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Introduction

In my previous paper [11], the dimension theory of a relatively semi-
orthocomplemented complete lattice (cf. [13]) with an equivalence relation
has been developed by the axiomatic treatement, which enables us to unify
the dimension theories of the von Neumann algebras and the continuous ge-
ometries. Our method is very similar to that of Loomis [8], but he treated
only the case where the lattice is orthocomplemented. Let L be a relatively
semi-orthocomplemented complete lattice where the semi-orthogonality " j _ "
satisfies the following condition: a8 \ a, as±b=ϊa±b. It has been shown in
[11] that if there is an equivalence relation in L satisfying certain axioms
(denoted by (2, β)—(2, ζ) in [11]) then there exist the dimension functions
with respect to this equivalence relation. In [12], this system of axioms was
modified for the purpose of giving simple conditions for a Baer *-ring under
which the lattice of projections of this ring has the dimension functions with
respect to the algebraic equivalence (or the *-equivalence) introduced by
Kaplansky. Indeed, these conditions are satisfied by the Baer *-rings con-
sidered by Kaplansky [6] and [7], and consequently by the AW*-algebras
and the von Neumann algebras.

Now, we consider the projectivity of an upper-continuous complemented
modular lattice for the purpose of generalizing the dimension theory of the
continuous geometries. The systems of axioms given in [11] and [12] include
the axiom of (complete or finite) additivity, but the above projectivity does
not generally satisfy this axiom. For this reason, in this paper we shall give
another system of axioms which is weaker than the systems in [12] and [8],
and we shall develop the dimension theory on L, which not only covers the
existing dimension theories of the Baer *-rings and the continuous geome-
tries but also throws light on the dimension theory of upper-continuous com-
plemented modular lattices.

In this paper, the system of axioms for equivalence relation is given as
follows:

(Ai) α^O implies a=0;
(A2) if a~~bι\jb2 then there exists a decomposition a=aλ\ja2 with a^bi

(i = l,2);
(B) if we put a = (aΓ\b)^Jai, b = (aί\b)\jbι, a\Jb=a2^jb=aVJb2 for any α, b,
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then there exist decompositions αi^αίwαί, δi=όίθftί
such that αi~~α2, b

f

1^b2, aϊ~~bΊ (see Fig. 1);
(Cx) if a=\JΛaΛ, b=\Jaba, aa~~bΛ for every a and

a±b, then a^b;
(C/) if α=αiθ<22, b=bιύb2, ai^b{ (i = l, 2), then

The projectivity in an upper-continuous com-
plemented modular lattice does not generally satisfy
(C/), but we shall show (in §8) that (C/) may be omit-
ted if (B) is replaced by the following stronger axiom

(B) If a and b are perspective then α~ό.
(In the previous papers [11] and [12], the axioms
(AO, (A2), (B), (CJ, (C/) are denoted by (2, β\ (2, γ), (2, v\ (2, δ2), (2, δx) res-
pectively.)

The dimension function on L having an equivalence relation "—" is a
mapping don L into the set of non-negative continuous functions on the Bool-
ean space Ω, representing the relative center Zo with respect to "~~". It is
characterized by the following axioms:

(1°) If a^b then d(a)=d(b);
(2°) if a±b then d(a\Jb)=d(ά)-hd(b);
(3°) if z e Zo then d(zΓΛa)—X(z)d(ά), where X(z) is the characteristic func-

tion of the compact, open subset of Ω corresponding to z;
(4°) if a>0 thend(α)>0;
(5°) if a is a finite element then d(a) is finite valued except on a set of

the first category.
Our main result is that if "—" satisfies the axioms (Ai), (A2), (B), (C_J, (C/)
or the axioms (Ai), (A2), (B), (C_J then we can construct on L the dimension
functions with respect to "^-".

In §1, some properties of relatively semi-orthocomplemented complete
lattices are given. In §2, the relative center Zo with respect to an equivalence
relation α^-" in L is defined. And, supposing that "—" satisfies (Ai) and (A2),
we define the minimal element and the finite element, and it is proved that L
can be decomposed into five summands, which are finite of types I and II,
properly infinite of types I and II and of type III respectively.

In §§3-5, the axiom (B) is replaced by the following weaker one:
(BO If b is a complement of a and c is a semi-orthocomplement of a then

Supposing that " ^ " satisfies (Ai), (A2) and (BO, the following property (de-
noted by (2, £) in [11] and [12]) is proved in §3:

(B'O If e(α)Λe(6)#0, then there exist au bλ such that Oφαi <,a,

If " ^ " satisfies (Ai), (A2), (BO, (Cx) and (C/), then we can prove the com-
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parability theorems which play an important role in the dimension theory.
But, in the case of AW*-algebras, it is not easy to show that the *-equivalence
satisfies (B')> though (B") is easily proved. For this reason, some results im-
plied from the five axioms (Ai), (A2), (B"), (CjJ, (C/) without (B') are gathered
in §4. These results will be useful not only in the following argument of our
dimension theory but also in proving that the ^-equivalence in an AW*-
algebra satisfies (B') (actually satisfies (B)).

In §5, supposing that " ^ " satisfies moreover (BO, we prove the com-
parability theorems and also prove the complete additivity of " ^ " in the
finite case.

Besides the comparability theorems, the following theorem is important
in the dimension theory: If a and b are finite then so is a\Jb. In §6, we show
that this theorem holds if and only if " ^ " satisfies moreover (B).

Supposing that "—" satisfies (Ai), (A2), (B), (Cx), (C/), our concluding
theorems concerning the existence and other properties of the dimension
functions can be proved in the same way as in [11], by using the results of
these sections. These theorems are stated in §7 without proofs.

In §8, we consider the axiom (B). We show that if "^*" satisfies (Ai),
(A2), (B), (CL) then we can define a new equivalence relation " ^ " satisfying
the above four axioms and moreover (C/). And, it is proved that, for both
the original and the new equivalence relations, the relative centers (resp. the
minimal elements, the finite elements, the summands of each type, the di-
mension functions) are the same, though their definitions depend on the equiv-
alence relations. This shows that (C/) may be omitted from our system if (B)
is replaced by (B). In this case, we can prove the following theorem by the
aid of (B): If L is finite then it is an upper-continuous complemented modular
lattice.

The examples of our axiomatic argument are given in § 9 and § 10.
It is shown in § 9 that the projectivity in a complemented modular com-

plete lattice satisfies the axioms (Ai), (A2) and (B), and that it satisfies more-
over (Cx) if the lattice is upper-continuous or orthocomplemented (the semi-
orthogonality is defined by the independence or the orthogonality). This im-
plies that any upper-continuous complemented modular lattice and any ortho-
complemented modular complete lattice have the dimension functions with
respect to the projectivity. We note that Kaplansky's theorem: "Any ortho-
complemented modular complete lattice is a continuous geometry" is a con-
sequence of our dimension theory.

It is shown in §10 that the algebraic equivalence in the lattice of princi-
pal right ideals of any upper-continuous regular ring or the lattice of projec-
tions of any complete *-regular ring (Kaplansky [6]) satisfies (Ax), (A2) (B),
(Cx) and (C/), and that the ^-equivalence in the lattice of projections of any
AW*-algebra does also. Hence, these lattices have dimension functions with
respect to the algebraic equivalence or the ^-equivalence. These equivalences
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are defined by the algebraic structure, but our final result shows that each of
them coincides with an equivalence relation (called semi-projectivity) defined
by the lattice-structure.

§ 1 Semi-orthogonal relation

Let L be a lattice with 0. A semi-orthogonal relation " j _ " in L is a binary
relation which satisfies the following axioms (see [13, § 1]):

(±1) a±a implies α = 0,
(±2) a±b implies b±a,
(J_3) a±b9 aι<,a imply aλΛ_b,
(±4) a±b9 a\Jb±c imply a±bVJc.

A subset S of L is called a semi-orthogonal family, in notation (a; a e S)±, if
for any pair of disjoint finite subsets Fu F2 of S it holds that \J(a; a € Fι)±\J
(a; ae F2). It is obvious that if S is a semi-orthogonal family then so is every
subset of S and that if every finite subset of S is a semi-orthogonal family
then so is S. The symbol O means the join of a semi-orthogonal family.

L E M M A 1.1. (i) Let m e L, 1 < ^ ' < ^ . If a^\J •-• \Jai±ai+ι for every ί = l, ,
n — 1, then (α, ; l<^<Ξrc)±.

(ii) Let S be a subset of L. If ao±\J(a;a 6 F) whenever F is a finite subset
of S and a0 6 S — F, then (a; a e S)±.

PROOF. The statement (i) can be proved by induction, because, if (αi, ,
αt )_L for £*<7z then it is easy to prove (αi, , α, +i)_L by the axiom (±4).

(ii) It follows from (i) that any finite subset of S is a semi-orthogonal
family and hence so is S.

LEMMA 1.2. Let L be complete. If Sa is a semi-orthogonal family for every
a e I and {\i/(a; a 6 Sa); a 6 /} is also, then \J(Sa; a € I) is also a semi-orthogonal
family.

PROOF. In the case / = {1,2}, this lemma is easily proved by Lemma 1.1
(ii) and (_L4). Hence, in the general case, any finite subset of \J(SΛ; a e /) is
a semi-orthogonal family and then so is \J(Sa; a € I).

Let L be a lattice with 0,1 and have a semi-orthogonal relation, a e L is
called a semi-orthocomplement of a e L if a±a\ a\Ja! = l (or simply aύd = l).
L is called to be relatively semi-orthocomplemented if for every a,b e L with
a<^b there exists c e L with b\jc=a (c is called a relative semi-orthocomplement
of b in α). The following statements are proved in [13, §2].

LEMMA 1.3. Let Lbe a relatively semi-orthocomplemented lattice and Z be
its center. An element of L is in Z if and only if it has a unique complement.

THEOREM 1.1. Let Lbe a relatively semi-orthocomplemented complete lat-
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tice.
(i) The center Z of L is a complete Boolean sublattice of L.
(ii) Let βδ t

a (i.e. W is an ascending set with the join a). If a8 e Z for
every S or b e Z, then a8ίλb f aΓ\b.

§ 2. Axiom A for equivalence relation

Hereafter, let L be a relatively semi-orthocomplemented complete lattice
and Z be its center.

DEFINITION 2.1. We assume that there is an equivalence relation " ~ " in
L. If a^bι<b in L, we shall write a<^b. The set Zo= {z € Z; a^z implies
a<Lz) is called a relative center with respect to' the equivalence relation. Since
1 € Zo and since zΛ € Zo for every a implies f\a zΛ e Zo, for any a e L there is the
smallest element z e Zo such that α<Iz. We shall denote it by e(a). It is
obvious that a~~b implies e(a) = e(b).

AXIOM A. We give the following axioms for equivalence relations in L.
(Ai) a—Ό implies a=0.
(A2) If a^bχθb2 then there exists a decomposition a = aλθa2 with aι^b{

(ϊ = l,2).
Sometimes, we shall replace (A2) by the following stronger axiom:

(A2) If a—^jaba then there exists a decomposition a = \Jaaa with a^bΛ

for every a.
These axioms are satisfied if the following one is satisfied. (L(0, a) denotes the
lattice {x e L; x<^a}.)

(A) // a~~b then there is a lattice-isomorphism Φ of L(0, a) onto L(0, b)
such that Φ(x)—x for every x e L(0, 05) and that x±y<=>Φ(x)l_Φ(y) (x, y e. L(0, a)).

In this section we assume that there is an equivalence relation " ^ " in
L satisfying the axioms (Ai) and (A2). The relative center has the following
properties.

LEMMA 2.1. (i) Zo is a complete Boolean sublattice of L.
(ii) e (\JΛ aΛ) = \Jae (aΛ).
(iii) IfzeZo then e(zίΛa) = zί\e(a).
(iv) // a~~b and z e Zo then zΓ\a~~zΓ\b.

PROOF, (i) Since za e Zo implies f\a zΛ e Zo, it suffices to show that z e Zo

implies l—z£ZG. If a~~b<^l— z, then by (A2) there is bι<>b with bι^zί\ay

and then it follows from z e Zo that &i <Ξz. Hence bι <^zί\b = 0, which implies
zί\a=0 by (Ai). Therefore α = ( l — z)ίλa<^l — z.

(ii) It is obvious that \Ja aa<,\Jae(aΛ)^e(\Jaaa). Since \Ja e(aa) e Zo by
(i), we have \Ja e(aΛ) = e(\JΛ aΛ).

(iii) It is obvious that e(zΓ\a)^zΓ\e(a). Since it follows from (ii) that
-z), we have zίλe(a)^e(zr\a).
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(iv) Since α=(zΛα)O((l-z)Aβ), it follows from (A2) that there exists a

decomposition b=bιθb2 with bi^zίΛa, b2~^(l — z)Γ\a. Since z and 1— z are in

Zo, we have bι<.z, b2<=l — z, which imply zί\b=(zΓ\bι)VJ(zίλb2) = bι

DEFINITION 2.2. We shall write α < b if for every z e Zo either z

or zi\a=zi\b=0. Obviously, α < 6 implies either α < ό or a=b=0. It follows

from (Ai) and (A2) that a^b^c-^d implies a<ζd and it follows from Lemma

2.1 (iv) that α < 6 implies zi\a<^zi\b for z e Zo. We shall write a^b if for

every z e Zo either zr\a<zΓ\b or zίλa=zr\b=0. a^b implies α<6, implies

either a<b or a=b=0 and implies zίΛa^zίΛb for z ε Zo. a<Lb<^c<,d implies

An element α 6 L is called to be minimal if α > 6 implies 6=0. It is ob-

vious that if a is minimal and a^b then 6 is also minimal.

LEMMA 2.2. The following statements are equivalent (cf. [10], Theorem

3.1).

(a) a is minimal.

(β) a^b implies b = 0.

(γ) b<a implies e(b)<e(a).

(δ) b<Ξa implies b=e(b)ί\a.

(S) Ifb, c<,a then e(br\c) = e(b)r\e(c).

