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Introduction

In early 1940's Kametani ([1; 2; 3]) became interested in the funda-
mental work of Frostman [1] and initiated an attempt to study poten-
tials with more general kernels. The several mathematicians in Japan like
Ugaheri, Kunugui and Ninomiya joined him under the isolated circumstances
from other countries, which were caused by the war. They tried to find
general kernels which retain almost all properties of Newtonian potentials.

On the other hand, potentials were independently and vigorously inves-
tigated in France during the war, particularly by Brelot and H. Cartan, and
the study of Newtonian potentials culminated in the works [5; 6] by H.
Cartan. Some attempts to discuss general kernels, seen, for instance, in H.
Cartan [4], flourished after the war in Deny [1] who treated distributions.
A detailed story of the development is found in Brelot [1].

These people began to contact each other around 1950 and some of them
published papers with the intention of seeking relations among the energy
principle, the maximum principles, the existence of equilibrium measure and
the possibility of sweeping-out process. We mention the works of H. Cartan
and Deny [1] and Ninomiya [4; 5; 6] in this connection. However, it was
not very far before 1955 that people started to seek a possible full generality
in the theory of potentials.

In 1952 the present author began to be interested in capacity of product
sets ([3]) and needed some results on potentials in a locally compact metric
space. This led him to the study of potentials in a locally compact space.
He tried to examine each of the known main properties of potentials under
the possibly least conditions. The present paper is a result of his efforts al-
though it covers only a part of the field.

It was a coincidence that Choquet started a similar study and, in par-
ticular, that both Choquet and the present author observed independently the
fact that a very weak form of maximum principle means the continuity prin-
ciple. The present author found that the boundedness principle satisfied on
every compact set is actually equivalent to the continuity principle for a large
class of kernels. This continuity principle is known as Evans-Vasilesco's
theorem in the theory of Newtonian potentials and its importance had been
recognized by many mathematicians. This principle and the continuous
potentials still play important roles in many papers, e. g. those by Anger and
Kishi. Soon Kishi, Fuglede and others joined us in investigating potentials
in locally compact spaces and the investigation is still being actively conducted.

This paper consists of three chapters. In Chapter I we call many pro-
perties, well known in the case of Newtonian potentials, principles, seek re-
lations among them, introduce local notions like Choquet [2] and study re-
lations among them and also their relations with principles. Next, several
topologies are defined on classes of measures, and the completeness is investi-
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gated, particularly, with respect to the strong topology. The remaining part
of the chapter is devoted to refining some results on set functions related to
capacity and on convergence theorems; these will be used in Chapter III.
Chapter II is concerned with Gauss variation. Discussions are rather ele-
mentary and carried out in a general form. In the last three sections we
generalize some theorems of Ninomiya. We close the paper with Chapter III
in which we deal with the inner and outer Gauss variational problems. These
are extensions of the problem of finding inner and outer capacitary distri-
butions and studying their properties. Some notes and open questions are
stated at the end of each chapter.

The author wishes to express his deepest gratitude to Professor N.
Aronszajn who kindly enabled the author to join his seminar at the University
of Kansas in 1959. Without this opportunity the publication of the present
paper would have been further delayed. Appreciation is expressed to Profes-
sor T. Ogasawara of Hiroshima University who listened to talks by the author
in a seminar which lasted for a year after his return from Kansas and gave
him many valuable suggestions. Thanks are also due to Professor B. Fuglede
who sent a manuscript of his paper [1] and his comments to the author. Sub-
jects in his paper overlap partially with those of the present paper and some
of his discussions influenced this paper considerably.

Chapter I. Fundamental notions

1.1. Potentials and exceptional sets.

We shall be concerned with a locally compact Hausdorff space Ω. We take
for granted the definition of positive ( = nonnegative) Radon measure μ on Ω,
that of its (closed) support 5μ and the notion of integrals with respect to μ of
μ-measurable functions; we refer to Bourbaki [1; 2] and Fuglede [1] for these
notions. Any set containing Sμ is said to support μ. The class of all Radon
measures will be denoted by Jέ and a positive Radon measure will be called
simply a measure hereafter. Whenever we consider an integral, we presume
that the value is determined, finite or infinite (±oo),

We take a lower semicontinuous function Φ (P, Q) defined on Ω x Ω and
satisfying — co<$(P5 <2)< °̂o? and call it a kernel. Given a measure μ, we
consider the integral

^ \-(P, Q)dμ(Q).

We shall call the set of points P for which \φ~(P, Q)dμ(Q) is defined and finite

(i.e. μ-integrable) the domain of definition of the potential Uμ(P) of μ with
kernel Φ. The class of measures, whose potentials are bounded from below
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on every compact set in Ω and not constantly equal to °o5 will be denoted by

uf0.
The kernel Φ(P, Q)=Φ(Q, P) is called the adjoint kernel and

U)=\φ(Q, P)dμ(Q)

is called the adjoint potential. If Φ(P, Q) is symmetric, namely, if $(P, Q)
= Φ(Q, P), then Uμ(P) and Uμ(P) have the same domain of definition and Uμ(P)
= Uμ(P) there. For the kernel

the potential

has a domain of definition which contains the intersection of the domains of
definition of Uμ(P) and Uμ(P).

In general, potentials are not lower semicontinuous in the domains of
definition. However, in the special case that Sμ is compact or in the case that
Φ (P, Q) > 0 in Ω x Ω, the domain of definition is equal to Ω and Uμ(P) is lower
semicontinuous in Ω. If, in addition, C/μ(P)^oo5 then μe*Jf0.

The mutual energy of two measures μ and v is defined by

"OP, Q)dμ(Q)dv(P)9

provided that Φ~(P, Q) is integrable with respect to the product measure μ®v.
Then the points of Ω which do not belong to the domain of definition of Uμ(P)
Φ\P) resp.) form a set of v-measure (/^-measure resp.) zero and we have

U »)=

We call (μ, μ) simply the energy of μ provided that it is defined. For a set
X C Ω, we put

&x= {μ£<J?o; SμCX, (μ, μ) is defined and finite}.

We write simply £ for &Ω.
We shall consider some set functions which are related to the classical

notion of capacity. A measure will be called a unit measure if its total mass
is equal to one. For a measure /x^Owe set
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and, for a set Xφ 0, we put

F,-(X)=inf V(μ),

where the infimum is taken with respect to the class of all unit measures μ
with compact support SμCX. For the empty set 0, we put Vi(0 )=<*>. We
shall say that a property holds on a set A C Ω p. p. p. (or nearly everywhere)
if the Frvalue of the exceptional set in A is infinite. We define also

Vβ(X) = sup Vi(G) for open sets G > X.

In the case of a Newtonian potential, the reciprocals of F, (X) and Ve(X) are
defined to be the inner and outer capacities of X respectively. We shall say
that a property holds on ACΩ Q P (or quasi everywhere) if the F -̂value of
the exceptional set in A is infinite.

The corresponding set functions defined with respect to an adjoint kernel
will be denoted by V{(X) and Ve(X). Also Ϋ£X) and Ve(X) will correspond to
Φ.

For the sake of later applications we prove

PROPOSITION 1. Let {An} be sets which are measurable for every measure
on Ω and X be an arbitrary set. If Vi(AnΓ\X)= °o for each n, then Vι{\JAnΓ\X)

n

= 00. In case Φ(P, Q)^m> — 00 on (\JAnίλX)x (\jAnί\X), we have

^ Σ
Vi{\JAnΓ\X)-τn = n Vi(Anί\X)—m'

n

PROOF. We assume that Vi(\JAnr\X)<oo:) and choose a unit measure μ
n

with compact support SμC \JAnr\X such that V(μ)<oo. Then l=μ(Ω)<^ Σ
n n

μ(An) and, for some n, say for n0, μ(Ano)>0. We take a compact set KC Ano such
that /x(K)>0, and denote by μκ the restriction of μ to K. We extend this
restriction to the whole space by the value 0 and call this extension the re-
striction too; by a restriction of a measure we shall mean such an extension
in this paper. It holds that

> sup Uμκ(P)+ inf C/

^ sup ^" '(P) + )infs0(P,Q){^(ΰ)-^(<β)},

and hence V(μκ)<°°. Taking SμκCAnor\X into consideration, we conclude
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that Γi(A0Λl)<oo, Consequently the assumption Vi(AnίλX)=ooί n = l, 2,
..., implies Vi(\JAnr\X)=°°.

n

Next we assume that Φ(P, Q)^>m> — oo on (\JAnr\X) x (\JAnr\X) and
n n

that Vi(\JAnr\X)<oo. Given ε>0, there exists a unit measure μ, with com-
n

pact Sμ C vAnΛl such that

We can find a compact set Kn CAn such that μ(An—Kn)< ε/2n. We shall denote
the restriction of μ to Kn by μn; SμnCAnΓ\X. It follows that

Vi(\JAnΓ\X)+e-7

If

In any case we have

and

V \A Γ\ A ) 771

Inequality (1.1) now follows.

PROPOSITION 2. Let {Xn} be a sequence of sets such that, for an open set
Go D \JXm Φ(P, Q)^m> - oo on Go x Go. Then we have

n

<Γ ^ -
V,(\JXn)-m — re Vg(XH)-m9

n

and hence, if Ve(Xn)=°o for each XnCG0, then Fe(\jXn)=oo.
n

PROOF. Given ε >0, choose an open set Gn such that Xn C Gn C Go and

V{(βn)-m = Ve(Xn)-m 2" '
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We have

Ve(\JXn)—m = Vi(\JGn)-m
n n

< v -*• 4- V — ε

by (1.1). From this follows (1.2).

1.2. Principles.

Let & be a class of functions defined in Ω. We shall define principles in
this section and see relations among them in the next section.

(D* ) ^-relative domination principle^. If Uμ(P) <,f(P) on Sμ for a meas-
ure μ<E <f, μ^O, with compact support and for a function /£ J% then

inώ.

(DV^) ^-relative vicinal domination principle. If the support Sμoΐ μe £,
^O, is compact and Uμ(P)<f(P) on 5μ for / Ξ ^ , then there exists, for any
>0, a neighborhood V(= V(μ, /, e)) of Sμ such that

in F.

(UJΓ) ^-relative Ugaheri's domination principle. There is a constant c>0
such that, whenever the support Sμ of μ€ <ί, /χ^0, is compact and Uμ(P)<,f(P)
on Sμ for / e <F, we have

mΩ.

This may be called also the J^-relative dilated domination principle.
(U^X ^-relative c-dίlated domination principle. This is the same as

above but we specify the constant c.
(UV<r) ^-relative vicinal Ugaheri's domination principle. There is a con-

stant c>0 such that, whenever the support Sμ of μ€ίf, μ^O, is compact and
Uμ(P)<,f(P) on Sμ, there exists, for any ε>0, a neighborhood V of Ŝ  such
that

UlM(P)^cf(P) + e in F.

(UVjr)c ^-relative vicinal c-dilated domination principle. This is the
same as above but we specify the constant c

(Uir) ^-relative weak Ugaheri's domination principle. For any compact
set KCΩ, there is a constant c=c(K)>0 such that, whenever Uμ(P)^f(P) on
Sμ for μe £κ, μ^O, and/e J5*, we have

1 ) Relative principles were first introduced in Ghoquet and Deny [3].
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Uμ(P)<,cf(P) mΩ.

This may be called the J^-relative weak dilated domination principle.
(U'V^) ^-relative vicinal weak Ugaheri's domination principle. For any

compact set KC Ω, there is a constant c=c(K)>0 with the following property:
Whenever Uμ(P)^f(P) on Sμ for μe<?κ, / ^ 0 , and/6 JF, we can find, for any
ε>0, a neighborhood V of Sμ such that

Uμ(P)<:cf(P) + ε in F.

(U/V^)c ^-relative vicinal weak c-dilated domination principle. This is
the same as above but we specify c.

(K^) ^-relative Kishi's domination principle. For any compact set KCΩ,
there is a constant c=c(K) >0 such that, whenever Uμ(P)^f(P) on 2£ for

κ and /G J% we have

Uμ(P)<,cf(P) mΩ.

^-relative vicinal Kishϊs domination principle. For any compact
set KCΩ, there is a constant c=c(X)>0 with the following property: When-
ever Uμ(P)<Lf(P) on K for /*£#*: and /GJF, we can find, for any ε>0, a
neighborhood F of K such that

( ( P ) + e in F.

^-relative vicinal c-dilated Kishi's domination principle. This is
the same as above but we specify c.

(K r̂) &-relative weak Kishi's domination principle. For any compact set
KCΩ, there is a constant c=c(K)>0 such that, whenever £7μ(P) is continu-
ous^ as a function on K for μ e £κ and £/̂ (P) <Ξ/(P) on K for / e JF, we have

Uμ(P)<cf(P) mΩ.

(K'V^) ^-relative vicinal weak Kishi's domination principle. For any
compact set KC&, there is a constant c=c(K)>0 with the following property:
Whenever Uμ(P) is continuous as a function on K for μe#κ, and Uμ(P)<^f(P)
on i£ for /G J*", we can find, for any e >0, a neighborhood V of K such that

Uμ(P)^cf(P)Λ-e in F.

(K'V^ ^-relative vicinal weak c-dilated Kishϊs domination principle.
This is the same as above but we specify the constant c.

(B<?) ^-relative upper boundedness princplie. If the support Sμ of μ 6 £,
μ^O, is compact and Uμ(P)<,f(P) on 5μ for fe &, then there is a constant
c>0 which may depend on μ and / such that

2) By continuity we mean that the value is finite and continuous. If we allow oo or -ooor both,
we shall say that the function is continuous in the extended sense.
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Uμ(P)<:cf(P) in Ω.

^-relative weak upper boundedness principle. If the support Sμ of
^O, is compact, if ί/μ(P) is continuous as a function on Sμ and if

for / e ^ , then there is a constant c>0 which may depend on μ
and / such that

Uμ(P)<cf(P) in Ω.

If a principle is satisfied on every compact set, being considered as a
space, we denote the principle with the subscript K. Constants will depend
on each compact set in general. Principles (Djr) and (DV^), however, will re-
main unchanged. We shall write down one example explicitly.

(K/VK,.F) ^-relative vicinal weak Kishi's domination principle satisfied on
every compact set. Let K be any compact set in Ω. For any compact subset
K! CK, there is a constant c=c(K, iΓ)>0 with the following property: When-
ever Z7̂ (P) is continuous as a function on K! for μ^.Sκ^ and Uμ (P) <> f(P) on
Kf for fe J% we can find, for any e >0, a neighborhood V of Kf in Ω such that

W (P) <Ξ c/(P) + ε in Vr\ K.

In special cases we shall use specific terminologies and notations. In
case & consists of all finite constants, (D^) is called the first maximum prin-
ciple and will be denoted by (F); it is called also Frostman's maximum prin-
ciple. Similarly (DV^) will be called the vicinal first maximum principle3*
and denoted by (FV). In the other principles up to (K'V^X (also in the cor-
responding principles satisfied on every compact set) the word ^-relative will
be omitted and the word domination will be replaced by the word maximum.
In the notations the subscript & will be dropped. For instance, (U) will mean
Ugaheri's maximum principle. We shall write simply (B) for (B^) and call
this the upper boundedness principle. The corresponding changes will be
made on other similar principles.

In case & consists of all potentials which are defined everywhere in Ωy

(D* ) will be called the domination principle and denoted by (D). This is
called also the second maximum principle or Cartan's maximum principle. In
the other principles up to (K'Vjr)c the word J^-relative will be omitted. The
principle (DY^) will be denoted by (DV) and, in the other notations, & will be
replaced by d. For instance (U^) will be denoted by (Ud). We shall call (Bjr)
the relative upper boundedness principle and denote it by (Bd). The corre-
sponding changes will be made on the similar principles.

In case & consists of all potentials of measures of £ with compact sup-
port we add the adjective 'restricted' and replace IF by *. For instance, (D^)
will be called the restricted domination principle and denoted by (D*).

3) Choquet Γ2] called this le principle du maximum local faible.
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We assume in the following definition that each function of & is positive
in Ω.

(Cβr) ^-relative continuity principle. If, for a μ with compact support
and an / e ^ 5 the restriction of U*(P)/f(P) to Sμ can be defined and is con-
tinuous, then Uμ(P)/f(P) can be defined and is continuous in Ω.

In the special case when & consists only of the constant 1, the principle
is called the continuity principle. Such a kernel is called regular by some
mathematicians. This principle is closely related to the maximum and
boundedness principles defined above.

We shall define quasicontinuity principles and discuss them on some other
occasion; see Kishi [2 3] and Ohtsuka [7] for these principles.

We give also
(Ŝ -)c ϊF-relative c-dilated sweeping-out principle (c>0). For any compact

set KC Ω and any fe J% there is a measure μ supported by K such that \Uμ(P)
2>/(P) p. p. p. on K and Uμ'(P)<Ξ cf(P) everywhere in Ω. We omit the word
c-dilated and write (S^) if c = l .

In case & consists of potentials of measures with compact support, this
principle will be called the c-dilated sweeping-out principle (the sweeping-out
principle if c=l) and denoted by (S)c ((S) resp.). In case & consists of poten-
tials of measures with compact support, we shall add the adjective 'restricted'
and use the notations (S*)c and (S*).

For positive kernels the following principle coincides with (S<?)c for J^=

U}.
(Eq)c c-dilated equilibrium principle (c>0). For any compact set KCΩ,

there are a constant a<Loo and a unit measure μ supported by K such that

Ufί(P)>. const, a p.p.p. on K

and

a infi.

For c = l this principle is called the equilibrium principle and denoted by (Eq).
(E)c c-energy principle (c>0). The kernel is symmetric and, for any dif-

ferent μ, v 6 £,

whenever (μ, v) is defined. In case c=l , the principle is called the energy
principle or the kernel is called strictly positive definite, and the principle is
denoted by (E).

(E*)c Restricted c-energy principle (c>0). The kernel is symmetric and,
for any different μ.ves with compact support,

(μ, μ) + c(y, v)-2(μ9 v)>0.

(E')c Weak c-energy principle (c>0). The kernel is symmetric and, for any
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(μ,

whenever (μ, v) is defined. In case c=l, the kernel is called of positive type
or positive definite, and the principle is denoted by (P). We obtain the same
principle if we restrict μ, v e £ to those having compact supports, because
every integral is approximated by the integral taken on a compact set.

There are other principles defined and discussed by some writers; see
Choquet and Deny [3], Ninomiya [8; 10] and Kishi [8]. However, we shall
limit ourselves to the above principles in the present paper except in § 2.11.

1.3. Relations among principles.

Now our problems are
(1) to see relations among these principles,
(2) to characterize the class of kernels which satisfy principles.

We shall discuss (1) rather in details and refer occasionally to some known
results about (2).

In case Φ (P, Q) is symmetric, finite outside the diagonal set of Ω x Ω and
continuous in the extended sense that oo is allowed, we have the following
diagram as was shown in Ohtsuka [4] we put ? at the end because it is not
a priori true for more general kernels:

(1.3) (F) ^ (U) 7Z (u')

(U K )

Here (<—) means that this relation is true if — °o< inf Φ(P, Q) on Ω x Ω. Since
the proof for this result is scattered in several short notes (Kishi [1], Choquet
[2], Ohtsuka [2; 4]) and since we need to examine relations for kernels more
general than those in Ohtsuka [2; 4], we shall start from the beginning. We
divide the discussions into several steps.

(I) Principles (D^), (U^), (UίO, (K^), (KίO, (UKf A (KKf A ( K ^ ) , (B^),
(BJF), (Bκ,ίτ)5 (Bκ,jr). We first write obvious relations:

(1.4) ( D Λ — 'U,) — (U;)

and
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( ) (

t t
(1.5) (Ut)-*(K^)-KK

I i
(Kκ,^)->(Kί

i i

We shall establish exact diagrams in a special case and here we prove
only two general facts.

LEMMA 1.1. Let X be any set in Ω, Kbe a compact set in Ω, and /(P) be a
function defined on K\JX and bounded on K. Consider a kernel which is posi-
tive^ on the diagonal set and assume that if the potential of any measure of βκ

is continuous as a function on K, then it is nonnegative on K\JX. Assume also
that, whenever Uv (P) is continuous as a function on K and f/v (P) 5Ξ/(P) on K
for ve£κ, U\P)<Lcf(P) on X with a finite constant c=c(K, X, v)>0. Then
there is a finite constant c'=c'(K, X)>0 not depending on μ such that, whenever
Uμ(P) is continuous as a function on K and Uμ(P) <Ξ/(P) on Kfor μ <E <f #> Uμ(P)
<Lc'f(P)onX.

PROOF. Assume, to the contrary, that, for every integer n, there exist
μn with SμnCK and PneX such that Uμn(P)^f(P) on K, the restriction of
Uμ\P) to K is continuous and

Uμn(Pn)>2nnf(Pn).

oo

We set vn=μn/2n and v=*Σvn. Certainly SyCK. Suppose that the total

mass of v were infinite. Then there would be a point P0£K such that the v-
value of any neighborhood of Po is infinite. Let iVo be a neighborhood of Po

such that Φ (P, Q) > a > 0 on No x No. Then

- s Φ(P, Q)d»(Q)<; U\P) = Σ
NQ n=l

on NOΓΛK. This is impossible and it is proved that the total mass of v is finite.

Since /(P) is bounded on K by assumption, the convergence of Σ UVn(P) is

uniform on K and hence the restriction of UV(P) to K is continuous. On the
other hand

4) In this paper a positive function is strictly positive it never vanishes in its domain of defini-
tion or on the specified set. Fuglede £ 1 2 defined it otherwise i. e., a kernel is strictly positive if it
is nonnegative in Ω x Ω and never vanishes on the diagonal set in Ω x Ω.
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This contradicts the assumption and the lemma is proved.
Similarly we can prove

LEMMA 1.2. Let X and K be the same as above, and f(P) be a function de-
fined on K\JX and <°° on K. Consider a kernel which is positive on the di-
agonal set and assume that the potential of any measure of Sκ is nonnegative
on KVJX and that U\P)<^f(P) on K for vetfκ implies U\P)<,cf(P) on X
with a finite constant c=c(K, X, v)>0. Then there is a finite constant c
=c'(K, X)>0 such that Uμ(P)^f(P) on K implies U»(P)<Lc f(P) on X for any

LEMMA 1.2'. We obtain the same conclusion as in Lemma 1.2, if we add
the new assumption that the kernel is positive onKxK but weaken the condition
/(P)< oo on K, by replacing it with f(P)^ oo on K.

From these lemmas follow easily

(1.6) (B)(-»)(K) and (F) (-») (K'),

where (->) indicates that -> is true provided that the kernel is positive; the
meaning of (->) may be different later.

(II) Principles (F), (U), (IT), (Uκ), (B), (BO, (Bκ), (B£). We shall show
by examples that there is no more —• relation in (1.4) in the special case that
& consists of all finite constants.

Example for (U)^>(F) (Ohtsuka [4]): Consider J2=[0, l]u{2} as a sub-
space of the Λ -axis, and set Φ(x, γ) = Φ(γ, x) = —log \χ—y\ for x, y<E[0, 1],
0(2, 2)=oo5 0(2, x) = Φ(x, 2)=α>log 4 for χ€[09 1]. This Φ(χ,y) is sym-
metric, continuous in the extended sense and finite outside the diagonal set
in Ω x Ω. Let μ0 be the unit measure on [0, 1] which gives a constant poten-
tial there. Then Uμ°(x) = \og 4 on Sμo = [O, 1] but UμQ(2)=a>\og 4. Thus (F)
is not satisfied. On the other hand, for any μ supported by [0, 1], we have

sup Uμ(x)<,a sup Uμ(x)
XtΞΩ XξΞSμ

and (U) is satisfied.
Later we shall give examples for (U) -^ (FV) which apparently serve as

examples for (U)-^(F). One of them will be a so-called α-potential.
The following theorem by Kametani [2] and Ugaheri [1; 2] motivated

the terminology of Ugaheri's maximum principle:
Let φ(t)>;0 be a decreasing continuous function such that φ(t)->oo as

ί->0. Then there is a constant cw^>l, depending only on the dimension n of
the euclidean space En, with the property that

sup UIJ-(P)<:cn sup U^iP)

for every measure μ^O, where φ(PQ) is taken as the kernel. We refer to
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Choquet [2] and Ninomiya [7] for various generalizations of the result of
Kametani and Ugaheri.

Example for (UO^(U) (Ohtsuka [4]): Consider i2=C([2τz, 2rc + l ]w
ra = O

{2τz -}- 3/2}) as a subspace of the #-axis, and set

Φ(x, y) = Φ(y9 x)= -log \x-y\ for x9 y € [2n9 2/z-M], τz = O, 1, 2,...,

Φ (2n + 3/2, 2rc + 3/2) = co ?

0(2τz + 3/2, *) = $(*, 2TZ + 3/2)=TZ if * Ξ . [ 2 B , 2τι + l ] ,

)=l if *€[2rc, 2/1 + 1] and y£[2ττz, 2wι + l ] , 7i=̂ =7?z,
or if x=2rc + 3/2 and ye[2ττz, 2τ?z + l ] , nφm.

This (̂  (Λ, y) is symmetric, continuous in the extended sense and finite outside
the diagonal set in Ωx Ω. Let μn be the unit measure on [2zz, 2rc + l ] which
gives a constant potential on that interval. Then [/μw(27z-f3/2)=τz—•oo while
£Γ*(*) = log 4 for xeSμn=[2ή9 2rc-fl]. Thus (U) is not satisfied. Next let K
be any compact set with Vi(K)<oo in Ω and μ be any unit measure with

SμCK and V(μ)<°o. If KCV7([2τz, 2τz + l ] w {2τz+3/2}), then SμC u[2τz,
l l

1]. Let ^ denote the restriction of μ to [2τz, 2n +1]. If μn^0, we have

- ^ ( J 2 ) ^ F W + l - ^ ( ^ )

^ sup Utλ(y)=V(μ) for Λ;€ [2?

and

V(μ)^V(μn) + l-μn(Ω)^μn(Ω) log

If μn = 0, then

P ( x ) = K F W for

We observe also that

ί/̂ (2τz + 3/2) ^ N ̂  iVFÔ ) for zz=0, ., N.

Consequently we can take N for c(K) in (U'). Thus (U') is established.
Example for (B) -^ (Vκ) (modified form of the example in Ohtsuka [2]):

oo

Consider Ω= \j ^(2n-\-l)'1, (2τz)"1]w{0} as a subspace of the #-axis, and set
l

(x,y)=-log \x-y\ i f Λ ; , y

(x,y) = Φ(y,x)=n\θg {8n(2n+ΐ)}
if xel(2n+l)-\ (2/ί)-1], yel(2m + l)-\ (2/M)-1], n<m,
or if xe [(27Ϊ + 1)"1, (2R)"1], y=0,
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This Φ (x, y) is symmetric, continuous in the extended sense and finite outside
the diagonal set in ΩxΩ. Let μn be the unit measure on [φrc + l)" 1 , (2n)~ι~]

whose potential is constant there. Then Uμn(x) = log {87z(2τz + l)} on the in-
terval. We set

μ'n = μ*/\θg {8zz (2rz + 1)} .

Then Ϊ7μ'»(*) = l on [(2/z + l)- 1, (2/z)"1] and Uμ»(0)=n. This shows that (Uκ)
is not satisfied.

Next let μ be a measure such that the supremum of Uμ(x) on Sμ is equal
to 1. We denote by μn the restriction of μ on [(2/z + l)" 1 , (2n)'1']. Naturally

μ({0}) = 0. On [_(2n + iy\ (2nYι~] we have

Uμn(x)<: sup Uμn(γ)<: sup
y^s»n

 y(ΞSμ-

If μn^O, we have, for xβ [(2/z + l)" 1 , (2/z)-1],

log {Sk(2k + ΐ)} - μk(Ω) + Uμ"(x) + n log {8?z(27z+l)} Σ μk(Ω)

^ sup Uμn(

If μn = 0, we have, for %6 [_(2n-\~I)"1, (2ή) x ] ,

Σ7μ(Λ) = Σfe log {8A:(2A:4-1)} . ^ ( . β ) + 7i log { 8 τ ι ( ) } Σ]

^ ί ] fc log {8K2& + 1)} - ^ ( i ? ) = ^ ( 0 ) < o o .

Therefore U^(x) is uniformly bounded in i2. Thus (B) is proved.
Example for (UK)-*>(B'): Ω=E3, Φ(P, Q ) = 1 + PQ. Obviously this does

not satisfy (B'). But if Sμ CK, then

sup C/^(P)^(l + d i a m K ) / ^ ( ^ ) ^ ( l + diamK) sup Uμ(P)

and (Uκ) is satisfied.
This example serves to give (BK)-^>(B') and (Bκ)-^(BO. As logical con-

sequences we obtain ( B ) A » ( U 0 , ( B 0 ^ > ( U K ) , ( B K ) - ^ ( U K ) , ( U K ) ^ > ( B ) and (Uκ)
-v>(U0 From (B K )^(B0 and (B)->(B7) it follows that (BK)-^(B).

Next we shall examine if (Bκ)->(BK) as in (1.3) in our general case too.
The answer is negative.

Example for (Bκ)^>(Bκ). Consider Ω= \J {1/n} \J \J { — 1/n} \J {0} as a
n=l n = l

subspace of the Λ -axis, and set

l/7τz) = min (n, m\
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0(O,O)=oo,

0(0, -l/n)=Φ(-l/n,0) = 2"-\

Φ(X/n, -l/m) = Φ(-l/m,l/n) = Φ(-l/m, - l/ w ) = 2min(κ'm).
OO

Let μ0 be the measure supported by \J {1/n} w{0} such that the mass of the
7 1 = 1

restriction at 1/n is equal to 1/2W and the one at 0 is zero. Then

= δ
and

77Z *ri 2*

Thus Uμ°(χ) is bounded on Sμ but not on Ω. Next let μ be any measure on Ω
for which the restriction of Uμ(χ) to 5μ is continuous. We denote the mass
at 1/71 by an and the mass at —1/2 by bn. We have

re "o re oo

= Σ kcik -f/2 ^ ] β/ί- f- Σ 2 bk 4- 2n 5 J ^

and
oo oo

/cα^ -r ^ j ^ Ok

Asra—>oo, C7μ(l/τz)-^2C//x(0). Therefore Ŝ  contains only a finite number of
{1/n}. Similarly we can see that Sμ contains only a finite number of { — 1/n}.
Consequently, there exists N such that

N { 1 ) N { 1 )

Then C/^(x)<:2U*(0)< oo in J2. Thus (Bfc) is satisfied.
This example serves to show (BO-^(B) and (BO^(BK) naturally. Now

we know the following diagram:

* (B) ^ T (BO x

(1.7) ( F ) ~ ( U ) ~ (Uθ {^

^ (Uκ) ZZ (BK)

there is no -> relation more than in (1.4).

(Ill) Principles (K), (K'), (Kκ) and (Ki). We know by (I) that
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It It and | t It ;

see (II) for (B)^(B') and for (Bκ)^(Bίc).
Example for (B)-^(Kκ). A simple example is as follows: J2={0, l}y

0(0, 0)=0 and 0(0, 1) = <0(1, O) = <0(1, 1) = 1. This Φ may be expressed by

0 ^

1 lΛ

Take χ = 0 for K and let μ be the unit measure at 3=0. Then

sup Uμ(x) = Uμ(0) = 0 and Uμ(l) = l.
x(ΞK

There is no c which gives c Uμ (0) ̂  Uμ (1) and hence (K/) is not satisfied. It
is clear that (B) is satisfied.

However, in this example a constant c, actually c=l, exists such that

c] sup Uμ(y) + μ(Ω)\ ^ Uμ(x) for x^Ω..

We shall give a little later an example in which such kind of inequality is not
satisfied.

We know by (1.6) that (B)-»(K) and (B0-KK0 if the kernel is positive.
Let us suppose that Φ(P, Q)>m> - co? m<0, on Ω x Ω and set $i(P, Q) = Φ(P, Q)
— m. If (BO is true for Φ, it is true for Φ\ and, by the above result, (Kr) is
true for Φlm Namely, there is c(K)^>l such that

U»(P)< U* (P) - mμ (Ω) <: c (K)\ sup U» (Q) - z^ (J2) in Ωy

whenever SμCK and the restriction of f/μ(P) to i^ is continuous. We can say
that, if Φ (P, Q) satisfies (BO and is bounded from below on Ω x J2, there are
constants cχ(K) and c2(K) such that

(1.8) sup U*(P)<Cl(K) sup

for any unit measure μ, provided S^C^and the restriction of Uμ(P) to K is
continuous.

