LP(x*) that the
last condition implies RP(x) X LP(x) for every x ¢ P?(2), and hence implies
(B*) by Lemma 4.5. Hence (B*) and (v) are equivalent by [14], Lemma 6.4.

Remark 10.3. In [12], Baer *-rings satisfying the following condition
(stronger than (B*)) are treated.

(B*) RP(x) X LP(x) for every x € 2.

This condition implies that “.%” and “.¢.” coincide ([ 127, Remark 2.2 (ii)). We
shall show later that (B*) implies the same property.

Exampre 2.3. (Von Neumann algebra, AW*-algebra) Let 2 be a von Neu-
mann algebra (=W*-algebra). It is obvious that 2 is a Baer *-ring. By the
polar decomposition theorem ([3], Appendice III), any element x € ¥ can be
written by the form x=uwr, w, r € 2, where w is a partial isometry and r*=r,
rf=x*x. From this fact it follows that  satisfies (l§*) (see [2], Lemma 3.3).
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But, it is difficult to prove that any AW*-algebra (=C*-algebra which is a
Baer *-ring) satisfies (B*). The outline of the proof given by Kaplansky [5]
is as follows. It is easy to show that “” satisfies (B”) (5], Lemma 3.3),
and hence it can be proved by Remark 4.2 (iii) that “ %> is countably additive.
It can be proved by this result that (B*) is satisfied ([5], Theorem 5.2). Hence,
if 2 is an AW™*-algebra, then the *-equivalence in P(2) satisfies the axioms
(A), (B), (C)), (Cy), and P() has dimension functions with respect to “*”. If
9 is a finite AW*-algebra (which means that P(Q) is finite), then, as in Ex-
ample 2.2, it can be proved that P(2) is a continuous geometry and that “*”
coincides with the perspectivity.

Finally, we shall give a lattice-theoretic characterization of the algebraic
equivalences or the *-equivalences in these examples.

Derintrion 10.1.  In a relatively complemented lattice, two elements a
and b are called to be semi-perspective if there exist four elements a,, a,, b1, b2
such that a=a,\Va,, b=b,\Ubs, a;Naz=b;Nb,=0 and that «; and b; are pers-
pective (i=1,2). « and b are called to be semi-projective if there exists a finite
sequence (aq, ay,---, a,) such that ay=a, a,=b and that o;_, and o; are semi-pers-
pective (1<<i<<n). The semi-projectivity is an equivalence relation weaker
than the projectivity.

Turorem 10.1. Let L be a relatively semi-orthocomplemented complete lat-
tice where the semi-orthogonality satisfies (L 5). Let “~ be an equivalence re-
lation in L satisfying the axioms (A,), (A,), (B), (C)) and (C)). If “~” more-
over satisfies the following condition: a~b, a L b tmply that a and b are per-
spective, then “~" coincides with the semi-projectivity.

Proor. It is easily proved by (B) and (C,) that if ¢ and b are semi-pro-
jective then a~b. To prove the converse, supposing « ~ b, it suffices to show
that ¢ and b are semi-projective when « is either finite or properly infinite
(Lemma 2.6). If ¢ is finite, then, since the last condition in the theorem im-
plies (P") by Lemma 3.3, a and b are perspective by Lemma 9.5 (ii). Let a be
properly infinite. By Lemma 4.7, there are a,, a; such that a=a,\Uay~ a;~a;.
Putting a\Ub=0a\Ub,, we have b; < b~ a~ a,, whence a;\Ub; < a;\Uax~a,. Hence,
by Lemma 4.5, we have a;\Ub,~a;~a,. Since a;\Ub; 1 ay, a;\Ub; and a, are
perspective and so are «, and a;,. Hence a\Ub and a are semi-perspective.
Similarly «\Ub and b are semi-perspective. Therefore, « and b are semi-pro-
jective.

Cororrary 1. In an MD-lattice, the +-projectivity and the semi-pro-
Jectivity coincide. (Use Lemmas 9.3 and 9.4.)

CororrAry 2. If U is an upper-continuous regular ring, then, in R; (),
the algebraic equivalence, the +-projectivity and the semi-projectivity coincide.
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(See Remark 10.2 (iii) and Example 2.1)

CoroLLARY 8. In an upper-continuous complemented modular lattice, the
+-projectivity (=semi-projectivity) satisfies the axiom (A) and is completely
additive.

Proor. It suffices to prove the statement when the lattice L is either
finite or properly infinite. If L is finite, the statement follows from Theorems
9.4 and 5.3. Let L be properly infinite. Since 1 is the join of a 4-homogeneous
family by Lemma 4.7, there is a regular ring 2 such that the lattice R;®0) is
isomorphic to L (von Neumann [157], Theorem 14.1; [ 9], Kap. XI, Theorem 3.2).
Then, +-projectivity coincides with the algebraic equivalence in &;() by
Corollary 2, and hence it satisfies (A) and is completely additive by the corol-
lary of Theorem 5.3.

Cororrary 4. If U is a Baer *-ring satisfying (B*), then, in PQL), the
algebraic equivalence and the semi-projectivity coincide.

It is easy to show that if a Baer *-ring satisfies (B*) then it satisfies also
(B%. Hence we have the following result.

Cororrary 5. If A is a Baer *-ring satisfying (B*) (especially 2 is an
AW*-algebra), then in P(), the *-equivalence, the algebraic equivalence and the
semi-projectivity coincide.
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