(?) IfbOc^a thene(b)ί\e(c) = 0.

PROOF. The implication (ά)=$(β) is obvious. (/9)=Φ(γ). It suffices to prove

that if b<^a and e(b) = e(a) then &=α. Let a=bθc. If zίΛbφO for κ Z 0 then

we have 2Aα>zAc and if zί\b = 0 then since zrΛe(a)=zΓ\e(b) = e(zΓΛb) = O by

Lemma 2.1 we have zίλa=zr\c=0. Hence α!>c, which implies c=0 by (/3).

(γ)=Φ(δ). Let b<^a and c= {(l-e(δ))Aβ} V7ό. Since c<^a and since it follows

from Lemma 2.1 that e(c)= {(1 — e(δ))Ae(β)} \Je(b) = e(a\ we have c=α by (γ).

Hence e(b)r\a=e(b)r\c=b. (δ)=φ(α). If β>^ 5 there is c ^ α with c—6 and then

α>c. Since e(c)Λfl=c by (δ) and e(c)Ac=c, we have either c^c or c=0. But

c^>c does not hold, since c ^ c i ^ c implies c=e(c)ίΛa=e(cι)r\a=cι by (δ). Hence

c=0 and then 6=0. Therefore the four statements (a) — (δ) are equivalent.

(δ)=>(£). If b, c<.a then it follows from (δ) that br\c=e(b)r\e(c)r\a, and

hence e(br\c) = e(b)ίΛe(c)rΛe(a) = e(b)ίλe(c). (£)=$(ζ) is obvious. (ζ)=$(y). If

6<α then putting a=bθcwe have cφO. Since e(b)Γ\e(c)=0 by (ζ*), we have

e{b)<e(b)\Je(c)== e(a). This completes the proof.

LEMMA 2.3. If ae L is minimal, then L(0, a) is distributive, that is, a is a

D-element defined by Kaplansky ([6], p. 538).

PROOF. It is obvious by (δ) of Lemma 2.2 that the mapping b->e(b) gives

a lattice-isomorphism of L(0, a) into Zo. Hence L(0, a) is distributive.

Later, we shall give a condition under which the converse of Lemma 2.3

holds (see Lemma 3.3).
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DEFINITION 2.3. A subset {aa\ ae 1} of L is called a homogeneous family
if it is a semi-orthogonal family and aa~~aβ for every a, β e /. It is called an
n-homogeneous family when the cardinal of / is n. A homogeneous family is
called to be zero if all its elements are zero.

An element a e L is called to be infinite if L(0, a) has a non-zero ^0-homo-
geneous family, and otherwise called to be finite, a € L is called to be simple
(Loomis [8], p. 6) if L(0, a) has no non-zero 2-homogeneous family. We have
the following implications: minimal=Φsimple=>finite. Because, the first im-
plication follows from (ζ) of Lemma 2.2 and the second one is obvious. (We
shall show in the next section that the minimal element and the simple ele-
ment coincide under the condition that " ^ " satisfies the axiom (B') )

If a<^a then using (A2) repeatedly it is shown that a is infinite. Hence if
a is finite then a<^a does not hold. If a is simple and a^b then b is also simple
by (A2). (If (A2) is satisfied, the similar statement for finiteness holds.)

LEMMA 2.4. Let a 6 L and za e Zo. If zΛΓ\a is minimal (resp. finite, simple)
for every α, then so is \Ja zΛr\a.

PROOF. If zar\a is minimal for every a and \JΛzar\a^b then we have
zar\b=0 for every a since zΛr\a^zar\b. Hence b=\Jazar\b = \JΛ(zar\b) = O,.
which shows that V7<* zΛc\a is minimal. If zΛr\a is finite for every a and
L(0, \JazΛr\d) has an ^-homogeneous family {bi\ 1 < ^ < ° ° } , then since {zΛr\
b{; l<Ξi<oo} is an ^-homogeneous family in L(0, z^ίΛa) we have zcύΓ\bi = Q.
Hence bi = \JΛ(z.ar\bi) = O, which shows that \JΛzΛr\a is finite. The statement
for simple elements is proved similarly.

DEFINITION 2.4. L is called to be of type I if it has a minimal element a
such that e(α)=l; of type II if it has no non-zero minimal element and has a
finite element b such that e(δ)=l; of type III if it has no non-zero finite ele-
ment.

LEMMA 2.5. There exists a unique decomposition l = zι O z π O ^ in Zo such
that the summands L(0, Zj), L(0, zπ) and L(0, zm) are of type I, type II and type
III respectively.

PROOF. Let zι =\J(e(a); a is minimal) and z* = \J(e(b); b is finite). Since
ZQ is a complete Boolean lattice by Lemma 2.1, we may write zι =\Ja zΛ where
zcό=e(aa) and aΛ is minimal. Putting ao = \Jaaa:) we have e(ao)=zι and since
zaίΛa0 = aa is minimal it follows from Lemma 2.4 that a0 is minimal. Similarly
we have a finite element b0 such that e(bo)=z*. Putting zu = z* — zι (since
z !<;**) and zm = l — z*5 we have the desired decomposition. The uniqueness is
obvious.

DEFINITION 2.5. A non-zero element a e L is called to be properly infinite
if, for every z e Zo, zί\a is either infinite or zero. It is obvious that if a<^a
and αφO then a is properly infinite. L is called to be finite (resp. infinite^
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properly infinite) if so is 1 e L.

LEMMA 2.6. For any a 6 L there exist e/(α), e°(a) € Zo having the following
properties:

(1) ef(μ)Oe°(a) = e(a);
(2) ef(a) Γ\a is finite
(3) if e°°(α)φθ then e°(a)Γ\a is properly infinite.

Then ef(a), e°(a) are uniquely determined.

PROOF. Let ef(a) = \J(z 6 Zo; z<Le(a), zΓ\a is finite) and e°(a) = e(a) — ef(a).
It follows from Lemma 2.4 that ef(a)r\a is finite. If e°°(α)φθ, then it is easy
to show that e°(a)r\a is properly infinite. The uniqueness is obvious.

COROLLARY. There exist a unique decomposition l = e/(l)weoo(l) in Zo such
that e/(l) is finite and e°°(l) is properly infinite or zero. If e°°(l) Φ 0, it is the
largest properly infinite element.

PROOF. The first statement directly follows from the lemma. If a e L
is properly infinite, then ef(l)r\a is zero since it is finite. Hence a=e°°(l)r\

The following theorem is a direct consequence of Lemmas 2.5 and 2.6 by
putting z I Ae / (l) = ^ ^ I A e M ( l ) = ^ 5

THEOREM 2.1. There exists a unique decomposition l = zf

[ Oz^Oz^Oz^Ozm

in Zo such that the summands L(0, z^), L(0, z^), L(0, zf

n), L(0, z#) and L(0, zm)
are respectively finite of type I, properly infinite of type I, finite of type II,
properly infinite of type II and of type III.

§ 3. Axiom B

AXIOM B. We give the following axioms for equivalence relations in L.

(B) // a and b are perspective (i.e. they have a common complement),
then a~~b.

(B) If a=(aΓΛb)Oaι, b = (aΓΛb)£/bι, a\Jb = a2\Jb = aKJb2, then there exist
decompositions αi^αiwα7/, 6i = 6/

1w6// such that a^a2, >̂i—̂ >2? dl~~b'l.
(BO If b is a complement of a and c is a semi-orthocomplement of a, then

(B") If e(a)Γ\e(b)Φ 0, then there exist au bλ such that 0φa>\ <^z, 0φbι<^b,
aι~~bi.

It is obvious that (B) implies (B) (where ai/ = 6/

1

/ = 0) and that (B) implies (B')
Remark that (B;) is equivalent to the following statement: a\Jb=aOc im-
plies b^c. Because, if a\Jb=a\jc and (Br) holds, then, putting b==(aί\b)Obu

(a\Jb)Od=l, it is easy to show that bγ is a complement of aOd and c is a semi-
orthocomplement of αθd, whence c^bι<^b by (Bx). The converse is obvious.

DEFINITION 3.1. Let L have an equivalence relation "^-". Two elements
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a, b 6 L are called to be unrelated if αi<Ξα, bι<Lb, ai^bi imply αi = fei = 0. It is
obvious that e(a)r\e(b)=0=$a and b are unrelated =Φαnb=0. The axiom (B")
is equivalent to the following statement: if a and b are unrelated then e(a)r\
e(b)=O. Supposing that " ^ " satisfies (Ai) and (A2), it is obvious that if a
and b are unrelated and b^c then a and c are unrelated.

LEMMA 3.1. Let "~~" satisfy (Ax) and (A2). T%e following statements are
equivalent.

(a) "—" satisfies (B").
(β) // £wo elements a and b are unrelated, then b <Ξ ei^r?/ complement of

a.

(7) // ίwo elements a and b are unrelated, then b <Ξ ewer̂ / semi-orthocom-
plement of a.

(δ) .For cmi/ α 6 L, ί^ere ΐs ίfce largest element a unrelated to a, and, a and
a are semi-orthogonal.

PROOF. Let a be a complement of a. If e(a)i\e(b) = 0 then since e(b)r\a
= 0 we have b<,e(b) = e(b)r\a'<,a'. Hence (a) implies (β). (β)=$(y) is trivial.

(γ)=^(δ). Let S be the set of all elements unrelated to a, and put a=\J
(x; x 6 S). Then we have a e S, because, if a^c<Ld and c is a semi-orthocom-
plement of c, then since c and x e S are unrelated it follows from (7) that x<,c
for every x e S, and hence a'<^c\ which implies c^cΛα^cAc^O. Therefore
α' is the largest element in S. We have a±d since α '^ a semi-orthocom-
plement of α by (7).

(δ)=Kα). Let α and & be unrelated. It follows from (δ) that there is the
largest element d unrelated to a and that there is the largest element d' unre-
lated to d. Then 6<V, af^a" and it follows from (δ) that a'±a". We shall
show that d e Zo. Let c be a complement of d. Then c and α' are unrelated,
because, if c^>x<^d, then we have x<^d since Λ and a are unrelated, and
hence x<.dίλc=0. Hence c^a", and we put cθd=d\ Then it follows from
d'±d that (i±cθα/ = l, which implies d=0 and c=df. Hence d has a unique
complement d\ and then β; e Z by Lemma 1.3. Since x^d implies x<,d as
shown above, we have d e Zo. Then we have e(b)<ίd and then e(a)r\e(b) =
e(αsΛe(6)) = 0. This completes the proof.

REMARK 3.1. Let C ί ^" satisfy (Ax) and (A2).
(i) If (B") is satisfied, it is easy to show that e(a)=\J(x e L; x^a) and

1 — e(α) = the largest element unrelated to a. From the former equation it
follows that a β Zo if and only if x^a implies x<,a (a is invariant in the sense
of Loomis [8]).

(ii) If (B") is satisfied, it is easy to show that for any non-zero element
a<,zι there is a non-zero minimal element b with b<,a. This fact implies by
Zorn's lemma that for any element a^zι there is a decomposition a=\JaaΛ

such that aΛ is minimal for every α.
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(iii) If every element of L has a unique semi-orthocomplement, that is,
L is a relatively orthocomplemented complete lattice (see [10], Theorem 1),
then (B") is equivalent to the following axiom:

// a and b are not orthogonal then there exist au bx such that

Because, by the assumption, (γ) of Lemma 3.1 may be stated as follows: If
two elements a and b are unrelated then b <Ξ the orthocomplement of a (which
means that a and b are orthogonal). (BΌO coincides with the axiom (D) of
Loomis [8].

THEOREM 3.1. If " ^ " satisfies (Ax) and (A2), then (BO is stronger than

(B").
PROOF. Supposing that (BO is satisfied, we shall prove (β) of Lemma 3.1.

Let a and b be unrelated and a be a complement of α. Putting dvJb=dOcy

we have c ^ 6 by (BO, and putting (aVJb)O d=l, we have cOd^a by (B')
Hence a^c^b, which implies c=0 and b<Ld.

LEMMA 3.2. Lei " ^ " satisfy (Ai), (A2) and (£>")• An element of L is mini-
mal if and only if it is simple.

PROOF. If a is simple and δ w c ^ β , then since b and c are unrelated we
have e(b)r\e(c) = 0 by (B"). Hence a is minimal by Lemma 2.2. The converse
is obvious.

LEMMA 3.3. (i) Let "^-" satisfy (Ai), (A2), (B") and moreover the fol-
lowing condition:

(P) // a, b are non-zero elements with a±b, a~~b then there exist non-zero
elements aλ<Jα, bχ<^b such that ax and bλ are perspective.
Then it follows that

(P0 For any a e L, if b is in the center of L(0, a) then b=e(b)r\a. (It is
easily seen that Z0 = Z, by putting α = l . L is a ZΛ-lattice defined by F. Maeda
[10].)

(ii) Let "^-" satisfy (Ai), (A2) and (PO An element of L is minimal if
and only if it is a D-element.

PROOF, (i) Let b be in the center of L(0, a), and put a=bθc. If e(b)r\
e(c)φθ, it follows from (B") and (P) that there exist non-zero elements bχ<^b,
ci<^c such that bι and cx are perspective. Then, in L(0, α), since όi and cx are
perspective and since b is in the center, br\bι = bχ is perspective to 5ACI = 0,

which implies όi = 0, a contradiction. Hence e(b)ίΛe(c) = 0 and then e(b)r\a=
(e(b)Γ\b)\J(eQ))Γ\c) = b.

(ii) If α is a Z)-element and b<,a, then since in L(0, a) any element is in
the center, it follows from (P') that b=e(b)r\a. Hence a is minimal by Lemma
2.2. The converse is given by Lemma 2.4.
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§ 4. Axiom C

AXIOM C. We give the following axioms for equivalence relations in L.
(C_L) // a = s\Jcύ aΛ, b = \^Ja ba, aa^ba for every a and a±b, then a~~b (com-

plete additivity in the semi-orthogonal case).
(C/) / / α = α 1 θ α 2 , b = bλ\jb2, ai~~bi(ί = l, 2), then a^b (finite additivity).