We can state a similar remark in case (B) is satisfied.

We shall give an example of kernel which satisfies (B) but not (1.8). Con-

sider Ω=\j {1/n} \J\J { — n} as a subspace of the Λ -axis and set
1 0
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Φ(X/n9 l/m) = Φ(l/n, O) = 0(O, l/ή) = Φ(fl, 0) = l,

Φ(-n, l/n) = Φ(l/n, -n) = n,

Φ( — n,l/m) = Φ(l/m, —n)=—n if

Φ(-n, O) = 0(O, -n)=-n,

This kernel is symmetric and continuous. We take {1, l/2,. ,0} for K. Let
μn be the unit measure at x=l/n. Then Uμn(x) = l for x eK and Uμn(-n)=n.
Thus (1.8) is not satisfied. Next let μ be any unit measure with compact sup-
port and let n0 be a number such that x= — 7z0, — τz0 —1, •• do not belong to Sμ.
It is easy to see that Uμ(x) is bounded for x> —n0. Let μ be the restriction

oo

of μ to \j { — n}. We have, for n^no,

This is bounded from above if

except for a finite number of TZ. Let us examine the inverse inequality:

If μ'(J2)<l, there are only a finite number of n for which this inequality is
satisfied. If μ'(Ω) = l, then μ({l/n})=Q for every n. Therefore it is concluded
that Uμ(x) is bounded from above in Ω.

We consider the examples given in (II) to show (Bκ)-*>(BK) and (B)-^>(UK).
In the first example the space is compact and the kernel is positive. There-
fore (KO and (K£) are satisfied but (K) and (Kκ) are not. Thus (K')-^(BK),
(Kίc)-v>(Bκ), (KO-^(K) and (KO-̂ >(KK). Secondly, since the kernel is positive
and satisfies (B) in the example for (B) >̂ (Uκ), it satisfies (K). It does not
satisfy (IT), because if it did it would satisfy (Uκ) in virtue of (IT)—KUK).
Thus (K)-^(UO is shown. This example gives also (K)-^(UK). Finally, since
(Uκ)^>(B0, (Uκ)^(Kκ), (Uκ)-(Kt) and (K0->(B0, it follows that (Uκ)-*>
(KO, (Kκ)-^>(Kr) and (Kκ)-^>(K'). Taking easy logical consequences into con-
sideration, we now have
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) — (BO

(i.9) (uo zz (K) ~ (κo (uκ)

1 f ^ I f //
(Kκ) Z Z (KK) Z ^ ( β ) . >

If ^ l ί <Kκ) (κί)

(K) («-) (B), (KO (<-) (BO,

(Kκ) (<-) (Bκ), (Kt) (

where (<-) means that «- is true if the kernel is positive.
(IV) Continuity principle (C). First we give
Example for (F) A» (C). We observe first that, if there are points Po and

Qo in Ω such that Φ(Q0, Qo)< °° and

fim Φ(P,Qo)>Φ(Po,Qo),

then (C) is not satisfied. In fact, let μ0 be the unit point measure at Qo. Then
Uμcι(Qo)=:Φ(Qo, Qo)<°° and [7μ°(P) is certainly continuous as a function on
Sμ o= {Qo}, but Uμ°(P)=Φ(P, Qo) does not tend to Φ(PO, Qo) as P-^P0.

In particular, if (C) is satisfied, the kernel must be continuous in the ex-
tended sense at every point of the diagonal set.

For later use (in § 1. 4) we shall give an example which is not quite the
simplest. Consider

0 ji+JLl v 0 { i + J 4 v... 0
« = 1 ( 7Z i » = 4 I 2 7Z ) » = £

\J...

as a subspace of the #-axis and set

Φ(x, Λ;)=OO for xφO,

Φ (0,1/4) = (2) (1 A , 0) = 1 - l/jfc,

0? Λ?) = Φ(Λ;, 0) = l for xφO,

otherwise we define it so that it is continuous in the extended sense and finite
outside the diagonal set. If we note the discontinuity at the points (0, 1/fe),
we see that (C) is not satisfied by the above reasoning. Now let μ be any unit
measure on Ω which gives sup Uμ(x)<oo. It follows that Sμ= {0}. We see
that



154 Makoto OHTSUKA

sup ϋ>0*0 = 1, and Uμ(x) = l for

Thus (F) is satisfied.
The example given in (II) for (UK)^KB') serves to show (C)-^>(B') How-

ever, we can prove
(C )-> (Bκ): Let μ be a measure with compact support such that Uμ (P) <^ 1

on Sμ. We assume that there is a sequence of points {Pn} on a compact set
K^Sμ with Uμ(Pn)>n2n. First we consider the case that 0(P, © > 0 o n l x £
By Lusin's theorem we choose a compact set KnCK such that the restriction
of Uμ(P) to Kn is continuous on jζ, and that μ(K—Kn) is arbitrarily small. If
we denote by μn the restriction of μ to Kn, the restriction of Uμn(P) = Uμ(P) —
Uμ~μn(P) to Krc is continuous because it is at the same time upper and lower
semicontinuous on Kn. By (C) it is continuous in Ω, Since Uμn(Pn)-^Uμ(Pn)
as μ(K—Kn)^»0, we could choose Kn such that Uμn(Pn)>n2n. We divide μn by
2n and denote the measure thus obtained by vn. We set Σ ^ = ^ Since UVn(P)

n

is continuous and not greater than 1/2W on Sμ, the restriction of C/V(P) to
Sμ >̂ Sv is continuous and by (C) Uv (P) is continuous on Ω, particularly on K.
Consequently U\P) is bounded on K. However, U\Pn)^UVn{Pn)>n and we
have a contradiction. Thus our proof is completed in the case $(P, <2)ί^0 o n

KxK. In the general case we set 7τz=min Φ(P,Q) on KxK and Φλ(P, Q)
= Φ(P, Q)-m. If we assume (C) on Φ(P, Q\ then Φλ(P, Q) satisfies (C) and

Q)dμ(Q) = j «(P, Q)dμ(Q)-mμ(Ω)

is bounded on K Therefore I (Z)(P, Q)dμ(Q) = Uμ(P) is bounded on K and (C)->

(Bκ) is completely proved.
In the following lines we shall prove that, on a compact space, (B) (=(BK))

means (C) if Φ (P, Q) is continuous in the extended sense and finite outside the
diagonal set of Ωx Ω. In our example in (II) for (B)-^>(UK) the condition is
satisfied and (C)^»(UK) follows; this was stated also in Choquet [2]. Thus
we have now

(F) - ~ (C) — (Bκ)

/ \

(Uκ) (BO .

If we take (1.7) into consideration, we have

Π (c) z^r (BK)

( U K ) (BO .
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Next we shall prove

(1.10) ( C ) ^ ( B κ ) ^ ( B ί 0

under the hypothesis that Φ(P, Q) is continuous in the extended sense and
finite outside the diagonal set in Ω x Ω. It is sufficient to prove

(B0-KC) (Ohtsuka [2; 4]): Let the restriction of Uμ(P) to the compact
support Sμ of μ be continuous. It is enough to show that Uμ(P) is continuous
at an arbitrary point Po of Sμ. If 0(PO, Po)< °°, Uμ(P) is obviously continuous
at Po. Suppose Φ(P0, P 0)=°o. We take a neighborhood NPQ of Po such that
Φ(P, <3)>0 on Np0 x Np0. Since the potential of the restriction of μ to the out-
side of Np0 is continuous at Po, we may assume from the beginning that Ω is
compact and the kernel is positive on Ω x Ω. We denote by μn the restriction
of μ to

Bn={P;Φ(PQ,P)>n}.

Then the restriction of Uμn(P) to Sμ is continuous. Since Uμ(P) is finite,
Uμn(P) decreases to 0 with 1/n on Sμ and the convergence is uniform by a
theorem known as Dini's theorem in the classical case.

If we take Sμ as a compact set K in the definition of (K')5 there is a con-
stant c=c(Sμ) such that

sup Uμn(P)<c sup Uμ\P)

for every n by (B')->(K'); note that (Bκ) = (B/) in the present case because Ω
is supposed compact. Therefore sup Uμn(P)\0 as τz->°o. Given ε>0, we take

7z0 such that Uμn°(P)<ε in Ω. Since Uμ~μn°(P) is continuous in Bno, we have,
for P sufficiently near Po,

\Uμ-μn°(P)-Uμ-μn°(P0)\<e

and hence

REMARK. By the aid of Lemma 1.1 we can generalize this result as fol-
lows : Let K be a compact set and X be an arbitrary set in Ω. Instead of
(BK) assume that whenever the potential Uμ(P) of a measure μ with Sμ CK is
continuous as a function on Sμ, it is bounded on X. Then Uμ(P) is continuous
as a function on Sμ\JX.

(V) Supplementary relation between (B) and (B') First we notice that
(BO -> (B) provided that Φ (P, Q) is continuous in the extended sense and finite
outside the diagonal set and that inf Φ (P, Q) > - oo. In fact, (Br) -• (Bfc) -> (C)

βxώ

and the proof for (C) -> (Bκ) applies to show (C) -> (B) under the condition that
inf Φ(P,Q)> — oo. We have given an example for (B')-*»(B) (originally for
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(Bκ)-^(Bκ)) in (II) in which the kernel is positive but discontinuous. Now
we show that (B') -v» (B) even if Φ (P, Q) is continuous in the extended sense
and finite outside the diagonal set in Ω x Ω.

oo oo

Example for (B')-^(B): Consider Ω= \J {1/n} w w{-ra} a s a subspace
of the Λ -axis and set

0 ( 0 , 0 ) = oo,

0(0, l/n) = Φ(l/n9 0) = τι,

n, l/7τz) = m i n (zz, m) if nφm,

n if
0(-τι, l/m)=Φ(l/m9 -n)= { ^ . f

Φ(-7i, 0) = Φ(0, -n) = Sn3 if n

Φ(-n, -n)=oo iΐnφO,

Φ\ — 71) —771) === Φ\ — 77Zj — 7 Z ) = 1 l l 71 φ1 771, 71

The kernel is continuous in the extended sense and finite outside the diagonal
oo

set. Let μ0 be the measure on \J {1/n} such that each point 1/n supports the
mass 1/rc3. We have

- » ι 9

2 ΛΓ

with 7z. It holds that

n-l h o o l o o l

Σ * + i + n Σ 1 < Σ 1
J f e 1 fe i f e w + l A;ύ ife l k

Λ-l

4
n X

and

Thus Uμ°(x) is bounded on S μ o = Σ {1/τz} w{0} and (B) is not satisfied.

Next let μbe a unit measure such that Uμ(x) is continuous as a function

on 5μC V {1/n} w{0} and /c6({0})=0. It is easy to discuss the case in which
7 1 = 1

Sμ contains only a finite number of points and hence we assume that 0 e Sμ.
We set μ({l/n})=mn.
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We have

n3) = Σ kmk-hn3 mn + n Σ
71 / k=l k=n+l

and

Σ
k

Our assumption requires that Uμ(l/n)->Uμ(0) as n-+oo. Hence n3mn-+0 as

7z->oo. Then it follows that n Σ mk^0. Therefore Uμ(x) is continuous as a
k-n+l

function on Sμ if and only if n3 mn->0 as zz-> oo. We have

For

For

a large

such n

n it holds

n-l

,> i 7ft&

7Z 7Z3

9 9
Li Lk

that

v 1

Λ^i A;3

«- l

' ) = r —^ Σ ^^ -H

and

2 + 2 '

1
2

3n3

^ 1

V 7Z 3

—

k = n

7Z

4

<

1

<- -

1
6

c3 /

1
2 '

if

1 n
2 2

This shows that Uμ(x) is bounded from above in Ω and it is verified that (Br)
is satisfied.

We now know that

(1.11) (BO (-•) (B),

if Φ (P, Q) is continuous in the extended sense and finite outside the diagonal
set in Ωx Ω and if inf Φ(P, Q)> — °°, and that both the continuity in the ex-

ΩxΩ

tended sense and the lower boundedness of Φ (P, Q) are necessary for —> to be
true.

(VI) Domination principle (D) and restricted domination principle (D*).
First we give

Example for (D*)-v>(D): Ω= {0}w{l}w{2}, φ(0, O) = 0(l, 2) = Φ(2, 1)
= β(0, 2)=(5(2, 0) = l, β(l, l)=β(2, 2)=oo5 (5(1, 0)=^(0, 1) = 2. It is obvious
that (D*) is satisfied. Let //- be the unit point measure at 0 and v be the point
measure at 1 with total mass 1/2. Then Uμ(0)=U\0) but E7>(2) = l > l / 2
= Uv (2). Thus (D) is not satisfied.

Examples for (D)-^(Bκ). First example: Consider Ω= \J {1/n} w.{0} as
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a subspace of the #-axis, and set Φ(l/n, l/m)=nm, 0(0, 1/n) = Φ (1/n, 0)=n9

0(0, 0) = l. This does not satisfy (BK); consider a measure at x=0. Next we
observe that, for any μ,

mμ\{l/m})=nUμ(0).

Let μ, v be measures such that Uμ(x)<zUy (x) on Sμ. Then it follows that
Uμ (0) ^ Uv (0) and this shows that Uμ (1/ή) < U" (1/n) for every n. Thus Uμ (x)
<Ξ Uv (x) everywhere in Ω. We have the conclusion that (D) is satisfied.

Second example: fi={0}u{l}, 0(0, 0)=l, 0(1, 1)=0(O, 1)=0(1, 0) = oo.
In the first example the kernel is finite-valued in Ω but discontinuous at

(0, 0), and in the second example it is continuous in the extended sense but
infinite even outside the diagonal set. If the kernel is continuous outside the
diagonal set and positive on the diagonal set, then we can derive more than
(Bκ) from (D); Ninomiya [8], Lemma 3, proved (D)->(BK) under some ad-
ditional conditions. We shall prove general results in § 1.5.

Next we give
Example for (D)-^(B'), even if the kernel is positive, symmetric, con-

tinuous in the extended sense and finite outside the diagonal set. We take
for Ω a unit ball B and a sequence of points {Pn} outside B in E3 which tends
to the point at infinity.

We set

( 1

) =

Let us see that Φ(P, Q) satisfies (D). If μβ<?, SμwSv CB and Uμ(P)<ίU
v(P)

on Sμ9 then Uμ(P)^Uv(P) on B as it is known for Newtonian potentials. Let
λ be the unit equilibrium measure on Sμ, B being as a space, and W(Sμ) be the
equilibrium constant. Then Uλ(P)^JF(Sμ) on B and Uλ(P)=W(Sμ) p.p.p. on
Sμ. Therefore

PQ

71

77171

OO

for P,QeB,

for PeB,Q=Pn,

for P=Pm, Q=Pn(m

for P=Q=FB.

and hence μ(B) <Ξ v(β). Consequently

Thus Uμ(P)<^Uv(P) everywhere in Ω. The next case is when
Sμ C B, but 5V is a general set. We denote by vB the restriction of
by vn the restriction of v to Pn. We have

and
v to B and
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U\P)=UVB(P)+ i ] nvn{Ω) on B.
n=l

Suppose that Uμ(P)<,U\P) on Sμ. Let λ0 be the uniform unit measure on

3B, and set v' = vB + ikϊ nvn(Ω)\0. We have

U^(P) f ] (β) Uλ°(P) UvχP) on Sμ.

This is true on B. Using the same λ as in the first case we find

Therefore

If v* =^o, then f/v(P») = co a n d naturally C/μ(P4)<U\Pk). If υ*=0, then [/"• (P*)

= V(^)and ί7v(Pέ)=fevs(B) + fe ΐ ] nυ.Cΰ). Therefore ?7"-(P^^i7v(PA). Thus
re= 1

C/̂  (P) ^ Uv (P) everywhere in £ and (D) is true. However, if we consider λ0

on 3B, then £/λ°(P) = l on B but Uλ*(Pn)=n. This shows that (Br) is not sat-
isfied.

Finally we give
Example for (F)-^(D*): The simplest example of Φ is given by

with c > 1. This shows that, given c > 1, there is a kernel which satisfies (F)
but not (Uί)c.

We refer to the work of Ninomiya [8] for some results in the direction
(D)—>(F); this will be discussed in § 2.11 of Chapter II in our paper.

Let us repeat what we have obtained so far:

(1.12) (F)-~(D*)£(D)^(Bί).

Even if Φ (P, Q) is positive, symmetric, continuous in the extended sense and
finite outside the diagonal set,

(1.13)

We shall discuss again (D) and (D*) in § 1.5 and in the next chapter.

1.4. Local behavior of potentials.

A point Po G Ω is called by Choquet [2] a point of c-undulation (c>0) for
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kernel Φ if, for any neighborhood N of Po, there is a measure μ with compact
support SμCN such that

•sup U»(P)>c sup U*(P); 5)

he defined it in case the kernel is positive. We denote by Oc the set of all
points of c-undulation and set 0 0 0 = n 0 c . These sets are naturally closed.

c>l

Choquet [2] observed several relations of these sets with some principles.
Let us define the undulation coefficient o (P) of a point P by the supremum of
c such that PeOc.

We shall define different kinds of points and see relations among them.
First we define, for a kernel of general sign and a class & of functions in Ω,

Point of ^-relative c-undulation P0(c>0). For any neighborhood N of
Po, there are a μ with SμCN and an fe& such that Uμ(P)<Lf(P) on Sμ but
U»(Pr)>cf(P') at some point P'eN.

We denote by O(/Γ) the set of all points of ^-relative c-undulation and
set O(f)= r\Of\ We define the J^-relative undulation coefficient o^(P) by

sup {c; P e O H . In case J5" consists of all positive potentials, which are de-
fined everywhere, and ϊF is not empty, a point of O(/) will be called a point of
c-r evolution and denoted by Rc. The notations RM and r(P) will be used. In
case & consists of all positive potentials of measures of <f with compact sup-
port and ίF is not empty, we add the adjective 'restricted' and the symbol *;
for example, Rf will mean the set of all points of restricted c-revolution.

Furthermore we define
Point of ϊF-relative c-cliff P0(c>0). Po is not isolated and, for any neigh-

borhood N of Po, there are an /<E J5", which does not vanish in a neighborhood
of Po, and a measure μ with compact support Sμ, containing Po and included in
N, such that

(1.14)

the value at Po is not considered when we take Πm as P-+Po but the right side
is replaced by Uμ(Po)/f(Po) in case Po is isolated on Sμ.

We shall denote the set of all points of ^"-relative c-cliff by Pcf} and set
} = n Pf\ The jF-relative cliff coefficient p^(P) is defined by sup {c;

c>l

In case & consists of positive constants we drop the adjective 'J5*-
relative' and the superscript &. In case & consists of all potentials, which
are defined everywhere in J2, we shall call a point of Pc/° a point of c-gap and
write Sc for Fcf\ We also write s(P) for p^(P). In case & consists of all
potentials of S with compact support, we add the adjective 'restricted' and

5) Originally Choquet £T} included the equality with the additional assumption that the right

side is finite.
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the symbol *.
In (1.14) we can not take c=oo if the upper limit on the right side is

positive. Suppose, however, that there is a point Po with the following pro-
perty : For any neighborhood N of Po there is a measure μ with Sμ, containing

Po and included in N9 such that Uμ(P) is bounded from above on Sμ but lim
P-Po

Uμ(P)=°o. We shall denote the set of such points by PL More generally,
we can define PL W in a similar fashion.

Point of ^-relative unboundedness Po. In any neighborhood N of Po the
J^-relative upper boundedness principle is not true, where ^N consists of
the restrictions of the functions of & to N.

We shall denote the set of all points of J^-relative unboundedness by Q .̂
In case & consists of all positive constants we drop the adjective 'J^-relative5

and the subscript J5". In case J5* consists of all positive potentials, which are
defined everywhere in Ω, and & is not empty, we call a point of Q^ a point
of relative unboundedness and write Qd for Q<?. Corresponding change is to
be made in the restricted case.

Point of ^-relative weak unboundedness Po. For any neighborhood iV of
PQ there are an fe & and a measure μ with compact support SμCN such that
the restriction of Uμ/f to Sμ can be defined and is continuous but Uμ/f is not
defined or is not bounded in N.

We shall denote the set of all points of weak unboundedness by Qi . In
special cases we shall make changes of terminologies and notations in the
same way as for points of (J^-relative) unboundedness.

Point of ^-relative discontinuity Po. For any neighborhood N of Po there
are an / e ^ and a measure μ with compact support SμCN such that the re-
striction of Uμ/f to Sμ can be defined and is continuous but not in N.

We shall denote the set of all points of J^-relative discontinuity by D.
In special cases we shall make some changes of terminologies and notations.

We shall see relations among these sets. An obvious relation is

In (IV) of the preceding section §1.3, we proved that (C)->(BK). From this
fact it follows that

QCD.

The example for (Bκ)-^(BK) given in (II) of § 1.3 shows that Q' can be empty
while Q Φ 0. Taking the inclusion relation into consideration, we shall ex-
press this fact by Q'CQ The example for (F)-*>(C) given in (IV) of § 1.3
shows that Q(<ΞD and that, for every c>l, Oc can be empty while ΌΦ0. We
shall express this fact by Dς^Oc. The example for (B)^>(UK) given in (II)
of § 1.3 shows that Q^CL even if the kernel is symmetric, continuous in the
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extended sense and finite outside the diagonal set. This example shows also
that (G)-^(Uκ) and hence that ( X ^ D . We now have

for any c > l .

If the kernel is continuous in the extended sense and finite outside the
diagonal set, we have

by (1.10) of §1.3.
Next we are particularly concerned with P c and Oc (c<^ oo).
(i) We shall give two examples as to undulation coefficient.
For any c, 1< c < oo5 there are a positive kernel, which is continuous in the

extended sense and finite outside the diagonal set, and a point Po such that o(P0)
= c and P 0 $O c .

oo

W e consider Ω=\J ([(2W + 1)"
1
, (2τz)"

1
]u{-l/τz})w{0} as a subspace of the

re=2

Λ -axis, and, denoting [(27Z + 1)" 1, (2n)"1'] by In, we set

Φ ( - 1/τι, x) = Φ (x, - 1/n) = c log {Sn(2n +1)} i f x <Ξ /„,

0(Λ;, y) = Φ(γ, χ)= log r for any other (x, y).
x-y\

If we take a unit measure μn on 7W which gives a constant potential on Im then
f r w ( * ) = log {87i(2n-hl)} on 4 and C/ μ w (-lA)=c log {Sn(2n + 1)}. This shows
that 0 6 Oc/ for every c<c. Let />& be any measure with sup Uμ< oo. Then Sμ

is included in the positive axis. Since Φ(x, y) is logarithmic for x, y ^ 0, f/μ(Λ;)
^ sup J7μ(y) for Λ ^ O . If μ(In)>0, we have

5

») log

<£$ !<« j ^ sup

for every point *' 6 /„, where μn is the restriction of μ to /„. Therefore

^C__1_WC s u p ^ ( Λ ) ^ c s u p
\ 7Z / 5

If μ (In) = 0, then Φ (— 1/rc, /) is logarithmic for every y e Sμ and hence Uμ( — 1/ή)
^ ( Λ ) . Therefore

C/^(Λ;)^C sup ^ ( y ) in Ω
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in any case and it is proved at the same time that 0<£Oc and o(0)=c.
Secondly, given any c, 1< c < oo? there are a positive kernel, which is con-

tinuous in the extended sense and finite outside the diagonal set, and a point Po

such that o(Po)=c and Po e Oc.
We choose cu , cn,- , cn>c, decreasing to c. We take the same Ω as in

the first example and set

Φ ( - 1/n, x) = Φ (x, - 1/ή) = cn log {8n (2n + 1)} if x e Im

Φ (x, y)=Φ(y, x) — log -T r for any other (x, y).

oo

Let μ be a measure with Sμ C V7 Ik and with finite sup Uμ on Sμ. As in

the above example we see that

U*(x)<Lcn sup Uμ(y) in Ω.
y^s

μ

Therefore o(0)^c. For the unit measure μn on In which gives a constant
potential on Im U"»(x) = log {8^(2^ + 1)} onln and Uμn(-l/n)=cn log {8τz(2τz + l}.
Since cn >c, it follows that 0 e Oc. Hence o(0) = c.

(ii) Lei c > l . Consider a nonnegative kernel which is continuous outside

the diagonal set and assume that Φ(P0, P0)=co or lim Φ(P, P0)<c Φ(PQ, PQ)< °°

for a point Po. If, for any neighborhood N of Po, there is a measure μ with
compact support Sμ 3 Po, contained in N, such that

(1.15) lim UίX(P)^c lim 17*(P)«oo),
P-+PO p^sμ, P^P0

then there exists c >c for which Po G Pc-
From our assumption on Φ(P0, Po), it follows that Φ(PQ, P0)>0. Hence

^(^3 Q)>0 on Nx N for some neighborhood N of Po. We assume the existence
of μ^O with SμCN and satisfying (1. 15). By our assumption on Φ(P0, Po\
Sμ does not coincide with Po. Let μ denote the restriction of μ to the outside
of Po. If μ'(N)=0, Φ(PQ, Po)< oo and by (1.15) we should have

Φ(P,Po)-cΦ(Po,Po)\<O.

This is a contradiction. Accordingly μ'(N)>0 and hence Uμ/(Po)>O. We de-
note also the upper limits in (1.15) by a and β respectively. We take a di-
rected set D which provides Po with a base of neighborhoods, and denote by μv

the restriction of μ to FGZλ As FED converges to Po, Sμv tends to Po. We
set

and /SF= lim



164 Makoto OHTSUKA

Since av^av^ and βv^βv if ϊ θ V\ av tends to a certain value α o >O and
βv does to βo^O as F-+Po on Zλ We see that a=Uμ-μv(Po) + av and that the
right side tends to UfXXP0)-ha0 as V^PQ. Similarly β=Uμ'XPo) + βo. By (1.15)

o)

and hence

We find VoeD such that Fθ C N and

< βo + -y- ( l - ^ r ) E7*'(PO) for every VCV0,VeD.

We denote the second term of the right side by c' and have

av^ao'^cβo + 2cc/f>cβvo + cc//==(c + cc///βVo)βVo^(c + ccf7βVQ)βv if VC Vo.

This shows that PoePc with C / =

COROLLARY. Lei c > 1 ami assume that there are a measure μ and a point
Po, not isolated on Sμ, such that

lim U^(P)=c lim 0>(P)<oo.
P^P0 PGSμ,P-*P0

Then Po ePc, for some c>c unless Φ(P0, Po)< °o and Πϊn Φ(P, P0)=cΦ(P0, Po).
P-»Po

REMARK. Let cj>l. Consider a nonnegative kernel which is continuous
outside the diagonal set. If Po 6 P o then Po G Pc/ for some c >c.

Suppose that there is a measure μ satisfying

α=lim UμtP)>c lim
PP PSP

We choose c such that a/β>c>c. Let F be any neighborhood of Po, and use
the same notations μv, av and /9F as above. It holds that a=Uμ~μv(P0)-hav

and β = if'^Po) + βv. Therefore

This means that Po € Pc/.
(iii) .For α nonnegative kernel which is continuous outside the diagonal

set,

P C C O C for any c>l .

We take Po ePc. If ϊϊm Φ(P, P0)>cΦ(Po, Po), we see Po 6O c immediately.
P-F0

Therefore we assume the existence of a unit measure μ with SμBP0, Sμ

satisfying
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lim U»(P)>c lim 0>(P);
P-PO P^sμ>P-*Po

we denote the upper limits by a and β as in (ii). First we suppose that the
kernel is positive on Ω x Ω. With the same notations as in (ii) we find, for V$
chosen in (ii), an element Vλ e D included in Vo with the property that

sup

Therefore

(1.16) sup Uμn^av,'>ao'>cβv() + cc//>c sup Uμn^c sup Uμn.

This shows that Po e Oc.
Next consider Φ;>0. We choose e >0 such that a>cβ + ε(c — 1) and denote

by US(P) the potential with kernel Φ(P, Q) + ε of a measure v. Since this kernel
is positive, (1.16) holds for it and

sup Uεvι= sup U vι + eμvΛΩ)>c sup Uξ

vι = c sup

Thus Po € Oc in this case too.

COROLLARY. / / the kernel is continuous in the extended sense and finite
outside the diagonal set, then

PCCOC for any c<l.

Since any potential is continuous at Po for which Φ(P0, P0)<°o, Φ(P0, Po)
= oo at Po belonging to Pc with c>l . Our problem is local and hence we may
assume from the beginning that the kernel is positive. Thus our case reduces
to (iii).

(iv) 0 € Oc but Pc= 0 for every cl> 1 in the example for (B)-^>(UK) in (II)
o/U.3.

It is seen in (II) that 0 e OM. We shall denote by In the interval [(2τι +1)" 1,
(2ra)-1]. Let μ be any measure and x0 be any point of Sμ. If x0 G /„,

Πm Uμ(x)= ϊίm Uμ(x)

because we are concerned with a logarithmic potential. If 0 G Sμ and μ(In)=09

then Uμ(x) ^ Uμ(Q)<: ίϊm Uμ(γ) for x e In as was shown in (II). If μ(In) >0,

sup Uμ(x)<: sup Uμ(x). Therefore
XSΞln X(ΞSμ

lim Uμ(x)= lim C/μ(Λ;)

in this case too. This shows that Pc= 0 for every ĉ > 1.
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(v) Consider a nonnegative kernel which is locally bounded outside the
diagonal set. If cn, l ^ c w ^ o o 5 tends to c and if Pn€θCfl with Φ(Pn, Pn) = 00

converges to Po, then, for any ε>0, there is a measure μ with Sμ3P0 such that

)<Ξ1 on Sμ and lim Uμ(P)^c — e as P-+PQ.

We may assume that all cn are finite. In a neighborhood Nx of Pnλ=Pι
which does not contain Po and on whose product Φ(P, Q)>1, we choose μλ and
a point P[ such that

sup £7μ i(P)<;i5 C/μ i(P0>cΓ1 and U*1 (Po) <-^-,

where ε > 0 is a given number. Assuming that Pnp a neighborhood iV, of Pnp

μi with Sμ.. CNi and Pz G iV,- are chosen up to ί = k so that

SUP

sup

and

and

If we set

we have

o n

/-I

on U Sμ
y=i y

we choose P» i+1, a neighborhood ./V*+i of P»t+1, /**+i and P*+i so that S^+ 1

sup ^" i—"*(P)<-i- + ... + -JΓ,

sup tΓ* + i(P)<l, ί/* + 1 (Pί + i )>c* + i—^V

o n V
f = 1
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2 ' 2
+ J L + _ ! _ + . . . = 1 + e on each Sμk and at Po.

Thus sup Uμ(P)<:i + ε. On the other hand Uμ(P/

n)>cn- 1/n. Since the kernel

is locally bounded outside the diagonal set, since Φ(P, Q)>k on NkxNk and
since Nk 3 Pnk tends to Po, it is seen that Nk tends to Po as a whole. Therefore
Pf

n tends to Po and

lim Uμ(P)^^^ sup
PP 1 + ε

Since e is arbitrarily small, our assertion is seen to be true.

COROLLARY. Consider a nonnegative kernel which is locally bounded outside
the diagonal set. If cn tends to c and if Pn 6 Oc with Φ(Pn, Pn)= °° converges to
Po, then Po G Pc/ for any c<c if c<°° and Po € PL if c= °°.

(vi) We shall show by an example that Pc is not necessarily closed.
An outline of the construction is as follows. We shall choose Pn € Pc so

that Pn-^Po and that, for every k9 we can find a neighborhood of Po in which
the (c-f l/&)-dilated maximum principle is true. Then POGPC/ for every c<c
by (v) and P0$Oc// for every c">c. Consequently p(P0)=c and PO$PC by
Remark in (ii).

We consider ΩQ= \j ([(2/z + l)" 1, (2τz)"1]u{-l/n})\J{0} as a subspace of

the #-axis and denote by Ω0(a, I) the set obtained by contracting Ωo by the
ratio I and then translating it so that a corresponds to the origin:

We set

^. β , / (*,y)=« e , β . ,(r, a ;)=c log

for x which is the transform of — 1/Vι and for y which belongs to the trans-
form of /n = [(2τz + l)-1, (2/z)-1], and set

Setting

c, a, I (*, y) = Φc, a, I (/, x) = lθg j I f 0 Γ a Π y θ t h e Γ (%>

_ _ ± _
4τz(2zz+l)'

we consider Ω0(an, ln) for each n; an is equal to the middle point of In and {ln}
are chosen so small that log |#—y| 2>c log \x—y\ whenever x, x ^ΩQ{am ln)



168 Makoto OHTSUKA

and y e Ωo(am lm), mφn. We put

ω= \J Ω0(an, ln)\J {0}

and define Φc(x, y) on ω by

( Φ c, an, ln (X> y)

Φc(χ,y)=< i

( log r

\x-y\

for X, y e Ω0 (θn9 ln\

for any other (x, y).