LEMMA 4.1. Let an equivalence relation " ^ " in L satisfy (Ai), (A2), (B")
and (G±).

(i) If a±b, then there exist decompositions a = aθa\ b = U<jb" such that
a/-b\e(a//)Γ\e(b//) = 0.

(ii) If a±b, then there exists a decomposition l = zιθz2θz3 in Zo such that
ziίλa^ziίΛb, z2ίΛa<ζz2Γ\b, z3Γ\a—z3Γ\b. More simply, there exists z e Zo such
that zίΛa^zίΛb, (l—z)Γ\a<^(l—z)r\b.

(iii) If a = a\\Ja2, b = bιθb2, a±b, a—b, aι~~bι and if a is finite, then a2^b2.

PROOF, (i) Consider pairs of semi-orthogonal families {αΛ}, {ba} in L(0,
α), L(0, b) respectively such that aΛ^bΛ for every a. Among these there is a
maximal pair {aa; a e /}, {bΛ; a € 1} by Zorn's lemma, and we put a' = \^J (aΛ\
ae I),b/ = \J(bΛ; a e /) and a=dθa", b = b'\jbff. Then since d' and b" are un-
related, it follows from (B'O that e(α")ne(6") = 0. It follows from (CJ that
d~~b\ since a'±b'.

(ii) Put zι = e (a"\ z2 = e (b") and z3 = 1 — (zλ O z2). It follows from z3 A a" =
z3rv6// = 0 that z3r\a=z3r\d—z3r\bf = z3r\b. We can see that 2iΛα>2iΛ5, be-
cause, if zr\zιΓ\a"φQ(z e Zo) then we have zr\zιΓ\a^zr\zιΓ\b since 2rin6// = 0,
and if z Λ ^ A α ' ^ O then 2AziΛα=2Λ2iΛ&=0 since ^A î = e(^nzi Aίz//) = 0.
Similarly we have z2r\a<^z2r\b.

(iii) There is z 6 Zo such that zΓΛa2^zΓΛb2, (l~z)ίΛa2^(l~z)ίλb2 by (ii).
If zί\a2^>zί\b2, then, since ZΛU!I~ZΛ&I, it follows from (Cj_) that zΓλd^zίΛb^
zίλa, contradicting the finiteness of a. Hence zΓ\a2^zΓ\b2, and similarly we
have (l — z)r\a2 — (l — z)r\b2, since (1 — z)Aa 2

<((l-z)r\b 2 implies (1— z)r\a<^
(l — z)r\a. Therefore a2~~b2.

LEMMA 4.2. Let "—" sαίis/j/ (Ai), (A2), (B7/) and (Cx). If a<,zγ, then
there exists a decomposition 1 = V7* ** ^ ^o ŝ cfe ίfeaί each zΛr\a is the join of a
homogeneous family of minimal elements.

PROOF. It suffices to show that, in Zo, for any non-zero element z<^zY

there exists O φ z o ^ 2 such that zoί\a is the join of a homogeneous family of
minimal elements. In L(0, zΓΛa) there exists a maximal one {aβ} among hom-
ogeneous families of minimal elements. Put zίΛa=\^Jβ aβ^jb. It follows from
Lemma 4.1 that there is z\ 6 ZQ such that zιΓ\aβy>zιΓ\b, (1 — zι)ί\aβ^(l— zι)r\b.
We have zιΓ\b = 0 since aβ is minimal, and hence zιί\zί\a is the join of the
homogeneous family {zιί\aβ}. To complete the proof, it suffices to show that

If we suppose that zιfΛz=0, then we have aβ, b<^z<,l—zι and
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hence aβ^b, which contradicts that {a&} is maximal.

FIFTH AXIOM FOR SEMI-ORTHOGONALITY. We give the following axiom for
semi-orthogonal relation " ± " .

(±5) If as \ a and a8±bfor every δ then a±b.
If a complete lattice has a semi-orthogonal relation satisfying (±5), then it
is obvious that semi-orthogonal families have the following property: If S
is a semi-orthogonal family and Su S2 are disjoint subsets (not necessarily
finite) of S then \J(a; a e Si) ±\J(a; a e S2).

In the remainder of this section we assume that, in a relatively semi-
orthocomplemented complete lattice L, the semi-orthogonal relation satisfies
(J-5).

LEMMA 4.3. Let "—" satisfy (Ai), (A2),'(B") and (CJ. Ifa^znOzm, then
for any finite n there exists an n-homogeneous family with the join a.
then there exists an ^^-homogeneous family with the join a.

PROOF. If a=0, the lemma is trivial. Let O φ α ^ π O ^ . Since L(0, zn
has no non-zero minimal element, it has no non-zero simple element by

Lemma 3.2. Hence for any 0^b<,znCizm and for any finite n, there exists
a non-zero zz-homogeneous family in L(0, b). Using Zorn's lemma, we can get
non-zero zz-homogeneous families {a°l\ l<i<Ξrc} (a 6 /) such that the joins aΛ=
Kj(fl*\ l^&'^rc) (a 6 /) form a semi-orthogonal family and that a=\J(aa; a β /).
Putting ai = \J(a"; a € I) (l^i<^n\ since (at; 1 < Ξ J < ^ , a 6/)± by Lemma 1.2,
it follows from (±5) that (αt ; l<,i<Ln)±. And then {ai} is a homogeneous
family by (C±) and its join is a. The second statement of the lemma can be
proved similarly, because L(0, zm) has no non-zero finite element.

LEMMA 4.4. Let "—" satisfy (Cj_) αtid (C/). // {αΛ; α 6/} is a homo-
geneous family and a subset J of I has the same cardinal as /, then \7(αΛ; a e/)

PROOF. If / is finite, then the lemma is trivial since / = / . If / is in-
finite, then/ can be divided into two parts /i,/2 such that both parts have the
same cardinal as /. It follows from (±5) and (Cx) that \J(aa; a eJi)~~\i/(aΛ;
cc €/2)^V7(β*; a 6/iU(/-/)) since/i,/2 and Jι\J(J—J) have the same cardinal
as /. We have V7<A;

 a £J)^Ό(a*i cc e I) by (C/).

LEMMA 4.5. Let "^-" satisfy (A2), (CjJ α^d (C/). If a^b and a<*b, then

PROOF, a^b means that there is a\ with a~^>aι^b. Put a=aι^jcι. Since

u there is o2 with a~~-a2<Laι and by (A2) there is a decomposition α2 =
a3θc3 with α3̂ Ό5i, c3^ci. Putting aι = a2θc2, we have a decomposition a3=a4:

Oc4 with α4̂ -β2? c4—c2. Repeating this, we have sequences {αw}, {cj such that
ij aw+î -«w-i5 Q+i^Q-i It is obvious that (cw; 1^7z<oo)j_. Put-
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ting aι = \J(cn; 2<^7i<oo)Od, we have a=\J(cn; l<Ln<oo)Od, and since ^J(cn\
7z=l? 3, 5, •• )^Ό( C »; 7z=3? 5, 7, ) by Lemma 4.4, we have a^-a^b.

LEMMA 4.6. Lei "—" sαίΐs/i/ (AO, (A2), ( C J and (C,).
(i) Aw element a e L is finite if and only if a^aλ<,a implies aι = a, in

other words, a<^a does not hold.
(ii) If a is finite and a^-b then b is also finite.

PROOF, (i) Let {6, ; 1 < ^ < O O } be an ^-homogeneous family in L(0, α).
Putting α = \7(6, ; l5Sΐ<oo)Oc and aι = \J(bi; 2<^ί<oo)\jc, we have α ^ α =
αiOόi by Lemma 4.4. Hence if α < α does not hold then £>i = 0, which implies
that a is finite. The converse is obvious. The statement (ii) is implied from
(i), since a~~b and b<Cfi imply a<^a.

REMARK 4.1. Let " ^ " satisfy (AO, (A2), (B"), (CJ and (C/). Using (B")
and Lemma 4.6 (ii), it is easy to show that for any non-zero element α<Ξzπ

there is a non-zero finite element b with δ<Jα. Hence, for any element a<,zπ

there is a decomposition a=\Jcύacύ such that αΛ is finite for every a.

LEMMA 4.7. Lei "—" satisfy (AO, (A2), (B'O, (CJ and (C/). If a e L is
properly infinite, then for anyn<.#0 there exists an n-homogeneous family {a{}
with the join a such that a{^a.

PROOF. We shall prove that for any non-zero element z € Zo there exists
zo 6 Zo with 0 φ^o <:Z such that zoί\a is the join of an ^-homogeneous family.
If zίλa=0, this is trivial. If zΛαφO, then zΓ\a is infinite by the assumption^
i.e., there is an infinite homogeneous family {ba; a e 1} in L(0, zίλa). We can
suppose that this family is maximal. Put zΓΛa=\^J(ba; a e I)Ob\ By Lemma
4.1, there is zx e ZQ such that zi/Λb'^zi/Λba, (l — zi)r\b'^(l — zι)r\bΛ. Putting
zo=zιΓΛz, we have z 0 A α φ 0 ; because, if zιί\zίΛa=0 then zιί\b'=zιΓ\ba = O and
hence b'^, ba, which contradicts the maximality of {ba}. Since / is infinite, it
can be divided into a countably infinite number of parts /, (1 <>i< oo) such that
each /, has the same cardinal as /. Put cι = (z0r\b/)0\\/(zor\ba; a e Iλ) and Q =
\J(zor\ba; ae Ii) for 2 < ^ < o o . Then zor\a=\J(ci; l ^ i < © o ) and since zor\br

^zor\ba it follows from Lemmas 4.4 and 4.5 that {a; l<:i<°°} is a homo-
geneous family.

It follows from the above result that there is a decomposition l = V7βz.»
in Zo such that zβί\a is the join of an ^-homogeneous family {<i?; l ^ i < o o } .
Putting di = \i/β d

8i we have an ^-homogeneous family {cf, ; l ^ ί < ° ° } with
the join a. If rc<^0, {̂ '} can be divided into n parts iVy such that each Nj has
the cardinal ^ 0 . Putting aj =

 y\J(di\ ί £ Nj), we have a=\Jj aj and a^a for
every y by Lemma 4.4.

LEMMA 4.8. Let "—" sαίώ/i/ (AO, (A2), (B"), (CJ and (Cf).
(i) // a finite element a is the join of an n-homogeneous family of mini-

mal elements (n is necessarily finite), then L(0, a) has no non-zero n-hl-homo-
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geneous family.

(ii) // {aa} is a semi-orthogonal family in L(0, zτ) and its join is a finite
element, then there exists a decomposition l = \^Jβzβ in Zo such that, in every
L(0, zβ), zβr\aa is zero except a finite number of a.

(iii) // L is finite of type /, then it is continuous.

PROOF, (i) Let {an l<>i^n} be the given homogeneous family of mini-
mal elements with the join a and {bj; l^j^n-hl} be a homogeneous family
in L(0, a). If we suppose that e(ύsi)r\e(6i)φθ, then by (B") there exists a non-
zero element c^ax with c^bλ. Since aλ is minimal it follows from (δ) of
Lemma 2.2 that e(c)Λαi=c. Hence e(c)r\ai—c^e(c)r\bj for every i9 j9 and
hence e(c)r\a^'\J(e(c)r\bj\ l^j^n). Since it follows from c=\=0 that e(c)r\
bn+ι φ θ , we have e(c)Aa<e(c)Aa, which contradicts the finiteness of a. There-
fore e(αi)Ae(6i) = 0, and we have &i = 0 since e(aι)=e(a)^e(b1).

(ii) Put a=ί\Job aΛ. By Lemma 4.2, it suffices to show that if zΓ\a(z e Zo)
is the join of a non-zero ^-homogeneous family of minimal elements (n is ne-
cessarily finite) then there exists z0 β Zo with O^zo^z such that zor\aa = O
except a finite number of aa. Consider a non-zero homogeneous family {&;}
satisfying the following condition:

(*) For any b{ there is aΛ. with bi<,zί\aΛi.

It follows from (i) that the cardinal k of {b{} is smaller than n. Hence we can
choose the family with the largest k. Putting zo=e(bi\ we can show that
zoAfle=O when a^aly.-ak; because if we suppose z 0 n α Λ φ 0 , then e(δ,.)A
e(zAαaf)=zoAe(αΛ)φO and then there is c o ^zAα α with Oφco^i,-, which im-
plies that there are ci^bi with co^-c , and hence {c0, cιy-ck} is a A + 1-homo-
geneous family satisfying (*), a contradiction.

(iii) Let {ap; p<Ω} be a well-ordered ascending set with the join a (Ω is
a limit ordinal), and we shall prove that apίλb f aΓ\b. We may assume that
if p is a limit ordinal then ap = \J(ay; y<p). Putting ap+ι=apθcp for every
p<Ω, we have (cp; p<Ω)±. It follows from (ii) that there is a decomposition
l=\7βZj3 in Zo such that, in every L(0, zβ\ zβίλcp = 0 except a finite number of
cp. Then, for every /9, it is easy to show that there is p(β) such that zβr\a=
zβr\ap(β), and hence we have zβrλarλb=zβr\ap(β)ίΛb^zβr\\Jp(aprΛb)^zβίΛar\b.
Therefore we have arΛb=^\Jβ(zβίΛar\b)=\Jβ(zβίλ\Jp(apίΛb)) =\JP(αpAδ). Simi-
larly ap i a implies apr\b j aί\b. This completes the proof.

REMARK 4.2. Let "~~" satisfy (Ai), (A2), (B"), ( C J and (Cf). We can
prove the following statements by the similar methods as in Lemmas 4.13,
4.14 and 5.1 of [5], but the details are omitted.

(i) Let a=aiC>a2=biOb2 and aι^bλ. If a is finite and α ^ a semi-ortho-
complement of a (in other words, a belongs to a 2-homogeneous family) then

(ii) Let 0φα=\7(α, ; 1^"<<~) and put &B=O
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7z< ί < oo) for l<,n < oo. If a is finite and a^ a semi-orthocomplement of α,.
then it does not hold that bn ^ 6J, for all n.

(iii) Let " - " satisfy moreover (A2). If a = KjW, 1 <;&<<*>), b=\J(b{;
1 <; j < oo) and α^δ/ for every ί, then there exists a decomposition l==V7β 3̂ i11

Zo such that zβfΛa^zβfΛb for every β.

LEMMA 4.9. Lei "—" satisfy (Ai), (A2), (B"), (CJ ami (C/). // α = O(α-ί
a e I), a±b, a—b and if a is finite, then there exists a decomposition b = \J(ba;
a e I) such that aΛ—ba for every a e I. In other words, (A2) holds if a±b and a
is finite.

PROOF. If / is finite, the lemma is trivial. Otherwise, let / be well-
ordered: I={p; p<Ω), where Ω is a limit ordinal. We shall construct a
semi-orthogonal family {bp; p<Ω} in L(0, b) with bβ^a9 by transfinite induc-
tion. Suppose that {by; y<p} has been constructed. Since \J(by; 7 < j θ ) ^ O
(ay; y<p) by (C_L), putting Ό(by; y<p)ύb'β=b, it follows from Lemma 4.1 (iii)
that b'p~~\^J(ay; 7^/o). Hence there is bp<^b'p with bp^ap, and the construc-
tion is completed. Since \^J(bp; p<Ω)^a~-bbγ (Cx) and since b is finite, we

Remark that the axiom (BO is not assumed in this section. It will be as-
sumed in the following section.

§ 5. Comparability theorems

In this section, we assume that the semi-orthogonal relation in L satisfies
(±5) and that the equivalence relation "^-" in L satisfies the axioms (Ai),,
(A2), (BO, ( C J and (C,).

LEMMA 5.1. // each of a, b € L belongs to a 5-homogeneous family whose
join is a finite element, then a\Jb belongs to a 2-homogeneous family.

PROOF. Putting (a\Jb)Od=l, there exists z € Zo such that zί\
zίλd, (l — z)r\(a\Jb)<^(l—z)fΛd by Lemma 4.1 (ii). To prove the lemma, it suf-
fices to show that zΓλ(a\Jb) = 0. Putting a\Jb=a\jc, it follows from Lemma
4.1 (ii) that the problem is reduced to the two cases: (i) a<^c, (ii) a^c Case
(i). By the assumption there is a homogeneous family {b, bu b2, b3, b4} whose
join b is finite. Since b^c^a by (BO, we have zίλd^zr\(a\Jb) = (zΓ\a)\j
(zΓΛc)^(zrΛbί)\j(zrΛb2) — (zΓ\b3)\j(zr\b4), and then (znδi) w (zίΛb2)vj (zίλb3)O
(zΓ\bA)^(zί\(a\Jb))\lj(zίΛd)=z'^zίλb. Hence we have zίΛb = 0 by the finite-
ness of b, and then zΓ\a=Q and zίλ(a\Jb) = 0. Case (ii). By the assumption
there is a homogeneous family {a, au a2, a3, α4} whose join is finite. We have
(zίΛa)O(zr\c)^(zrΛaι)C'(zr\a2) since α^>c. Hence it follows that zi\a = 0 in
the same way as above, and then zfΛc=0 and zfΛ(a\Jb) = 0.
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LEMMA 5.2. Ifa=\i/Λaa9 b = \JabΛ, aa^ba for every a and if each of a, b
belongs to a ^-homogeneous family whose join is a finite element, then a~~b.

PROOF. It follows from Lemma 5.1 that there exists c e L such that c±
a\Jb, c~~a. Then, it follows from Lemma 4.9 that there is a decomposition
c = \y/aca such that cΛ-~aa for every a. We have b^-c since b±c and ba^Ca
for every α, and hence a~~b.

LEMMA 5.3. If a € L is minimal and e(a)<,e(b\ then a^b. If both of a,
b e L are minimal and e(a) = e(b\ then a—b.

PROOF. Let a be minimal and e(a)<Le(b), and put a\Jb=aOc. By Lemma
4.1 (ii), there exists z e Zo such that zΛα>zΛc, (1 — z)ΓΛa^(l — z)r\c. We
have zΓ\c=0 since zίλa is minimal, and hence zΓ\a~^>zΓ\b. It follows from (δ)
of Lemma 2.2 that zίΛb=e(zίΛb)ίΛzίΛa=zΓ\e(b)r\a=:zr\a. On the other hand,
we have (l — z)ίλa^(l~z)r\b since b^c by (B') Hence a^b. Let, moreover,
b be minimal and e(a)=e(b). Putting (l—z)r\a — c<L(l—z)Γ\b, it follows from
(δ)of Lemma 2.2 that c=e(c)n(l-2)Aό = (l-z)Ae(cz)Aό = (l-2)n6, which im-
plies a~~b.

LEMMA 5.4. // a = \Jaaa, b = \JΛba, aa^ba for every a, and if aΛ9 bΛ are
minimal for every a and a, b are finite, then a^b.

PROOF. It follows from Lemma 4.8 (ii) that there is a decomposition 1 =
V7γzy in Zo such that the set Iy= {a; zyr\aa^0} is finite for every γ. We may
suppose that e(zy r\aΛ)=zy for a e /γ, by choosing a finer decomposition in Zo.
Then, it follows from Lemma 5.3 that zyr\aΛ~~zyr\dβ — zy r\bΛ~zy r\b& for α,
β 6 Iy. We divide each Iy into six disjoint parts Iy (l<±i^5) and/ γ such that
Γy have the same cardinal and Jy has the cardinal <ί 4 (/' and Jy may be empty).
Put t ing aι

y = \J(zyr\aa; a e Γy) and bι

y = \J(zyr\bΛ; a e/J), we have aι

y — aJ

y — bι

y ^*

bJ

y(l<Lί, <15) by (C/), and putting ai = '\Jy ay and V=\Jy bι

y, we have d—d and
V — V by (CJ. Then, it follows from Lemma 5.2 that ct—V (1 < [ ΐ ^ 5 ) . Next,
we denotes the elements K , ba; a ejy} by {a%\ b^; l<Lv<L4} with a^ — b^
(a^ and b(v

y

} may be zero simultaneously). Putting cz(v)=V7γ(^^^(7)) and bω =
\i/y(zyr\bi

y

)), it follows from Lemma 2.4 that aω and bω are minimal, and since
e(α ( v ))=e(έ ( v )) we have α ( v ) —b^ by Lemma 5.2. Therefore, we conclude a^b,
since a = \J(a{, α ( v ); 1 ^ ^ 5 , 1 ^ ^ ^ 4 ) and b=\J(bh b(v\ 1 ^

Now, we shall prove two comparability theorems.

THEOREM 5.1. For a, b e L, there exist decompositions a=d\ja"\ b=b'ύb//

such that c!~~b\ e(a")Γ\e(brf) = §.

PROOF. It follows from Theorem 2.1 that the problem is reduced to the
following three cases: L is respectively finite of type I, finite of type II and
properly infinite.
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(i) If there are au bλ e L such that a\ ̂ -a,bι — b, ax _L bu then we have the
desired decompositions. Because, it follows from Lemma 4.1 (i) that there
exist decompositions α^αJOαί, &i=feiθfcί such that αi — Vu e(άί) r\e(bΊ) = O,
and then there exist decompositions a=a<ja\ b=b/θb// such that a ( v ) ^a ( i } ,
b™-b(V(v = l,2).

(ii) If L is properly infinite, then by Lemma 4.7 there are cu c2e L such
that I = c i θ c 2 ~ ~ c i ^ c 2 5 and then α<^ci, 6<^c2. Hence, we have the desired
decompositions by (i).

(iii) Let L be finite of type II. It follows from Lemma 4.3 that there
exist decompositions α=\7(α, ; l<Ii<15), b = \^J(bi; l<li<15) such that a{^ah

bi^bj ( l ^ i , /<I5). It follows from Lemma 5.1 that there is c e L such that
ai^c±bu and hence, by (i), there exist decompositions aι=aΊύa", bι = bf

1Zιbχ
such that aί ~~ br

u e(aΐ)r\eQ)ΐ) = Q. Then, there exist decompositions αt =α£ Oαί,
bi = b/

iOK(2^i<5) with αW — α<ϊ\ b(V-b(V (* = 1,2). Putting α(v) = \7ί α(i\
&(V) = V7/ ^ \ we have α7—ft7 and e(α77)ne(60 = e(αί) Ae(δί) = 0.

(iv) Let L be finite of type I. In the same way as in the proof (i) of
Lemma 4.1, we have decompositions a=\jaaaθa\ b = \jcύbcύθb// such that aΛy

bΛ are minimal, aΛ^ bΛ for every a and that e(α//)Ae(5//) = 0. Putting a'=\i/ΛaΛ9

b' = \^Ja ba, we have a~~V by Lemma 5.4.

THEOREM 5.2. For a, b e i , there exists a decomposition l=zιOz2C'z3 in Zo

such that 2!Aα>2iAό, z2Aα<Cz2Aδ, z 3 Λ α ^ Z 3 A 6 . More simply, there exists
z € Zo such that zίΛa^zΓΛb, (1 — z) A β ^ (1 — z)Γ\b.

This theorem is implied from Theorem 5.1 in the same way as Lemma
4.1 (ii), and the following lemma is implied from this theorem in the same
way as Lemma 4.1 (iii).

LEMMA 5.5. Let aιθa2^bι\jb2 and let aχθa2 be finite. If aι~~bι then

LEMMA 5.6. Let α, b e L. If there exists a decomposition l=^\JΛz<* in %o
such that zaί\a^ zaΓΛb for every a and if a is finite, then a~~b.

PROOF. It follows from Theorem 5.2 that there exists a decomposition
l = zιOz2ZiZ3 in ZQ such that zιΓ\a,y>zλΓ\b, z2Γ\a<^z2ΓΛb, z3ίλa^z3r\b. If zΛΓ\zχ
Γ\a^>zaΓΛzιίΛb, then zar\zir\a^>zΛίΛzιrλa9 contradicting the finiteness of a.
Hence we have zΰύr\zιίΛa=zcύίλz1ίΛb = O for every a, and hence zir\a=ziί\b = 0.
Similarly, we have z2ίΛa=z2r\b = 0. Therefore a=z

LEMMA 5.7. Let L be of type I. If a=x(JcύaΛ, b=\Jcό ba, aa^ba for every a
and if a is finite, then a^b (hence b is finite).

PROOF. It follows from Lemma 4.8 (ii) that there is a decomposition 1 =
\7β Zβ in Zo such that, in every L(0, zβ), ZQί\aΛ is zero except a finite number of
aΛ. Then zβr\a^zβίλb by (C/). Hence we have a^b by Lemma 5.6.
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THEOREM 5.3. (Complete additivity in the finite case) a=y\JΛaΛ, b~^\Ja bay

αΛ ~~ bΛ for every a and if a and b are finite, then a~~b.

PROOF. If L is of type I, the statement holds by Lemma 5.7. Hence, it
suffices to prove the theorem when L is of type II. Then, for every a there
exists a 5-homogeneous family {α(^; 1 < > <ί5} with the join aΛ by Lemma 4.3,
and then by (A2) there exists a 5-homogeneous family {bty; l<ίv<;5} with
the join bΛ such that α ( ^ - 6 ( ^ ( 1 ^ ^ 5 ) . Putting α ( v ) = O * α ( i } and b(v)=\JΛ

b{l\ it follows that {α(v); 1 < I ^ 5 } and {6(v); l<:y<:5} are homogeneous fam-
ilies with the joins a and b respectively. We have α(v)~~ 6(v) by Lemma 5.2,
and hence a — b.

COROLLARY. // " ^ " satisfies moreover (A2), ίfeen iί is completely additive.

PROOF. If L is finite, the statement holds by the theorem. If L is pro-
perly infinite, then there are cu c2 € L with 1=CIC>C2^CI^C2 and then there
are a, V e L with a~~a! <cu b~~b'<,c2. By (A2) there exist decompositions
a=\Jaa«, br=\ilΛb

r

Λ such that a^aa, K^ba for every α, and hence we have
a^a'^b'^bbγ (CJ.

LEMMA 5.8. Let L be finite. If a8 \ a and a8^b for every δ, then a^b.

PROOF. We may assume that {δ} is a well-ordered set {p; p<Ω} where
Ω is a limit ordinal (see [11], Lemma 3.2), and that if p is a limit ordinal then
ap=\J(ay; y <p). Putting α?+i = βpθcp for every p<Ω, we have a semi-or-
thogonal family {cp; p<Ω} with \J(cy; y<p)=ap^b, ^J(cy; y<Ω)=a. Using
Theorem 5.3, it is easy to show by transfinite induction that there exists a
semi-orthogonal family {bp; p<Ω} in L(0, b) such that bp~~cp for every p<Ω
(see [5], Lemma 6.4). Hence, we have a^\J(bp; p<Ω)<Lb by Theorem 5.3.

§ 6. The axiom (B)

LEMMA 6.1. Let the semi-orthogonal relation in L satisfy (±5) and " ^ "
be an equivalence relation in L satisfying (Aχ)5 (A2), (B')? (Cx) and (Cf). The
following five statements are equivalent.

(a) "—" satisfies (B).
(β) If aιθa2=bιθb2, then there exists z e Zo such that zί\aι^zίΛbu (1 — z)

(γ) If aιOa2=bιC>b2, aχ^a2, bι~~b2, then aι^bχ. (In [11] this statement
is denoted by (2, ζ).)

(δ) // CL\_Lα2, αi— a2 and if a>\ is finite, then a\\Ja2 is finite.
(S) If a=bθc, b^c and if a is properly infinite, then a~~b.