We denote by ω(ak, h) the transform of ω obtained in the same way as Ω0(an, ln)

was obtained from Ώo, and by Φc,an,ιn(%>y) the function obtained from Φc(χ> y)

similarly. We set

= 0 ω(ahlk)\J{0}

and define Φ (x9 y) on Ω by

!

Φc+iik,ak,ιk(x, y)

Λ

log Ί Γ

\x y\

for x, ye ω(ak9 h),

for any other (x9 y).

We see that ake.l?c+(2k)-1 by (v). Let μ be any measure supported by

U ω(βy, Zy)W{0} such that it is bounded on the support. If x is not equal to
7 - *

any transform of any point of Ωo of the form — l/n, Φ (x9 y) is logarithmic for

any yeΩ. For such x we see that Uμ(x)<; sup Uμ(y), because Sμ does not

contain any transform of any point of the form — l/n. We assume that x

€ω(βy, lj), j^k, is a transform of — 1/Λ and denote by Ω'o the transform of

Ωo which contains x. We assume that μ(ΩΌ)Φ0; if /X(J2Q) = 0 then Uμ(x)<^ sup

£^(y). We have " e 5 μ

log
y

As we have seen in (i)

\ Φc+iij.aj,ij(x, sup I Φc+llJtajt z, y)dμ(y)

for *

Since

log
\x-y\

log -j—

log — -
log <^ c log
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for any x, % eΩΌ and γ£Ω — Ω'o on account of the choice of {ln}, it follows
that

U" (*) ^ (c + 4-) sup \ log τ-^-ΎJ dμ (/) + c\ log } dμ (y)

for any % e Ω'o. Consequently

Uμ 0*0 < (c + — ) sup 17" (y) <: (c + -*-) sup f7"(y).

The proof is now completed.

COROLLARY 1. We can not replace c by c in (v).

COROLLVRY 2. Given any c, l < c < oo5 we can find P with p(P)=c.

(vii) Consider a kernel which is locally bounded outside the diagonal set
and positive on the diagonal set. Assume that there are a sequence {Pn} of
points tending to a point Po, a sequence {μn} of measures and a sequence {Vn}
of compact neighborhoods of Po with the following property: VnΓ\Sμn= 0, Vn and
Sμ.n tend to Po as a whole, Uμn(Pn)->°o and Uμn(P)<l on Sμn\JVn. Then there

is μ such that Uμ(P) is bounded on Sμ and lim Uμ(Pn) = oo. If9 in addition, the

kernel is continuous outside the diagonal set, μ can be chosen so that Uμ(P) is
continuous as a function on Sμ.

We may assume that the kernel is positive. We choose a measure μnλ

such that Uμni (P^) > 1. We set

7τzi= inf Φ(P,Q) and Mi= sup Φ(P,Q)

and choose μ»2 such that Sμγi2 C Vλ and Uμn2(Pn2)>max (4, AM^ϊ1). We see that
mι/J>n2(Ω)<l and hence

U»n2 (p) <- M i ^ / β) < J ^ o n S #

T T Z l X

We set /*'i=/%5 ^2=^ (max (2, 2Mi ^ϊ1))"*1 and observe that

Uμ'2(Pn2)>2 and Ϊ7μ2(p)<-1- on S ^ w S ^ w F ^ .

A - l

By induction we can find easily {nk} and {μk} such that Sμ̂  =SAtw& C Vnk_v ( y Sμy)

r\Sμk=0, Uμk(Pnk)>2k-ί and f7μHP)<2-(έ"-1) on S={P0} w p Sμj. Now we

setμ=yi+/*2" + .... Since i7^(P)<2- ( / ? - 1 ) on5 5 C/̂ = Σ C/μ^ is bounded on S

=S μ . On the other hand Uμ(Pnk)^Uμk(Pnk)>2k-'1. If the kernel is continuous
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outside the diagonal set, each ί/μ* (P) may be assumed continuous as a func-

tion on S. Since the convergence is uniform on S, £ 7 μ = Σ Uμk is continuous as
k = l

a function on S==Sμ.
(viii) We consider a kernel which is locally bounded outside the diagonal

set and positive on the diagonal set in Ωx Ω. If Po is a point of accumulation
of OTO and has a countable base of neighborhoods, then there exists μ such that
Uμ(P) is bounded on Sμ but lim Uμ(P) = °o. If in addition, the kernel is con-

tinuous outside the diagonal set, the restriction of Uμ(P) to Sμ may be assumed

continuous.6)

Let us see that the conditions of (vii) are satisfied. We may assume that
the kernel is positive in Ωx Ω. Let {Vn} be a sequence of relatively compact
open neighborhoods of Po decreasing to Po We choose a point Pn e OM dif-
ferent from Po, a neighborhood Nn of Pn and a compact neighborhood Vn of Po

disjoint from Nn. We set

mn= inf Φ{P,Q) and Mn= sup Φ(P,Q);
NnxNn VnxNn

0<mn and 0<M w <°o by our assumption on the kernel. We choose a finite
number β«>max (1, Mnm~ι) and a measure vn such that S^nCNn, UVn(P)<l on
Sμn and sup Uμn>7ian. We see that mn vn(Ω)<l and hence

mn

It is easy to verify that μn = vn/an fulfils the conditions required in the lemma.
In the above we may assume that Pn, Nn and Vn all tend to Po as 7z—>oo.

COROLLARY 1. We assume that the kernel is locally bounded outside the
diagonal set and positive on the diagonal set. If each point of accumulation of
P^ has a countable base of neighborhoods, then P^ is closed.

COROLLARY 2. (Choquet [2]). We assume that the kernel is continuous
outside the diagonal set and positive on the diagonal set. If O^ is not discrete
and at least one point of accumulation of O^ has a countable base of neighbor-
hoods, then the continuity principle is not satisfied.

However, the fact O^Φ 0 does not mean that the continuity principle is
not valid. In fact, an example will be given in Corollary 4 in (Uκ), (ϋ) of the
next section.

(ix) We consider a kernel which is locally bounded outside the diagonal set

6) Choquet [ΊΓj announced the following theorem: If the kernel is continuous outside the diagonal

set and positive on Ω x Ω, then, for the limiting point P o of a sequence of points of Ooo and for any

neighborhood V of Po, there exists a measure μ with compact SμCV such that the restriction of U^{P)

to 5 μ is continuous and U^(P) is discontinuous at Po. We note that no countability condition is re-

quired there. Proof is not given.
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and positive on the diagonal set in Ω x Ω, and assume that each point of ac-
cumulation of P^ has a countable base of neighborhoods. Then we have

//, in addition, the kernel is continuous outside the diagonal set,

We may assume that the kernel is positive. By the definition of Q, given
any neighborhood N of Po e Q, there exists μ with compact SμCN such that
Uμ(P) is bounded on Sμ but unbounded in N. If Po is a point of Sμ with the
property that Uμ(P) is unbounded in any neighborhood of Po, then Po belongs
to PL. Otherwise there is a point of P^ in N and it follows that Po is a point
of accumulation of points of P^ C O^. Consequently Po e PL by (viii). The
inclusion PL C Q is evident.

The identity Q ^ P ^ will follow if we can choose {Pn}, {μn} and {Vn} as in
(vii). Assume Po €Ξ PTO and that the kernel is continuous outside the diagonal
set. Then by (1.16) there is a measure vn such that Sv contains Po, it is near to

Po, UVn(P)<l on SVn and lim UVn(P)>n as P^P0. Let Pn be a point sufficiently
close to Po such that [7v"(Pw)>τz. Suppose that we can choose vn such that
^({PoD^O. Then the restriction μn of vn to the outside of some neighborhood
of Po satisfies U"n(Pn)>n. Since UUn(P)^Uyn(P)<l on S^SμH\J{P0} and, by
the continuity of the kernel, there is a compact neighborhood Vn of Po disjoint
from Sμn on which Uμn(P)<l, all the required conditions are satisfied. Let us
see therefore that we may assume i^({P0}) = 0. This is so if Φ(P0, P o ) ^ 0 0 and

hence $(POj Po) is assumed to be finite. If Πm Φ(P, Po) = <̂  evidently P o e Q .
p^p0

Hence we suppose Φ(P, P0)<M< oo in a neighborhood V of Po. Let \n satisfy

ίϊm Uλn(P) >n ίϊm Uλn(P) as P-^P0. Denote the restriction of \n to the outside

of Po by λ^ and the mass at Po by a. It follows that

Πm C/λ ;(P)+αM>τzίlϊm Uλ'n(P)Λ- αΦ(P0, Po)\.
0

Since M<nΦ(P0, Po) for large n, lim U n(P) >n lim U n(P). We divide the re-

striction of \'n to a sufficiently small neighborhood of Po by its total mass and
take it for vn\ then vn({P0})==0 certainly.

In the proof we have proved more than Q=P e o . Namely

COROLLARY 1. Under the assumption that the kernel is continuous outside
the diagonal set and positive on the diagonal set, a point Po belongs to Q=POO,
if and only if there is a measure μ such that PoeSμ, Uμ(P) is continuous as a
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function on Sμ and lim Uμ(P) = oo.

COROLLARY 2. Assume that the kernel is continuous in the extended sense,

finite outside the diagonal set and positive on the diagonal set. Then, for any

Po 6 D, we can find μ whose potential is continuous as a function on Sμ and sat-

isfies lim Uμ(P)==oo. Namely we can let a discontinuity arise at Po; in the
P^P0

definition of D it is sufficient that a discontinuity exists near Po.
This is because D = Q and by Corollary 1.

COROLLARY 3. Assume the same on the kernel. Let Po be a point with the
following property: Any neighborhood of Po supports a measure μ such that
Uμ(P) is continuous as a function on Sμ and

ϊΐm W(P)>c lim Uμ(P)=c

with c^>l. Then we find μ with the same character as in Corollary 2; we can
have thus the inequality with arbitrarily large c.

(x) Consider a nonnegative kernel which is continuous in the extended
sense, finite outside the diagonal set and positive on the diagonal set in Ω x Ω.
Then

S? >̂ P c for every c I> 1.

We assume P 0 $Sf and that Po is not isolated in Ω. Then there is a
neighborhood N of Po such that the kernel is positive on Nx N and

U ( P ) PEiSλ,p-+p0U ( P )

whenever PoeSkCN,veg has a compact support and C/V(PO) >0. We take any

μ such that S^ CN,Poe Sμ and lim [/^(PX oo. If φ(Po, Po)< oo, U\P) is con-

tinuous at Po and PO$PC . Therefore we assume that 0(PO, Po)==o°. It follows
that Po is not isolated on Sμ. We can find a compact set K$P0 in N with the
property that

0<sup Uμx(P)<oo9

where μκ is the restriction of μ to K. We set μκ/Uμκ(P0)=v. This belongs to
S and lim ί7v(P)=£7v(P0) = l. We have

PP

ΐϊm ^(P) = llm ~Qr<;C ϊhn *^r=c lϊm
P^P0 P^PQ UV{P) Pς=Sμ,P->P0 U\P)

Thus P o ΐ P c and S*}PC.
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REMARK 1. Similarly we can show SC^PC for every c under the assump-
tion that the kernel is nonnegative, positive on the diagonal set and con-
tinuous outside the diagonal set.

REMARK 2. If, in addition to the condition in Remark 1, Φ(P, P) = oo at
each point of Pc, then S*

REMARK 3. If we do not assume that 0(P, Q) is continuous in the ex-
oo

tended sense, S?J)PC in general. To show this, we consider \J {l/n}\J{0}
n=l

as a subspace of the #-axis and define Φ(0, 0) = l, Φ(0, l/n) = Φ(l/n, 0) = n>
Φ(l/n, l/τ7z)==min (n, m) for nφm, Φ(l/n, l/n)=oo. For the unit point measure
μ at 0, we have

cϊ7μ(0)=c<lim WQ./n) = lim rc=oo

for every c. Thus 0ePT O but S* is empty for every c > l .
(xi) We assume the same as in (x) on the kernel. Then

R* ^ \J Oc/ for every c > 1.

Take Po$R?. Then there is a neighborhood N of Po such that ί/λ(P)
<:cUv(P) in N whenever U\P)<:UV(P) on Sλ for λ with SλC<?N and for ve<?
with compact support. If $(P0, Po)<°°, every potential is continuous at Po

by assumption. Therefore we assume that Φ(P0, Po) = °°. If there exists a
neighborhood of Po which does not support any non-vanishing measure of «f,
there is nothing to prove. Therefore we assume that there exists a measure
v€<f, with compact support SV$PO whose potential is equal to 1 at Po. Given
e >0, we take a neighborhood JVi C N of Po such that

in

Take iA such that Sμ CNλ and F ω = sup Uμ< oo. Since
5

( ) ^ ( ) ( A ) v ( P ) on Sμ>

we have

^ ( P ) ^ c ( l - ε ) - 1 F ( / . ) f / v ( P ) < C ( l - ε ) - 1 ( l + ε)F(/,) in Nu

This shows that P 0$O c (i+ ε ) / (i_ ε ) and hence that

R ? ^ OC(i+8)/(i_g).

Therefore

R? 5 W Oβ,.
c/>c

COROLLARY. Consider a kernel which is nonnegative, continuous outside
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the diagonal set and positive on the diagonal set. Then

//, in addition, the kernel is continuous in the extended sense, then

These facts are proved by making use of Remark in (ii).

REMARK 1. Similarly we can show R c ) U Oc, under the assumption that
C>c

the kernel is positive on the diagonal set in Ω x Ω and continuous outside the
diagonal set.

REMARK 2. If, in addition to the assumptions in Remark 1, Φ(P, P) = oo
at each point of Pc, then ΈLf^ \J Oc/.

c'>c

REMARK 3. In the example in (x), R? = 0 but 0 e OTO.

REMARK 4. If a kernel is locally bounded outside the diagonal set and
positive on the diagonal set, then Rc = 0 for some c2> 1 implies 0 ^ = 0.

(xii) Let c^>l be given. There is a positive symmetric kernel which is
continuous in the extended sense and finite outside the diagonal set, and for
which

LEMMA. Consider a positive symmetric kernel which is continuous in the
extended sense and finite outside the diagonal set. In order that (Ud)c (c ̂  1) be
true the following condition is necessary and sufficient:

Let μζtfbe any measure with compact support and Po be any point outside

Uμ(P)<:Φ(P,Po) on Sμ,

then Uμ(P)<.cΦ(P, Po) everywhere in Ω.
This will be given as Corollary to Theorem 2.44 and we omit the proof

here.
We consider

n

as a subspace of the Λ-axis and set, with any positive number d<(2c)~1,

(5(0,0) = oo,

(flί-1-, — ) = min(*, m\
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71

Φ[ —*-, - — ) = min (n, ) +
v 7z m J

— ) = min (n, ro) + — ~ N + — 4 T
m J mm (rc, 7w) max (n9 m)

n m
/ — , — )=min (n9m) +
\ m n J n

nφmy

n n

This is a positive symmetric kernel which is continuous in the extended sense
and finite outside the diagonal set.

We consider the unit point measure μn at x=l/n. Then

snp UUn = Uμn

and

Therefore

sup Uμ"(x)>c(n+-^-)>c sup Z7"".

This shows that 0 6 Oc.
Let us see that 0<$Rc. Let μ^O be a measure in <f, and set an=μt{l/n}\

For Λ;0 $ 5μ assume that

x0) on

First we consider the case xo = l/no>O. The inequality reads

< m i n (TZ, TZ0) if)
71 / k = l k=n

For the largest number l/m in Stt, we have

7l\ / k \ 7l\ Tl

and hence the total mass Σ f l t ^ l . Therefore, for
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If Sμ C [1/rao, 1], we have, for 1/n £ [0, l/κ 0 ],

) Σ *
n J k

If Sμc£ [l/rco, 1], we have, for 1/rcG [0, 1/τio],

k \ Ίl JΣ f
71 J k \ Ίl2

where l/7z2^0 is the smallest number in Sμ. Thus Uμ(l/n)<^min (n, n0) for
any n<, oo, Next we observe

)α + τι Σ α 4 Σ) Λ Σ * Σ i k
71/ k = n+l 71 k^n

α ) + Σ α ( c Σ
l

Σ * ( ) ( Σ * Σ
7Z ^ A - l k = n+l

— ^ c min(/z,
nV ^ (, o ) ^ f ?

n / n n \ n no

for finite ra. Thus it is concluded t h a t

C/μ
 (Λ?) ^ C Φ (Λ, ΛO) for any Λ e ώ.

Secondly we consider the case #0 = 0. Let 1/m be the largest number in
Sμ. Since

W i Σ «*<
k

Wi Σ * ( ,
7lι / k \ Ίl\

the total mass Σ f l * ^ l Therefore, for any no>O,
k

ra / * i * i *ra / * - i *-»+i * \ n

and

n J n

Since Uμ(0)^cΦ(0, 0) = oo5 Uμ(x)^cΦ(x, 0) in all cases.
Finally we consider the case χo= — l/n0, and let 1/τiι be the largest num-

ber in Sμ.

/ 1
\ 7lι

Hence

We have

λ-n Vβ <φ(
J k = = V

1 1
7l\ TIQ

^ c(m + — \
\ 7Zθ /

(1.17)
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On the other hand let l/n2 2> 0 be the smallest number in Sμ. Then

=Yikak ^φ(—> - ^ K c ίmin (Λo, n2)
k \ n2 n0 ! ( n0

If 7ZO<7Z<I ° ° ,

U"( — )^Σkak = U»(-±~)<c(n0 +-*Λ = cφ( A y ---L\
\ n / k \ n2 I \ no I \ n n0 /

Consequently we shall consider n such that n<,n0. If, in addition, n<,nu then
by (1.17)

i — )<in'Σιah<ί

V n / k 7Zo 7Zi / 7Zo \ 7Z 7Zo

For 7z>7z2, it follows t h a t τz2<7z0 and

nn0 n0 \ n n0

If nχ<n<n2, we take the nearest greater number nA and the nearest smaller
number n3 in Sμ: n±> n >n3; n3<n0 because n<,n0. It holds that

= Σ faϊjfc + Tis Σ
4 n0

and

^ - ) = Σ kak + m Σ flΛ^βf—, -^)^cf7Z4 + —

714 / k = l k = n4 \ 7Z4 7Z0 / \ 7Z0

We consider the following linear expression in x:

cd "3

(c — Σ ^ ) Λ ; + — *Σ>kak.
k=n4 no k=ι

This is nonnegative for X=JI3 and 7z4. Hence it is so for any n in between.
Thus

7Z / k = l k = n4 \ no J \ Ίl 7Zo

Next we shall evaluate Uμ(-l/n). Naturally

7Z0 / \ 7Z0 7

If 1/TZGS^, Uμ(l/n)<:Φ0-/n, -l/τz0). For 7z<τz0, we have as before

n / n



178 Makoto OHTSUKA

It follows that

TJv ί — ^ \<C φ( ^ — ^ λ4- c^ V = Λ- cd \ cd sp

V n J V τ& ' 7 Z o / ra& fto n k

*( 1 1 \ cd . cd c , cd -̂̂
= cΦ , — j — -f + 2-jdk

\ n no / n no no n k

n n0

where

j — cd _ cd , c _ cd ^
n no no n k

Let us show that A>0. First we observe that, if l/nλ is the largest number
in Sμ, then l/m^l/n>l/nQ, and we derive

, d
no n\

as before. We see then

A d d , 1 d —̂, ^ d d , 1 d
c 37. no no n k n no no n \ no nι

Thus

We have, for n > n0,

9 ) Σk o Σ
n no / n k n0 n k

n no J n n k

(

n n \ no

where we used (1.17).
It nφn0 and l/n^Sμy then an==0 and

n J n

We know that
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\ 71

By (1.17) we see

)

Λc\n + d +( ° n0

In any case

Consequently

λ <

that

i Λ
1 V

7Z \

On

dpi

7Z /

i a

TlQi

. + -

Potentials

71 )

_c|mi.

rcjj

i V
n ) ~

i n

1

n ί

( "

<

Locally Compact

J— c jmin (n,

<i 1 \

n 71Q >

. _L d ^ 1 '
TZo 7Z ,

c(Z>ί X

\ 71

Spaces

TlQ

I 1 j

71 \

\ /

1 \

•ί

7iχ no /

1
n '

1

\
1

1 \
ιa )

1
72o

for

for
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n<n0,

is concluded for any x from the inequality Uμ(x)<LΦ(χ, x0) assumed on Sμ.
Let v be any measure whose potential is defined everywhere in Ω and

satisfies Uμ(x)<LLlv(x) on Sμ. By Lemma it follows that

Uμ(χ)<LcUv(x) everywhere in Ω.

This shows that 0$R c .
We have proved more than 0 6 Oc — Rc in the above. Actually 0 e Oc and

(Ud)c is satisfied. In case c = l this example gives (D)-^(F), although we
showed already (D)-^>(B/) in (VI) of § 1.3.

1.5. Global properties of potentials.

Under this title we shall investigate some principles, in particular, (FV),

(UV) and (Uκ), in connexion with the local properties obtained in § 1.4.

(FV)and(UV). ( i ) L e ί c ^ l . //

(1.18) lim Uμ(P)^c lim Uμ(P)
P^P0 P<=Sμ, P^P0

for every measure μ with compact support and at every point Po on Sμ, then
(UV)C is true; in case Po is isolated on Sμ, we let the value cU^iPo) replace the
right side of (1.18). Conversely, if the kernel is continuous outside the diagonal
set and nonnegative in Ωx Ω and if (UV)C is satisfied, then (1.18) is true for
any μ with compact 5μ and for any PQ G 5μ.
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PROOF. The first part is easily proved by Heine-BoreΓs covering theo-
rem. We suppose that (1.18) is not true with c > l for some μ with compact
support and for Po not isolated on Sμ. Using the same notations as in (ii) of
§ 1.4, we have

ϊϊm Uμvι(P)^av,>c sup Uun(P)

by (1.16), where Πm Uμvi(P) is defined by inf sup Uμvι(P) for open set G
p-s,Vl

 G P*G

2S/V, =ViΓ\Sμ. Thus (UV)C is denied. If Po is isolated on Sμ and lim ϋ>(P)
1 P-»Po

>cUμ(P0), we have, for the restriction μ0 of μ to Po,

lim t
P^PQ

and it is seen that (UV)C is not satisfied. Finally suppose that (1.18) is not
true with c = l . We can find c>l with which still (1.18) is not true. Then
we see that (UV)C/ is not satisfied. Naturally (UV)i = (FV) is not satisfied.

By (ii) of § 1.4 we see that (1.18) is true if w 0 ^ = 0. Hence we obtain
c'>c

COROLLARY 1. Let c^>l. Consider a nonnegative kernel which is continu-
ous outside the diagonal set. If Oc. is empty for every c>c, then (UV)C is sat-
isfied.

In case c = l , this corollary was given by Choquet [2] as Proposition 3.
From (xi) of § 1.4 and Corollary 1 follows

COROLLARY 2. Let c ^ l . For a nonnegative kernel which is continuous
in the extended sense, finite outside the diagonal set and positive on the diagonal
set, (UJ )c-> (UV)c. In particular, (D*) -> (FV).

(ii) Let ĉ Ξ>l. // (1.18) is always true, then Pc— 0. If a nonnegative
kernel is continuous outside the diagonal set in Ωx Ω and ifPc=0, then (1.18)
is true.

PROOF. The first assertion is obviously true. Next we assume the ex-
istence of μ and PQ such that (1.18) is not true. Let N be any compact neigh-
borhood of Po, and denote by μN the restriction of μ to N. Then SμNCN
and

lim Uμ"(P)>(c-l)Uμ-μ*(P0) -he lim Uμ^(P)^c lim Uμ»(P).

This shows that Po e Pc.
Combining (ii) with (i) we have

COROLLARY. Let c^>l. If a nonnegative kernel is continuous outside the
diagonal set, then (UV)C is true if and only if P c = 0.

(iii) Let c l>l . Consider a nonnegative kernel which is locally bounded
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outside the diagonal set and equal to oo on the diagonal set. If (UV)C is sat-
isfied, then Oc/ has no point of accumulation for every c>c.

This follows immediately from (v) of § 1.4. In case c=l, this was stated
by Choquet under a slightly difEerent condition.7)

(iv) Examples to show (U)^>(FV) were given by Kunugui [1] and Choquet
[2]. Here we reproduce the example of Kunugui (p. 77).

Example for (U)-^(FV). Ω=E3 and 0(P, Q)=PζΓΛ, 0 < α < l . On a half
line issuing from the origin 0 we take points {Pn} such that 0P» = l/rc. We
set

a

and choose c, 0< c < ka/2, in an arbitrary manner. We set also

d — C

We denote by Cn the spherical surface with Pn as center and dlla as radius,
and by μn the uniform measure on Cn with total mass dn. The support of μ

oo oo

= Σμ« is equal to u Cwu{0}. We can see by computation that

Uμn(Pn) = l and Uμn(P)=2'a(l-a/2)'1 on C«,

and that, for mφn,

on

and

Therefore

and

Namely, for any neighborhood V of Sμ,

sup I

on

7) Proposition 4 of Ghoquet



182 Makoto OHTSUKA

contrary to (FV). It is well known that any α-kernel PQ a satisfies (U).
(v) We shall complete the relations of (FV).
Example for (FV)-*> (Bί): Ω={O}\J{1} and 0(0, 0) = 0(1, 1) = 1, 0(0, 1)

= 0(1, 0) = oo.
However, if we assume that 0 (P, Q) is continuous in the extended sense

and finite outside the diagonal set, not only (BK) but also (Bκ) follows obvi-
ously from (UV). The fact that (FV)-^(B') is seen by the example 0(P, Q)
=ψQ in E3. The example given before for (B)-^>(UK) provides an example for

(FV)-v>(Uκ). Actually if we use the same notation μ— Σ/AB as there and if

N is the highest subscript with w ^ O , then we have C7μ(P)^sup Uμ(Q) on
N QξΞS»

V=\J [(2^-f-l)-1, (2n)-x]. If 0eSM, then t/^(P)^sup Uμ(Q) in the whole Ω.

It is evident that (F)->(FV) and we have now

(1.19) (U);£(FV)£(Bfc)
n
(F)

If 0(P, Q) is continuous in the extended sense and finite outside the diagonal
set, we have

(1.20) (BO;

It is easily observed that Example 3 in Ohtsuka [7] satisfies (FV). Hence
(FV)^(P). Since (FV) -> (Bκ) -+ (C) and Example 2 in Ohtsuka [7] shows that
(E)^(C), it follows that (E)-^(FV). Taking (1.19) and (1.20) into considera-
tion, we have

(P) (E

(1.21) (FV)

(Uκ)

(vi) First we shall give an example for (UK)-^CUV) and then establish
relations of (Uκ) with other principles.

We found in (vi) of §1. 4 a compact space, a positive kernel which is con-
tinuous in the extended sense and finite outside the diagonal set and which
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satisfies (U)c+i, and a point Po of the space with p(P0) = c. For every n, we
take such a space Km a kernel Φn(P, Q) satisfying (U)n+i on Kn x Kn and a point
PnζKn with γ{Pn)=n. We consider the sumspace Ω of Kn, n=l, 2y , and
define the kernel Φ(P, Q) on Ω x J2 by

otherwise.

It is easy to see that (Uκ) is satisfied. Since p(Pn)=ra, (UV)C is not true for
every c ̂  1. Thus (Uκ) -^ (UV).

This example shows also (B) -*» (UV). Let us still consider positive kernels
which are continuous in the extended sense and finite outside the diagonal
set. Thfcn we see (UV)^(U K ), (UV)^(B'), (UV)-^(U), (UV)^(P) and (UV)
-v>(FV) in view of (1.20). It is easy to see (UV)-»(BK), and as in (iv) we ob-
serve (E) -v> (UV) and (UV) -v> (P). Thus we have

(Bκ)

(1.22) (FV)

(UK)

for kernels which are continuous in the extended sense and finite outside the
diagonal set.

For general kernels we obtain, in view of (1.19),

(1.23)
n
(U)

(Uκ). (i) // (Uκ) is satisfied, then O^ = 0. Conversely, if OM = 0 for a
nonnegative kernel which is locally bounded outside the diagonal set and positive
on the diagonal set in Ω x Ω, then the kernel satisfies (Uκ).8 )

PROOF. It is obvious that 0^=0 if (Uκ) is satisfied. Let us assume that
0^=0 and take a compact set K in Ω. At every point Pe.K there are a rela-
tively compact open neighborhood NP of P and a constant cP such that

(1.24) sup Uμ(Q)^cp sup U^Q)

for any μ with Sμ C NP. In each NP we take a compact neighborhood NP of P.

8) This result is stated in Choquet
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n

We can find NPv- , Nr

Pγι which together cover K. We set F== u N'Pk. Let μ

be any measure with SμCNPk and with sup Uμ<°o. By our assumption, U\P)

is bounded on F—NPk because

is a compact set disjoint from the diagonal set in Ω x Ω. Combining this fact
with (1.24), we see that Uμ(P) is bounded on F. By Lemma 1.2 of (I) in § 1.3
it follows that there is a constant ck=c(NPk)^>l such that

sup Uμ(P)<^ck sup Uμ(P)^ckcPk sup ff*(Q)

for any μ with Sμ C iVpΛ.
Now let λ be any measure with Sλ C K and decompose Sλ in such a way

that Sλ=\J Fk and each Ft is a compact set contained in NPh. Denoting the

restriction of λ to Fk by λ*, we have

sup *7 λ (P)^ Σ sup £/λ*(P)<ί i ] chcph sup ί/λ*(P)
Pe/f Λ - l P<=K k = l P<ESλ

^ ( Σ C.CP,) sup ί/λ(P).

This shows that (Uκ) is satisfied.
Since the new OTO is empty if we restrict us to the space Ω — O^, we have

COROLLARY 1. Consider a nonnegative kernel which is locally bounded
outside the diagonal set and positive on the diagonal set in Ωx Ω. Then it sat-
isfies (Uκ) in Ω — O^ this being considered as a space.

COROLLARY 2. We consider a kernel which is continuous outside the diago-
nal set and positive on the diagonal set. If (Uκ,d) is satisfied, (Uκ) is true.

PROOF. Let K be any compact subset of Ω. By the relation Rc >̂ \J Oc/
c>>c

given in Remark 1 in (xi) of § 1.4 it followt from (Uκ,d) that O C Λ I = 0 for
some c< oo. Therefore 0^=0 in Ω.

If we can show that £7μ(P)I>0 on K for any μE(f, then we can apply
Lemma 1.2 to show (Uκ) in the same way as in (i). So we give

LEMMA 1.3. We consider a kernel which is continuous outside the diagonal
set and positive on the diagonal set. If (U*) is satisfied, t/μ(P)2>0 in Ω for
any μetf with compact support.

PROOF. Take any μ e £ with compact support and assume that there are
points Po and Qo such that Φ(P0, Q0)<0. We take a compact neighborhood N
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of Qo such that Φ(P, Q)>0 on N><Nand 0(Po, Q)< 0 for QeN. Let us assume
that (U*X holds. If μ(N)φO, we denote by μN the restriction of μ to N.
Then Uμ"(P)<Ukμ"(P) on S^N=SμίλN with &>max (1, 1/c) and hence ί/^(P)

k in Ω. This shows that C/μ^(P)^0 in J2. In particular,

This contradicts the fact that 0(PO, <2)<0 for every QeN. Thus it is proved
that, for every Q e Sμ, Φ (P, Q) ^ 0 for all P e J2. Therefore t/^(P) ̂  0 in Ω.

If we use the relation R? 5 Wθ c, proved in (xi) of § 1.4, we have

COROLLARY 3. We consider a kernel which is continuous in the extended
sense, finite outside the diagonal set and positive on the diagonal set. If (Ul, a)
is satisfied, (Uκ) is true.

COROLLARY 4. There exists a positive kernel with the following property:
It is continuous in the extended sense and finite outside the diagonal set, it sat-
isfies the continuity principle and O^ is not empty.