PROOF. (a)=^(β). Let aλ\j a2=bλ O b2=u and put ai = (aiί\bι)£/ci, bι==
(a>ιΓ\bι)Odι, a>\\Jbι=c2O bι=aιCιd2. It follows from (B) that there exist de-
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compositions ci=cίθcί, dι=d/

1OdΊ such that cΊ^c2, dΊ^d2, cί~~d'ί. Put u—
(μι\Jbι)Z)v. We have a\Od2C> v=aιύa2, which implies a2^d2θv by (BO and
Lemma 4.5. Similarly, c2θ bχ\jv=bχθb2 implies b2^c2θv. It follows from
Theorem 5.2 that there is z e Zo such that zίλcί^zfΛdu (l — z)r\cf

1^:(l — z)r\dr

1.
Then, we have zΓ\a>ι = (zΓ\aι Γ\bx)<j (z AcJ)VJ (zΓ\cΐ) ^(zΓ\aι r\bx)\j (zί\dΊ)O
(zίλdi)=zίλbu and since (1 — z)Ac2^(l — z)r\d2 we have (l — z)r\a2~~((l—z)

(β)=Φ(y). Let aχVJa2=bιOb2, ax^a2, bx—b2. (β) implies that there is z e Zo

such that zΓΛaι^zίΛbu (1 — z)r\aλ^(1 — z)Γ\bu and hence ai^bi. Similarly
we have ax J> όi, and hence ax — bλ.

(γ)=^(δ). Let a=a>ιύa2, ax~~a2 and let aι be finite. There are bίyb2 such
that e°(a)r\a=bι\jb2^bι^b2 by Lemma 4.7, and hence bι^e°(a)Γ\aι by (7).
We have e°°(β)Aαi = 0, since bλ is properly infinite and aλ is finite. Therefore
e°°(a)Γ\a = 0, which means that a is finite.

(δ)=K£). Let a==bθc,b^c and let a be properly infinite. For z e Zo, there
are au a2 with zΛα=αi O a 2 ^ ^ i ^ ^ 2 since zίλa is properly infinite or zero.
Then, there are decompositions ai = bi\jci(ί= 1,2) with bi^zίλb, c^zίΛc. If
zAό is finite, then bu b2 are finite and hθb2 is also by (δ), and then zΓ\a is
finite since zΓ\a — bλ\jcχ-^bx\jb2. Hence, zAα=0 and zίλb = 0, which shows
that b is properly infinite. There are b\ b" with b=b'^jb"^b'—bn and then

b2=hτ which implies a^b.
Put a = (aΓ\b)\J au b = (aΓ\b)\jbu a\J b = a\J b2 = a2θ b. Then,

by (BO, and (ai\b)Oa1Ob2 = a\Jb = (ai\b)\jbiOa2 implies
by (BO and Lemma 4.5. If aλ\jb2 is finite, then, putting αi=

bι=biθbi where aΊ^a2, bΊ^b2) we have ai^bl by Lemma 5.5, and hence (a)
holds. When aχ\jb2 is properly infinite, the problem is reduced to the fol-
lowing three cases by Theorem 5.2: (i) aλ^b2, (ii) bχ<*a2, (iii)
Case (i). Since a2^aι^b2^bu it follows from (6) that bι
Putting a^aΊύai where α i ^ α 2 , we have aίθb2^aιθb2 since a\\jb2^>b2 — ax

Ob2, and hence bx^ar[<jb2, which implies that there is a decomposition bλ =
bϊOb'ί such that fei—62, b'Ί^a'ί. Therefore (a) holds. Case (ii). Since b2^bx

^a2^au we can prove (a) in the similar way as (i). Case (iii). It follows
from (£) that aι^aιθb2-^bιθa2^bι. Since αi is properly infinite, there are
ci, c2 with α i = c i θ c 2 ^ c i ^ - c 2 . Then ci — α i ^ δ 2 ) and then we have a decom-
position ci=αίθcί with aΊ~~b2. Putting cίθc 2 =αί, we have αi=αίθαί, and
« i^« i since ^ i ^ c 2 — aλ. Similarly, we have a decomposition bι = bΊC>bi with
δί — a2, b'[ —' 61. Then α'ί ̂  δj, and hence (a) holds.

In the remainder of this section, we assume that the semi-orthogonal re-
lation in L satisfies (±5) and there is an equivalence relation "^-" in L sat-
isfying the axioms (Ai), (A2), (B), (Cx) and (C/).

THEOREM 6.1. If a and b are finite, then so is a\Jb.

PROOF. Let c be the properly infinite part of a\Jb, i.e., c=e°(a\Jb)r\(a\Jb).
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There are cu c2 with c=c1ύc2^cι^c2. Putting a\Jb=aObu we have
by (B') Since ciWc2=(e00(aw6)Aa)0(e00(aW&)n5i)3 it follows from (β) of Lem-
ma 6.1 that there is z e Zo such that z Γ\cι^z Γ\e°(a\Jb) Γ\a, (1—z)Γ\c2^(l — z)
r\e°(a\Jb)Γ\bι. Since a, bλ are finite and since cu c2 are properly infinite (or
zero), we have zίλcι=(l—z)ίλc2 = 0, which implies zίΛc=(l — z)ίΛc=O and c=0.
This concludes that a\Jb is finite.

LEMMA 6.2. If aι^ja2^bχ^jb2, aλ ^ b λ and if aλ is finite, then

PROOF. If aχ\ja2 is finite, the statement follows from Lemma 5.5. Let
aλ\j a2 be properly infinite. There is z e Zo with zΓ\a\^zί\a2, (l — z)r\aι^
{l-z)r\a2 by Theorem 5.2, and then zΓ\(a1vja2) is finite by Theorem 6.1, which
implies zί\(aιOa2) = 0. Hence aλ^a2, and it follows from (£) of Lemma 6.1
t h a t a2 ~~ a\ Oa2 ^ b2.

LEMMA 6.3. // each of a, b e L belongs to a ^-homogeneous family and if
a is finite, then a\Jb belongs to a 2-homogeneous family.

PROOF. The problem is reduced to the following two cases by Theorem
5.1: (i) α ^ 6 , (ii) a^b. Case (i). There is a 4-homogeneous family {b, bu b2y

b3} by the assumption. Putting a\Jb=aι^jby we have ai^a, and putting
αiv!/6Oc=l, bOb1Ob2Ob3C>d=l, we have aι\jc^-bιθb2vjb3^jd. Since aχ^bι
and since aλ is finite, we have c^>b2θb3θd^aλ\jb=a\Jb by Lemma 6.2. Hence
a\Jb belongs to a 2-homogeneous family. Case (ii). b is finite since a^b.
Hence we can prove the lemma in the similar way as Case (i).

LEMMA 6.4. // a = y\Jcύaa, b = \JabΛ, aa~~bΛ for every a and if a is finite,
then a~~b (hence b is finite).

PROOF. If L is of type I, then the statement holds by Lemma 5.7. If L
is of type III, then a=0, and then b=0 since ba=0 for every a. Let L be of
type II. The following statement is implied from Lemma 6.3 in the similar
way as Lemma 5.2: If a=\^Jaaa, b=^\JΛbΛ, aΛ^ba for every a, each of α, b be-
longs to a 4-homogeneous family and if a is finite then a — b. Hence the lem-
ma can be proved in the similar way as Theorem 5.3.

LEMMA 6.5. Let a8 f a. If a8^b for every δ and if b is finite, then a

PROOF. This can be proved in the similar way as Lemma 5.8, by the aid
of Lemma 6.4.

The last lemma will be used in the proof of the complete additivity of
dimension functions (Theorem 7.5).

§ 7. Dimension functions

Assume that the semi-orthogonal relation in L satisfies (±5) and there
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is an equivalence relation " ^ " in L satisfying the axioms (Ai), (A2), (B), (Cx)
and (C/).

The arguments of preceding sections §§ 2—6 implies that all the lemmas
and theorems in §2, §3 of [11] hold, and hence the statements in this section
can be proved by the same methods as in §4, §5 of [11]. Here the proofs are
omitted.

DEFINITION 7.1. For any aeL, the class {x e L; x^-a} is denoted by [α].
The set {[a]; aeL} is denoted by [L]. It follows from Lemma 4.5 that [L]
is partially ordered if [α] <i[ό] is defined by a^b, and it is easy to show that
[L] is a lattice, by Theorem 5.2. [L] is called a dimension lattice of L. [L] is
totally ordered if and only if Zo = {0, 1}. If there exist aλ e [α], bx e [6] with
aλ±bu then [a] + [6] is defined by [aίθbι']. lί aeL belongs to an 7z-homogen-
eous family with the join b, then n\_a] is defined by [b~\ (0 [α] = [0]). We
write [ α ] < [ 6 ] if α < 6 .

LEMMA 7.1. Let c e L be finite. For any aeL and for n, 0<Ln< °o? there

exists a unique element qn(c, a) e Zo satisfying the following condition:

z<Lqn(c, a) if and only if n[zΓ\c]<,[_zΓ\a] (n\_z(Λc\ exists), where z e Zo.

Then, putting rn(c, a)=qn(c, a) — qn+ι(c, a), the following equations hold:

[_rn(c, a)Γ\a] = n[rn{c, α)Ac] + [ p ] with [ p ] < [ r w ( c , ά)Γ\c],

l = ?o(c, α) = \7Wc, a); 0<n< oo)0(e»A(l-e(c))).

We use Theorems 5.2 and 6.1 in the proof of this lemma.

LEMMA 7.2: Let heL be a minimal element with e(h)=zι ([A] is uniquely
determined by Lemma 5.3). For z e Zo with z<Lzτ> z<Lrn(b, a) if and only if

\ and ro(A, α ) =

COROLLARY. There exists a unique decomposition zf

ι=\J(zc^');
in ZQ such that zψ is the join of an n-homogeneous family of minimal elements.

DEFINITION 7.2. Let Ω be the representation space of the complete Bool-
ean lattice Zo ([9], Kap. I, §5). The compact open subset of Ω corresponding
to z e Zo is denoted by E(z\ and its characteristic function is denoted by %(z).
The complete lattice of all [0, oo]-valued continuous functions on Ω is denoted
by Z. A mapping d of L into Z is called a dimension function on L if it sat-
isfies the following conditions :

(1°) Ifa^b then d(a)=d(b\
(2°) ifa±b then d(a\Jb)=d(a) + dQ>\
(3°) ifzeZo then d(zΓ\a) = X(z)d(a\
(4°) ifa>0 then d (a) > 0,
(5°) if a is finite then d{a) is finite valued a.e. (a. e. means "except on a

set of the first category").
It follows from (1°), (2°) that any dimension function defines an order- and ad-
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dition-preserving mapping of [ I ] into Z. This mapping is one-to-one in the
finite case, as stated below. If Zo= {0, 1}, then since Ω is a one-point set, d
is numerical valued (Z=[0, oo]).

Using Lemmas 7.1 and 7.2 we can prove the following theorem.

THEOREM 7.1. {Existence) There exists a dimension function d on L such
that d(h)=X(zι), d(zf

n)=X(zf

I[) Qι is a minimal element with e(Λ)=2j).

THEOREM 7.2. Let dbe a dimension function on L.
(i) d(a) (ω) = 0 on Ω-E(e(a)) (ω 6 Ω), 0<d(a) (ω)< oo a.e. on E(ef(a)), d(a)

(CO)ΞΞΞOO on E(e°(a)). Especially, the converses of (4°) and (5°) hold.
(ii) // a (or b) is finite, then a^b (resp. —, <0 is equivalent to d(ά)>d(b)

(resp. = , <).
(iii) d(a\Jb)Jrd(aΓ\b)^d(a)Jrd(b) for any a, b € L.

The statement (iii) is easily implied from (B') If " ^ " satisfies (B), then
the equality d(a\Jb)Jrd(aΓ\b)=d(a) + d(b) holds.

THEOREM 7.3. (Uniqueness in a certain sense) If d\, d2 are dimension
functions on L, then there exists a function / e Z , 0</(ω)<°o a.e. such that
dι(ά)=f d2(a) for every a e L.

COROLLARY. Let zm = 0 and let d0 be a dimension function on L. There
exists a one-to-one correspondence between the dimension functions d on L and
the functions / e Z with 0</(ω)<oo a.e., where the correspondence is given by
the equation d(ά)=f do(a) for every a e L.

DEFINITION 7.3. A dimension function d on L is called to be normalized if
d(K)=X(zι) and d(z{ί) = X(z{ι), as in Theorem 7.1. A normalized dimension
function is uniquely determined if z^ = 0. ZL denotes the set of / e Z such that

/(ω) = 0, l,...,n on E(zψ),

= 0, 1, ..., oo onE(z^),

^ 1 on £ ( * ' ) ,

= 0, oo on E(zm).

It is a complete sublattice of Z.

THEOREM 7.4. If d is a normalized dimension function, then the image of
d is equal to ZL

COROLLARY, {[a]; a is finite} is lattice-isomorphic to {feZL; /(ω)<oo
a.e.}. Especially if L is finite, then [L] is lattice-isomorphic to the complete
lattice ZL (addition-preserving).

THEOREM 7.5. Let d be a dimension function on L. If a81 a then d(as) |
d(a). Especially, d is completely additive, i.e., if a=\J(aΛ; a e I) then d ( α ) = Σ
(d(aa); a e I) ( = the join of all finite sums Σ ί d(aa.)).
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§ 8. The axiom (B)

DEFINITION 8.1. Let "~~" be an equivalence relation in L. We define a
new relation CC^L" as follows: a^b if there exist decompositions a=y\J(ai Ύ

l<,ί<Ln), b=\J(bi; l^i^Ln) such that a{^b{ for every ί.

We shall show that if " ^ " satisfies (A2) and (B) then "-L" is an equiva-
lence relation.

LEMMA 8.1. Let "—" satisfy (A2) and (B). J/V7fe; l<Lϊ<L™)=\J(bj;
l<Lj<.n), then there exist decompositions β/ = V7(βΰS l ^ ^ίrc), δy=O
ί<Lm) such that aij^bij for every ί, j .