PROOF. We consider the example for (B)-^>(UK) in (II) of § 1.3. By the
above result OTO is not empty. Since (B) is equivalent to the continuity prin-
ciple for our kernel, it fulfills all the requirements.

(ii) We shall show that the above-stated condition on the sign of the kernel
on the diagonal set is really necessary.

First we give

Example of 0 ^ 0 for (D)-*»(UK): Ω=\J {l/n}\J{0}, 0(0, O) = 0(O, l/ή)

= Φ(l/7i, 0) = 0, Φ(l/n, l/m)=(nmy1. Let μe&9 μ^O, and assume that Uμ(x)
<LUv(x) on Sμ with some v. We denote μ({l/n}) and u({l/n}) by an and bn

respectively. We have

•v ^ &h 1 TTV ( 1 \ v T bb
' 2-1 —γ~ a n d U ί ) == 2_J —f-

k = i nk \ 7i / k = i Tik

If I/no € Sμ,

Ύ\ -^r < Σ -Λ- and hence
k

Therefore Uμ(l/n)<,Uv(l/7i) for every n. Since ^ ( 0 ) = C7v(0) = 0, Uμ(χ)<,lΓ\χ)
is true in Ω. If Sμ= {0}, Uμ(x)=0 everywhere and Uμ(x)<LU\χ) in Ω. Thus
(D) is satisfied. On the other hand, if we give a point measure μn at x — l/n
with mass n\ then U^il/n)^! but Uμn(l)=n and (Uκ) is not satisfied.

Example of ΦφO for (D)-^(UK): Ω={O}\J{1}, 0(0, 0 ) = - 2 , 0(1, 1) = 1,
φ(l ? 0)= — 1, 0(0, 1) = 2. Let μ be a point measure at 0 and v be any measure
such that — 2μ(Ω) = Uμ(0)<LUV(0). If we denote the restrictions of v to the
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points 0 and 1 by vλ and v2 respectively, then Z7v(0)= — 2vι(Ω) + 2v2(Ω)~^ — 2μ{Ω).
We have £^(1)= -μ(Ω)<L-vι(Ω)-hv2(Ω) = U']'(l). If μ is a point measure at 1
and t^(l)<;E7"v(l), we see similarly that Uμ(0)^U\0). Thus (D) is satisfied.
On the other hand (Uκ) is not true because, if sup Uμ<Lc sup Uμ with c>0 for

Ω Sμ

any μ, then we see that c :> 2 by considering the unit point measure at 1 and
also that c<ll/2 by considering the unit point measure at 0.

There is a kernel which has general sign on the diagonal set and satisfies
both (D) and (F) as the following example shows:

Ω={0} W{1}, 0(0, O) = 0(O, 1 ) = - 1 , 0(1, 1)=0(1, 0) = l.

However, if we require furthermore that the kernel is symmetric, then
there is no kernel which has general sign on the diagonal set outside {(P, P);
PeG0} and satisfies both (D*) and (Uκ), where Go is the set of points each of
which has a neighborhood supporting no non-vanishing element of <f. To
prove this, assume that Qo is a point with Φ(Qo, Qo)<O and <2i3=G0 is a point
with Φ(Qu Qi)>0. We denote by μoihe unit point measure at Qo. Naturally
μ0 £ <? and 0 e £. Since Uμ°(Qo) = Φ(Qo, Qo)<0 = C/°(Qo) on S ô == {Qo}, it follows
by (D*) that UίJ^(Q) = Φ(Q, Qo) = Φ(Qo, Q ) ^ 0 for every Q e Ω. Let Fbe a com-
pact neighborhood of Qx such that Φ{P, Q)>0 on Γx F, and ^ O b e a measure
of gy. Since Uυ\P)<U2μ^(P) on S^, Uf^(P)^U2^(P) in J2. Hence ^ i ( P ) ^ 0

in i2. In particular O^U^(Qo)=\φ(Qo9 Q)dμi(Q). We have seen that Φ(Q0, Q)

<;0 for every Q e Ω. Hence there is at least one point Q{ e V at which Φ(Q0, Qi)
= 0. Therefore

On the other hand

o5 QoXO.

If we take for K the union of Qo and V9 there is no c(K)>0 which satisfies
SUP U^^

K

Finally we give

Example of Φ<0 for (D)^>(UK): Ω=C{l/n}\J{0}, 0 (O,O)=-l , 0(0,1/τι)

= 0(l/rc, 0)= — 1/τz, 0(1A, 1/m)— —(nm)"1. It is shown as in the first example
that (D) is satisfied. If we denote by μ0 the unit point measure at 0, then
J7μ°(0)= - 1 and J7μo(l/τϊ)= -1/τι. There is no c>0 which satisfies

e sup ί/ μ o = _ c

for each n.
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(Bκ), (Bk) and (C). It is easy to verify:
(i) Consider a kernel which is locally bounded outside the diagonal set. A

necessary and sufficient condition for (Bκ) ((Bk) resp.) to be true is that Q = 0
(Q / = r 0 resp.).

(ii) Consider a kernel which is continuous outside the diagonal set. A
necessary and sufficient condition for (C) to be true is that D = 0.

1.6. Topologies.

We shall introduce several kinds of topologies on the class Jί of all meas-
ures μ in Ω, on the class ^ 0 of measures, whose potentials are bounded from
below on every compact set in Ω and not identically equal to oo5 and on the
subclass £ of Jί§ of measures with finite energy.

1) Vague topology.
Let &0(Ω) be the set of continuous real-valued functions with compact

support in Ω. The vague topology is defined on Jί by the semi-norms μ — v

Ω). The space Jί is then a Hausdorff space. We

call a set HCJί vaguely bounded if each semi-norm is bounded on H. This
amounts to say that, for every compact set KCΩ, sup μ(K)< oo.

We state two facts which will be used later; see Bourbaki [1] and Fuglede
[1] for them.

PROPOSITION 3. Any vaguely bounded set H is relatively compact in Jί with
respect to the vague topology.

PROPOSITION 4. Consider a nonnegative kernel or the class Jίκ of measures
which are supported by a fixed compact set K. Then the mutual energy (μ, v)
is lower semicontinuous on Jfx Jί or on Jίκ x JΪK respectively. Also Uμ(P) is
lower semicontinuous as a function on Jί x Ω or on Jίκ x K respectively.

We consider the unit point measure at every point of Ω and define a
topology of Ω by the vague topology of the corresponding unit point measures.
Then this topology of Ω coincides with the original topology of Ω.

2) Fine topology.
This was first introduced by H. Cartan [6] for the Newtonian kernel.

We shall denote by jδf (if resp.) the set of measures λ G Jί§ with the property
that (λ, μ) ((μ9 λ) resp.) is defined and finite for every μ e Jf0. Obviously ^ C <̂
The fine (adjoint fine resp.) topology is defined on ^# 0 by the semi-norms μ — v

->|(λ, μ) -(λ, y)|, xesf (μ-v->\(μ, λ)-(y, λ) | , λ 6 k resp.). The space ^#o
with this topology may not be a Hausdorff space.

In case there is no P for which Φ(Q, P) (Φ(P, Q) resp.)^oo as a function
of Q, we define the fine (adjoint fine resp.) topology of Ω by the fine (adjoint
fine resp.) topology of the corresponding unit point measures; every point
measure belongs to J?o in our case. This is the weakest topology which makes
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all potentials (adjoint potentials resp.) of measures of J£?(J£? resp.) continuous.
We shall discuss the fine topology in Ω later (not in this paper).

3) Weak topology.
Under the assumption that the kernel is of positive type, the weak to-

pology is defined on £ by the semi-norms μ — v->|(τr, μ) — (τr9 v)|, n^S^ pro-
vided that (π, μ) and (TT, V) are defined and finite.9) The space «f with this
topology may not be a Hausdorff space.

4) Strong topology.
Under the assumption that the kernel is of positive type, the semi-norm

\\μ — v\\ = V(μ, μ) + (̂ 5 v) — 2(μ9 v\ considered under the condition that (//•, v) is
defined, defines the strong topology on <f. This may not give a Hausdorff space
again. A Cauchy net in *f with respect to this topology will be called a strong
Cauchy net.

H. Cartan [5; 6] proved in the Newtonian case that, in the space <f, the
strong topology 4) is stronger than the weak topology 3) and 3) is stronger
than the fine topology 2), and that, in the space ^ 0 , 2) is stronger than the
vague topology 1). He showed also that, if the energy of each element of a
sequence in £ is bounded, then the first three convergences are equivalent.

Let us consider a general kernel of positive type. Obviously 4) is strong-
er than 3), and 3) is stronger than 2) on S. However, we give

EXAMPLE 1 to show that 2) is not stronger than 1). For Ω we take E3 and
two points Pi and P2 which do not belong to E3. We preserve the topology of
E3 and regard Pi and P2 as isolated points. We set

P) = l for PeE3 and ί = l, 2,

for P,QβE3.

We observe that ££ is a subclass of the ĵ f-class in E3 for the Newtonian kernel
and each measure of 3? has a finite total mass. We denote the unit measures
at Pi and P2 by μλ and μ2. Sinee (λ, μ1) = (\9 μ2)=\(Ω) for every λ e S£, μx and
μ2 are not separated in the space ^ 0 with the fine topology. This shows that
2) is not stronger than 1) because Jί with the vague topology is a Hausdorff
space.

We note that the energy and continuity principles are satisfied but μu

in this example.
Next we are concerned with a net T in S with bounded energy. Without

9) Choosing πΊ, , τtn in g such that each (#&, μ) is defined and finite,

Γ\ {>E ^ {τtk> v) is defined and \(πk, μ)~(πk> v)\ < 1}

is taken as a neighborhood of μ and all such neighborhoods constitute a base of neighborhoods of
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any condition there is no equivalence relation among 1), 2) and 3); the situa-
tion is different from the Newtonian case.

EXAMPLE 2. We shall show the existence of a kernel, satisfying both the
energy and continuity principles, and a strongly converging sequence of meas-
ures which does not at all converge vaguely. We consider a positive con-
tinuous strictly positive definite function φ(x) defined on the #-axis. We take

CO

for Ω the subset \j {1/n} w{ —1} of the #-axis and define

L 1 *'

This kernel satisfies both the energy and continuity principles. We denote
by μn the unit measure at the point x = l/n, and by μ0 the unit measure at %
= — 1. We see that (μm μw) — <p(0) f° r every n and that

t~μo, μn-~μo)==φΦ)~hφ(β) — 2φ\

tends to 0 as 7z->oo. Hence the sequence μu μ0, μ2, μo, converges strongly
to μ0. However, it does not converge vaguely at all.

EXAMPLE 3. We shall show the existence of a sequence of measures, with
bounded energy and supported by a fixed compact set, which converges vaguely
but not finely.

We modify Example 9 of Ohtsuka [7]. Let Ko be the segment 0<I#<i 1,
y = 0 in the (#, y)-plane E2. We define Φ(P, Q) = Φ(Q, P) in a neighborhood
Vx V oΐ KOXKQ as in that example and by ψQ'1 for every Q if P lies suffi-
ciently far, say outside a neighborhood Vλ ^ V of Ko. For other pair (P, Q) we
define Φ(P, Q) = Φ(Q, P) arbitrarily so that it is continuous in the extended
sense and finite outside the diagonal set in E2 x E2. The uniform unit measure
μ0 on KQ belongs to jδf. In fact, as P approaches Ko, Uμ°(P) stays bounded as
is calculated in the quoted example. Therefore if μ is a measure for which
Uμ(P)^ oo3 and if μv± denotes the restriction of μ to Fi, then

(μVv μo)= j J U"* dμVl < SUP

and

= \ μ0,

where Uμ~μvι is the potential of μ—μVl with kernel 1/PQ. Since it is con-
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tinuous in F i ? it is bounded on Ko. Therefore (μ—μVv μo)< °°. Thus (μ, μo)< oo
for any μ with Uμ(P)^°o and it is concluded that μ0 e ££. Now we take the
uniform unit measure on the segment Kn\ 0 <^<11, y=l/n for μn. Obviously
it converges vaguely to μ0. Ifn is sufficiently large, then KnCV and

*o, μo)= \ \ n y ax dξ = - Q - .
Jo Jo V {x — ς o

However, lim Uμ°(P)^4asP approaches Ko along Kn. Therefore

o
lim (μOi μn) ^ 4 > _ _ = (μOj μo)

Thus {μn} does not converge finely to μ0.
In this example the kernel neither is of positive type nor satisfies the

continuity principle. We shall give later an example in which the energy and
continuity principles are satisfied and yet there exists a sequence of measures
with bounded energy and converging vaguely but not finely; see Remark 1
to the corollary of Theorem 1.8.

Fuglede [1] denoted the following condition by (CW):
Any vaguely convergent net in S with bounded energy converges weakly

to the vague limit.
Let us denote by (CW)' the following weaker condition:
Any vaguely convergent net in «f with bounded eneϊ gy and supported by

a fixed compact set converges weakly to the vague limit.
First we give

LEMMA 1.4. If the kernel is of positive type and satisfies the continuity
principle, then every ve.S1 can be approximated with respect to the strong to-
pology by the restriction vκ of v to some compact set K with the property that
UVR(P) is continuous in Ω.

PROOF. Given ε>0, we choose a compact set Kι such that \\v — vKι\\<ε
where vKχ is the restriction of v to Kλ. Since the subset of Ku where UVχι(P)
is finite, has a vanishing rvalue, we can find by Lusin's theorem a compact
set KCKi such that v(Kι~K) is arbitrarily small and the restriction of UVκι(P)
to K is continuous. We shall denote by vκ the restriction of v to K. Since
UVRI~VK(P) is lower semicontinuous, the restriction of

to K is upper semicontinuous and hence continuous on K. By the continuity
principle, UVR(P) is continuous in Ω. Let us suppose that we have chosen K
such that \\vKl — vκ\\<ε is satisfied. This is possible because
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approaches 0 as v(Kι—K) tends to 0. We have then

II v — ̂ A | | ^ | | y — vκx\\ + 1 1 ^ — ^ I l ^ 2 e .

Now we prove

THEOREM 1.1. // the kernel is of positive type and satisfies the continuity
principle, then (CW)7 is satisfied.10)

PROOF. Let T= {μω; ω e D} be a vaguely convergent net with \\μ\\ <M< °o
and SμCF, a compact set, and let μ0 be the vague limit. By Proposition 4

For given vζ.£ let vκ be a measure with the property described in Lemma
1.4. If || v — vκ\\ < e we have for μω € T

|(,, μω)~(vκ, μω)\ ^\\v-vκ\\\\μ\\<eM.

Similarly

We take a continuous function fo(P) with compact support which is equal to
1 on F. Then

j J J o = (vκ, μ0).

Since

we see

lim (v%, ι
ω

-I

that

u,ω)= l i m I

J — ( y

5 μo)l

l im (y, μω) = (v, μo).

Thus Γ converges weakly to /z0.

EXAMPLE 4. We shall show that the energy principle alone is not suf-
ficient in Theorem 1.1. We take a positive continuous strictly positive de-
finite function φ(x) on the *-axis, and a positive bounded lower semicontinuous
function ψ(x) which has a discontinuity at x=0. We take the interval
for Ω and shall show that

Φ(x, γ) = Ψ(x

10) This was essentially proved in Ohtsuka
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satisfies the energy principle. Let μ, v be different measures in Ω. Then

I ψdμ and i ψdv can be regarded as different measures in Ω. It follows that

j j Φ(x, y) d (μ-v) (x) d(μ-v)(y) = ^ ψ{x-y) (ψdμ-ψdv)(x)(ψdμ- fdv) (y)>0.

We denote the unit measure at x=l/n by μn and the one at x = 0 by μ0. Evi-
dently μn converges vaguely to μ0. We observe that

(μ*t, μn) =

and

lim 0^,/A0)

which shows that μn does not converge weakly to μ0. Thus (CWX is not true.
Fuglede gave a similar example, i.e. Example 5 in [1].
This kernel is not continuous even in the extended sense. So we raise

QUESTION 1. How about if we require the continuity in the extended sense?
We have only one example, Example 2 of Ohtsuka [7], of kernel with the

following property: It is positive, symmetric, continuous in the extended sense,
equal to oo only on the diagonal set and satisfies the energy principle but not
the continuity principle. It is easy to see that this example does not answer
Question 1.

The next problem is as to when the weak (fine resp.) convergence im-
plies the vague convergence. By Bourbaki [1] a family of nonnegative func-
tions is called positively rich if, for every compact set K in J2, we can find a
relatively compact neighborhood ΛO K such that every nonnegative continuous
function with support contained in K can be approximated arbitrarily close
by functions, with support contained in JV, of the family.

We have as in the Newtonian case (see H. Cartan [5; 6])

THEOREM 1.2. // the family of nonnegative functions with compact support
of the form

Σ c * Uμ*; QgO, μκe<?(££> resp.)
k = l

is positively rich, then the weak (fine resp.) convergence implies the vague con-
vergence.

Next we establish

THEOREM 1.3.n) Suppose that the kernel satisfies the energy principle and

11) This was proved essentially in Kishi
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(CWy. Then every weakly convergent net T={μω; ω<ED} in £ with hounded
energy and supported by a compact set K converges vaguely to the weak limit.

PROOF. First we observe that min ||μ,[| for unit measure μζ.£κ is at-
tained by some measure μ*. In fact, we choose a sequence {μn} of unit meas-
ures of &κ such that ||/ |̂|—•inf \\μ\\. By Proposition 3 there is a subnet {μώ;
ώ e D} of {μn} which converges vaguely to some unit measure μ*. By Pro-
position 4 it holds that

μ )>0.

It is easy to see that μ* e &κ and our observation is justified. The assumption
||μJ]<M, coGZ), implies that μω(K) is bounded for ω€D, because

Now suppose that T does not converge vaguely to the weak limit μ0.

Then there exists f€V0(Ω) such that I fdμω+> \fdμθ9 ωeD. Let T= {μ*; ω

e Df) be a subnet of T such that lim I fdμ* φ 1 fdμ0 exists.

By Proposition 3, there is a subnet T/={μϋf; ω" e.Dff) of T which con-
verges vaguely to some measure μ0. This μ0 is different from μ0 because lim

\fdμ^=\fdμoφ\fdμo. By condition (CW)', T" converges weakly to μ'o.

Since (v, /Λ0) = lim (y, /Aω) = lim (y, μj)=iy9 μΌ) for any v e ^, it follows that (v, ^0

— /AO) = O. Taking /x0 and ^ for v, we have ||/ 0̂ —-/̂-o!ί = 0. Consequently μo —μό
by the energy principle. This is a contradiction. Thus T converges vaguely

to μo
Combining this theorem with Theorem 1.1, we have

COROLLARY. // the kernel satisfies the energy and continuity principles,
then we have the same conclusion as in Theorem 1.3.

Les us consider Example 2 of Ohtsuka [7]. The kernel is given in E2 x E2.
It is equal to TQ~1'2 on Kx K, where K is the interval [0,1] on the #-axis, and
the support of any measure of & is contained in K. Hence it satisfies the
energy principle and (CWy. However, no function with non-empty support
disjoint from K can be approximated by a linear combination of potentials of
&. This shows that Theorem 1.3 cannot be derived from Theorem 1.2.

We can not replace the energy principle by the positivity of type in the
theorem. This is shown by Φ(P, Q) = l in E3 x E3.

In the case that the measures of a net are not necessarily contained in a
fixed compact set, we have to assume stronger conditions in order to conclude
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(CW); the necessity is actually seen by Example 2 and Theorem 1.5.

THEOREM 1.4. Suppose that the kernel is nonnegative and of positive type
and satisfies the continuity principle, and that, given any measure v with com-
pact support and ε>0, we can find a measure λ such that | |λ | |<ε and

outside some compact set. Then (CW) is satisfied.

PROOF. Let T={μω; ωeD} be a vaguely convergent net with
< oo. Let μ0 be the vague limit. By Proposition 4

Given v€<f and ε>0, we can find by Lemma 1.4 a compact set K such that
the potential of the restriction vκ to K of v is continuous in Ω and \\v — vκ\\ <ε.
By our assumption there are a compact set F and a measure λ such that ||λ||
<ε and Uvκ(p)^u\P) on Ω-F. Take /(P) of <€*{$) such that
in Ω and /(P) = l on F. We have

limim f

and

It follows that (yκ, μω) tends to (yκ, μ0). From

" I (Kfir> μo) — ( ^ μ\

we can conclude t h a t (v, μω) -> (v, /y,0).

QUESTION 2. Is ίfee following condition sufficient for (CW)? The kernel
Φ CP5 Q) ^ nonnegative and of positive type and satisfies the continuity princi-
ple, and Φ (P, Q) tends to 0 as P tends to the point at infinity while Q stays on a
compact set.

Corresponding to Theorem 1.3 we have

THEOREM 1.5. Suppose that the kernel satisfies the energy principle and
(CW) and is nonnegative. Then every weakly convergent net T= {μω; ωeD} in
S with bounded energy converges vaguely to the weak limit.

PROOF. Let K be any compact set, and (μω)κ be the restriction of μω to K.
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Since the kernel is nonnegative, \\(μω)κ\\^=\\μω\\< M<oo for ωEZλ As in
Theorem 1.3 we see that μω(K) is bounded on D. Therefore we can apply
Proposition 3. The rest of the proof is the same as in Theorem 1.3.

We prove also

THEOREM 1.6. Suppose that the continuity principle is satisfied. If a net
T of measures supported by a fixed compact set converges vaguely to μ0 and if
\Uμω(P)\<MF<°o(\Uμω(P)\<MF<oo resp.) on any compact set F in Ω for
every μMζ.T and /χo,12) then (v, μω) ((μω, v) resp.) tends to (y, μ0) ((μ,0, v) resp.) for
any v^S* with compact support.

PROOF. Given ves* with compact support and ε>0, we can find a com-
pact set KCSV such that v(Sv — K)<e and the potential of the restriction vκ of
v to K is continuous in Ω. We have

lim (vκ, μ(O) = (vκ, μo)
ω

and

^ U M s v for ωβD.

The same is true for μ0 and lim (y, μ:o)=(v, μ0) follows. The left case is simi-

lar.

1.7. Strong completeness.

A class of measures is called strongly complete if any strong Cauchy net
in the class converges strongly to an element of the class.

Before stating theorems concerning strong completeness we shall in-
troduce several new terminologies. Fuglede [1] called a kernel consistent if
it is of positive type and any strong Cauchy net converging vaguely to a meas-
ure converges strongly to the same measure. Likewise he called a kernel
K-consistent provided that it is of positive type and that, if any strong Cauchy
net in measures supported by a fixed compact set converges vaguely to a
measure, then it converges strongly to the same measure.

A kernel is called by Fuglede [1] pseudo-positive (strictly pseudo-positive
resp.) if (μ, μ,)2>0((μ, μ)>0 resp.) for every μ(μ^0 resp.) with compact sup-
port. It will be called strictly pseudo-positive in the strong sense if (μ, μ)>0
for every μ^O for which (μ, μ) is defined. We shall give an example of a
kernel which is strictly pseudo-positive but not in the strong sense. Consider
the logarithmic kernel on Lo: \χ\ <I2 on the s -axis, and the unit equilibrium
measure μ0 on Lo, and take | * | < 2 for Ω. Then (μ, μ)>0 for every μ^O with

12) It will follow from Theorem 1.15 that \U^(P)\^MF (\Uμ°(P)\^MF resp.) if this inequality
is assumed for every μMζ. T.
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compact support in Ω but (μ.o, μo) = O, μ0 being considered as a measure in Ω.
First we prove

LEMMA 1.5. (Fuglede [1]). A kernel of positive type which satisfies (CW)
((CWy resp.) is consistent (K-consistent resp.).

PROOF. We consider a kernel of positive type which satisfies (CW). Let
T= {μω; G)GD}bea Cauchy net which converges vaguely to a measure μ0. We
may assume that \\μω\\ is bounded. By (CW) it converges weakly to μ0. We
take any v e £ and see that

b e c a u s e

II/AO — v | | 2 = = l i m (μo — v, μ ω — v) <L l i m H/̂ o —y|| \\μω — v\\.
ω ω

Given ε>0, if we take a suitable ω0, then

||/Aω' —μoll^lim HAW — μω\\<ε for every ω'^ωo
ω

This shows that T converges strongly to μ0. The case when (CW)r is satisfied
is similar.

THEOREM 1.7. Let K be a fixed compact set in Ω, and assume that the kernel
is strictly pseudo-positive and K-consistent. Then $κ is strongly complete.

PROOF. Let T= {μM; ωe.D) be a Cauchy net in Sκ. We may assume that
|!μωj| is bounded. As we have shown in the proof of Theorem 1.3, there exists
a subnet T of T which converges vaguely to some limit μ0 e £κ> By Lemma
1.5 it converges strongly to μθ!> and hence T converges strongly to μ0.

COROLLARY. // the kernel satisfies the energy principle and the continuity
principle, then $κ is strongly complete.

REMARK 1. If we consider the class of measures of general sign of the
form μ — v, μ, v e £κ, it is not necessarily strongly complete as an example in
the Newtonian case was given in H. Cartan [5], footnote 13.

REMARK 2. Even if the kernel satisfies both the energy and continuity
principles, δ is not necessarily strongly complete. We shall present an ex-
ample.13)

13) An example was first communicated orally to the author by Aronszajn in 1959 at Lawrence.

The present example was proposed by Ogasawara at Hiroshima in 1960. Fuglede (Example 4 of

[Ίj) showed that g is not complete for the kernel l/PQ+l considered in Ez. If we compactify Ω

with the Alexandroff point oo and define the kernel by 1 when at least one of the variables is oo,

then β defined with respect to this extended kernel is complete.
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We exclude the closed unit ball with center at the origin from E3 and
take the rest for Ω. We consider the Newtonian kernel Φ(P, Q) = l/ψQ. It
satisfies the energy principle and the continuity principle in Ω naturally. Let
μn be the uniform unit measure on the spherical surface with center at the
origin and with radius equal to 1 + 1/n. The sequence {μn} is a Cauchy se-
quence but there is no strong limit; the unique strong limit in E3 is the uni-
form unit measure on the surface of the unit ball excluded from E3.

In the example, however, <f becomes complete if we add the surface of
the unit ball to Ω. So the following question was raised orally by Kishi:

QUESTION 3. Are there a space Ω and a kernel Φ satisfying the energy and
continuity principles such that, for any extension Ω'^> Ω and any extension Φ'
satisfying the energy principle, £ defined with respect to Ω1 and Φ' is not strongly
complete?

If we assume more, we have

THEOREM 1.8. // the kernel is nonnegative, strictly pseudo-positive1^ and
consistent, or if inf (μ, μ) for unit measures μ with compact support is positive
and the kernel is consistent, then £ is strongly complete.

PROOF. Let T= {μω; ωeD} be a Cauchy net. We may assume that \\μω\\
is bounded by M<oo. If the kernel is nonnegative, \\(μω)κ\\^M is true for
the restrictions (μω)κ to any compact set K and we see that {μω} is vaguely
bounded in Jί. Under the alternative condition we have the same conclusion.
In fact, observing that W= inf (μ, μ) is the same for unit measures μ with or
without compact support, we obtain

The rest is the same as for Theorem 1.7.

COROLLARY. In the example in Remark 2 to Theorem 1.7, (CW) is not
satisfied.

REMARK 1. Actually μn in Remark 2 has bounded energy and converges
vaguely to 0 but not finely to any measure.

We may need a proof for the last statement. Suppose that the sequence
converges finely to μ0. Every μm belongs to if and (μm, μn)=(l-\-l/myι for
every n<Lm. Therefore μo^O but this contradicts the following Remark 2.

Remark 2. In the same example, every finely convergent sequence of
measures converges vaguely to the same limit, thus showing that condition
(CW) is not always necessary to have the conclusion in Theorem 1.5.

PROOF. It is known (Cartan [5]) that every nonnegative difference μ of
uniform measures on spherical surfaces belongs to ££ and that the family of

14) As is remarked in § 2.1 of Fuglede £1], a kernel is nonnegative and strictly pseudo-positive
if and only if φ(P, Q)^0 and φ(P, £ ) > 0 for any P,
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all linear combinations with positive coefficients of potentials of above meas-
ures μ is positively rich; see the preceding section for the notion of positive
richness. This proves the assertion.

We take this occasion to discuss the question raised in footnote at p. 166
of Fuglede [1]. The question is as follows:

Consider a kernel which satisfies the energy principle and assume that £
is complete. Does then any strongly convergent net converge vaguely?

Let us see that Example 2 in the preceding section gives a negative

answer. We consider Ωo = \J {1/n} \J {0} as a subspace of the #-axis and set

^o(#, y)=φ(χ—y). The space £ defined with respect to Ωo and Φo is certainly
complete and the completeness of £ defined with respect to Ω and Φ follows.
However, as shown in Example 2, there is a strongly converging sequence
which does not at all converge vaguely.

APPLICATION 1. For the kernel ψQ~Λ, 0<α</z, in En(n^S)9 £ is com-
plete.1^

Since it is well known that both the energy and continuity principles are
satisfied, it will be sufficient to show (CW). One needs to examine the con-
dition on the existence of λ required in Theorem 1.4. Let v be a measure
with compact support and ε>0 be given. We may assume that v is a unit
measure. Let Br be the ball with origin as center and with radius r, which
contains Sv in its inside. Let \r be the uniform unit measure on the surface
3Br, and ωr be the surface area of 3Br. We have

, U w ^ ^ k L wdS(p)dS(Q)

r«ω\

Therefore if r is sufficiently large, | |λ r | |<e. As P tends to the point at in-
finity, U\P) divided by 2Uλr(P) is approximately equal to WΛ/(2Wa) = 1/2
<1, and hence 2\r is a required measure in the theorem.

APPLICATION 2. Let Ω be an n-dimensional Greenian space (n i> 2)16) and
G(P, Q) be the Green's function with pole at Q on Ω. Then (CW) is satisfied for
the kernel G(P, Q).17)

15) By Theorem 1.8, it is seen that g is complete. This was first proved in Deny QlJ. The authors
Aronszajn and Smith of {\Γ\ assert at footnote that they have a different proof. It is also proved by
Fuglede Γl], applying a result concerning the completeness of g for some convolution kernels (Theo-
rem 7.4).

16) See Brelot and Choquet Γ1U for Greenian spaces.
17) By Theorem 1. 8, again g is complete. The possibility of extending Gartan's theory to hy-

perbolic Riemann surfaces was already asserted in Bader Ql] and Parreau {\~\. An explicit proof
of the completeness of <f in the case of a hyperbolic Riemann surface was first given in Edwards
[[1], We believe that our proof is more direct (see § 6 of his paper). Furthermore, we observe that
only the fact that the kernel is of positive type and not the energy principle is proved there.
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We begin with an outlining of the proof of two principles.18) We use the
notations x,y,--- for points in En and recall the following well known property

of a potential with kernel log Ί (τz=2) or (>:> 3) in En:
\*-y\ ' ' \χ-y\"-2

lim Uμ(x) = lim Uμ(x)
x-^x0 x<=Sμ,x^x0

if the right side has a meaning. In order to have such an equality in the
case of a Greenian potential, it is sufficient to prove it for μ whose support is
contained in an image in En of a neighborhood of a point of Ω. In the image
in En we can write

G(P, Q)= log T—^-T + h(x9y) if n=2

and

1

with a function h which is continuous in (#, 7). On account of the equality
holding for potentials in Em we obtain

lim U*(P)= lim U*(P)
PP PSPP

for any Greenian potential of a measure μ with compact support in Ω and for
Po not isolated on Sμ.

Let jubea measure with compact support in Ω such that its potential is
bounded on Sμ: E7*(P)^M on Sμ. Let {$„}, £ O S μ , bean exhaustion of ώ
with smooth boundaries, and Gn(P, Q) be the Green's function on Ωn. Ob-
serving that Gn vanishes on the boundary dΩn and applying the above equality
at each point of Sμ9 we see that

^ M on Ωn

on account of the maximum principle for harmonic functions. As τz->oo the

left side tends to Uμ(P)= 1 G(P, Q)dμ(Q) and it is concluded that the first max-

imum principle ((P) of § 1.2) is satisfied; the continuity principle follows

from this by (1.10). By Ninomiya's theorem the kernel is of positive type;

see Corollary of Theorem 2.42 in the next chapter. The fact that \\μ — v\\=0

only if μ^v can be proved as follows: We infer that U^=U^ from the fact

(μ — v, λ) = 0 for any measure λ which is equal to the uniform measure on an

18) When these facts were stated to be true in Ohtsuka Ql], in the case of a hyperbolic Riemann

surface, the author had in his mind the proof which is given here.
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image in En of a neighborhood in Ω. On account of the following lemma, we
can conclude that μ=v.

LEMMA 1.6. Let μ, v be measures with compact support in En(n^>2), and
h(x) be a harmonic function in an open set GCEn. If Uμ(x) and U\χ) mean

the potentials, with kernel Φ(x, γ)=log Ί Γ or-, — γ 9 of μ and v respec-
\χ-y\ \χ-y\

tively and

in G (except for a set of Lebesgue measure zero), then μ — v vanishes for every
Borel set in G.
A proof will be given at the end of the present section.

Let us prove the existence of λ in Theorem 1.4. Let v be a unit measure
with compact support. We take an exhaustion {Ωn}, with smooth boundary,
of Ω such that Ωn\j3ΩnCΩn.hί and Ωγ contains Sv in its inside. Let Qo be an
arbitrary point of Sv. By Harnack's theorem, there is a constant c > l which
depends on Qo and 5V such that

— G(P, Qo)<G(P, Q)<cG(P, Qo) for any P^Ωί and QeSv.
c

Therefore for P $ Ωλ we have

(1.25)

Let μζ be the harmonic measure at P€ Ωn with respect to the domain Ωn.

Then \ fdμζ gives the value at P of the Dirichlet solution in Ωn for the given

continuous boundary function f(Q) on 3Ωn. Particularly for f(Q)=G(Q, Qo\

\ G(Q, Qo)dμζ(Q) = Uμ«(Qo) is equal to G(P, Qo) on dΩn. Therefore G(P, ρ0)
p

— Uι>n(Qo) is equal to the Green's function Gn(P, Qo) in Ωn with pole at Qo. On

account of its symmetry, it is equal to G(Q0, P) -Uμ%\P). Thus UJn\P)

=G(P, Qo) on dΩn. We shall write simply μn for μ#o. If m>n, then

Uμn(P)^Gm(P, Qo) on -dΩn\J-dΩm.

By the maximum principle for harmonic functions, this is true on Ωm — Ωn.
By letting m -> °o it follows

(1.26) Uμn(P)^G(P,Q0) in Ω-Ωn.

Although we need only this inequality, a similar reasoning leads us to the
inverse inequality and hence to the equality in Ω — Ωn.

We can compute \\μn\\2 explicitly:
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(μm μn)=\ Ur\P)dμn(P)=\ G(P,

This is the value at Qo of the Dirichlet solution in Ωn for the boundary value
, Qo). We see that lim Uμn(P)=h(P) is harmonic on Ω. If it were posi-

tive, then G(P, Q0) — h(P) would be a positive harmonic function in Ω except
for its singularity at Qo, which is really smaller than G(P, Qo). This is im-
possible and hence Uμn(P) decreases to 0 as τz->^. Consequently we can
take cμn with large n for λ on account of (1.25) and (1.26).

PROOF of Lemma 1.6. It will be sufficient to prove μ(K) = v(K) for every
compact set KQG. We take a sequence {/„(#)} of three times continuously
differentiable functions decreasing to the characteristic function Xκ of K. We
assume also that the support of each fn(x) is contained in G. We know that

in the classical potential theory, where ωn is the area of the surface of a unit
sphere. We have

U" AfH dy = j dμ(x) J Φ(x, y)Afn(y)dy =ωn J /„ dμ

and similarly \ TJ'Άfn dy = ωn\ fn dv. Since \ hAfn dy=0, it follows that

By letting n -> oo we obtain

1.8. Capacity.

There are many ways to define capacities for a positive kernel. One way
is to define an inner capacity by

sup {μ(Ω); compact SμCX, Uμ(P)<,l in Ω}

for any set X. In case the kernel has general sign, it is difficult to define
capacity in this manner. We shall, instead, consider F, (X) and Ve(X) defined
in § 1.1 or

Ff(X)= inf sup J7"(P).

for any set Xφ0, where the infimum is taken with respect to unit measures
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μ with compact SμCX> We set Vf(0)=°° and

)= sup Vf(G\

where G is an open set. Obviously V{(X)^VT(X) and Ve(X)<,V*(X) but, as
Example 5 of Ohtsuka [7] shows, there is a case in which V{(K) and Vf(K)
are essentially different for a compact set K.

Choquet [3; 5] obtained several results on Cf(X) = l/Vf(X) and Cf(X)
= l/Vf(X), in case kernels are positive. We shall aim at giving similar results
on Vi(X) and Ve(X) in our section. Our intention, however, lies primarily in
preparing for the next section and a full account on set functions related to
capacity will be given on another occasion.

We begin with studying sets on which potentials are equal to oo.

THEOREM 1.9. For a kernel whose adjoint kernel satisfies (BK) the potential
of any measure μ with compact support is finite p. p. p. in Ω.

PROOF. Suppose that there is a compact set K with Vi(K)<&° on which
Uμ(P)==oo, We take a unit measure ve#κ > whose potential is bounded on 5V,
and find a compact subset Kf of K such that v (K') > 0 and ϋv (P) is continuous
as a function on K\ by means of Lusin's theorem. By our assumption UV(P)

is bounded on Sμ. Hence I ϋv dμ< oo. But this is impossible because

Thus £7'Λ(P)<oo p.p.p. in Ω.

THEOREM 1.10. If Ugaheri's maximum principle is satisfied, then the ad-
joint potential JJμ(P) of any measure μ with compact support is finite q.p. in Ω.

PROOF. The set

GH={P;U"(P)>n}

is open in Ω. We assume that GnΦ 0 for each n. Let v be any unit measure

with compact support SvCGn. If sup UV(P)<oo? by assumption there is a con-

stant c>0 such that

sup U\P)<Lc sup U (P).

We have

7z<\ Uμdv = \ C/v dμ<Lc sup i

It follows from this that n<Lcμ(Ω)Vi(Gn). Since the set {P; ^ ( P ) = oo} is
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equal to A Gm its F^-value is infinite.
n

If we assume the continuity principle, we have

THEOREM 1.11. Consider a kernel which is locally bounded outside the di-
agonal set and which satisfies the continuity principle. Assume that Φ (P, P)
= 00 at each Pe.0^. Then Uμ(P) is finite q.p. in Ω for every μ with compact
support.

PROOF. Since the potential of any measure with compact support is
locally bounded outside the support, we may assume that the space Ω is com-
pact and, by adding a positive constant if necessary, that the kernel has a
positive lower bound; OTO for the new kernel is included in O^ for the old
kernel. We set

Gn={P; sup Φ(P, Q)>7i}.

Then Gn is an open set and decreases to O^ as n^oo. Since the kernel is
locally bounded outside the diagonal set, there is, for given m, a number n
such that the closure of Gn is contained in Gm. According to Corollary 1 of
(Uκ) (i) of § 1.5, Ugaheri's maximum principle (U) is true on Ω — Gm this being
considered as a space. Let us denote the restriction of a measure μ to Gn by
μn. The potential ϋμ"μn(P) is finite q.p. in Ω — Gn by the preceding theorem.
Since Φ(P,Q) is locally bounded outside the diagonal set, Uμn(P) is locally
bounded in Ω — Gm. Therefore Uμ(P) is finite q. p. in Ω — Gm. It follows that
Uμ(P) is finite q.p. in \j (Ω-Gm) = Ω-Oco by proposition 2 of § 1.6. Corollary

m

2 of (viii) in § 1.4 shows that OTC consists of at most a finite number of points.
Since Φ(P, P) = oo at each of them, Ve(00o)=°°. Consequently Uμ(P) is finite
q.p. in Ω.

LEMMA 1.7.19) // Φ(P, Q)>m> — 00 on the product KxK of a compact set
K, then

PROOF. We may assume that Vi(K) <oo. Given e>0, let μ be a unit
measure supported by K such that

S U P ( ) (

For t>Vi(K) + ε, we set

and E2= {PeK; Uμ(

and denote by μλ and μ2 the restrictions of μ to Ex and E2 respectively. We

19) See Ghoquet £3 5].
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have

Uμ'-m) dμ=\[ (Φ~m) dμdμ

^>l\ (Φ— m)dμdμι = \ (Uμ — m)dμi^>(t — m)μi(K).

Therefore

t — m

We observe that

Vi (K)μ2(K) <L V(μ2) = SUp \ (Φ — m) dμ2 + πιμ2 (K)

and

ί —77z ^ (t — m)2

Now follows

w < ^ (t-m)2

for any t>Vi(K). The minimum value of the right side with respect to t is
equal tbΛ(y"i(K) — m) and our lemma is proved.

REMARK. It may deserve attention that this lemma holds without any
additional assumption, contrary to the result by Choquet in which the c-dilated
maximum principle is assumed and the number c appears in the inequality.
The coefficient 4 will be replaced by 2 in the next chapter.

From this lemma follows easily

THEOREM 1.12. If Φ(P, Q)>m> - oo on Xx X, then

Vi(X)-m^4(Vi(X)-m).

If Go is an open set such that Φ (P, Q) >m > — oo on Gox Go, then for any X C Go,

COROLLARY. The notion of p. p. p. is the same for Φ and Φ. The similar
fact is Wue for q. p. on any compact set in Ω.

We shall say that a function f(P) in Ω is quasicontinuons if, for any ε>0,
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there is an open set G with V{ (G) ;> 1/ε such that the restriction of f(P) to
Ω — G is continuous.

First we give two lemmas which are essentially due to Choquet [3; 5].

LEMMA 1.8. Consider a positive kernel which is continuous outside the di-
agonal set, and assume that the kernel satisfies the continuity principle and the
adjoint kernel satisfies the c-dilated maximum principle with c^>l. Then, for
any measure μ with compact support, any ε > 0 and any η > 0, there is an open
set G with Fx (G)I>l/ε and a decomposition μ=v+τt such that τc(Ω)<η and the
restriction of UV(P) to Ω — G is continuous and not greater than Acμ(Ω)/e.

PROOF. We set G={P; Uμ(P)> 4cμ(Ω)/e} and see F", (G)^4/ε as in the

proof of Theorem 1.10. By Theorem 1.12, F, ( G ) ^ F , (G)/4^ 1/e. We denote

the restrictions of μ to G and Ω — G by μG and μG respectively. There is a

compact set KCG such that μ(G — K)<η/2. We shall denote by μκ the re-

striction of μ to K. Since U^G(P) is finite on S^==Sμ—G, there exists a com-

pact subset KχCSμ-G such that μiS^-G-KχXη/2 and the potential Uμ'κι(P)
of the restriction μKl of μ to K± is continuous in Ω on account of the con-
tinuity principle. The measures v=μκ-hμKl and τt=μ — v have the required
properties respectively.

LEMMA 1.9. Consider a positive kernel which is continuous outside the
diagonal set and assume that the kernel satisfies the continuity principle and
the adjoint kernel satisfies Vgaherΐs maximum principle. Then the potential
of any measure μ with compact support is quasicontinuous in Ω.

PROOF. Wτe denote by Gu vu τtx an open set and measures obtained in
Lemma 1.8, corresponding to μ, e=δ/2, η = (8/2)2. We shall define Gn, vm τrn

by induction. Corresponding to τrn_u ε=S/2n, η=(8/2n)2, we obtain Gm vm τrn

as in Lemma 1.8. We set G=\J Gn and, by Proposition 1 in § 1.1, we have
n=l

1 < - ^ i 1 < - >?̂  8 ~

Vi(β) ^έi Vi(βΛ) -~£i 2» -

We see that w=Σy» and hence that £/μ(P) = Σ UVn(P). By definition the re-
n = l n = l

striction of UVn(P) to J2 — Gw and hence to Ω — G is continuous. On J2 — Gn we

have

= 4C for ^

where c ;> 1 is a constant such that the c-dilated maximum principle is true
on Ω for the adjoint kernel. Therefore the convergence of Σ UVn(P) on Ω — G

is uniform, and hence the restriction of Uμ(P) = *Σ UVn(P) to Ω — G is continu-
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ous.
Now we prove

THEOREM 1.13. (cf. Choquet [3; 5], Kishi [2; 3]). Assume that the kernel
is continuous outside the diagonal set and that Φ(P, P) = oo at each point P of
O^. // both the kernel and the adjoint kernel satisfy the continuity principle,
then any potential of a measure μ with compact support is quasicontinuous.

PROOF. Since the potential is continuous outside Sμ, we may assume a

relatively compact open set containing Sμ to be the space. So we suppose

from the beginning that Ω is compact and that the kernel is positive. By

Corollary 2 of (viii) of § 1.4, there is only a finite number of points {Pk} of

O^ for the adjoint kernel. Given ε>0 we can enclose each Pk by an open

neighborhood Nk such that Vi(\JNk)>l/e. In each Nk we choose a neighbor-

hood N'k of Pk which is relatively compact in Nk, and denote the restriction of

μ to Ω—\jN'k by μ. By Corollary 1 of (Uκ) (i) of § 1.5, Ugaheri's maximum
k

principle is true on Ω—\jNf

k for the adjoint kernel. There exists an open set
k

G C ^ - vviV; such that F, ( G ) ^ 1/e and the restriction of Uμ\P) to Ω- \JNk-G
k k

is continuous, in virtue of Lemma 1.9. Then the restriction of Uμ(P) to Ω
— \jNk — G is continuous, because Uμ~μ'(P) is continuous in Ω—\JNk. We see

k k

that

1 < 1 • 1 < 2 e

— V(\JN) V(G) — '
<

Vi(\JNk\JG) — Vi(\JNk)
k k

Thus Uμ(P) is quasicontinuous.
We shall discuss the so-called problem of capacitability in § 3.6. Here

we shall prove the coincidence of the F rvalue and the Fe-value of a compact
set. This was first proved in Fuglede [1] under our general circumstances.

We shall use the following lemma in a special case in this section; it will
be used in Chapter III in full generality.

LEMMA 1.10. Let f(P)< °° be an upper semicontinuous function and g(P)
be a continuous function, both defined on a set XCΩ Let D be a directed set
and T={μω; ωζD} be a net of measures, converging vaguely to μ0, and {aω;
α)GD} be a net of real numbers converging to a finite number a0. Let {Yω;
ω £ D} be a net of subsets of X and Yo be a subset of X with the property that
every neighborhood of any point of Yo intersects all Ym ω ;> ω0 this ω0 depends
on the point and the neighborhood in general. Then

(1.27) lim sup {U^(P)-f(P)-aωg(P)} ^ s u p {Uμo(P)-f(P)~aog(P)}.

PROOF. We set
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= sup {Uμ»(P)-f(P)-aωg(P)}, ωβD or ω = 0,

and assume Vf(μo)> — °°. Given t< Vf(μ0), let Po be a point of Yo such that
Uμ°(Po)—f(Po)—aog(Po)>t. In case the left side is finite, we take a number
t\ in between. In view of Proposition 4 in § 1.6, there are a compact neighbor-
hood N of Po and a neighborhood ikf of μ0 with respect to the vague topology
such that U^P)-Uμ°(Po)>-(h-t)/4, -/(P) +/(Po) > - U - 0/4 and \g(P)
-g(Po)\ <min {(h-t) (4|βO|)"1, 1} for any PeNίλX and any μeM. There
is ωoeD such that μωeM, Yωr\Nφ0 for every ω^>ω0 and — aωg(P)-{~aog(P)
> — (ίi —ί)/4 for every PeNr\X and ω^ω0. We take an arbitrary point P^
of Yωr\N for each ω^ω 0. It holds that

t< Uμ\Pω) ~f(Pω) - aω g(Pω) < Vf(μω)

for every ω ̂  ω0. Therefore

z<:iim Vf(μω).
ω

By the arbitrariness of ί, we obtain (1.27). The case U"o(Po)-f(Po)-ao g(P0)
= oo can be treated in a similar fashion.

THEOREM 1.14. For any compact set

PROOF. We may assume that Ω is a compact space. The set D of all
open sets G containing K is directed by C We shall write Gλ > G2 if and
only if GιCG2. We assume Ve(K)<Vi(K\ and take a number a in between.
For every G^D there is a unit measure μG supported by G such that

(1.28) V(μG)<a.

The set {μG GeD} is a net and bounded in ~#. Hence a subnet {μ(ω) ωeD'}
converges to some measure μ0 vaguely by Proposition 3. We observe that S^
is contained in K because r\ G=K. Therefore VU0)^Vi(K). On the other

hand, by (1.27) and (1.28) we have

This contradicts the assumption a<Vi(K). Thus Vi(K)<:Ve(K). The in-
verse inequality being evident, the equality follows.

1.9. Sequence of potentials.

The next topic is concerning the convergence of potentials as measures
converge vaguely or strongly. First we give without proof
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THEOREM 1.15. Let D be a directed set and T={μω; ωeD} be a net con-
verging vaguely to μ0. If the kernel is nonnegative or if all measures of T
are supported by a fixed compact set, then

lim U

in Ω. In case every measure of T is supported by a fixed compact set K, if the
kernel is continuous outside the diagonal set, then

lim

outside K.

REMARK. There is an example which shows that the condition that every
measure of T be supported by a fixed compact set is necessary in order to
have the last equality outside a closed set containing \J Sμω even if μω(Ω), ωeD,

is bounded; in E3 we take for μn a unit measure at PnφPo which tends to the
point at infinity and set Φ(P0, Pn)=n. However, if for any given e>0 and for
a point Po lying outside the closure of \J Sμω we can find a compact set K

such that \Φ(P0, Q)\<ε whenever QeΩ — K, and if μω(Ω), ωeD, is bounded,
then the equality is true at Po.

Next we prove

THEOREM 1.16. (cf. Brelot and Choquet [2], Ohtsuka [5], p. 62). Assume
that the adjoint kernel satisfies the continuity principle. If a subnet T— {μω;
ωeD} of a sequence of measures, supported by a fixed compact set, converges
vaguely to a measure μ0, then

lim UfXω(P) = Uμv(P) p. p. p. in Ω.

PROOF. On account of Theorem 1.15 it is sufficient to prove that lim
ω

Uμω(P)<:Uμo(P) p. p. p. in Ω. If we deny this, we can find, by the condition of
the continuity principle, a unit measure v with compact support such that its
adjoint potential is continuous in Ω and

lim ίΓω(P)>£Γ°(P) on Sv.
ω

Since {μω} is a countable class of measures, we can apply Fatou's lemma and
see

lim U"«(P)dv(P)< lim \ U^(P)dv(P)= lim \ U\P)dμω(P) = (μ0, v).
ω ω J ω J

This is a contradiction and the theorem is concluded.
It is known (Choquet [3; 5], Kishi [2; 3]) that, if a sequenc {μn} sup-
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ported by a fixed compact set converges vaguely to μ0, then

lim Uμn(P) = U

except on a set X with V?(X) = °o in Ω under some additional condition. In
the second chapter we shall need a similar theorem in a slightly general case,
and so we prove

THEOREM 1.17. Assume that the kernel is continuous outside the diagonal
set, that Φ(P, P) = oo at each PζO^ and that both the kernel and the adjoint
kernel satisfy the continuity principle. If a subnet T={μω; ω£D} of a se-
quence of measures, supported by a fixed compact set K, converges vaguely to μ0,
then

lim Uμω(P) = Uμ°(P) q P in Ω.
ω

PROOF. It is sufficient to prove that

lim Uμ°(P)^Uμ°(P) q.p. in£,

on account of Theorem 1.15; we may suppose that Ω is compact in view of the
same theorem. If we use the notation <; for the order in D, then

Vω(P)= inf Uμω\P)

increases to lim Uμω(P). Given ε>0, we can find by Theorem 1.13 and Pro-
ω

position 2 in § 1.1 an open set Gs such that F;(G s)>l/e and the restriction of
£Γω(P) for each ω£D to Ω-G2 and that of Uμ°(P) are continuous. For v>0
we set

EXV) = {P; VSP) - CΓ° (P) > v}

and

-Gz; F ω (P)-U μ °(P)^ η } .

Since the restriction of Vω(P) to Ω — G2 is upper semicontinuous, Eω(ε, η) is a
compact set in Ω and hence Vi(Eω(ε, v))=Ve(Eω(ε, η)) by Theorem 1.14.

If Vi(Eω(ε, η)) were finite, we could find a unit measure v with SvC£ω(ε

? η)
such that UV(P) is continuous in Ω on account of the continuity principle. It
would follow that

V < \ {VχP)-UμKP))dv (P) ^ J (Uμ"XP)-Uμo(P))dv(P)

for any ω eD such that α/^ω. As /v-^μo, the right side tends to 0 and we
should arrive at a contradiction. Therefore Ve(Eω(e, v))=Vi(Eω(e, η))=oo for
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each ωGZλ By Proposition 1 in § 1.1 we have, with 7τz<inf Φ(P, Q) taken on
Ω x J2,

—m Vi(Gt)-m 1/β-m"

Since e is arbitrary, we have Ve(Eω(η))=°o for every 97 > 0 and ωeZλ On ac-
count of the relation

{P; lira C7fi"(P)-ί/'1o(P)>0} = 0 u 4
the F^-value of the left set is infinite by Proposition 2 of § 1.1. Namely,

lim Uμω(P)<,Uμ°(P) q.p. in Ω.

Next we consider a weakly convergent sequence of measures.

THEOREM 1.18. Assume that the kernel is of positive type and let {μn} be a
sequence of measures in g converging weakly to μ0. Then

lim Uμn(P)<^Uμ*(P) in Go

except on a set H whose any compact subset vanishes for every measure with
finite energy.

PROOF. Suppose that jim Uμn(P)>UμQ(P) on a compact set KCG0 with
re—»°o

Vi(K)<oo. We can find by Egoroff's theorem a compact subset Kx of K with
such that inf Uμ\P) tends uniformly to lim Uμn(P) on Kλ as ™->oo.

k

Hence Uμn(P) is uniformly bounded from below on Ki. We take any
(1, 1) and have by Fatou's lemma

I (lim Uμn)du>(μ0, v).
J re-^oo

This is a contradiction.
It will be shown in § 2.2 of the next chapter that the above stated char-

acter of the exceptional set H is equivalent to Ff(£Γ) = oo. Therefore the in-
equality is valid in fact p. p. p. in Go. It will also be proved that the inequality
holds q. p. for a strongly convergent sequence under some additional condition
(Lemma 3. 8).

1.10. Notes and questions.

One of important tools in classical potential theory was the selection theo-
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rem concerning measures; see Frostman [1] for instance. This was genera-
lized to the case of locally compact spaces by Dieudonne [1; 2] (placed in
Bourbaki [1] and our Proposition 3 in § 1.6) and it made the discussion of
potentials in locally compact spaces possible. This and the importance of
kernels which satisfy the continuity principle were recognized and empha-
sized independently and simultaneously by Choquet and the present author.
The idea of applying Egoroff s or Lusin's theorem goes back to Y. Yosida [1].
I recall the following comment on [1] by Kametani stated in Kagaku, 12
(1942), p. 230, in Japanese: The above results are rather topological. It
seems that the another aspect of the theory of functions, namely the part
using the theory of functions of real variables or the metrical part, has been
developing centering around potential theory. Recently Mr. Yόiti Yosida of
Hokkaido University proved nicely the main theorem in potential theory, i.e.
the maximum principle of Frostman, by the aid of the fundamental results in
the theory of functions of real variables, particularly using Egoroff's theorem,
without applying the theorem on the existence of equilibrium mass-distribu-
tion. Aren't there many other theorems and proofs which can be improved
after his excellent idea?

We shall state open questions some other questions as to principles were
raised in Ohtsuka [7].

1.1. How are principles related to each other if we restrict ourselves to
convolution kernels?

1.2. Question 1 in § 1.6.
1.3. Question 2 in § 1.6.
1.4. Question 3 in § 1.7.
1.5. Under the assumption of Theorem 1.18, is the inequality lim Uμn(P)

;> Uμ°(P) true in Go (with some exception)?
Remarks by B. Fuglede through a letter dated Dec. 20, 1960.

I take the liberty of making a few comments, in particular con-
cerning the three questions raised on p. 192, p. 194 and p. 197. In this con-
nection I shall refer to my examples 3 and 4, p. 208 if in my Acta paper. (In
example 3 I have forgotten to add the hypothesis that the set of points x
where /(#)= +oo should not be an open set unless it is empty). I use your
notations in the sequel.

Ad Question 1. Let 0</(P) <̂  + °°, and suppose / is continuous in the ex-
tended sense (i.e. from Ω to #+) and that the set SCΩ of points where /(P)
= + oo is neither void nor open. (Example: Ω=R= the real line; f(x) = l/x2>
interpreted as + °o for x=0). Then the kernel

is of positive type, but not inconsistent (and hence does not fulfill (CW)'). In
fact, let PQeS denote a non-interior point of 5, and let {Qω; ωeD} denote a
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net converging to Po and such that Qω&S. If we put μω= the mass l//(Qω)
placed at the point Qω, then these measures μω constitute a strong Cauchy net
which converges vaguely to 0 (because /(Q»)-*/(Po)= + °°) but not strongly
(because the energy of each μω is 1).— If we want an example in which the
kernel moreover satisfies the energy principle, we merely have to add /(P)
f(Q) any finite, continuous kernel satisfying the energy principle. I have no
example in which Φ(P, Q) is, in addition, finite for PφQ. Perhaps this was
what you meant?

Ad Question 2. The answer is no. Example: Again Φ(P, Q)=f(P)f(Q\
where now 0 </(P)< +oo5 y being continuous, and where /(P)->0 as P ap-
proaches infinity. In fact, the measures μP — the mass 1//(P) placed at P de-
termine a strong Cauchy net which approches 0 vaguely, but not strongly, as
P—• infinity.— If we want an example in which, in addition, Φ satisfies the
energy principle, we may take, e.g.,

in Ω=R3 (with/as above). In fact, this kernel is equivalent in the sense of
§ 5.1 in my Acta paper to the kernel studied in my Example 4, and hence in-
consistent.

As to Question 3, I have no answer, but it is easy to answer the corres-
ponding question concerning perfect kernels. In fact, the kernel on R3 just
mentioned has no perfect extension. For let Φf denote any kernel on a space
β'^β such that Φr = Φ on Ω x Ω. If Pf denotes a point of the closure Ω of Ω in
β'\ and if P'$β, then for any QeΩ

inf Φ(P, Q) = 0

andfor Q'eώ-ώ

Φ'(P\ Q')^L lim inf Φ\P\ Q) = 0.

In particular, Φ\P\ P')<10 for any P' eΩ-Ω. Consequently, Ω=Ω (i.e. Ω is
closed in Ωf) if Φf satisfies the energy principle, or just if Φr is strictly pseudo-
positive. It follows now that Φf cannot be perfect, for the restriction of Φ to
the closed set Ω would then likewise be perfect.

According to another letter he is writing a paper on perfect kernels, con-
sistent kernels, strong completeness, etc.

Chapter Π. Gauss variation.

2.1. Potential of an extremal measure.

Let Si denote the class of all sets which are measurable with respect to
every measure in Ω. Let A eSi be a set with iAφ. {0}, and /(P) be a function
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on A which is Sί-measurable. We are interested in the problem of minimizing
the expression

(21)

for μe £ with the property that μ(Ω — A) = 0 and I fdμ is defined. This pro-

blem will be called Gauss variatίonal problem. We shall write at times

for simplicity. A mutual energy can be written as (Uμ, v).
If we assume no further condition on μ then the problem will be called

unconditional, and if we assume some additional condition on μ the problem
will be called conditional. We begin with a conditional problem.

For measures μ and μ we Shall use the notation μ^μ if μ(A)^>μ(A) for
every A € 21. Let a set A of §1 be given and a measuίe μ with the property
that μ(Ω—A) = 0. A family of Sί-measurable functions {gk(P)}> ft=l, ••-, n,
defined on A will be called μ-ίndependent if there are {μk}, fc=l, 2, ..., ra, such
that each μu^μ and

(2.2) IK«ry,A**>ll=£θ,

where || || means a determinant. Given /(P), {gk(P)} and finite numbers {xk},
we shall consider the following classes of measures :

> {χk),f)= iμ-€ <?A; igk, μ)=χk for each k and </, μ> is defined},

and

&Ά({gk}> {χk),f)= iμ€£Ά; <g *, A6>=^ for each fc and </, μ) is defined}.

Certainly ^ ( { ^ } ? {**},/)=<^({#Λ}, W » / ) f o r a n y compact set X". For a
general set X we set

, {%k})= iμ£<?x' > Sμ is compact and (gh μ)=Xk for each k}.

In case / is upper semicontinuous and <oo on K, £κ({gk), fc}3 f)=&κ
}, {%k}) because </, μ) is always defined for any
First we prove

Theorem 2.1. Lei A 6e a set of 2ί mίΛ, SA^{ϋ) such that (μ> v) and (y9 μ)
are well-defined for μ^.£Ά and any v € $A> f(P) be an ^-measurable function on
A such that </, v) is defined for any vζ.gA and {gk(P)\ be %-measurable func-
tions on A such that (gk, v) is defined and finite for each k and for any v G #A-
If there exists an extremal measure μ* G #Ά({gk}, {%k}, f) such that
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(2.3) oo>/( / C 6*)=: min

and (2.2) is satisfied with some measures μk^μ*,20) then, {yk} being the solu-
tions of

( 2 4) Σ <g

it holds that

(2.5) ί>*(P) :> /(P) + Σ 7. g* (P)

on A except H with £Ή= {0} and the equality holds μk-a. e. for each k.
If, in addition, f(P) is upper semicontinuous and each gk(P) is continuous

on A, then

(2.6) ϊ>*(P) ^ / ( P ) + Σ Ίu gk(P) on C/ S^ n A

and the above exceptional set H is the intersection of A with an Fσ-set22) in Ω.

PROOF. Our proof will follow a pattern in the calculus of variation; we
owe the technique to Nagumo [1]. Let v be any measure of gA and {tk}, k=l>
• ', n, be the solutions of the equations

(2.7) Σ <gj, μk> h = <gj, v> ; = 1, ..., n.

With a positive parameter t we set

n

μ\t)z== μ — I / i tk

Since

re

μ — ' ί x i Cyfe yL6ŷ  ^1 \L I

is nonnegative for sufficiently small t. We have <̂g y, μ(t)}=Xj for each
in view of (2.7). If the coefficients of t and t2 in the polynomial I(μ(t)) are

finite, I(μ(t))^I(μ*) for sufficiently small t ^ O and

0 ^

Substituting (2.4) and (2. 7), we obtain

20) {gk\ are then ^-independent.

21) We recall that #ϊ** = -f φ dμ*=-^- (U^ +

22) An iv-set is a countable union of closed sets.
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k=l

n n n n n

= Σ h ! Σ <g"y, μ *> 7y = . Σ 7y Σ <gTy, μΛ> ί*= . Σ <gry, ^> 7y

Namely
n

ίO Q^ /ffμ * ,\ Σ7y^>

The coefficients of ί and t2 in I(μ(t)) are respectively

and

(Σ tkμk-v,

If <&'**, ί/>-oo or </, v>= -oc/, (2.8) is true. Hence we assume that <*>*, >̂
<oo and <(/, y>> — oo. Then the second coefficient is finite. The first coef-
ficient is <oo and can be equal to — oo only if </, v>=co. However, if so,
I(μ*) ^ ^ ( ^ ( 0 ) = ~~ °° this is impossible because we assumed /(/A*) to be finite.
Thus in any case (2.8) holds good. Since v e SA is arbitrary, (2.5) follows.

Next we integrate (2.5) with respect to μk and obtain

< , μy<f9 ^ > 7y <gy, ^ >

We should have the strict inequality here if the strict inequality were true
on a set of positive ^-value in (2.5). It is impossible on account of (2.4) and
the equality is true in (2.5) μk-a. e. for each k.

We assume now that f(P) is upper semicontinuous and each gk(P) is con-
tinuous on A. If there were a point Po G Sμkr\A at which

then the inequality would be true on A in a neighborhood NPQ of Po by the
n

lower semicontinuity of £/μ*(P) and by the upper semicontinuity of f(P) + Σ

)- On account of (2.5)

( / + Σ 7y gj) dμk = < /̂5 ẑ yfê  4- Σ <(g y, /^^^ 7y
y-i y=i

This contradicts (2.4), and (2.6) is proved. Since

Hp={peA; ^ * ( P ) < / ( P ) + Σ7*«r*(P)—^Σ
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is closed relatively to A, the exceptional set H=\JHP is the intersection of an
P

Fσ-set with A.