PROOF. We shall prove the lemma by induction. Let a=
and put ύ&ii=&ii = αiAδi, aι=an^Jaι2, bχ=bn Ob2\. Putting
aιθb', we have ai2^d, b2ι~~bf by (B). Putting (aχ\Jbι)\jc=a, we have
ύ c = α i θ α 2 ) d\jbι\jc=bι<jb2 and hence a2 — b'Oc, b2~~d\Jc by (B). By
(A2), there exist decompositions β2

=α2iθα22, b2 = bί2C>b22 such that α2i~ί>' r

α22 ^ c, fei2 ̂ V, δ22 ~~ c. We have α^ — 6/y for every j , /, and hence the lemma
holds when m = n = 2. Suppose that the lemma holds when the number of at~
is <Lm and the number of bj is <Ln. Let \7fe; l ^ ^ ^ + l)=O(δy; l < ί ; < ^ ) .
Putting c=fl f f lθαw+ij we have the following decompositions by the assumption:

ύdj(l<Lj<Ln), where aa^ba and Cj^-dj. And, since αw

l^y^7z), we have the following decompositions: am = \^J(amj;
= V 7 ( β w + l , ; ; 1 ^ / ^ r a ) , C y = C w i U c w + i ( i , w h β Γ β Omj ~~ Cfnj, Om + l . j ~~ Cm + l , j - S l Π C β

Cj~~dj9 there are decompositions dj=bmjθbm+ιj such that bmj~~cmh bm+ΐJ^
cm+ίj. Hence we have the desired decompositions of α;, 6; . When V7(β*;
l<Li<Lm)=\^J(bj ; l ^ ^τz + 1), we have the same argument as above. There-
fore the lemma holds for any m, n.

THEOREM 8.1. (i) Let " — " satisfy (A2) α^d (B). T%ew ίC^L" is α^ equiva-

lence relation satisfying (A2), (B) and (C/), and ί/ιe relative center with respect

to a -L" coincides with Zo (=the relative center with respect to " ^ - " ) .
(ii) Let " ^ " satisfy moreover (Ai). TΛen α ^ " αiso satisfies (Ax). If

a^tb and z e Zo then zfΛa^zίλb. The notions of minimal element, simple ele-
ment and type I do not change when " ^ " is replaced by "ΛJ\

(iii) Let "^-" satisfy moreover (Cj_). Then c c ^ " also satisfies (C±). If
a^Lb and a±b then a~~b. The notions of homogeneous family, finite element,
properly infinite element, type II and type III do not change when " — " is re-
placed by "~L".

PROOF, (i) It is obvious that "-L" is symmetric and reflexive. It is easy
to prove by Lemma 8.1 that α^L" is transitive, which concludes that it is an
equivalence relation. It is obvious that " 4 . " satisfies (C/) and the relative
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center coincides with Zo. Using Lemma 8.1, it is easy to show that "~L"
satisfies (A2). ">i" satisfies (B) since a — b implies a^tb. The statements
(ii), (iii) are easily proved.

Remark that the finiteness of aeL is equivalent to "a^b<La implies

a=b" by Lemma 4.6 (i), but not equivalent to "a~~b<La implies a=b".
We assume that the semi-orthogonality in L satisfies (±5) and that there

is an equivalence relation " ^ " in L satisfying the axioms (Ai), (A2), (B) and
(CjJ. Then, α^L" is an equivalence relation satisfying (Ai), (A2), (B), (Cx)
and (C/) by Theorem 8.1, and hence all the lemmas and theorems in the pre-
ceding sections (§§ 4 — 7) are available, replacing "—" by "~L". Remark that
the notion of dimension function (Definition 7.2) does not change when "—"
is replaced by "-L". Because, the condition "if a — b then d(a) = d(b)" is
equivalent to "if a^tb then d(a)=d(b)" by the aid of the condition "if a±b
then d(a\Jb)=d(a) + d(by\

Furthermore, we shall prove some theorems by the aid of (B). We have
the following type of comparability theorem.

THEOREM 8.2. For any a, b e L, there exist decompositions a=(aΓλb)C> a
ϋα", b = (aΓ\b)\jb'{jb" such that α'—δ', e(α")Ae(δ") = 0.

PROOF. Putting a = (aΓ\b)vJau b = (aίλb)Obι, we have aιΓ\bι=aιΓ\aΓ\bΓ\bι
= 0. Then, putting aχ\Jbι=aιOc, it follows from (B) that bi^c. It follows
from Lemma 4.1 (i) that there exist decompositions aι=aΌa", c=cΌc" such
that a'~~c\ e(af)r\e(c") = $, and then there is a decomposition bι = br\Jb" such
that V — c\ b"~~-cf. Hence we have the desired decompositions.

This theorem implies directly that Theorem 5.1 holds if "^-" is replaced
by α ^ " .

THEOREM 8.3. // L is finite then it is an upper-continuous complemented
modular lattice. If L is finite of type I then it is a continuous geometry of
type I.

PROOF. Replacing " ^ " by α^L", we may assume that " ^ " satisfies (C/)
besides (Ai), (A2), (B), (C_L). If a<Lc, then x=(a\Jb)r\c and y=a\j(bΓ\c) are
perspective and x^γ. Hence, it follows from (B) and the finiteness that χ=γ,
which implies that L is modular. We shall show that a8 \a implies a8r\b
t ar\b. Putting a=(aΓΛb)ύa\ we have a8^(asίλb)Oa; because, putting αδ =

(a8r\b)Ocu (aΓ\b)\Ja8=(aΓ\b)Z>c2, we have cι~~c2^a' by (B). Hence a8<^\J8

(a8r\b)^jd for every δ, which implies a^\J8(a8r\b)Oa by Lemma 5.8. We
have a=\J8(a8r\b)Oa by the finiteness, and hence aΓ\b=\J8(a8r\b). Hence
L is upper-continuous.

If L is finite of type I, then it is continuous by Lemma 4.8 (iii), and hence
it is a continuous geometry. Furthermore, it follows from Remark 3.1 (ii)
that 1 is the join of a set of minimal elements and it follows from Lemma 2.3
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that our minimal element is minimal in the sense of continuous geometry
(see [10], Remark 3.2). Hence, L is a continuous geometry of type I. This
completes the proof.

In many examples, the equivalence relations satisfy (B) (see § 9 and § 10),
but we remark that the equi-dimensionality in an afRne geometry does not
satisfy (B) though it satisfies (A), (B), ( C J and (C,).

§ 9. Example 1. Projectivity in modular lattices

Let L be a relatively semi-orthocomplemented complete lattice and as-
sume that L is modular.

DEFINITION 9.1. Two elements a, b e L are called to be independent if
aΓ\b = 0. The independence satisfies the four axioms for semi-orthogonality
since L is modular ([13], § 1), but we shall distinguish it from the semi-or-
thogonality in L. A subset S of L is called an independent family if \J(a;
a e Fι) ί\\J(a; a e F2) = 0 for any pair of disjoint finite subsets Fu F2 of S. Con-
cerning independent families, we have the similar arguments as Lemmas 1.1
and 1.2. S is called a residually independent family if aί\\J(b e S; b^a) = 0
for every aeS (see Amemiya-Halperin [1], §3). It is obvious that any re-
sidually independent family is independent and any finite independent family
is residually indendent.

In this section, the equivalence relation in L is defined by the projectiv-
ity, i.e., a^-b if there exists a finite sequence {a0, au- -an} such that ao=a,
an=b and that α, _i and αf are perspective (l<^<Irc). a, b e L are called to be
-h-projective if a^Lb (Definition 8.1). It is obvious that the relative center
coincides with the center Z and that the axioms (Ai) and (B) are satisfied.
We shall show that (A2) is also satisfied. If a^b=bτ\jb2, then there is a
projective mapping T of L(0, b) onto L(0, α), which is a lattice-isomorphism
since L is modular. Hence Tbι\JTb2 = Tb=a, Tb1ΓλTb2=0. Putting aλ = Tbλ

and a=ax<iia2, we have αf —6f(i = l,2) since a2 and Tb2 are perspective. Hence
(A2) is satisfied. Therefore, all the lemmas and theorems in § 2 are valid,
especially, L can be decomposed into five summands, which are finite of type
I, properly infinite of type I, finite of type II, properly infinite of type II and
type III respectively. By the argument of § 3, the minimal element coincides
with the simple element, and it also coincides with the D-element since the
projectivity satisfies the condition (P) of Lemma 3.3 (see [9], Kap. II, Satz
3.5).

DEFINITION 9.2. A relatively semi-orthocomplemented complete lattice
is called an MD-lattice if it is modular and the following conditions are sat-
isfied :

(1) The semi-orthogonality satisfies the axiom (±5) (see §4),
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(2) if a=s\Jaaa, b=\^JΛba, aa and ba are perspective for every a and or.
b=0, then a and b are perspective.

We shall have two examples of the MD-lattice, i.e., the upper-continuous
complented modular lattice and the orthocomplemented modular complete lat-
tice.

EXAMPLE 1.1. Let L be an upper-continuous complemented modular lat-
tice. The semi-orthogonality in L is defined by aί\b = 0 (the semi-orthogo-
nality and the independence coincide). Since L is upper-continuous, the con-
dition (1) is satisfied. We shall show that (2) is satisfied. There exists xΛ

such that aΛOχa=baOxΛ=aΛ\JbΛy since aΛ and bΛ are perspective. Since aΓ\b
=0, {aa, ba; a 6 /} is a semi-orthogonal family by Lemma 1.2 and then so is
{aΛ\JbΛ\ ae I}. Hence, {aa, xa;ae 1} and {ba, xa;ae 1} are also semi-orthogonal
families by Lemma 1.2, and putting χ=\^JΛxa, we have aΓ\χ=br\x=0 by (±5).
Then a and b are perspective, since a\Jχ=b\Jx. Therefore, L is an MD-lat-
tice. In this case, the projectivity satisfies (A).

EXAMPLE 1.2. Let L be an orthocomplemented modular complete lattice.
The semi-orthogonality in L is defined by the orthogonality. The condition
(1) is satisfied since any element has a unique semi-orthocomplement (=or-
thocomplement). We shall show that (2) is satisfied. There exists xΛ such that
aΛ\JχΛ=bΛ\Jxa=aΛ\JbΛ, aar\xa=bar\xa=0, since aa and ba are perspective. Put-
ting χ=\Jaχa, we have aVJx=b\Jx. Since L is modular, aί\x=(\J(aa; αφ/9)
\Jθβ)r\x=(\J(aΛ;oc^β)\J((\J(aΛ; aφβ) \Jx) Γ\ aβ)) A x. But, since {\J(aa;
αφjS), \J(ba; αφ/3), α8, bβ} is an independent family, we have \J(aΛ\JbΛ; αφ/3)
ίΛ(aβvjbβ)=0, and hence {\J(aΛ\Jxa; a =\= β), αβ, xβ} is an independent family,
which implies that QJ(aΛ; a^β)\Jx)r\aβ=(\J(aΛ\Jxa\ a^β)\Jχβ)r\aβ=0.
Hence ar\x=\J(aΛ; a^β)ίλx for every β, which implies that ar\x<;Γ\β\J
(aΛ; α=\=/8). But, since \J(aa; a^β)=cφίλa(a^ is the orthocomplement of αβ),
we have A.eV7(««; a^β)=/r\βaj-r\a=C\Jβaβ)-Lr\a=aLr\a=O. Hence aί\x=0
and similarly br\x=0, which concludes that a and b are perspective. There-
fore L is an MD-lattice.

In an MD-lattice L, the projectivity "^-" satisfies (Ai), (A2) and (B), and
we shall show that it also satisfies (Cx) and that L has the dimension func-
tions.

LEMMA 9.1. In a modular lattice with zero,
(i) if both a and b are perspective to c and if (aVJc)r\b=0 then a and b are

perspective (Amemiya-Halperin [1], p. 484);
(ii) if {a, b, c} is an independent family and if a and b are perspective

then a\Jc and b\Jc are perspective (von Neumann [15], Part I, Theorem 3.5).

LEMMA 9.2. // a relatively semi-orthocomplemented complete lattice L is
modular, then for any residually independent family {aa; a e 1} in L there
exists a semi-orthogonal family {bΛ; a € 1} such that aa and ba are perspective
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and that V7* ba=\J<χ aa.

PROOF. Let / be well-ordered: I={p; p<Ω}. Put \J(ay; y<p)=cp for
p<,Ω (cι=0) and cp+ι=cp\jbp for p<Ω. Then, it is obvious that {bp; p<Ω} is
a semi-orthogonal family. Since {αγ; γ<l/o} is a residually independent family
with the join cp+i, we have cpAαp=0, cp\Jap=cp+ι. Hence ap and bp are pers-
pective. It is easy to show that \7P bp=cΩ = \Jp ap.

COROLLARY. // a relatively semi-orthocomplemented complete lattice L is

modular and if the semi-orthogonality satisfies (±5), then the projectivity "~~"

satisfies (A2).

PROOF. Let a^\Ja bΛ and let T be the protective mapping of L(0, \7Λ ba)
onto L(0, a). Since {6α} is residually independent by (±5), so is {TbΛ}, and
hence by the lemma there exists a semi-orthogonal family {aΛ} with the join
a such that aa and TbΛ are perspective, whence αΛ — &Λ.

LEMMA 9.3. Lei L 6e an MD-lattice and a, b 6 L. If a^b (projective) and
= 0, ί/̂ en a and b are perspective.

PROOF. Let a φ O and let T be the projective mapping of L(0, a) onto
L(0, 6). By [9], Kap. II, Satz 3.5, there exists non-zero element aλ in L(0, d)
such that T is a perspective mapping of L(0, «i) onto L(0, Tax). Hence if we
choose a maximal semi-orthogonal family {aa} in L(0, α) such that T is a pers-
pective mapping of L(0, αΛ) onto L(0, Γα )̂ for every α:, then we have a=s\JΛ aΛ.
Since {aΛ} is residually independent by the condition (1) of the MD-lattice,
{TaΛ} is also, and hence by Lemma 9.2 there exists a semi-orthogonal family
{ba} with the join b such that ba and 7αΛ are perspective. Since (ba\JTaa)r\
aa<;br\a=0, aΛ and bΛ are perspective by Lemma 9.1 (i). Hence a and b are
perspective by the condition (2) of the MD-lattice.