COROLLARY. Assume that /(P)< °° is upper semicontinuous and each gk(P)
is continuous on A. If μ* is an extremal measure giving finite I(μ*) and if
{μ k} and {jk} are respectively measures and constants defined in the theorem,
then

n

on \j Sμkr\A except a set supporting no nonvanishing measure with finite en-
& 1
& = 1

ergy.

REMARK. Let A be an ,21-measurable set with #A^{0} and f(P\ gi(P), >
gn(P) be 21-measurable functions on A. Assume that the following relations
^re true for {vk} and constants {ck}, fc=l, , n\ we do not require any other
properties:

and, for each k,

•Σ

T h e n by a d d i n g these equal i t ies for A;=l,•••, n, we obta in

(2.9) I(y)=^ixkck-<J,v) = 2±1xkck-{v,v).

n

This is particularly true for our extremal measure μ* if μ* = Σi μ>k>

We shall denote by ^ * the class of all extremal measures in &Ά({gk}>

{«*},/) which make I(μ) minimum. For two measures μι and μ2, we shall call

aμι + bμ2, with varying α ^ O and 6^>0 such that a-\-b=l, a segment and denote

it by μι μ2.

THEOREM 2.2. Let μ*, μ**£.Jί* and assume that /(/**)=/(μ,**) is finite.
Then

(2.10) >*-/***, /χ*-/.

If the strict inequality holds then no inner point of μ*μ** belongs to ^ * , but if

the equality holds then μ*μ**

PROOF. Let a > 0, b > 0 and a + b = 1. Obviously



On Potentials in Locally Compact Spaces 217

A simple calculation shows that

Thus (2.10) follows. If (μ*-μ**, μ*-μ**)<0, then I(aμ* + bμ**)>I(μ*) and
aμ*-\-bμ** is not an extremal measure. If (μ,*-—μ**, μ* — μ,**) = 0, aμ*Jrbμ**

^Jί** and hence μ*μ** is contained in f̂*.

COROLLARY 1. Under the assumption that Jί*φ$ and /(μ*) is yϊmίe on
u?*, . # * is α convex set if and only if

(μ - μ * , μ ~ μ *) <> 0

/or an?/ μ*, μ** G ^ * . T%is is so in particular if the kernel is of positive type;

COROLLARY 2. // inf /(μ) for μ€ &Ά({gk}> to}> /) is /miίe and ίAβ energy
principle is satisfied, J(* consists of at most one measure.

We shall give in § 2.7 an example (Example 1) in which Jt* consists of
just two measuFes and A is a compact set.

Next we shall examine what follows from (2.4) and (2.5). Let us assume
n

them. We assume also that we could choose {μk}, k=l,-.,n, such that Σ μu

=μ* and (2.2) is satisfied. Let v be any measure of &Ά({gk}, to},/) and in-
tegrate both sides of (2.5) with respect to v. It follows by (2.9) that

2 <U»*, v} 2> 2 </, „> + 2 Σ *Λ γ, = 2

This gives

Thus we have

THEOREM 2.3. Consider a kernel of positive type. Assume that there are
n

{μk} satisfying (2.2) such that μ*5 set equal to Σ /*&> belongs to &Ά({gk}, {^}5 /)
k= 1

(2.5) is true with {γj, defined by (2.4), on J except H with SΉ^ {0}.
this μ* is an extremal measure.

For a kernel of positive type we can prove also

THEOREM 2.4. Consider a kernel of positive type and let μ*, v* be extremal
measures. Assume that /(μ*) = /(v*) is finite and that there are {μk} and {vk}

n n

such that'll μk=μ*, Σ l ^ = = v* , <gv, μk}=(gh vk) for each j and k and (2.2) is
k=1 k=1

true. Then the solutions {γ; } o/(2.4) are identical for μ*, {μ̂ } and y*, {vk}.
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PROOF. Let {yfi be the solutions of

n

By integrating (2.5) we have also

n

μ 9 »k \j, »k — j = 1 8

From these relations it follows that

The left side is zero because

0**-Λ «>*)2<G**-Λ ,**-»*) (»„ «*)=o

on account of Corollary 1 of Theorem 2.2. Consequently

Similarly it holds that

By assumption <gv, /**>=<#/, v*> for each / and A: and hence

£<W*>(7y-7}) = 0.

Since \\Qj9 μky\\φ0, 7y=7y for each /.

We shall find cases in which (2.2) is satisfied.

Theorem 2.5. Let A and f(P) be the same as in Theorem 2.1, none of {xk}
be zero, and {gk(P)} be Wί-measurable functions defined on A such that gj(P) = 0
on Ak for any different j and k, where

Ak={PeA;xkgk(P)>0},

and such that (gk, v) is finite for each k and for any v € £A Then for any
, {χk},f\ the restrictions μk of μ to Ak satisfy (2.2).

PROOF. By our assumption <#/, μk)=Q for any different; and k. It will
be sufficient to show that (gk9 μk)φb for each k. Since μ€#Ά({gk}, {χn},f)
and none of {xk} is zero,
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If

(.gk, μk) = \ gkdμ=0,
J -A-k

then

9 1 1 / \ ^~ r\

00k = %kV gkdμ = \ {Xk gk) Ψ S ^

This is impossible and (gk, μk) does not vanish for any k.

REMARK. If, in addition, xk gk(P)^ 0 on A for each k, then we define Ai, ,
n-1

An_ι as above and set A'n=A — \J Ak. We change the definition of μn to the

restriction on A'n instead of the restriction on An. These {μk} satisfy (2.2) and
n n

5] μk=μ. This is so in particular if \j Ak=A.

2.2, Problem on compact sets.

We shall discuss the existence of extremal measures. It is rather dif-
ficult to find conditions which ensure the existence under general circum-
stances and we shall limit ourselves to the special case in which A=K con-
sists of a finite number of mutually disjoint compact sets {Kk}, k = 1, • , n, f(P)
is upper semicontinuous and < o o o n l and g(P) is positive on K; {χk} must
be nonnegative then. We shall write simply £κ(g, %) for <?κ({gk}, fe}), where
gk=g on Kk and =0 on K—Kk for each k and x=(xu . , xn). The problem
which is concerned in

min
μ,e«f (g , x)

is called ^-dimensional. In case n=l K is not divided into compact subsets
and x itself is a number. We shall use the same notation Sκ{g^ x) in this case
too.

First we give

THEOREM 2.6. Let K consist of mutually disjoint compact sets {Kk}, fc = l,
. , n such that «f#^{0} for each k, and Φ(P, Q) be a kernel which is bounded
on every Kj x Kk, jφk. Let f(P)< °° be an upper semicontinuous function on K
and g(P) be a positive continuous function on K. Assume,, that it is not true
that f(P)= — oo p.p.p. on any Kk. Then, for any nonnegative finite numbers
{xk}, k=l, ,n, there exists at least one μx e <?κ(g, %) which gives finite

μ.^.'βjΛg, X)

PROOF. First we shall prove that there is a measure μλ e S'κι such that
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<g, μ^}=χι and

We assume xλ >0 and set

By assumption there is μ€£uBn(g, χι) For some n, say 7z0, μ(5*0)>0. We

denote the restriction of μ- to Bn0 by //. Then the measure χiμ'/(g, //> has
the required properties. We take a similar measure μk for each k. It follows
that

Σ A** € <f*(#, *) and inf

We choose μ(w) e <̂ ;K#3 ̂ ) such that I(μ(m)) tends to the infimum. Since

min

μ(m)(K) is uniformly bounded. By Proposition 3 in § 1.6, {μ(w)} is vaguely
bounded as a class of measures. Let 71={^ω; ωGZ)} be a subnet of {μ(m)}
which converges vaguely to some measure μx. It follows that

xk = lim I g k dvω = \gk dμx and lim I fdvω <± I fdμx.

By Proposition 4 in § 1.6 we have

lim (vω, vω)^(μx, μx).

Since

( O ^ / ( O 2 max /•

is bounded from above, we see that μx G £κ(g, χ) Therefore

inf 7,0*)= lim {(vω, vω)-2 </, vω>}
μ(Ξ<?κ(g,x) ω

70*).
, X)

Thus I(μx)= inf I(μ) for μ£#κ(g, x) and the existence is shown. The in-
fimum is finite because μx(K) is finite and

^ min Φ{P, Q)μl(K)-2 max HP) μx(K)> -oo.
P,Q^K p<=κ J

n

REMARK. Let Σ #*>0 and consider
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Ψ(P, Q)=Φ(P, Q)-2f(P)g(Q)/± **

onKxK. This is lower semicontinuous, and does not take the value - c o .
Therefore this can be taken as a kernel on the space K. If we denote by (μy

μ)γ the energy of μ 6 #κ(g, x) with respect to this kernel, then

(μ, μ)Ψ = (μ, μ) — 2 </, /x> = /(/x).

Consequently it is sufficient to prove Theorem 2.6 in the special case that the
space is compact, /(P)==0 and g(P) is defined in the whole space. We note
also t h a t (μ — v, μ — v\ = {μ — v,μ — v) if μ9 v€&κ(g, x). However, Ψ(P, Q) de-

n

pends on Σ xk and hence is not suitable in case {xk} change.

Theorem 2.7. For an extremal measure μx obtained in Theorem 2.6, it
holds that, i

(2.11) Er*(P);

on Kk except Hk with £Ήk= {0} and

(2.12) U*x(P)<,f(P) + ykg(P) on SμχΓ\Kky

where

(U x—f)dμx.

It follows that

/O 1 A\ Ίί \ NH Λ , / r \ O "SH ί \

Assume that the kernel is of positive type. Let μζSΈig, %) cmd denote the
restriction of μ to Kk by μk. If, for each k with xk>0, μ and 7k = (UIJ/—f μ>k}
/xk satisfy (2.11), then μ is an extremal measure.

PROOF. If none of {xk} vanishes, this theorem follows from Theorems 2.1,
2.5 (see its Remark) and (2.9). If some xk but not all of them vanish, say if
#i>0, , xm>0sinά xm+1 = =xn = 0, the problem reduces to the α7τz-dimension-
al case". Namely, the problem is to minimize I(μ) for μ e £ Z κk(g, χf) where

x=(xι,--., xm). Our theorem is then readily established. The last statement
is an immediate consequence of Theorem 2.3.

n

COROLLARY. 1. For any compact set K= \J Kk such that no Kk is empty,

I(μx)= inf Σ xk sup —
k=i ( P^sμnκk g{P)
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where μ is supported by K, μk is the restriction of μ to Kk and (g, μk)=Xk for
each k. In particular, Vi (K) is equal to the infimum of (μ, μ) for unit measure
μ supported by K.

PROOF. We may assume that all xk>0. Let us denote the quantity inside
{ } by Wk(μ). We integrate the inequality Wk{μ)g{P)^xk U»(P)-xk f(P)
— <(/, μky g(P) with respect to μk and obtain

Xk

It follows that Σ Wk (μ) ̂  (μ, μ)-2 </, μ) = I(μ). If #κ(g, x) φ ,
k— l

n

= Σ Wuίμu) by our theorem. If #κlg9 Λ ) = 0,1(μ) = °° and again the equality

in the corollary holds. This establishes the corollary.
We shall call μx giving (μu μι)=Vi(K) a weak equilibrium measure on K

and Uμi(P) a weak equilibrium potential. If we consider g(P) on K, a measure
which gives min (μ, μ) among μ 6 #κ(g, 1) will be called a weak g-equilibrium
measure on K and its potential a weak potential.

COROLLARY 2. V{ (X) ^ f , (X)5 F, (X) ^ F, (X). / / Φ (P, Q) ^ m > - oo o^

XxX 5

ί ( ) ^ max

and

PROOF. Since

{X)^ΫίK)W{K)<>(μ, μ)<, sup

for any compact set KCX and any unit measure μ with SμCK> we have Ϋι(X)
<L Vi(X). Similarly F I ( X ) ^ F , (X). If (ί (P, Q) ̂  7̂  > - oo on X x X, then

2 sup ϊ

for a unit measure μ with compact SμCX and hence 2 F , ( X ) ^ Vi(X) + m. It is
the same with Γ/(X). Combined with Γ ί (X)^Γ ί (X), it gives the last ine-
quality in the theorem.

As a consequence of these corollaries the following two propositions are
equivalent:

A property holds p. p. p. on a set X.
A property holds on X except H with SΉ= {0}.

23) This is an improvement of the evaluation in Theorem 1.12.
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Consequently (2.5) and (2.11) hold p. p. p. on A and Kk respectively.
We shall denote by Jίϊ the class of all extremal measures μx and set, if

V^.lO; ΎkKμx) — ( \ U aμx — \ jdμx).

If xk = 09 we set ^ 7*0A*)=0.
Let us prove

THEOREM 2.8. Under the same condition as in Theorem 2.6, the class Jί*
is closed under the vague topology. If xk is positive, ηk (μx) is continuous as a
function on the space .Jfί with the vague topology. If the kernel is of positive
type, xk jkiμx) is uniquely determined for each k.

PROOF. Let T={μ(ω); ωeD} be a net consisting of extremal measures
which converges vaguely to μ*. As in the proof of Theorem 2.6, we can see
that μ* e #κ(g, x) and we have

ω

where μx is any one of extremal measures. Thus /(^*)= inf I(μ) and μ*
is one of extremal measures. μeΞ κ s'%

To prove the last s tatement of theorem, we assume # i > 0 , •••, χm>0 and

Xm+i— ^Xn^O. We have that

m

for any μ(ω) eTbj (2.14). Therefore

lim Σ * 7 * 0 K W ( f , / ) Σ

On the other hand, by (2.4) and Proposition 3 in § 1.6,

lim

for k—l,- , m, where we use the fact that the restriction /4ω) of μ(ω) on Kk

converges vaguely to the restriction μ* of μ* on Kk. We can conclude that
each lim yk(μ(ω)) exists and equals γ*(μ*) for k=l, ,m.

The last statement in the theorem is an immediate consequence of Theo-
rem 2.4.

In case each xk>0, let us consider (yi(μx\ •••, 7n(μx)) as a point of the
euclidean space En and denote it by y(μx). We set
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We know that, if the energy principle is satisfied, Jί* consists of a single
point. Then Γx does too.

Theorem 2.9. Under the same condition as in Theorem 2.6 and the as-
sumption that every xk>0, Γx is a compact set. If, in addition, ^ is a convex
set, Γx is connected.

PROOF. First we observe that each 7*0**) is bounded from below because
of its definition (2.15) and then that it is bounded from above in virtue of
(2.14). Therefore Γx is bounded in En. In order to see that it is closed, we
take a sequence {μ(m)} C ^ ί such that each γ*(//.(TO)) tends to some number yk.
We can find a subnet T =•{»„; ωeD} of {μ(m)} which vaguely converges to a
certain measure μ. By Theorem 2.8 μ is a measure of ^ * and

jk= lim 7*00=7*0*').
ω

This shows that the point (71, • ••, 7») is equal to 7 0*0 and hence Γx is closed.
Next we assume furthermore that Jί* is convex. Hence, for any μx, μlx

ξiJί* and αi>0, b~^>0 such that a+b = l, aμx-\-bμxe^*. By a computation
we obtain

where μx

k} and μx

(k) are the respective restrictions of μx and μx to Kk. If we
set

δ* = - !- <fT* - Uμί, μ^-μ'^y and 8=(βu , 8n\
Xk

then for a, 0<!α<ί l , we have

where + means a vector summation. The right side represents a curve con-
necting y(μx) and 7 04). Consequently Γx is connected.

2.3. Some general cases.

We shall discuss the existence of extremal measures under different con-
ditions. If the kernel is of positive type, we can have various types of exis-
tence theorems. One example is as follows:

Let Kbe a compact set with gK={0) and v, λ£*f be measures with com-
pact support. Assume that every Cauchy sequence of measures of £κ converges
strongly to some measure. Then for any χ>0, there is a measure μ* € &κ(Uλ, x)
which gives

,V*-v||== min \\μ-v\\.
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The proof is given in a customary way by using the identity

2 4 2 2

We can consider other similar problems. However, we shall take another oc-
casion to discuss such problems in which potentials are taken for / or g or
both.

In this section we shall seek a possibility of generalizing / or g in another
direction. It does not effect the discussions in the subsequent sections and
we can skip over this section. We begin with

THEOROM 2.10. Let K be the union of mutually disjoint compact sets Ku

•.-, Kn such that £Kk^£{0} for each &, and g(P) be an upper semicontinuous
finite-valued positive function on K. For each k, assume that (μ9 μ)>0 for any
μΞ^O with Sμ,CKk and that (μ9 /*)!>(//, μ) if μ^>μ. Then for any positive xl9

• , xn there exists at least one μx € &κ(g> x) which gives finite

(μX9 μx)— inf (μ9 μ).

PROOF. We consider the special case that/=0,g==l and x=l in Theorem
2.6. We obtain at least one extremal unit measure μk € &κk which minimizes
(μ9 μ) for each k. By our assumption we have that (μk9 μk)>0. We choose
μ(m) e #κ(g, x) such that

lim QjP\ μM)= inf U μ).

Let μCk° be the restriction of μ(m) to Kk. Since

μf\K) is bounded. We can find a subnet T= {vω; ωeD} of {μ(m)} which con-
verges vaguely to some μx. It holds that

ΛjΛ = l i m \ gdvω <

where μx

k) denotes the restriction of μx to Kk. If we set μ=xkμ
i

x

k')/<(g, μx

kyy
on Kk for each k9μ €#κ(g> x)and / / < ^ x . By our assumption (//, μ)<*(jj,X9 μx).
It follows that

inf (μ9 μ)= lim (vω9 vω)^(μx, μx)^(μ, μ)^> inf {μ9 μ)

and all the equalities follow. Thus μx is an extremal measure.
We may raise questions as to whether this theorem is true if we consider

I(μ) = (μ9 μ) — 2 <jf, μ) instead of simple (μ, μ) or if g(P) is lower semicon-
tinuous, and as to whether the condition (μ9 μ)>0 for μe £K9 μ^O, or the con-
dition (μ9 μ)^>(μ, μ) for μ^>μ can be dropped. Answers are all negative as
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will be shown below.

EXAMPLE 1. Ω=K= {t; 0 ^ < : i } , Φ(t, s) = l, /(ί) = l, g(t)=2-t for 0<Lt
< 1 and =2 at ί = l , and #<I1. Observing that

for μ€tfκ(g,x) and that

we see that the problem is to maximize the total mass of a measure of βκ

(g, x). The total mass becomes larger as a measure is distributed nearer the
point t = l as a whole, and the infimum of I(μ) is x2 — 2x. However, the /-
value of the point measure at t=l is x2/i—x. Therefore there is no extremal
measure.

EXAMPLE 2. Ω=K= {t; O ^ ί ^ l } , Φ(t, s) = ί + s + l,/(ί) = 0, g(0) = l, g(ί) =
for 0<£<^l. For μe#κ(g, 1) we have

This becomes smaller as the measure μ is distributed nearer the point ί=0 as
a whole and the infimum is 1/4. However, if μ is the point measure at ί=0,
then I(μ) is equal to 1. Hence there is no extremal measure.

Example 3. Ω=K={t; 0<:£<:i}, Φ(t, s)= - 1 , f(t) = O, g(t)= the same
as in Example 1. In the same way as above the problem is to maximize the
total mass of a measure of <?κ(g, x) but there is no extremal measure.

EXAMPLE 4. Kλ={t\ O ^ ^ l } , K2 = {t; 2^ί^3}, Φ(t,s)=l on I^xKi
and K2xK2, — — 4 onKxxX"2 andK 2xX"i,/(ί)=0, g (0 and g(ί —2) are the same
as in Example 1 on i£x and on i£2 respectively, and 2^i=x2. Let Λ?=(ΛI, χ2) and
Aί- € ^κλ\jκ2 (g, Λ;). We set μ(Kι)=mι and μ(K2)=m2y and observe that, for a fixed
77Zi,

— 477Zi 77Z2

takes its minimum — 3ml when m2 = 2mι. Hence the problem is to maximize
the total mass of a measure of &κ^g, χι)> This again shows that there is no
extremal measure. Actually the condition (μ, μ)^>(//, μ) for μ^μ is not
satisfied as is seen by μ= the unit measure on Kι plus the unit measure on
K2, //=the unit measure on Kλ.

Next we shall examine if f(P) can be lower semicontinuous.

EXAMPLE 5. Ω=E3, K=>{P; ΌP<1},Φ(P, Q) = l/PQ,f(P)=l + ΌFforPeK
— dK9 =1 for PβdK, g(t)=l. For μe£κ(l, χ\ we have
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= (μ, μ) ~2χ-

This value becomes smaller as a measure μ is distributed uniformly and near-
er 3K as a whole. The infimum is equal to x2 — 3x but the uniform unit
measure on 3K gives the value x2 — 2x. Thus there is no extremal measure.

As an application of this example we would point out that Lemma 3 of
Cartan and Deny [1] is not valid as it stands. In fact, according to the lem-
ma the following fact should be true:

Consider the Newtonian kernel, and let K be a compact set in E3 and f(P)
be a positive bounded measurable function in E3. Then there is a unique meas-
ure μ* which gives

I(*)= min

Let us take K and /(P) as in Example 5. If there were an extremal measure
μ* as asserted above, μ*Φ 0 and μ* would give the smallest value to I(μ) among
measures of ^ ( 1 , x) where x=μ*(K). This is impossible as was observed in
Example 5.

Finally we consider the class

&κ(g, χ)=\ μ€*κ;\ gdμ^xk for each k f.

THEOREM 2.6/. Let K be the union of compact sets Ku ., Kn with &Kk^ {0}
for each ft, Φ (P, Q) be a kernel which is bounded on every Kj x Kk, jφk, /(P)< °°
be an upper semicontinuous function on K and g(P) be an upper semicontinuous
finite-valued positive function on K. Assume that it is not true that /(P)== — °°
p.p.p. on any Kk and suppose that (μ, μ)>0 for any μΦO supported by Kk for
any k. Then, for any #>0, there exists at least one μ* ζ@κ(g, x) which gives
finite

/(/**)= min I(μ).

PROOF. We choose μ(m) e &κ(g, x) such that I(μ(m)) « o o ) tends to the in-
fimum as 7?z->oo. Let μk be the unit measure which gives min (μ, μ) among
unit measures supported by Kk. It follows for the restriction /4"° of μ(m) to
Kk that

I(μn^(μ(mKKk))2 (μh μk)~ SUP /(P) μ^\Kk\
PKP(=K

This shows that μ(m)(Kk) is bounded for each ft. If Γ = {vω; ωeD} is a subnet
of {μ(m)} which converges vaguely to some μ0, then

lim \ gdvω<L \ gdμ0
ω J Kfc J Kfc
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and hence μ0 e &κ(g, χ\ Therefore

inf I(μ) = \im I(vω)^I(μ0)^ inf

and the equality follows.
Hereafter we shall assume that g(P) is positive continuous on the set where

it is defined except in § 2.9

2.4. Change of extremal values.

We raise the question how I(μx) and 7*0**) change as /(P) or g(P) or both
change.

When we specify the function / in expression (2.1) of I(μ\ we write //00

THEOREM 2.11. Let Ku - ,Knbe mutually disjoint compact sets such that
Sκk^ {0} for each k, and Φ (P, Q) be a kernel which is bounded on every Kj x Kk,
jφk. Let /(P) be a finite-valued upper semicontίnuous function defined on

n

K= \J Kk, and g(P) be a positive continuous function on K. Let {fp(P)} be a

sequence of upper semicontinuous functions on K which tends uniformly to /(P),
and {gp(P)} be a sequence of positive continuous functions on K which tends
uniformly to g(P). Then, for any point % =Oi, ••-,#«) in xλ ;> 05 , %nI> 0, the
minimum value of Ifp(μ) for μ e <?κ(gp, x) tends to that of If(μ) for μ e #κ(g, x)
as p—• oo. // there is the unique extremal measure μ in £κ{g-> x), the sequence
{μ(p)} consisting of the extremal measures, respectively in <?κ(gp, x), converges
vaguely to μ and each xk jk(μ{p)) tends to xk

PROOF. Let μ(p) be any one of extremal measures in #κ(gp, x) and denote
Ifp(μ(p)) simply by Ip. We denote also the minimum value of If(μ) for μe#κ

(g, x) by /. Since the total mass μ(p\K) is bounded, we can extract a vaguely
convergent subnet T={vω; ω€D} of {μ(p)} and denote by μ* the vague limit.

It is easily seen that lim \ g(ω)dvω = I gdμ* and lim 1 (/(ω) —/) dvω==0, where

g(ω) is the one of {gp} corresponding to vω and / ( ω ) is the corresponding one
of {fp}. It follows that μ* e #κ(g, x) and also that

lim </ ω \ , ω > ^ lim </ ( ω ) -/, vω>+ lim </,

It holds that

lim / /(»)(O= Mm {(^ O - 2 </ω>5 vω>} ^ lim („„, vω)-2 Tϊm

Let μx be an extremal measure in &κ(g, x) and define λω by setting it equal to
Xkμc

x

kKg(ω\ μϊ^y1 on Kh where μik) is the restriction of μx to Kk; if ^ w = 0,
we set λω(iζ0=0. It belongs to ^κ{g{<ύ)-> x) and
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ϊϊm /,<«>(O^ lim ί(λω, λ ω )-2 < / ω , λω>} =(μx, μx)-2 </, μx>=I.

Consequently lim i/o> (vω) exists and equals /. It follows also that μ* is an ex-
ω

tremal measure in #κ(g9 χ)> Because of the arbitrariness in choosing T9 it is
concluded that lim IP==L If there is only one extremal measuse μ in #κ(g9 χ)9

then μ(p) converges vaguely to μ and by (2.14)

lim Σ xk Ύk(μ(p)) = lim Ip+ lim </, ^ } > ^ / + < / 5 /*> = Σ

On the other hand, for each fc,

lim Xk yk(μ^)> lim
P-+00 />->oo

where the subscript k indicates the restriction of measure to Kk. From these
relations it follows thet xk 7k (μ(p)) tends to xk yk (μ) for each L

REMARK. If all fp=f,f may take — oo (not oo) but it is required that
/(P)> — oo on some subset XkCKk with gXkΦ{§) for every L

We shall assume in §§ 2.4-2.7 that Ku •-, Kn are mutually disjoint com-
pact sets such that #Kjιφ{0} for each k, that Φ(P, Q) is a kernel which is
bounded on every KjxKh jφk, that /(P)<oo is an upper semicontinuous

function defined on K= \JKk such that f(P)> — oo on some subset Xk CKk with
k = i

Sx^{ϋ) for every k, and that g(P) is a positive continuous function on K.
Also the assumption that kernels are symmetric will not affect any generality
in the following discussions and hence it will be assumed hereafter in this
chapter unless otherwise stated.

We shall study the change of I(μx) in details when f(P) and g(P) are fixed
but x=(xu •••>#») changes. When #i>0, ..., χn>0, we define gx(P)by g(P)/xk

on Kk, fc = l, -..,72; then \ gxdμ=l for any μζ#κ(g, x). We can apply the
Jκk

preceding theorem (see its remark) and conclude that I(μx) is a continuous
function in *i>0,. , χn>0. However, as any one of xk'a approaches zero, gx(P)
becomes unbounded and the continuity of I(μx) in Λ I ^ O , •• , ^ ^ 0 cannot be
seen in this manner.

Before proving the continuity in xx >̂ 0, ., xn ;> 0, we shall show that
(μx, μx) and each xk 7k(μx) are bounded if x is bounded in En. We denote (1, ., 1)
by e aχιd take v e &κ(g* e) such that f(P) is bounded on Sv. We shall write in
general xv for the measure which is equal to xk vk on Kk, where vk is the re-
striction of v to Kk. It holds that

n n

)= XI %j %k(vj9 y*) — 2 Σ ^ </5 ^ >
y, Λ = i k=i
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The right side is a continuous function of x and hence I(μx) is bounded from

above if \x\ = ^x\ + ••• +χl<r0. On the other hand μx(K)<L^ xk (min g)~ι and

min Φ'μl(K)-2 max/

K y,K K

is bounded from below if | * | <r 0 . Therefore

(μx, μx) = I(μx) + 2 </, μx>£I(μx) + 2 max f μx(K)
K

K

is bounded if \x\<r0. We see also t h a t </, μ*> and each (/4/}, μ< w ) are
re

bounded, where /4*° is the restriction of μx to Kk. It follows that Σ ^ Ύk(μx)
k = i

= (μx, μx)
jrl{μx) is bounded and t h a t each ^ 7*0**) is bounded because xk yk(μx)

= (μχ, μ™) — </> /4*}> is bounded from below. One sees t h a t each </, μ^y is
bounded too.

Let ve#κ(g, e), Λ I ^ O , •• , ί » n ^ 0 , and ΛJ = (ΛI, ••-,««). Then ^ e ^ ( g , a ; ) ,
and we have

(2.16) I(j*x)^I(χv) = (χι>, ocv)-2 \ fdW= i ] xj χk(vh vk)-2 Σ ^ </, **>.

Let us denote by P(y) the branch of the parabolic quadratic surface in xλ :> 0,
. . . , ^ > 0 , expressed by the right side. For ξ=(ξi, •••, ?„), | i > 0 , , ξn>0, and
an extremal measure μ^ we define v% E ^A-C^J e) by setting its restriction to Kk

equal to the restriction of μ^/ξk to Kk. The surface P(y$) touches the surface
/(^) at Λ=f and l(μx)<>P(vξ) in Λ I ^ O , ..., Λ Λ ^ 0 . If &>0 we define ^ by
μψ/ξk on X̂fe, and by any measure v̂ ° G <?κk(g, 1) such that <(/, v̂ })> is finite
if fft = 0. Similar fact is true for P(yέ) in this case. We denote by IT the
family {P(^); 0 ^ f i < 6 o 5 ...5 0 ^ | :

w < c o } ; we note that P(y-ξ) is not uniquely
determined by μ* if some of {ξk} vanish. We can state

THEOREM 2.12. I(μx) is the lower envelopeU) of Π on xι^>0, • , xn^0.
Let us prove the continuity of I(μx) in Λ I ^ O , ..., a;w^0. As a lower

envelope of continuous functions, I(μx) is an upper semicontinuous function
there. Let Λ;0 = (^(I0)

5 •••, ^ 0 ) ) be any point with nonnegative coordinates and
{x(p)} ={{χγ\ , xT)} be a sequence of points with nonnegative coordinates
tending to x0. Since (μx

j\ μ£*°) and </, μψ>y are bounded for bounded x9

^ (0)

)= lim % ^
, ^(0) (0) ( 0 ) i

Σ' -%y^Γ 04Λ,/ f%)-2Σ"4r</.^)> .I y, & Λ?y Λ : ^ Λ;^ ^

where the superscript k indicates a restriction to Kk and the summations ^\
Σ / r are taken over/, fc for which xf\ ^ 0 ) > 0 The last side is equal to lim

P

24) This is defined at each point by the infimum of the values of the functions of Π.
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I(μχ(p)) if every ^ 0 ) > 0 , and the theorem is proved. We shall show that in
general the last side is not larger than lim I(μx(P)); this will complete the

proof. For that purpose it is sufficient to show that

0 ^ l i m

= lim { Σ ' " (/*,<», μ%) - 2 Σ ' " </, μ%> \,

Σ ' " is taken over k for which 4°)==0. Si
tends to zero it converges vaguely to zero. Hence

P-

where Σ ' " is taken over k for which 4°)==0. Since the total mass of

and

Since the kernel is bounded on any Kj xKh jφk, lim (μc

x{P), μ%χ) = 0 for any

j φ- k. Hence

i n

2-ι 2-i

THEOREM 2.13. I(μx) is continuous on xι ^ 0, , xn ^ 0.
We shall use Theorem 2.12 to obtain further properties of the graph of

I(μx). Let A be a compact set in #i>0, ..., xn>0. We have seen that (μ,^,
μf) and </, μfy are bounded if \ξ\ is bounded. Hence (v^}, vf) and </, v^>
are bounded on A. Therefore for a large cA and for any ξeA,

is concave as a function of (# l5 ••-, χn)eA.25) Its lower envelope I(μx) —
+ .. +#u) is concave there. It has a directional derivative at each inner point
of A and it is totally differentiate a.e. in A. It follows that these facts are
true for I(μx) everywhere in xx >0,•••, χn>0. We shall compute a directional
derivative explicitly in terms of {yk(μ)}.

First we prove

LEMMA 2.1. Let T={μ{ω)\ ω€Z)} be a net consisting of extremal measures
at some points and converging vaguely to μ*. If x(f) = <^g, μf^y as a function
on D converges to xk ^ 0 for each fe, then μ* is an extremal measure for x. It
also holds that lim (/x(ω), ^*)) = (A6*, μ*\ lim </, μ(ω)> = </? ^*> α^d lim 4 ω ) γ//Λ('ϋ))

= ^ 7Λ(A&*) for each L

25) This was suggested by Ogasawara.
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PROOF. By assumption

and μ* e <?κ(g, x). We take any extremal measure μx at %. On account of the

continuity of I(μx) in xλ^ 0? .., xn^0, we have

*<«, ^ ) - 2 fim</, /*(ω)>-
ω

= I(μ*) i>

Thus I(μ*)=I(μx) and it is shown that μ*e^t We see also that χ^yk(μM

-+x jk(μ*) for each k as in the proof of Theorem 2.11. Hence

lim </, ^ > > = l i
ω ω

= i ; ** 7*0**)-
) f e = 1

and

lim (/U

("), /*<»>) = lim { 2 ± x<f\(μ^) -I(μM) I =Q**, /**).

Our lemma is established.

Let Λ 4 0 ) > 0 for /b=l5 ••-, n> and 4̂ be a closed ball in Λ ; I > 0 , ..., xn>0 with

center a t xo = (x{°\ ••, #L0)). In general we denote V#ϊ+•••+*» by |Λ | for Λ

= ( # I , , Λ;W), not necessarily in Λ;I^>0, ••-, xn^0, the point (χι—xi0}, •••, «̂ —^n0))

by^-Λo and the half line issuing from x0 and passing # by lx. We have ob-

served t h a t I(μx) is the lower envelope of {P(vi)} and t h a t jA(χ)=I(μx)—cA

(χi + +χl)=I(μx)—cAIx12 is concave on 4̂ for a large c^. For a point ξ=(ξu

..., ξn)eA different from x0, the graph of P(vξ)—cA(χϊ + •• +ΛΛ) touches the

graph of /A(Λ). Therefore the derivative of Plu^)—cA(pβϊ + +χl) a t ξ along

Zs is not larger than the derivative of JA(χ) a t x0 along lξ. The former is equal

to

1 2 ^ ,
Vk-2cA^ξkVk

w h e r e η = (ηu ••-, Vn) i s d e t e r m i n e d b y ξ—xo= \ξ—xQ\η. W e s e t rγ(μx)=(r/i(μx),

• , 7n(μx)) and proved that Γx= {y(μx); μx € «^?} is a compact set in En in Theo-
rem 2.9. Hence for any yu 9yn there are a measure of ^ ί which attains min

i
Σ yk(μ)yk a n ^ a measure of Jί* which at ta ins max ^ ] j^)yb. We denote
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these values by γ(x, y) and γ(x, y) respectively; in the case of one dimensional
problem we write γ(x) and γ(x) simply. If we denote the derivative of I(μx)
along U by dl(μx)/dh, we have

(2.17) 2γ(ξ, η) - 2c A Y>ξkηk<, 2γ (£, η) - 2cA ± ξk Vk

^ I(μ$) — I(μXQ) _ 1 ξ I 2 — I χ0 I 2 dl(μx)

Let ξ approach x0 such that (ξk — Λ4 0 ))/ If — %o\ tends to a certain limit yk.
Naturally 7? + ••• +y* = l. By Lemma 2.1, for any subnet {μ(ω)} of {μ^} con-
verging vaguely to a measure μ* G ^ ΐ 0 , each γ^(/χ(<ϋ)) tends to yk(μ*). We
obtain from (2.17)

(2.18) lim ± ^ ^
kμ) ^ I ^ i

where f(ω) is determined by μ^ω)=μ(ω\ We have the equality in the last in-
equality, and in view of the arbitrariness of {μ(ω)}, we see that

whatever the values {yk(μ^)} may be at ξ.
We shall show that γ(x0, y) is continuous with respect to y. Let y(p)

= (yip\ •••,7rP) w i t h \y(p)\=l t e n d t o y . W e c a n c h o o s e x ( p ) = (x{p\
such that \x(p)-x0\ < l/p, Λ;(/))-Λ;O= I * ( / 0 - Λ;0 I J(/)) and

(x{p\ •••,

Since r ( ^ } , y(/))) tends to γ(x0, 7), it follows that r(^0, 7(/))) tends to γ(xQ,y).
Next let us see that there is εr tending to zero with r such that

for any ξφχo> where ξ — xo= \ξ — xo\y. In view of (2.17) we assume, to the
contrary, that there is a sequence {ξ(p)} tending to x0 such that y(p) = (ξ(p) — χ0)
/\ξ(p) — χo\ tends to a certain limit 70 and

(2.19) lim {r(P }, y(p)) - r U , y(p))} = lim γ_(ξ{p\ y(p)) -ΎU, 70)

exists and is negative, where we use the fact that χ(χ0, 7) is continuous with

respect to 7. Let μ(p)e^(P) such that i ] 7k(μ(p))yT = ϊ(ξ(p\ y(p)) and choose

a subnet {μ(ω)} of {̂ (/))} which converges vaguely to a measure μ* e ^ ΐ 0 . By
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Lemma 2.1 each 7///.(ω)) tends to γ/μ*). Therefore

lim r ( ^ y ( ί ) ) ^ r ^ o , y o ) .
/>->OO

This contradicts our assumption that the value of (2.19) is negative. On ac-
count of (2.17) again we have

with εr tending to 0 with r. From (2.17) follows also

i m W z W = 2 μ m M*=« ) = 2 μ m
— %0

where ξ approaches x0 along a curve having a tangent at x0 whose direction
is determined by a unit vector y.

Changing some notations we state

THEOREM 2.14. As a function of y, γ(x, y) is continuous on \y \ = 1 for any

x in Xi>0, ..., xn>0, and with any x in # i > 0 , ••-, xn>0 we have

(2.20) /GvWGO=2

where \ e | < ε ^^^ ατt(ί εr ίer^ds to 0 wiίfe r. Lβί cy be a curve terminating at x
and having a tangent at x whose direction is determined by a unit vector y. As
x approaches x along cy,

= 2 l i m f (x>, A ^ \ =2ϊ(x,
x —x

COROLLARY 1. I(μx) is totally differentiate at x if and only if Γx consists

of one point.

COROLLARY 2. I(μx) is continuously differentiate in xλ>0, •••, xn>0 and

dl(μx)/dxk is equal to 2yk(μx) if and only if {γ*(/%)} are uniquely determined

inxι>0, ..., χn>0.

COROLLARY 3. // {jkiμx)} wre uniquely determined at a point x in
• ., xn >0, then each jkiμx) is continuous at x in the sense that each jkίμx') is close
to Ύkiμx) for x near x.

We have observed before that I(μx) is totally differentiable a.e. in Λ;I>05

• •.,xn>0. This follows also from our theorem by the aid of a theorem of
Rademacher [1].

Next we shall compute the derivative of I(μx) and see the behavior of
y(jjbx) on the boundary of Λ I ^ O , ..., xn^0. Take x=(xu •••, xm 0, •• , 0) with
χk>0 for /c, l<Lk<Lm<n, and denote by I the half line in #i>0, •• , χn>0, is-
suing from x and having the direction determined by a unit vector with com-
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p o n e n t s γ u •••^yn. W e i n c l u d e t h e c a s e x = (0, ••-, 0 ) . F o r % o n I a n d μx, w e
m n

denote by μx, and μx, the restrictions of μx, to \j Kk and \j Kk respectively;
k=l £=771 + 1

these restrictions may be regarded as measures on K. We set Δxk=x'k — xk

and jP = (O, •••, 0, ym+i? •• ,y»). We shall prove that (μx^ μx,)/\Δx\ tends to 0
as x approaches x along I. Assume that μx, converges vaguely to μ and px,
/\Δx\ does to X; otherwise we take subnets and proceed in a similar manner.
Take any μxe^ff and \e<?κ(g, f). We denote the restriction of μx to Kk

by μψ* and set

x ., _ N Γ I
 xk #/αo

It holds that

(2.21) I(μx>)<>I (— μx + Ma I λ)

= I(μx)-\-2 Σ Jk(μx)Δxk

Jr2 (Uμχ~f, \y\Δx\ + 2 ( -^—μx—μx, \)\Δx\ -hO(\Δx\2)
jfe=i s \ x J

We observe also that

(—μx-μx,\)\Δx\=O(\Δx\2).
\ X I

On the other hand, setting

/ lJjX/ / I /

we see that

where χ'kΊk{βχ )={Pχ', μί?)-<f, μ™>, k=l, •••,m, and h e n c e

(2.22) I(μX')=I(flx>) + 2(flX', μx,)+I(flX')

> / W + 2 ί ] γ4(/V)Λ** + 2 <ί// ί a :'-/, μx>> + (μx>, μx>) + O(\Δx\2).

From this and (2.21) follows

m

(2.23) 2 1] 7*GOy* + 2 <^μ3C - / , λ>
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: 2 Σ Ίkiβxdyu + 2 <U'lχ' -f, -Jfj-y + -j— φx,, μx>) + 0 (\Δx |).

Now we set

inf

2my + ε and obtain
Given ε>0, we choose μx and λ so that the left side of (2.23) is smaller than
2my +

(2.24)

where we use the fact that β 6 Jί* which follows by Lemma 2.1. Since

lim γ ( / ι ) l i m V < ^ ' / A^> ^ ^

for each k<Lm, it follows that

2 lim

Since ε>0 is arbitrary, the left side is not positive. Now we make the fol-
lowing assumption :26)

(*) Whenever the potential of a measure μ of £ 5 Kk is continuous as a func-

tion on Sμ, it is continuous on \j Kk.

This is naturally satisfied if the continuity principle is true or the kernel is
continuous outside the diagonal set. For given ε>0, there is by Lusin's theo-
rem a compact set FCSβ such that μ{K—F)<e and the restriction of Uβ(P) to
F is continuous. We denote by βF the restriction of β to F. The restriction

of UβF(P) to F is continuous and hence UβF(P) is continuous on \j Kk by our

assumption (*). Hence

lim (β -Pf-\==(β X).
JX^O \ * \Δx\ J r

Since

—

26) It is an open question whether one can prove (2.25) without condition (*). In case m = 0,

namely at the origin we have no such condition.
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we have that

lim (μ,

Consequently

lim ( μx, — μ, -r^-γ
~Jx^o \ \Δx\

Therefore

lim -.—r
jχ-*o I Δx I

We can conclude

(2.25) lim
~ ; \ΔX\ w""*'j -

because

lim -. p (μx,, μx,) ^ lim ( — | Δx | | inf Φ \) ^ 0.
JX-*0 I ΔX I Λx-*0 KxK

We infer by (2.23), (2.24) and (2. 25) that

{ m =

„„ ~ k-i \Δx\

Let us evaluate the difference

v i /TT^X' r βχ/ \ f

771 73

We recall that the kernel is bounded on \j Kkx \J Kk. As x'-+x, fix,(K)->0
k=l k=m+l

and hence

27) In general cases it can happen that {μOO} supported by a compact set ̂  converges vaguely
to a measure μQi {v(p)\ supported by a disjoint compact set K2 converges vaguely to vQ and

lim

For instance, take {\/p}\J{0} for K^ and { - 1 +l/p} U{ - 1} for £ 2 , and consider K=KXVJK2 as a
subspace of the real line. We set φ(l/n, ~ 1 + 1 //?) = 0( ~ 1 +1 //?, 1 /τι) = 0(0, - 1 + 1 /p) = 0( - 1 +1 /p, 0)
= 1 (7i=/?+l, •••) for each/?. For other points in KxK we set 0 = 0. For the unit measure μ(p) {y(p)
resp.) at \/p ( — 1 +1//? resp.) and the unit measure μo(*o resp.) at 0 ( — 1 resp.) it holds that

lim
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we conclude that d(χ')->0 as x-+x. It follows that Tim Σ

obtain from (2.21) and (2.22)

We

4 - 1
+ 2 - / , λ>^

Consequently

(2.26) lim
\JX

= 2 lim -

" \Δx\

= 2

\Δx

Δx

•*', AcΉ 0 (I JΛ I).

=2 inf I Σ 7.0*)y* + < ^ - / , λ>l.

W e s t a t e

T H E O R E M 2.15. Let x=(xu •••,%, 0, ••-, 0), where xk>0 for k,

and denote by I the half line in # i > 0 5 •••, xn>0, issuing from x. Let the direc-

tion of I be expressed by a point y=(yu •••> y») with \y\ =1. For a point x

=Wu •••? χn) on I we set *Δxk=x'k — xk and take any μx^Jί%. Let βx^ μx, be its

m n

respective restrictions to \J Kk and \j Kk. Then we have (2.26) under con-

dition (*).
We remark t h a t the limit along I, which lies in Λ I ^ O , •••,^^0, can be

computed by considering a lower dimensional problem.

QUESTION. DO we have a relation similar to (2.20) at a point on the bound-
ary Of Xι^0, ...., Xn^0?

We have called a problem to minimize I(μ) for μ e <?κ(g, x) ^-dimensional
when K consists of Kι, - ? Kn and x=(xu ••, xn). In order to make it clear we
shall write In(μ) in the following paragraph. Let us consider the question
how the problem to minimize In(μ) for μ e #κ(g, x) and the problem to mini-

n

mize h(μ) for μ £ £κ(g9 Σ xk) are related to each other.28)

28) This question was raised by Ogasawara.
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We take α>0. Since In(μx) is a continuous function of x=(xu , xn\ it
n

holds at some point xQ = {x(ι\ • ••, Λ40)) with Σ χT=a that

h(μa) — In(μXQ)— m i n In(μx)
n

Since Σ 4 0 ) = r β > 0 ? a t least one of {x^} is positive; we assume # (

r e

0 )>0. For

a sufficiently small ί > 0 , t h e measure, defined by (l + t)μik

o

o} on K^o, by (1 — txf^
/χCn^)μc

x

no on i^w and by μi® on K^ for fc = l, ..., fc0 — 1 , feo + l , •••? rc — 1 , belongs
to ^ir(^ 3 β). Hence

and

1 dl ~(0)

ί - 0

This is true for any k0 between 1 and n — 1. Therefore, for any k,
such that 4 0 ) >0, it holds that

This was derived under the condition that r*40)>0. We obtain similarly

if ^ 0 ) > 0 and 4 0 ) > 0 , and conclude that

(2.27) Ύj(μxo)-

whenever xf^ >0 and 4 0 ) >0. If all 4 0 ) >0, we have by Theorem 2.14 for some
extremal measure μXQ

n

In(μx) = In(μxo) + 2 Σ 7Λ (μX0)Λxk + o ( JΛ I )

re

provided that Σ Xk=cί. Therefore the derivative of In(μx) at Λ:=Λ;O along the
n

plane ^xk=a\& zero. Conversely if the derivative of In(μx) along the plane

is zero at x=x0 with positive coordinates, then all yk are equal.
If the kernel is of positive type, and if all yk are equal at #o = 0*;iO), •••,

Λ4O))5 *iO )>0, ..., χc^>0, then μXQ is a 1-dimensional solution. In fact, we have
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n n

(μXQ, μXQ)~Q\ /^0>
 = Σ 4 0 ) rfk(μx0) = Ύι(μx0) Σ 4° ) =

and

μX0) g(P) P.P.P. on Kk.

Hence

E7**o(P) ^ y ( p ) + 7 l (^o) g (P) p. p. p . | on iC

By Theorem 2.3 it is concluded that μXQ minimises h(μ) among μ e #κ(g, a).
With similar reasoning we can establish

THEOREM 2.16. First consider the n-dimensional problem to minimize I(μ)
n n l n2

for μe.£κ(g, x), where K= \J Kk and x=(χu • •-, xn). Setting 5 ] χk=χΊ, Σ χk

n n l n2 n

=xr

2, ..., 1 ] xk=χf

m and \j Kk=K'u \J Kk=Kr

2, ..., \j Kk=K'm9
k = n?n-l + 1 k = 1 k = n1 + l k = nm_1 + l

consider next the m-dimensional problem to minimize I(μ) for μ G #κ(g, x) where

K= \J K'j and χ'=(χr

u , χ'm) If a solution at x0 of the n-dimensional problem

gives a solution of the m-dimensional problem, then

(2.28) TiC/^oH ' =fy«i(μ*o)> ryn1+i(μxo)= =Ύn2(μX0\ ,
rynm-1(μx0)= =Ύn(μX0);

these equalities are considered only for {yk} which are well-defined. If all x^
are positive, the derivative of I(μx) at x=x0 along the (n — m)-dimensional plane

n l

Σ Xk=χΊ9 •••, Σ χk=χ'm vanishes and this last fact guarantees (2.28) con-

versely.
If the kernel is of positive type, if (2.28) is true for x0 and if the coordi-

nates of xo are all positive, then μXQ is an m-dimensional solution.

2.5. Behavior at x = 0 and x = °o.

We consider again the family Π={P(y^\ ^^ξι<°° > , 0 ^ f w < o o } and
recall that the graph of I(μx) is the lower envelope of II. Let y=(γu •••> 7n\
yi>0, ..., γn>0, be a point with \y \ = 1 and I be the half line issuing from the
origin and passing y. Any point ξ oil is expressed by \ξ\y. The graph of
I(μx) over I is the lower envelope of

Hence the graph oίj(x)=l(μx)/p, p=\x\> over I is the lower envelope of
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where

= P(y»ry, yvry) ~ 2 </, yvry}, 0 <T p < oo ?

represents a line for each r. The graph of J(x) over I is therefore a concave
curve.29) Hence it has a right derivative and a left derivative at every point
(this was already observed before Lemma 2.1), and they coincide with each
other with a possible exception of a countable number of points. We infer
also that (yvry, yvry) and </, yvr^} decrease as r~> oo. By (2.26)

2 lim </, yvry>= 2 sup </, *>= - l im - ^ ^ - .
r0 v^#ζ(g, y) r-*0 T

We can express this value in a more explicit form. We shall denote by
Mk the pseudo-maximum of f(P)/g(P) on K .̂ Namely

Mk= inf

If Mf

k<Mk and

then <?Bk(M'b)^{0}' For any v e £ 3 5ft(Mp (g , y\ we have

Thus

i ] M ί y Λ ^ sup

and hence

On the other hand, for given ε>0, we choose vse#κ(g, y) such that </, vε>
^ sup </, v>-ε. Since ^ 3 **={0} for the set ^ = { F G ^ ; f/g>Mk},

we have VS(VJ Bk) = 0 and

c - u 5

29) Ogasawara suggested the author to make use of this property of the curve.
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Hence Σ Mk yk ^ sup </, λ> — e and the equality
k = l λ<=£κ(g,y)

(2.29) i ] M , y , = sup </, λ>

follows.
We have already seen that lim τ(yvry, yvry) = 0 by (2.25). We ask whether

(y»ry, y»ry) h&s a finite limit or not as r -> 0. First we assume that the Frvalue
of the compact set Fk={PeKk; f(P)^Mkg(P)} is finite for each ft, and take
λo<Eίf 3 Fk(g, y) which minimizes (λ, λ) among λe<f 5 Fk(g,y)> Since

<;/(rλo)=<λo, λ0) r2 —2 </, λo> r, we have

(̂ αv-y, yvr-y)r —2 <(/, yvrj!)^(^θ) λo) r —2 <̂ y, λoX

By (2.29)

whence

(2.30) (yvry, yvry) <L(λ0, λ0).

On the other hand, let T={v(ω); ωGD} be a subnet of the sequence {vylP}
converging vaguely to iΛ We observe that

and hence

( ^ ^ Mkyk.
1

Consequently f/g=Mk i/-a.e. on X"Λ and it is concluded that Sy C u F&. There-

fore

(2.31) lim (yury9 yvry) = lim (7v
(ω)

5 yv(ω)) ^ (yv'9 yvf) ^ (λ0, λ0).

On account of (2.30) we have

lim {yvry,yvry)={\^ λ0)

if Ffft)<oo for each ft. Let us write in general Vψ^XX) for inf (μ, μ). It
μ(Ξ<?χ(g, X)

is seen from (2.31) that

lim (yvry, yvry)=Vψ^\\JFk)=oo
rO k l
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if Vi(Fk)=°o for some k.

W e s u m m a r i z e t h e a b o v e r e s u l t s a s

T H E O R E M 2.17. For each y = (yu •-, y n ) , y i > 0 , • ••, y w > 0 , such that | y | = l ,
I(μΎy)/r is a concave function of r, and (yvry, yvry) and </, yvry} are decreasing
functions of r.

If the pseudo-maximum of f(P)/g(P) on Kk is denoted by Mk, i.e. if

J ^ p.p.p. on Kk}y

then

j^Mkyk= lim </, yvry>= sup </, λ>

= - lim ± Ίk (μry) yk = - 1 lim

We have also

lim (yvry9y»ry)=V<?«\

The next question is as to the behavior of I(μx) and j(μx) as x-+ oo. We
shall prove first

LEMMA 2.2. Let Λ I ^ O , ••-, xn^>0. Let BCK be a Kσ-set and let

(g, x). If a sequence {F{p)} of compact sets increases to B, then

(μ, μ)^ Vψ>x\B)= lim Vψ>x\F{p)).
P

PROOF. Obviously F^ ' Λ ) (5)^F? ' Λ ) (F ( i > ) ) for each p. We assume (/*, μ)
<oo and define μ(p) by setting it equal to xk μip^ <#, μi^}'1 on Kk9 where μip)

is the restriction of μ to Kkr\F(p); if ^ = 0 we set β(p) = 0 on KkΓ\F(p). Then
μ(p) e£F{p)(g> x) if p is sufficiently large. Since μf^ increases to μ on Kh (μ(p\
μ(p)) tends to (μ, μ). Therefore

Next let y be any measure of £B(g, x). Then (v, v)^l im Vψ'x\F{p)) and hence

). Together with the inequality obtained at the be-

ginning, this completes the proof.
Now we set

B= {P£K; / (P)> - 00} and B(p)= {P£K;

Each B(p) is compact and B= \JB(P\ Let us recall that we are still under the
p
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assumption that Vi(Br\Kk)<oo for each fc and hence VψtX\B)<oo. We shall

prove

(2.32) lim - % ^ - = lim (yvry, yvry) - Vψ^ (B).

Let υ<*> e <?BW(g, e) give (yy«°, yvψ)= Vψ *\Bw). By (2.16) we have

and hence

(2.33) lim

by Lemma 2.2.
On the other hand, we denote by vψy the restriction of vry to B(p\ Since

</, yvryy> — °°, vry(K—B) = 0 and yrj, e ^ (g, e). We have by Lemma 2.2

In view of the inequality

p +oo

max / + „
) = (μry, μry)-2 </, μryy^(y»ry, yvry)r2-2r —^^ Σ Jk,Σ

K °

we obtain

lim ^ψ- > lim ( r ^ ? yvry)^ V<?«\B).

This relation and (2.33) give (2.32). By (2.14)

lim

and

In general, the energy of the vague limit of any subnet of {yvry} is not
equal to Vψ^iβ) as Example 1 given after Theorem 2.18 will show. Let v be
the limit of a vaguely convergent net {v(ω) e<?κ(g, e); ωED} such that (yv(ω),
yv(ω)) tends to Vψ'y\B). Then (y^, yv)=V(

i

g'γ\B) if the following condition is
satisfied:

(a) / ( P ) > - o o y-a. e.
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To prove this, first we observe that Vψ'^ (B) :> (yv, yv) by Proposition 4
in § 1.6. On the other hand on account of (α), v belongs to β'βig, e) and hence
by Lemma 2.2

(yv,yv)̂ r lim V(f^(Bp) = V^\B).

Thus we obtain the equality.
Next we shall study lim <(/, yvry) a s r ^ o o . We know that </, yvry) de-

creases a s r ^ c o . Let T= {v(ω); ω e D} be a subnet of {vry}, converging vaguely
to some measure v*. It follows that lim (yvry, yvry)Ί^(yv*> y»*)

/ _>OO

lim </, yvr,>= lim </, y y w > ^

I f </» 7y?> = ~ °°, lim </, yvry) = - oo too. If </,

by (2.16) and hence

Thus < / , j ^ > decreases to </, yv*> and {(y^5 y ^ ) —(jv*5 yv*)} r tends to 0
as r->oo. In any case, lim <jf, yvr̂ )>==</, yv*>. We remark that each of

r-*oo

</, jv*> and (jv*, y^*) is the same for all vague limits of subnets of {yvry}.
In the case that </, yv*>>— °°, we have F (/' r )(5) = lim (yury9 yvry)=(yv*,

yv*) in view of (2.32). This follows also from (a) which is satisfied in virtue
of </, yv*>> — oo. Example 2 given after Theorem 2.18 will show that (a)
may be satisfied even if </, yvf}= — oo,

Let {i/ω); ω€Z)}bea net in #κ(g, e), converging vaguely to some measure
v, such that (yv(ω\ yv{ω)) tends to F (/' r )(£). Denoting by ^ the set of all such
vague limits, we shall show that

(2.34) </,y,*>=max</,yv>,

where v* is the limit of any vaguely convergent subnet of {vry}. We consider
the above net {v(ω)} and its vague limit v. Since

(Wry, y»ry)^ F ^ ( S ) = l ί

we have

0 ^ {(yvryy yvry)-(yv, yv)}r<2 </, yvry}-2 </,

by (2.16). Therefore
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and (2.34) is concluded.
We state

THEOREM 2.18.

lim ~

and

regardless of the choice of μrye^?y at each point ry, where B={PeK; f(P)
> — oo}, Denoting by v* the vague limit of any vaguely convergent subnet of
{vry}, we see that

lim </, yvryy=<Jy yvf) ^ - oo.

Let us denote by Jίy the class of all vague limits of vaguely converging nets in
&κ(g, e) such that (yv, yv) converges to V^g'y\B) as v tends to the limit along a
net. Then

lim i(yvry, γvry)-(yv

and

I(μry) = (yv*, yv*)r2-2 {</, yv*> + o (1)}r near r=oo.

Let v G ^ . A sufficient condition for Vψ'y^(B) = (yv, yv) is the following

and it is satisfied if <(/, yv) > — oo:

(α) / ( P ) > - o o v-a.e.

EXAMPLE 1. If (a) is not satisfied, it can happen that lim (yvry, yvry)

>(yv*, yv*) as the following example shows. Let K be the unit ball with
center at the origin in E3 and consider the Newtonian kernel. We set f(P)
= — (1 —OP)"1 and g(P)==l. We consider the case n=l and hence y=l. By
Theorem 2.18 we have that (vx, vx) tends to (v^ vj), where v^ is the uniform
unit measure on dK. Let vf be the vague limit of some subnet of {vx}. Since
lim (yxy ux)^(vf9 v * ) ^ ^ , v j , it follows that (yf, vf) = (yββ5 v j and hence vf

=voo. Let us set



On Potentials in Locally Compact Spaces 247

, ©=< ρ

0 if

For this kernel vx must be the same as above for every x^O. If we add the
subscript Φ to inner products defined with respect to the new kernel, (vx, vx)Φ

= (vx, vx) but (yf, V?)Φ

EXAMPLE 2. We shall show with an example that it happens that </,.
= -oo even if f(P) is finite-valued. Take Λ2=i£=[0, 1] on the #-axis and
i Q) = log 1/Pζλ The support of the equilibrium measure v^ is identical

with K. If we let f(P) tend to — oo rapidly as P tends to the end points of K
but set it equal to 0 at the end points, then </, vj)= — oo.

Next we shall apply the above theorem to study lim I(μry) as r-> oo. It is
seen that I(μry) tends to oo or to — oo according as F (/' r )(5)>0 or<0. In case

0, iQjbry) tends to -oo if </, yv*>>0 by the above theorem. If
) = 0 and 0></, yv*>, then (yvry9 yvry)^ Vψ>γ\B) = $ and

-^~ - (Wry, y»ry) Γ - 2 </, yvry> ^ ~ 2 </, J ^ > ^ ~ 2 </, y,*>

as r-> oo. Therefore I(μry) tends to oo.
We state the above results as

THEOREM 2.19. I(μry) tends to oo as r-> oo if V^y\B)>0, or if Vcf'γ\B)
and </, yv*>>0. It tends to -oo as r->oo if F (^' r )(5)<0, or if Vψ>γ\B)

2.6. Further study of the graph of /(/>&*).

We begin with

THEOREM 2.20 Lei y = (yu •• )y») &β α variable such that y i ^ O , •••, y w ^ 0
\y\ = 1 . Jw order ί/iαί I(μx) be a parabolic quadratic surface it is neces-

sary and sufficient that F ( / ' r ) ( F ) is a quadratic form inyu •••, yn and Vψ'^iβ)
= F ( / ' r ) (F) /or eαcfe 7,

F= \j{PβKk; f(P)^Mkg(P)} and B= {PeK; f(P)> - 00}.

PROOF. We assume t h a t

(2.35) 7QO = Σ αyA Λ y ^ - 2 Σ 6* ^

in # i > 0 , ..., Λ; W >0. We set \x\ = r , μx=χvx and a Λ =ry* for each A:. Since
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n τι

r Σ cLjkyjyk-2 Σ hyk

and

are linear in r, coincide with each other at r=/ and the latter is not smaller
than the former, they are identical for any r>0. Hence

n

(2.36) (yvr'y, y»r'y)= Σ ajkyjyu-

By Theorems 2.17 and 2.18 we have

n

<f>y»ry>= lim if,yvryy= Σ Mkyk
r-*Q k = l

and

(2-37) (yvrr, yur,)=lim (yvry, yvry)= V

= lha (yurj, y»r,)=V

Thus Vψ'y\F)=Vψ'y\B) and they are quadratic in yu ..., yn.
Next we shall prove the sufficiency. We assume that

)= Σ ajk7jyk

for each y. If </, yL6>> — oo for μ e <?κ(g, y\ then we have by Lemma 2.2

(μ,μ)^Vy>r\B)=± ajkyjyk.

Let vyζ.gF(g, e) be an extremal measure which gives (yvyi yvy)=V(f'y')(F). It
follows that

/( ryvy) = (yvy, yvy) r2 - 2 </, yvy} r = Σ ajk yj ykr
2~2 Σ Mkykr

^ (rμ9 rμ)—2r\ fdμ =

The inequality is true if </, μ> = — oo. We see that ryuy^^ry and that
I(rypy)=I(jjbry) for any y. Thus /(//-*) is a parabolic quadratic surface.

A simple example in the case rc=l in which the condition is not satisfied
is the following: K=a unit spherical surface in E3> Φ(P, Q)=PQ~1, / ( P ) = l .
The equilibrium measure v^ is the uniform measure on K and Sv =K. If we

oo

choose any nonconstant continuous function for /(P), / ( ^ ) will not be a poly-
nomial.

If 7z=l and f(P)/g(P) is constant on K, the condition in the theorem is
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naturally fulfilled. However, in case n^>2, Examples 6 and 7 in the next
section will show that I(μx) may not be a parabolic quadratic surface even
if f(P)/g(P) is constant on K.

One asks probably conditions for Vψ'^iK) to be a quadratic form in yu
n

• -,γn, where K=\J Kk is a disjoint union of compact sets. We do not know,

however, any condition at present.
If I(μx) is not entirely a polynomial, does it coincide with a parabolic

quadratic surface on some 0 < ; | Λ ; | < > 0 or on 0 < r 0 < ; U | < o o ? We begin with
the first problem. We assume (2.35) for x in 0<1|Λ;| <> 0. As in the proof of
Theorem 2.20 it follows that Vψ^iF) is a quadratic form in y1? .. , yn and that,

n

for any fixed y, (yvry, yvry) is constant on 0 < r <Lr0 and <(/, yvry)=*Σ Mkyk.
k = l

Let v e £κ(g, e). Then

(ryu, ryv)~2 </, ryv)^(ryvry, τyvry)-2 </, ryvry}

for r <>o. It follows that

(2.38) 2 ( Σ Mk y A -</,

for any y with \y\ = 1 . Conversely, if Vψ'y\F) is a quadratic form inyi, ••,
j w and if (2.38) is true for any ve#κ(g, e) and y, then / ( ^ ) is a parabolic
quadratic surface in \x\ < r 0 .