LEMMA 9.4. In an MD-lattice, the projectivity satisfies the axioms (Ai),

(A2), (B), (CJL), and the + -projectivity satisfies (Aχ)5 (A2), (B), (C .̂), (C/).

PROOF. It was already shown that the projectivity satisfies (Ai), (A2)
and (B). We shall show that (Cj_) is satisfied. If a=\Jaaa, b=\Jaba, a^^b^
and α±6, then aΛ and bΛ are perspective by Lemma 9.3, and hence a and b are
perspective by the condition (2). Hence a ~~ b. The second statement is im-
plied from Theorem 8.1.

By this lemma, the arguments of §§ 4-6 are available for the + -projec-
tivity. The arguments of § 7 and § 8 implies that

THEOREM 9.1. If L is an MD-lattice and "^-" is defined by the projectivity,
then there exist dimension functions on L (Definition 7.2) with the properties
stated in Theorems 7.2—7.5.

Remark that Theorem 7.2 (ii) holds by the property "if aΛ^b and a is
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finite then a~~V\ which will be proved by Lemma 9.5 below. It follows from
Theorem 8.3 that

THEOREM 9.2. // an MD-lattice L is finite, i. e., L includes no infinite semi-
orthogonal family of pairwise perspective non-zero elements, then L is upper-
continuous. If L is finite of type I, then it is a continuous geometry of type I.

COROLLARY. (Kaplansky's theorem) Any orthocomplemented modular com-
plete lattice is a continuous geometry.

PROOF. It follows from Amemiya-Halperin [1], Appendix (p. 516) that
any orthocomplemented modular complete lattice is finite. Hence, it is upper-
continuous by the theorem, and is also lower-continuous by the duality.

REMARK 9.1. Let L be a finite MD-lattice. Since L is upper-continuous,
any independent family in L is residually independent. Hence, it follows
from Lemma 9.2, that L includes no infinte independent family of pairwise
perspective non-zero elements.

In the case of the MD-lattice, we have the following type of comparabi-
lity theorem.

THEOREM 9.3. For any elements a, b of an MD-lattice, there exist decom-
positions a=a£/d\ b=bΌbf/ such that d and V are perspective and that e(a")
Γ\e(b") = 0. (Remark that Z0 = Z.)

PROOF. By Theorem 8.2, there exist decompositions a=(a
b={μr\b)<jbί<jb" such that αi—δΊ, e(β")Ae(δ") = 0. Since α i n δ ' ^ 0 , d, and δΊ
are perspective by Lemma 9.3, and {du Vu aΓ\b) is an independent family
since ( α i u ( α n δ ) ) n δ Ί ^ α n δ ί = O. Hence, putting a'=(ar\b)^ja'u V = (aΓ\b)^jb'u
d and V are perspective by Lemma 9.1 (ii).

This comparability theorem implies the following lemma.

LEMMA 9.5. Let Lbe a relatively semi-orthocomplemented complete lattice
where the semi-orthogonality satisfies (±5), and let " — " be an equivalence re-
lation in L satisfying (Ai), (A2), (B), (C_J and (C/).

(i) If L is finite and ZQ = Z, then "~~" coincides with the perspectivity.
(ii) Let α — " satisfy moreover the condition (PO of Lemma 3.3. If a~~b

and if a is finite, then a and b are perspective.

PROOF, (i) Let L be finite and Z0 = Z. L is an upper-continuous com-
plemented modular lattice by Theorem 8.3. Let a ~~ b. It follows from Theo-
rem 9.3 that there exist decompositions a=d\jdι, b=b'Ob" such that d and
V are perspective and that e(a")r\e(b") = 09 since Z0 = Z. Since e(a")r\b" = 09

we have e(d')r\a — e(d/)rΛb=e(d/)ΓΛb'~~e(d/)r\d. By the finiteness, we have
e(df)r\a=e(d')r\d, which implies d' = 0. Similarly we have ό"=0, and hence
a and b are perspective. The converse follows from (B).
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(ii) Let a~~b and a be finite. It follows from Theorem 6.1 that a\Jb is
finite. In L'=L(0, a\Jb), " - " satisfies (AO, (A2), (B), ( C J and (C,). It fol-
lows from (P') that, in V, the relative center with respect to "~~" coincides
with the center. Hence a and b are perspective by (i).

COROLLARY. Let "~~" satisfy (Ai), (A2), (B) and (Cx).
(i) If L is finite and Z0 = Z, then "4/ ' , " ^ " and the perspectivity coincide.
(ii) Lei " ^ " satisfy moreover ίP'). If a^Cb and if a is finite, then a and

b are perspective (hence a^b).

Returning to the MD-lattice, we get some conditions equivalent to the
finiteness as follows.

THEOREM 9.4. Let L be an MD-lattice. The following four statements are
equivalent.

(a) L is finite.
(β) The projectivity and the perspectivity coincide, in other words, the

perspectivity is transitive.
(γ) The projectivity and the + -projectivity coincide, in other words, the

projectivity is additive.
(δ) The projectivity is subtractive, i.e., if aχθa2^bιθb2 and a\^b\ then

PROOF. It follows from Corollary (i) of Lemma 9.5 that (a) impies (β)
(and (γ)).

G8)=Φ(δ). Since the projectivity " ^ " satisfies (A2), it suffices to prove
that a>ι\ja2=bι Ob2=a, ai^-bi imply a2^b2. It follows from (β) that aλ and bι
have a common complement c in L(0, a). Hence a2^c^b2.

(δ)=^(γ). Let aι±a2, bχ±b2 and a{^bi (£ = 1, 2). Putting «i O a2\J a' =
bλ\jb2<jb' =1, it follows from (δ) that a2ΰά~~b2\jb' and that a'-~V. Hence
aι^ja2~~bι<jb2 by (δ) again.

(γ)=Kα). If α ^ l , then α ^ l by (γ), and then a=l since 1 is the only
element perspective to 1. Hence L is finite, by Lemma 4.6 (i).

COROLLARY. If an upper-continuous complemented modular lattice is ^ 0 -
lower-continuous, i.e., a{\Jb I a\Jb holds for any descending sequence α, [ a, then
it is finite and the perspectivity, the projectivity and the + -projectivity coin-
cide.

PROOF. The finiteness is proved in the same way as [9], Kap. IV, Satz
2.1. The last statement follows from the theorem.

Finally, we shall show an example given by Halperin [4], where the re-
lative center does not generally coincide with the center.

EXAMPLE 1.3. Let L be a continuous geometry. L is a finite MD-lattice
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where the semi-orthogonality is defined by the independence and where the
theorem of the superposition of decompositions holds ([4], Theorem 3.1). Let
G be a group of lattice-automorphisms of L. We denote alLb if there exist de-
compositions a=\\/a aa, b=\Jaba such that, for every α, bΛ is perspective to TΛ aΛ

for some Ta € G. Then, it follows from the theorem of the superposition of
decompositions that "Jc" is an equivalence relation satisfying (A2) ([4], Theo-
rem 4.1). It is obvious that ",£," satisfies (Ai), (B), (Cx) and (C/) (moreover
it is completely additive obviously). It is easy to prove that the relative cen-
ter with respect to ".it" is equal to {z e Z; Tz=z for every T e G}. Hence if
L is irreducible under G then it has numerical dimension functions.

§ lO Example 2. Baer rings and Baer *-rings

Let SI be a ring with unity. The set of all idempotents of SI is denoted
by /(SI), and the set of all principal right ideals eSI (denoted by (e)r) generated
by ee/(3I) is denoted by 6ζ/(3I). If SI is a Baer ring, then 6?/(Sl) coincides
with the set of all right annihilators and it forms a relatively semi-orthocom-
plemented complete lattice by [13], Theorem 4.

Two elements e, / e /(SI) are called to be algebraically equivalent, in nota-
tion e ^ / , if there exist x, γ e SI with xγ=e, yχ=f (we may assume x e e SI/,
v 6/SI e). Since (ei)r = (e2)r implies e i^e 2 , we can define the algebraic equiva-
lence in 6£/(3I) as follows: ( e ) r ^ ( / ) r if e^f.

It is easy to show that the relative center with respect to "<-£*" coincides
with the center Z of 6?/(SI), since (e)r e Z if and only if e is in the center of
SI ([14], Theorem 2.1). " ^ " satisfies the axiom (A), since (e)r — (/), if and
only if (e)r and (f)r are isomorphic right Si-modules (Kaplansky [7], Chap. I,
Lemma 1) and hence all the lemmas and theorem of § 2 are available. Es-
pecially, ^/(3I) can be decomposed into direct summands of five types by
Theorem 2.1, and hence 31 can be also.

e € /(SI) is called to be abelian (Kaplansky [7], Chap. I, Definition 4) if
the idempotents of eSIe mutually commute. It is easy to show that β e /(SI)
is abelian if and only if (e)r is a /^-element, and hence it follows from Lemma
2.4 that if (e) r is minimal then e is abelian (see [10], Theorem 5.5). We know
that the converse is valid if the condition (P;) in Lemma 3.3 is satisfied, in
other words, if <ίζ/(SI) is a ZΛ-lattice. It is shown by [7], Chap. Ill, Exercise
that if SI has no nilpotent ideals then 6ζ/(SI) is a ZΛ-lattice. Concerning this,
we have the following remarks.

REMARK 10.1. (i) A ring SI with unity has no nilpotent ideals if and only
if x^x=0 implies x=0. Proof. The "only if" part is obvious, since x%x=0
implies (3IΛ;3I)2 = 0. NOW, suppose that x%x=0 implies x=0. If y e SI belongs
to a nilpotent ideal, then (SIy3I)2ra=0 for some n. Since (SlySI)271"1 3I(SI7SI)2re"1 =
(3IySI)2re, we have (SIy3I)2ra"1 = 0 by the assumption, and repeating this, we have
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Sly SI=0. Hence 21 has no nilpotent ideals.
(ii) The center Q of a Baer ring §1 is also a Baer ring and the lattice

1(3) (isomorphic to ύlj(3)) is isomorphic to the center of (ki(SI) ([14], Theo-
rem 2.1, Corollary 1). Since 1(3) is complete, for every x e SI there is the
smallest element k e 1(3) such that hx=x. This element h is called the central
cover of # (by Kaplansky [7]), and is denoted by C(x). Remark that if e e /(SI)
then (C(e))r = e((e)r) in the sense of Definition 2.1.

The following eight statements are equivalent.
(a) SI has no nilpotent ideals.
(β) For any right ideal @, the right annihilator (@)r of © is a direct sum-

mund, i.e., there is h e 1(3) such that (h)r = (Ql)r.
(βf) For any e e /(SI), the right annihilator ((e)r)

r is a direct summund.
(γ) For Λ;, j e SI, #3Iy=0 implies J3IΛ;=0.

(γθ For e, /e /(SI), e3I/=0 implies /SIe=O.
(δ) For x, ye SI, *3Iy-0 implies C(a)C(y) = 0.
(δ') For e, /e /(SI), eSl/=0 implies C(e) C(/) = 0.
(6) For x9 y 6 SI, *3Iy=ySI:*; = 0 implies C(a) C(y) = 0.

And, the following two statements are equivalent.
(£') For e, /e /(SI), eSI/=/SIe=0 implies C(e) C(/) = 0.
(ζ) If e 6 /(SI) and if / is a central idempotent of eSIe then there exists

h e 1(3) such that f=he. In other words, 65/ (31) is a ZΛ-lattice.
Proof. First, we shall show that the six statements (β\ (β')> (γ), (y'\ (8)>

(δθ are equivalent. The implications (β)=ϊ(β')9 (y)=^(Y), (S)=^(Sf) are trivial
We shall prove (β)=$(8). It follows from (β) that for % e SI there exists h e 1(3)
such that Qί)r = (xΈ)% and then it follows from xh=0 that C(x)<>l-h. If *SIy
= 0, then y 6 (h)r and hence C(y)<h. Therefore C(x) C(y) = 0. The implica-
tion (β')=$(8') can be proved similarly. The implications (δ)=^(γ) and (δ/)=^>(7/)
is obvious since yWίx=yC(y)(ΆC(x)x=y'$ίC(x)C(y)x. We shall show that (γ')
=$(β), which concludes the equivalence of the six statements. The right an-
nihilator of a right ideal G? is of the form (h)r, h e /(SI), since SI is a Baer ring.
Since @3UC©^=0, we have %hCih)r, which implies (1-&)3U=O. It follows
from (γθ that A3I(l-λ) = 0. Hence (1-A)Λ;A=AΛ;(1-A) = 0 for every % 6 SI,
which implies xh=hxh=hx. Therefore he 3 Next, we shall prove the im-
plications (δ)=Φ(£)=φ(α)=»(γ). (δ)= (̂£) is trivial. (6) implies (α) by (i), since
it follows from (s) that x%χ=0 implies C(χ) = 0 (hence Λ;=0). (a) implies
(γ), because if Λ;3IJ=0 then (SIy3I#SI)2 = 0, which implies y'Άx=0 by (a).

The equivalence of (s') and (ζ) is proved as follows. (s')=$(ζ). If / is a
central idempotent of eSIe, then we have (e— /)3I/=(β— f)e%ef=(e— /)/e8ϊe = 0
and similarly /SI(e-/) = 0. Since e-/e/(SI), it follows from (£') that C(/)
(e-/) = 0, and hence f=C(f)e. (ζ)=>(Sf). If eSI/=/SIe=0, then, putting g=
e + /, we have g e/(SI) and gxg=exe+fxf for every #6 51. Hence, egxg=
exe=gxge, which means that e is a central idempotent of g*Άg. By (ξ*), there
exists h e 1(3) such that e=hg. It follows from fte=e that C(e)<>h, and it fol-
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lows from hf=hg-he=O that C(/)<:i-A. Therefore C(e)C(/) = 0. This
completes the proof.

From the trivial implication (£)=»(£') it follows that if a Baer ring Si has
no nilpotent ideals then 6ζ/(3I) is a ZΛ-lattice and then "(e)r is minimal ^e is
abelian".

It is obvious that the algebraic equivalence "-£-" in < /̂(3I) satisfies the
axiom (C/), but"-^" satisfies neither (B) nor (Cx) in general. We shall give
an equivalent condition to that "-£-" satisfies (B). The set of right (resp. left)
idempotents of % e Si is denoted by RI(x) (resp. LI(x)\ i.e., RI(x)= {e e /(SI); (e)r

= (*)'}, LI(x) = {e 6 /(SI); (e)'= (*)'} (see [14], §4). Since eu e2 e «/(*) (or eu e2

€ LI(x)) implies ei ̂ e 2 , we shall write RI(x)^LI(x) if there are e e RI(x), fe
LI(x) with e—/. It follows from the proof of [14], Lemma 4.4 (i) that RI(x)
^LI(x) if and only if there exists a relatively regular element u e SI such that
(χ)r = (u)r, (χ)ι = (u)1. (Especially, if x is relatively regular then RI(x)^LI(x).)

LEMMA 10.1. Let SI he a Baer ring. The algebraic equivalence "^-" in
6?/(SI) satisfies the axiom (B) if and only if SI satisfies the following condition:

(Bα) RI(x)^LI(x) for every x 6 /2(SI), where /2(SI)= {ef; e,fe /(SI)}.

PROOF. Let " ^ " satisfy (B). If x e /2(SI), e e RI(x\ fe LI(x\ then it fol-
lows from [14], Theorem 4.1 (i) that (e)r and (f)r are perspective in 6?/(SI),
whence e^f by (B). Hence (Bα) holds. Conversely, let SI satisfy (Bα). If (e)r

and (f)r are perspective, then it follows from [14], Theorem 4.1 (ii) that there
are *, y e /2(3I) such that e 6 RI(x\feBI(y\ (χ)ι = (γ)1. We have RI(x)^LI(x)
=LI(γ)^RI(γ) by (Bα), which implies (e) r^(/) r.

REMARK 10.2. (i) It follows from [14], Lemma 4.1 that "—" in 6?7(SI)
α

satisfies (BO if and only if SI satisfies the following condition: RI(x)^LI(χ) for
every x e I2 (SI).

(ii) In [12] and [14], Baer rings (or Rickart rings) satisfying the fol-
lowing condition (stronger than (Bα)) are treated.

(Bα) RI(x)^LI(x) for every x e SI.

If a Baer ring SI satifies (Bα), then it has no nilpotent ideals. Because, if XWLX

= 0, then, since there is a relatively regular element u with (u)r=(χ)% (u)ι = (x)1

by (Bα), we have wSIw=0, which implies u==0 by the relative regularity of u,
and hence x=0.

(iii) By [14], Lemma 4.3, "-£-" in 6?7(3I) has the following property: If
(e)r±(f)r and (e) r ^(/) r , then (e)r and (/)r are perspective. It follows from
Lemma 3.3 (i) that if SI satisfies (Bα), then 6ζz(SI) is a ^-lattice, because the
above property implies (P).

(iv) In order that 6?/(SI) have dimension functions with respect to | "^",
it suffices that the following three statements hold: (1) SI satisfies (Bα), (2)
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the semi-orthogonality in 6ζ/(3I) satisfies (±5), (3) " ^ " satisfies the axiom
(CJL).

EXAMPLE 2.1. (Complete regular ring, upper-continuous regular ring) If 31
is a regular ring with unity, then Λ!/(3I) coincides with the set of all principal
right ideals and it forms a complemented modular lattice. A regular ring
31 with unity is called a complete (resp. upper-continuous, continuous) regular
ring if the lattice 6?/(31) is complete (resp. upper-continuous, continuous). Let
31 be a complete regular ring. It follows from [14], Lemma 1.3 that 3ί is a
Baer ring and it follows from the last remark of [13] that the semi-orthogo-
nality in (ki (31) coincides with the independence (see Definition 9.1). Since
any regular ring satisfies (Bα), the algebraic equivalence " ^ " in (Rr (31) sat-
isfies the axioms (A) and (B). On the other hand, the projectivity in 6?/(31)
(denoted by " ^ " ) also satisfies (A) and (B) since (Rι (31) is modular (see §9).
Obviously, (e)r~~(f)r implies (e) r^-(/) r, and the converse is true if (e)r±(f)r

(Remark 10.2 (ii)). Hence, the minimal (resp. finite, properly infinite) ele-
ments are the same for both equivalences.

Let 31 be an upper-continuous regular ring. Since the semi-orthogonality
in 6?/(31) coincides with the independence, it satisfies (±5) by the upper-con-
tinuity of (Ri(31). " ^ " satisfies (CjJ since the projectivity satisfies (Cx) by
Lemma 9.4. Hence, 6?/(2t) has dimension functions with respect to " ^ " . We
shall show later that " ^ " coincides with the -f -projectivity.

Let 31 be a Baer *-ring. Then, the set P(3I) of all projections of 31 forms
a lattice isomorphic to (ki (31). Furthermore, P(3l) has an orthogonal relation
and is a relatively orthocomplemented complete lattice (see [14], § 6). As the
canonical semi-orthogonality in P(3ί), let us take this orthogonality (P(8I) has
another semi-orthogonality, induced from 6?/(31)). Then, it is not valid in
general that the algebraic equivalence " ^ " satisfies (A). But, it satisfies
(Ai) obviously and satisfies (A2) by [12], Lemma 2.3, and hence all the lem-
mas and theorem of §2 are available. In 31, xx* = Q implies x=0 by [7], Chap.
Ill, Proposition 2. From this property and Remark 9.1 (i) it follows that 31
has no nilpotent ideals (x$lx=0 implies xx*xx* = 0, whence xx* = 0 and x=0).
Hence, P(3I) is a ZΛ-lattice and e e P(3Ϊ) is minimal if and only if e is abelian.
(e e P(3I) is abelian if and only if the projections of e3Ie mutually commute.
See [7], Chap. III.) The semi-orthogonality in P(3ί) satisfies (±5) since it is
defined by the orthogonality. It follows from [12], Lemma 2.8 that if " ^ "
satisfies (B) then it satisfies (C±) also. Hence, in order that P(3I) have di-
mension functions with respect to " ^ " it suffices that 31 satisfies (Bα) ([12],
Theorem 2.1 (i)).

EXAMPLE 2.2. (Complete *-regular ring) A complete ^-regular ring 3ί
(Kaplansky [6]) is a regular Baer *-ring, and vice versa. Since 31 is regular,
(Bα) is satisfied. Hence, in P(3ί), the algebraic equivalence " ^ " satisfies (Ax),
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(A2), (B), (C±), (C/), and P(SI) has dimension functions with respect to " ^ " .
Since P(SI) is finite by [6], Theorem 1, P(SI) is upper-continuous and modular
by Theorem 8.3, and it is lower-continuous by the duality. Therefore P(2I)
is a continuous geometry ([6], Theorem 3), and it follows from Lemma 9.5 (i)
that "-SL" coincides with the perspectivity.

Let SI be a Baer *-ring. In P(SI), we can define another equivalence re-
lation as follows: e,/eP(2I) are called to be ^-equivalent, in notation e^/, if
there exists w e SI with ww* = e, w*w=f. An element w e 31 is called a partial
isometry (Berberian [2], p. 500) if ww* e P(3I) (or equivalently w*w e P(3I)).
Any partial isometry w is relatively regular since ww*w=w. The right (resp.
left) projection of x e 31 is denoted by RP(x) (resp. LP(x)). It is easy to show
that RP(x)JLLP(x) if and only if there exists a partial isometry w such that
(x)r=(w)\ (x)ι = (w)1. It is obvious that the relative center with respect to
" i " coincides with the center of P(3I) and that "Jl" satisfies (A) and (C/).
It follows from [12], Lemma 2.7 that "4L" satisfies (Cx). Hence, in order
that P(3I) have dimension functions with respect to "Jί," it suffices that " ^ "
satisfies (B).

LEMMA 10.2. Let 31 6e a Baer *-ring. The following statements are equiva-
lent.

(a) The ^-equivalence "JL" in P(3I) satisfies (B).
(/S) α ^ " satisfies (B).
(7) "- t " sαίΐs/ϊes (BO
(B*) RP(x) Z LP(x) for every x € P2 (Si), where P2(Sί) = {e/; e, / 6 P(SI)}.

PROOF. The equivalence of (a) and (B*) can be proved in the similar way
as Lemma 10.1, by the aid of [14], Theorem 6.3. The implications (α)=Φ(/5)
=K7) are trivial. We can show that (B*) is equivalent to the condition: RP(x)
%LP{x) for every x e P2(3I); because, it follows from RP(x)=LP(x*) that the
last condition implies RP(x)^LP(x) for every Λ; e P2 (SI), and hence implies
(B*) by Lemma 4.5. Hence (B*) and (7) are equivalent by [14], Lemma 6.4.

REMARK 10.3. In [12], Baer *-rings satisfying the following condition
(stronger than (B*)) are treated.

(B*) RP(x)JtLP(x) for every x e 31.

This condition implies that " . t " and " ^ " coincide ([12], Remark 2.2 (ii)). We
shall show later that (B*) implies the same property.

EXAMPLE 2.3. (Von Neumann algebra, AW*-algebra) Let SI be a von Neu-
mann algebra (=W*-algebra). It is obvious that SI is a Baer *-ring. By the
polar decomposition theorem ([3], Appendice III), any element x e 31 can be
written by the form x=wr, w, r 6 SI, where w is a partial isometry and r*=r,
r2=x*x. From this fact it follows that SI satisfies (B*) (see [2], Lemma 3.3).
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But, it is difficult to prove that any AW*-algebra (=C*-algebra which is a
Baer *-ring) satisfies (B*). The outline of the proof given by Kaplansky [5]
is as follows. It is easy to show that "£," satisfies (B") ([5], Lemma 3.3),
and hence it can be proved by Remark 4.2 (iii) that " 4 . " is countably additive.
It can be proved by this result that (B*) is satisfied ([5], Theorem 5.2). Hence,
if SI is an AW*-algebra, then the *-equivalence in P(3I) satisfies the axioms
(A), (B), (C_J, (Cf\ and P(2I) has dimension functions with respect to "4L". If
SI is a finite AW*-algebra (which means that P(3ί) is finite), then, as in Ex-
ample 2.2, it can be proved that P(SI) is a continuous geometry and that " 4 , "
coincides with the perspectivity.

Finally, we shall give a lattice-theoretic characterization of the algebraic
equivalences or the *-equivalences in these examples.

DEFINITION 10.1. In a relatively complemented lattice, two elements a
and b are called to be semi-perspective if there exist four elements αl5 a2, bu b2

such that a=aι\Ja2, b = bχVJb2, aιr\a2 = bιίλb2 = 0 and that αf and b{ are pers-
pective (£ = 1,2). a and b are called to be semi-projective if there exists a finite
sequence (a0, αi, , an) such that ao = a, an = b and that α^i and α, are semi-pers-
pective ( 1 < ^ < ^ ) The semi-projectivity is an equivalence relation weaker
than the projectivity.

THEOREM 10.1. Let L be a relatively semi-orthocomplemented complete lat-
tice where the semi-orthogonality satisfies (J_5). Let " ^ " be an equivalence re-
lation in L satisfying the axioms (Ai), (A2), (B), (Cx) and (C/). // "—" more-
over satisfies the following condition: a — b, a±b imply that a and b are per-
spective, then " ^ " coincides with the semi-projectivity.

PROOF. It is easily proved by (B) and (Cf) that if a and b are semi-pro-
jective then α — b. To prove the converse, supposing α — b, it suffices to show
that a and b are semi-projective when a is either finite or properly infinite
(Lemma 2.6). If a is finite, then, since the last condition in the theorem im-
plies (P7) by Lemma 3.3, a and b are perspective by Lemma 9.5 (ii). Let a be
properly infinite. By Lemma 4.7, there are aί9 a2 such that a=aχ\ja2-^a1~~a2.
Puttinga\Jb=a\jbu we have bι^b^-a^a2^ whenceaiObi^aιVJa2~~aι. Hence,
by Lemma 4.5, we have aιVJbι^aι^a2. Since aλ\jbι±a2, aiObi and a2 are
perspective and so are a2 and aλ. Hence a\Jb and a are semi-perspective.
Similarly a\Jb and b are semi-perspective. Therefore, a and b are semi-pro-
jective.

COROLLARY 1. In an MD-lattice, the -{--projectivity and the semi-pro-
jectivity coincide. (Use Lemmas 9.3 and 9.4.)

COROLLARY 2. // SI is an upper-continuous regular ring, then, in (£/ (Sί),
the algebraic equivalence, the + -projectivity and the semi-projectivity coincide.
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(See Remark 10.2 (iii) and Example 2.1)

COROLLARY 3. In an upper-continuous complemented modular lattice, the
-\~-projectivity (=semi-projectivity) satisfies the axiom (A) and is completely
additive.

PROOF. It suffices to prove the statement when the lattice L is either
finite or properly infinite. If L is finite, the statement follows from Theorems
9.4 and 5.3. Let L be properly infinite. Since 1 is the join of a 4-homogeneous
family by Lemma 4.7, there is a regular ring 31 such that the lattice ££/(§!) is
isomorphic to L (von Neumann [15], Theorem 14.1; [9], Kap. XI, Theorem 3.2).
Then, + -projectivity coincides with the algebraic equivalence in 6ζ/(SI) by
Corollary 2, and hence it satisfies (A) and is completely additive by the corol-
lary of Theorem 5.3.

COROLLARY 4. If SI is a Baer *-ring satisfying (Bα), then, in P(Sί), the
algebraic equivalence and the semi-projectivity coincide.

It is easy to show that if a Baer *-ring satisfies (B*) then it satisfies also
(Bα). Hence we have the following result.

COROLLARY 5. If % is a Baer *-ring satisfying (B*) (especially SI is an
AW*-algebra), then in P(SI), the *-equivalence, the algebraic equivalence and the
semi-projectivity coincide.
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