We restrict ourselves to the case n=l; we write K and M instead of Kι
and Mi. We shall prove (2.38) for some r0 in the case that there is a>0 such
that

(2.39)

Let v G #κ(g> 1). We denote its restriction to F by vF and set j/=v — vF. Ob-
viously

We see that

We shall write simply F ^ ( X ) for F ( /' Ό (Z) in general and prove that {Vψ\F)
— (̂ 5 ̂ )}/<^5 '̂> is bounded from above by a constant not depending on »>
provided that <g , v/>>0; it is obviously so if v = v. Hence we assume that
vF=£Q. Since
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F9vF)

it is sufficient to show that { ^ ( F ) - ^ , VF)}/<g9 ^> is bounded from above.
We set

\=-^-UF

and note that F^CF^Cλ, λ). It follows that

)? 0}.

Thus

is bounded from above with respect to ueS'xig, 1) provided that <#,*/>>()•
If <#, y/>=05 Sv C F and F (/ }(F)^(^ 5 v). Hence (2.38) is true with some positive
constant r0.

We state

THEOREM 2.21. In order that I(μx) is equal to a parabolic quadratic surface
on 0<;|Λ;| <>o, it is necessary and sufficient that Γ(/'r)(F) is a quadratic form
in yu .., yn and

2 ( Σ Mkyk-if yvy)>ro{V¥>yχF)-(yv, yv)}

for any ve£κ(g,e) and any y with \y\ = 1 . This is satisfied in case n=l if
there is α > 0 for which (2.39) is true.

In case τz=l we shall give in the next section an example (Example 3)
which shows that the last condition in the above is not always necessary for
(2.38), and another example (Example 4) which does not satisfy (2.38) with
any r0.

The next question is to find condition for I(μx) to be equal to a parabolic
quadratic surface on some part r0 <: | x \ < ©o. We assume that

(2.40) I(μx)= Σ ajk χjxk-2J]bkxk-hc for |x\ ^ r 0>0.
k=i

By Theorem 2.14 and its Corollary 1 we see that χk7k(μχ) is uniquely deter-
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mined at every % in ΓO<;|Λ;| <OO and that

(2.41) 2yk(μx)=^^-=2 ± ajk Xj -2bk
OXk /-I

if xk>0. On account of (2.14) we have from (2.40) and (2.41)

= Σ 7k Ύk(μry)~^f^= Σ h γk —j-.

Using Theorem 2.18, we see that

Σ hγk= lim </, yvry>=<f,
k l r*°°

where v* is the limit of a vaguely convergent subnet of {vry}. Let the point
(0, , 0, 1, 0, •-, 0) on the ^-axis be denoted by γk. We define v*k on Kk by
considering a one-dimensional problem. We integrate the inequality

(2.11) Uμχ(P)^f(P) + 7k(μx)g(P) p.p.p. on Kk

and obtain

(2.42) \ U*y dμx=\ Uμχ dv*k^(f, v*ky-h<γk(μx) = 'Σ ajk Xj

for |Λ; |^Γ 0 , ^ > 0 , ••-, χn>0

Let us assume that

(2.43) U"*yk(P)<:ajkg(P) P P P on BίΛKj

for each; and k. Then \ UVykdμx=^Σ1ajkxj and all terms are equal in (2.42).

Therefore

(2.44) Uμχ(P)=f(P) + yk(μx)g(P) v**-a.e. on Kk

on U l ^ r

Conversely we assume (2.44) and that each U*yk(P)/g(P) is constant p.p.p.
on each Br\Kj; let us denote the constant by ajk. It follows that (v*yk, v*γj)
=ajk=akj. We integrate (2.44) and obtain

(μX9 v » = Σ ajkXj = (fy v*yk>-hΎk(μx).

On account of Theorem 2.14, t h e derivat ive a t x=(xu ..., xn),
in t h e direction given by z=(zu •-, zn\ \z\ = 1 , is equal to

-2 Σ </, ^ >
k l
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= -j^- (Σ aJk xj *» ~ 2 Σ </, v » **)•

Therefore

re re

Kμx)— Σ ajkXjXk—2 Σ <(/? *4*>#£+ const.

We state
THEOREM 2.22. Let v** δe α measure which maximizes <(/, v> among v € ./Γj,*.

jy UVyk(P)<Lajkg(P) p.p.p. on Br\Kj for each j and k and if I(μx) coincides
with a parabolic quadratic surface on \x\ I>r 0 >0, ίfoew,/or eαcfe A;,

Uμχ(P)=f(P) + Ύk(μx)g(P) ty-a.e. on Kk

on \x\^r09 Λj>0, .. > 0
0 j

Conversely, if this is true and if each UVyk(P)/g(P) is constant p. p. p. on
each Br\Kj9 then I(μx) coincides with a parabolic quadratic surface on \x\^r0.

We shall give an example of continuous /(P) which does not satisfy (2.44)
as Example 5 in the next section.

In the same way as for Theorem 2.21, we can show

THEOREM 2.23. In order that

I(j*x)= Σ ajkXjXk — Zihhxk on r <:\x\<ooy

j,k=l k = l

it is necessary and sufficient that Vψ'^(B) is a quadratic form in yu .. , yn and

for any y and v e <?κ(g, e) such that </, yv)> — oo, where </, yvf}= max </, y^>.

Finally we assume that the kernel is of positive type. According to Theo-
rem 2. 8, each XkVkiμx) is single-valued. Therefore by Corollary 2 to Theo-
rem 2.14 I(μx) is continuously differentiate in #i>0, ..., xn>0. We take x\
χ\ a^>0 and b^>0 such that a + b=l and set ax +bxf=x. Then

) and I(μ>x)<LKaμx, + bμx,,).

From this we obtain

(2.45) I(μϊ) + ab(μx, — μx,,, μX' — μX")

<LaI(μx,) + bl(μx,,) + (a + 6 — 1) {β(^,, ^/) + K^^? ^//)} =al(μx,) + bl(μx»).

Since

it follows that
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This shows that ZOO is a convex function in # i ^ 0 , ..., xn^0. For a=b = 1/2,
we have

from (2.45). Since I(μx) is continuous, the right side tends to 0 as x' —
Hence \\μX' — μX"\\->0. Taking

into consideration, we see that ||μ*|| is single-valued and continuous on
, χn^>0. Hence

is single-valued and continuous on Λ I ^ O , • •-, χn^0. Since I(μx) is convex,

is an increasing function of r.
We shall investigate this case furthermore. We assume that V

is finite, where F= \J{PeKk; f(P)^Mkg(P)}. Consider the class of measures

of ^ ( g , y) whose energies are equal to Vψ^iF) and λ̂  be a measure of the
class such that </, λ^>=max </, λ> for λ of the class. We have by (2.12),
(2.13) and Theorem 2.17

^ , λ,)

We defined Jίy before as the class of measures which are the vague limits
of vaguely converging nets in #κ(g,β) such that (yv, yv) tends to Vψ'^iB) as
v tends to the limit along a net, where B= {P€K; f(P)> — °°}. Let v* be any
measure maximizing, <(/, yv) among v € Jfy. We integrate (2.12) and obtain

Therefore, if </, jv*> is finite,
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2
γ r τ

on account of Theorem 2.18.
We state

THEOREM 2.24. If the kernel is of positive type, then I(μx) is convex and
continuously differ entiable, μx is continuous in semi-norm, and \\μx\\ is single-
valued continuous in #i;>0, ..., xn^>0. As r->0, \\yvry —Xy\\-+0 if Vψ'y\F) is
finite, and \\yvry—yv5\\-+0 asr->oo if </5 yy*>=lim </, yvry) is finite.

COROLLARY. In case ΊI=1, if the kernel is of positive type, Ί(μx) is an in-
creasing single-valued function on 0<Lx<°°.

2.7. Examples.

In the first five examples, n=l. Namely we do not divide K into Ku ..,
Kn.

EXAMPLE 1. Ω=K= two points Pi and P2, g(P) = l, f(Pι)=l, f(P2)=2, and
Φ(P, Q) is given by

/I a\

2/.

Let jitbea measure on K with total mass #>0, and set xι=μ({Pι}) and x2=μ
({P2}). We have

=x\ + 2x\ + 2axιx2 — 2xχ — Ax2

ό — Δa

We first give the graphs of I(μx) and Ί(μx).

(i) a>4~

I(Mx)

2x2-4x
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(ii) a=-

the same as ( i )

(iii) Kα<-§-

x2-2x

- 1-

- 2 -

x- 1

(iv) -

3 - 2 α

O —

1
2-α

2U-1)
2 - α

2x-2
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1
2-α

2 x2 - 4 x

- 2 -

- 3 -

( 2 - α 2 ) j 2 + 2 ( 3 α - 4 ) j -

3-2α

- 1 -

- 2 -

2 - α

(2-α2)z+3α-4

-v9 μ-v) = (x\ + 2x\ + 2aXιx2) + (Λ;;

Let us examine when Φ(P, Q) is of positive type. Let μ, v be any measures

and set μ({P1})=χu K{ft})=*2, K{Pi})=*Ί> < { ^ } ) = ^ . We have

ι — xί) (x2 — x'2)

This is always nonnegative if and only if a2<L2, and, for any different μ and

v, this is positive if and only if a2<2. Namely, Φ(P, Q) is of positive type for

a with \a\<^y]~2, and satisfies the energy principle for a with \a\ <V 2.

We observe several characteristic points in the above figures.

1) In (i) Jί2 consists of two measures: a point measure at Pi and a point

measure at P2.
2) In (ii) Jί2 consists of the segment joining the above two measures.

3) For α, 1< \a\ <V2^the kernel satisfies the energy principle but d2l(μx)

/dχ2 does not everywhere exist.
4) In (v) Ί(μx) is continuous but not increasing.

EXAMPLE 2. Ω=K=3 points Pu P2 and P3, g(P)^h /(Pi) = 3/2, /(P 2 )=2,

/(P 3 )=3, 0(P, Q) is given by

For μ with total mass x, we set Λf=^({P, }), i = l, 2, 3. We have

Fixing Λ3, we substitute Λ -Λ I - ^ for Λ;2 and differentiate /(^) twice partially
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with respect to xlm It follows that

257

p = 6 4αi.
σxi

If αi>3/2, this is negative and the minimum is taken when Λ?I = 0 or x2 = 0.
By a similar reasoning we can assert that the minimum is taken when xx=x
or x2=χ or x3=x. Namely, the graph of I(μx) is equal to the lower envelope
of three parabolas x2-3χ, 2x2-4x, 4x2-6χ. It is equal to the lower envelope
of Ax2 — 6x and x2 — 3x.

The graph of 7(μx) is equal to

1,0, -3/2

*-3/2

for 0<;Λ;<1,

for x=l,

for l>χ.

Thus 7(μX2) has 3 values at x=l. Both curves Ίx2-6x and x2-Sx have the
same minimum value — 9/4.

(μx)

x 2 -3*

- 3 -

1-

- 1-

- 2 -

- 3 -

Ύ(μx)

/

/

/

H i -

/

/

1 /

/

3

/

'2
1

3
1 X

In a similar way we can give an example in which I(μx) is equal to the
lower envelope of any finite number of parabolas passing through the origin.

QUESTION. Can Ύ(μx) have an infinite number of points of multivalency,
clustering at a finite point or tending to -f °o ?30)

EXAMPLE 3. We shall solve the variational problem in the following case:
g=K= the ball {P; ΌP^2} in E3, <5(P, Q)=1/PQ, g(P) = l, f(P)=l on the ball
Ko= {P;OP<L1} and =1/OP outside Ko on K; if v* is the uniform unit measure
on ΘZo, f(P)=Uv\P) on K. Our problem is to find vxe$κ(g, 1) which gives
I(χvx)=mm I(μ) for ( )

30) Ogasawara told the author that he has an affirmative answer.
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Since the energy principle is satisfied, vx is unique and hence its distribu-
tion depends only on the radius Ίjp=r. We denote the mass vx({P; UP<Lr})
by vx(τ). The potential

[ -
JO<rι^OQ^ro^2 Γ\PQ Λ ^

is constant on any spherical surface with center at 0 and harmonic in 'OP<r1.
Therefore it is constant there and equals

f dvx(τ) a

Jr1^r^r2 T

By taking the mean on the spherical surface passing P we see that

PQ d v M =

Therefore

dvx(r) + v

PQ )όp<r^2 r OP

Hence

vxJo Jop<r^2 r Δ Jo r

and

— ^ dr.

jψ. dr

We have

2 f1 vUr)
Vχ9 Vx) — (?X9 V ) = \ 2~~~

x Jo r X

o r i r

2 2Λ;2 X 2

The first integral attains its minimum when vx(r)=0 on 0 ^ r < l , and the se-
cond integral does when v*(r)=min (1, 1/x) on l ^ r < 2 . Therefore it is con-
cluded that vx is the uniform unit measure on 3K0 when #<U and it is the
sum of the uniform measure on dK0 with total mass 1/x and the one on 3K
with total mass 1 — 1/x when x> 1. We find
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x2-2x on 0<;Λ;<;1,

Kμx)=<

2 * 2 on

This example shows that (2.39) is not always necessary for (2.38) to be
true.

We write Kλ and K2 for 3K0 and 3K respectively, and take the same
kernel, /(P) and g(P) as above. The extremal measure μx is then the same
for KI\JK2. The graph given below has relation to the problem treated in
Theorem 2.16.

Mχ(K»)

-Mχ(Kι)

EXAMPLE 4. We shall show by an example that if /(P) decreases slowly
as P goes away from F, then (2.38) does not hold for any Λ;0>0. We take
everything the same as in Example 3 except for /(P): /(P)=l on Ko and = 1
— exp (1 —OP)"1 on K—Ko. Let v(r) denote the uniform unit measure on the
surface OP=r, l<r<2. We have </, v*>-</, » ( r ) > = l - { l - exp (1-r)-1}
=exp (1 — r)"1. If we set (r — l)" 1 = ί , it is equal to e"'. It follows that

as r->l and hence as ί-> oo, Thus (2.38) is not satisfied with any

EXAMPLE 5. Ω=E^ K= the unit spherical surface with center at the
origin 0. We shall give a continuous function /(P) on K with the property
that, for any constant c, f(P)-\-c is not equal even a.e. on K to any Newtonian
potential of a measure on K; a.e. here is understood in the 2-dimensional
sense.

Prior to the construction we remark two facts. First, for any bounded
Borel function UP) given on K we regard the Poisson integrals as solutions
of the interior and exterior Dirichlet problems. They tend to h(P) as the
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variable approaches any point P of continuity of h(P) on K. We shall denote
by Ih the function in E3 obtained by extending h(P) by the Poisson integrals.
If, in particular, h(P)— const, c on K, then the interior solution is constantly
c and the exterior solution is equal to c/OP. Secondly, if hn(P) tends to h(P)
monotonously with possible exception of a finite number of points on K, then
Ihn tends to Ih monotonously.

We take an arbitrary point Po on K and denote by Cn the spherical surface
with center Po and radius 1/n. We shall denote the mean value over Cn of Ih

by MnQί). If the boundary value on K is equal to a positive constant c, then

OQ

where ωn is the surface area of C», dσn is a surface element and C'n9 Cζ are the
parts of Cn inside and outside K respectively. We see that

M (c) ^> ° ι x J /iON C7Z

In particular Mn(l/^n)^^n(n-\-iyι. By the second remark given above, we
can find a neighborhood Nn of Po on K such that, if the boundary value h(P) is

nonnegative continuous and not smaller than 1/y/rc outside Nn, then Mn(h)^^Jn
{2(n-hl)}'1. We assume that Nn is the intersection of K with a ball around
Po and that the radius decreases strictly as n-> oo. Now we set

/ 1 on K-Nu

\
on

and define it entirely on K such that it is continuous and / ( P ) ^ 1/V/z outside
Nn. Then

We shall show that this f(P) is a required one. We assume that there is
a constant c and a measure μ on K such that

(2.46) /(P) + c=ϊ7/i(P) a .e .onί ;

a.e. is understood here in the 2-dimensionaί sense. Let B be the part of K
where the equality holds. Since C/μ(P) is lower semicontinuous,

f(P) + c= lim ^ ( Q ) ^ ^ ( P )
Qς=B,Q^P

at every point P of ϋΓ. At any point Pi of Br\Sμ, it holds that
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lim _ Uμ(P).

It is well known that

lim f7μ(P) = lim Uμ(P).

Therefore

On account of the lower semicontinuity of £/μ(P), it follows that

lim £Γ(P)

This is evident if PλeB — Sμ. Now Uμ(P) and If+C have the same boundary
limits a.e. on K and vanish at the point at infinity. Hence they coincide in
the whole space.

We shall compare Mn(f-\~c) with the value of f+c at Po, namely with /(Po)
+ c=c. We see that

If n is sufficiently large, then Mn(f-\-c)>c. This shows that the mean value
of Uμ(P) over Cn is greater than its value at the center of Cn. This is impos-
sible because Uμ(P) is superharmonic in the whole space.

Let us see how this example is related to Theorem 2.19. We consider the
Newtonian kernel in E3, take a unit spherical surface for K and /(P) of Ex-
ample 5, and set g (P)==l on K. Then the support of the equilibrium measure
on K coincides with K. We have seen that

on a subset of K of positive 2-dimensional measure. Consequently, for some
continuous function /(P), the part of I(μx) corresponding to any interval x0

<11 x I < oo does not coincide with any polynomial.
If we allow /(P) to be discontinuous it is rather easy to construct an ex-

ample. We take the same Ω, K and g(P) as above. We divide K into two
semispheres and set /(P)=l on one closed semisphere d and /(P) = 0 on the
rest C2 of K. Suppose that there are a constant c and a measure μ supported
by K such that (2.46) is true. For the same reason as above we conclude that
Uμ(P) coincides with If+C. Let Po be any point of the border of CΊ. By the
lower semicontinuity of Uμ(P) it holds that i/%P0)<ic. On the other hand we
set f = l—f on K and see that the mean value Mn(fJ

rf)=2Mn(f) around Po

tends to 1/2. Therefore M»(f+ c)=Mn(f) + Mn(c) tends to c +1/2 > Uμ(P0). This
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contradicts the superharmonicity of Uμ(P).

EXAMPLE 6. Kι = two points Pu P2, K2= one point P3, K=KιVJK2; hence
n=2. /(P) = 0, g(P) = l, Φ(P, Q) is given by

a d e

d b /

e f c

For 7=(7i, 72), 71^0, 7 2 ^ 0 such that 7?Λ-yl = l and for μe#κ(g, 7), we set
Di})=yΊ and μ({p2})=yί and have

+ 2dyίy"1+cyl

if β ^ 5

/ if a-hb = 2d,

where

(b-d)yι+(f-e)y2

a + b-2d

We see that min /(//,) is a quadratic form in 71 and 72 in the following cases:

(1) a= min (α, b)<Ld and β</ ?

(2) 6= min (α, b)<Ld and / ^ e 5

(3) c?^ min (α, 6) and e=/.
In other cases the graph of I(μx) is not a parabolic quadratic surface but con-
sists of two or three pieces of different parabolic quadratic surfaces.

EXAMPLE 7. Let K\ and K2 be the surfaces of mutually disjoint unit balls
in E3, and d be the distance between the centers. Considering the Newtonian
kernel, we shall show that Vγ'y\Kι\jK2) is not a quadratic form in yx and 72

at least for large d, where y=(yi, 72) and y?-fy! = l.
We shall use the following classical result in the electrostatic theory (see

Smythe [1], pp. 118-119, for instance): There is a sequence of point measures
inside Kι with the total mass

( 2 '4 7 ) —1 +l^Γ+wtf*+"
and a sequence of negative point measures inside K2 with the total mass

(2.48) -7112=- 4 - - 1

d did2-2)

such that the potential of the whole measure is equal to 1 on K\ and 0 on K2.
By sweeping-out processes we can find a positive measure μι supported by Kλ
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and a negative measure — μ2 supported by K2 which together give the same
effect on and outside K=K1\JK2. The total masses remain unchanged. We
interchange μλ and — μ2 and denote the resulting measures on Kλ and K2 by
— vi and v2 respectively; the total masses of — vι and v2 are — m2 and mi re-
spectively. It follows that

h μ2

2 (πi\ — 7^2)

is a unit measure on K whose potential is constantly (2mι — 2m2)~ι on K. Be-
cause of the uniqueness of measures which give the same potential, it is con-
cluded that the measure is the nonnegative equilibrium measure on K. The

value of Vγ>γ)(K) for y=(l/V2, 1/V2) is equal to

πii — πι2

Given 71 > 0, y2 > 0, y\ Λ~y\ = 1, let us solve

f tlϊli — SΊΊl2 ~Ύl)

in t and s. The solution is

mi J\ + m2y2 m 2 y y
t== 2 2 5 5 = 2" 2 5

Tri\—Wj2 HI 1—77Z2

and the potential of X—t(μι — μ2) — s(»i — v2) is equal to t on Kλ and to s on K2.
We shall show that, if | yλ —y21 is small, λ is the extremal nonnegative meas-
ure whose energy is equal to VΫ'^iK)^ where y=(yu 72).

There is a number αθ5 0 < α 0 < l , such that the αo-niveau surface of the
harmonic function ho(P), equal to 1 on K and to 0 at the point at infinity, con-
sists of two closed surfaces, one Fι enclosing Kx and the other F2 enclosing K2.
We recall that ViQiy) and Ύ2(μy) are continuous with respect to y. Hence there

exists yo, 0 < y 0 < VV2, such that, for any y=(yu V 1 —yϊ) w i t h yx e [y0, 1/V2],

^ 2 ( ) \ 2 ^ 2 { )

Suppose now that KιΓ\SμyΦ0, and consider
μy

— 77Z2) 2 V 2 (mi — 77Z2)

This is harmonic outside i£ and takes a negative value at the point at infinity.
Since
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1 l - α o
max

%

= max 7i(μx) - — =
» ' i 2 V 2 (

^ 0 ,
V 2 (TTZI — 7τz2) 2V 2(m1 — m2)

outside K by the maximum principle for harmonic function. Hence

V 2 (77Zi — τn2) 2\J 2 (jni — 77Z2) 2\/ 2 (TTZI — m2)

on FI\JF2. On S^nJfi we have

V 2 (TTZI — 7722) 2 v 2 (7721 — 7712) 2 \J 2 {jni — 7722)

Therefore

in the domain bounded by 5μ3,nKi and Fx. This contradicts the fact that
Uμy(P)^>rγι(μy) p.p.p. on Kι which was shown in Theorem 2.7. Consequently
Sμy^Ki. Similarly we see that Stίy^)K2 and hence Sμy coincides with K.3l) It
is shown that Uμy(P)=yι(μy) on Kλ and =y2(μy) on K2. By means of the ener-
gy principle we can conclude that μy is equal to the above X=t(μi — μ2) — s(yι
— v2). Its energy is given by

7τzi y\ -h 2m2 j i y2

If Vγ'y\K) were a quadratic form in yλ and y2, then the coefficient of y\ would
be equal to Vγ>1\Kι)=l. Therefore

(2.49) m^mj-ml

We substitute (2.47) and (2.48) in (2.49), expand it into a series in 1/d and
find that (2.49) is not true in general. It is now proved that Vγ'y\K) is not
a quadratic form in yx and y2 at least for large d.

2.8. Unconditional variation.

Let K be a compact set with #^^{0}. We fix an upper semicontinuous
function/(P)< 00 which does not have the property that /(P)= — °° p.p.p. on
K, and fix an arbitrary positive continuous function g(P) on K. We denote by
I(μx) the conditional minimum of I(μ)=(μ, μ) — 2(f,μ) under the condition
<g , μ)=χ as before. If there exsits an extremal measure μ* which gives
the finite unconditional minimum of I(μ)9 μ* must be one of the conditional

31) This reasoning is due to Leja [ΊΓj.
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extremal measures, which minimize I(μ) under the condition <#, μ)=(g, μ*y,
and /(/A*) must be the minimum value of the continuous function I(μx) of x.
Conversely, if I(μx) has a finite minimum value at xθ9 then any conditional ex-
tremal measure μXQ is an unconditional extremal measure. Thus the uncondi-
tional problem is reduced to finding a finite minimum value of I(μx). Things
are the same in case n ̂  2. However, finding a minimum point of a curve of
I(μx) in case n=l is much easier than finding a minimum point of a surface
in case n^>2. For this reason we shall restrict ourselves to the case n=l in
this section.

By Theorem 2.19 we have

THEOREM 2.25. There is an extremal measure which gives the finite un-
conditional minimum for I(μ) if Vi(B)>0 or if Vi(B)=0 and <(/, v*><0, where
v* maximizes <(/, v) among vζ.Jf\v^jV* if v is the vague limit of a net {v(ω)}
in #κ(g, 1) such that 0(ω), ι/ω)) tends to Vψ\B). There is no finite uncondi-
tional minimum if Vi(B)<0 or if F, (J5)=O and </, v*)>>0.

The case that F, (2?)=0 and </, v*>=0 is delicate. In the special case
that I(μx)=bx-hc on some χo<Lχ<°<=>, </, vxy= —b/2 — c/x on # 0<^<c>o and
6>0 or = 0 or <0 according as <(/, v*><0 or =0 or >0. As an example, we
consider

I(μx)=x\ + 2x\ -2V2~Xl x2-2*i + 2ax2

with the same notations xλ and Λ;2 as in Example 1 of § 2.7. According as

a<{2, = V~2, > V ,̂ we have 6<0, 6=0, 6>0.

THEOREM 2.26. Assume that (μ, μ)>0 whenever SμCK, μ^O and <(/, μ)
^ 0 . Then there is no xo>O such that I(μXo)=min I(μx) if and only if f(P)<L0

p.p.p. on K.

PROOF. First we suppose that there is a compact set FCK with £F^Ξ{0}

such that /(P)>0 on F. By Proposition 1 of Chapter I, there is a compact
subset Fι with ^ ^ { 0 } of F on which /(P)>α>0. We take λ e ^^g", 1) By
assumption (λ, λ)>0 and, for any x>0,

, \)-2xcc (max g)'1
K

= (λ, λ) Λ—
(λ, λ) max g7 (λ, λ) (max gf

K K

For x=a {(λ, λ) max g*}"1, I(x λ)= — a2 {(λ, λ) (max g)2}"1^ and hence min

I(μx)<0. Since I(μx)->°o with #, there is Λ;0>0 which gives I(μXQ)=mm I(μx).

Conversely, if /(P) <10 p.p.p. on K then [fdμ<^0 for any /̂  e δκ. For Λ;>0

we have
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I(μx) = (μx, μx)~2 </, μx}^ max {(μx, μx),-<f9 μx>} >0.

Therefore χo = O.

THEOREM 2.27. If xo>O and I(μx) has a local minimum value at xOi then
Ύ(μXQ)=0 and dl(μx)/dx at x0 is equal to zero.

PROOF. If I(μXQ) is a local minimum value, Γ-(μx)\x-XQ<^0 and Γ+(μx)\x-XQ

^ 0 . However, by Theorem 2.14, ΓΛμx)=2γ(x)^2γ(x)=Γ_(μx). Hence, at
x=x0, Γ+(μx)=ΓXμx)=0 and Ύ(μx)=Γ(μx)=0.

REMARK. There may be many points at which min I(μx) is attained. In
0,g*<oo

example 2 of § 2.7 the minimum value — 9/4 is attained at #=3/4 and 3/2.
By modifying the same example it is easy to give an example in which a local
minimum value exists and is different from the minimum value.

So far we considered the unconditional problem on a compact set. Now
we consider a general set. We shall not take any g(P) in advance.

THEOREM 2.28. Consider Aζ'Ά withgA^{Q} such that (μ, v) is well-defined
for any μe<$"A and v 6 £A. Let f(P) be an ^-measurable function on A such that
<(/, v} is defined for any v € SA and μ'^0 be a measure of £r

A with the following
'properties:

/(//) is finite^
There is an %-measurable positive function g(P) on A such that <(g, μry

< oo3 that (g, v) is defined and finite for any v 6 SA and that

I(μ')= min /(λ),

There is ί0, 0 < ί 0 < l , such that

if |ί|^ίo.

Then

(2.50) U*XP) ^ / ( P ) p. p. p. on A,

and

(2.51) U*XP)=f(P) μ'-a. e.

//, in addition, /(P) is upper semicontίnuous on A, then Uμ/(P) <L f(P)
everywhere on S^ίλA and UμXP)^>f(P) p.p.p. on A except on a set which is the
intersection of an Fσ-set with A.

If the kernel is of positive type and there are measures μ and μr of £'A
which satisfy (2.50) and (2.51), then \\μ — μf\\ — § and I(μ)=I(μf). If the en-
ergy principle is satisfied, there is at most one measure of £'A which satisfies
the two inequalities.

PROOF. We have
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Hence

dt

and

Therefore by Theorem 2.1 ^ ' ( P ) ̂ / ( P ) p.p.p. on A and UίX\P)=f(P) //-a.e.
If /(P) is upper semicontinuous on A, then Uμ/(P)<Lf(P) everywhere on Sμ,r\A
and Uμ/(P)=f(P) on 4̂ except a set, which is the intersection of an Fσ-set with
A.

If μ! satisfies (2.51), then (//, //)=</, //> and

If the kernel is of positive type and (2.50) and (2.51) are true for μ and μ" of
&Ά> then

Therefore H/ΊI^II/II. Similarly | | /H^| | /ΊI, and hence II/IHII/'H and \\μr

— μ"\\=0. Consequently

I{μ')=-{μ\ μf)= - ( ^ , μ")

If the energy principle is satisfied, μ=μ" follows from \\μ —μ"\\ = Q.

COROLLARY. Consider the same A and /(P) as in the theorem. Let μ'^0
be a measure of g'A which gives the unconditional finite minimum to I(μ) among
μe<?Ά for which </, μ> is defined. Then UμXP)^f(P) p.p.p. on A and Uμ\P)
=/(P) μ-a.e. If f(P) is upper semicontinuous on A, then Uμ'(P)<Lf(P) on S^r\A.

REMARK 1. Given a compact set K with ^#^{0}, a positive continuous
function g(P) on K and an upper semicontinuous finite-valued function /(P) on
K, we consider I(μx) as a function of x as before. If Λ; 0 >0 and I(μXQ) is a local
minimum value, then μXQ satisfies the three conditions required on μ in Theo-
rem 2.28.

REMARK. 2. Let us assume the same as in Theorem 2.26. Then we can
give a different proof to that theorem by means of (2.50) and (2.51).

REMARK. 3. If we do not assume the positivity of type of the kernel, two
inequalities can be true for μXQ which does not give a local minimum of I(μx).
For instance, if we consider
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+ 2ocxι x2 — 4Λ?I — 6x2

with a sufficiently large α under the same circumstances as in Example 1 of
§2.7,

2x2-Ax

for

for 1<;Λ;<OO.

The minimum is taken at #=3/4, but at x=l we have two extremal measures
and the corresponding values of 7 are equal to 1 and 0. For the latter meas-
ure the above two inequalities are true but I(μι)= — 2 >J(μ3 / 4)= — 9/4; see
Example 2 of § 2.7 too.

Another example is

See the graph.

REMARK 4. If/(P) = 0 in Theorem
2.7, we have

on Sa

and

Uμχ(P)2>7(μx)g(P) p.p.p. on K.

We know that I(yμx) = x2(yoo, O with
^ giving (v^ O = m i n (^ ^ and

that 7GO=*0ΌO, O If (̂ co, O > 0 , we
set \=μx/

rY(μx)=μx{χ(voo9 v j } " 1 and ob-
tain

on Sk~S
k~Sμχ

and

p.p.p. on

Thus we can find a measure λ which satisfies two inequalities (2.50) and (2.51).
However, this method is less general than that in Theorem 2.28, because g(P)
must be positive on K in the present case.

2.9. Multiple variational problem.
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For each k, l<Lk<Ln, let Φk(P, Q) be a kernel,32) Ak be an Sί-measurable set
wth &Ajι>φ^{0} in Ω such that (μ, v)Φk and (y, μ)Φk are well-defined for any
μ € &Άk, Φk and any v G gAkt Φk, fk(P) be an Sί-measurable function on Ak such that
</*, v> is defined for any ve#Ak,Φk and g*(P) be an Sί-measurable function on
Ak such that <#*, v) is defined and finite for any ve#Ak,Φk. So far we have
mostly assumed that kernels are symmetric. Although we shall come back
soon to this assumption, kernels considered here may not be symmetric. Fur-
ther consider for each pair j and k, jφk, a function hjk(P, Q) on Aj x Ak with

the property that \ hjk d{μ®v) and I hjkd(v®μ) are always well-defined for

product measures μ®v and v®μ of /χ€<^y,Φy and v££Ak,Φk respectively.
This section concerns itself with the problem to minimize

(2.52) Σ G*<*>, ^ } ) Φ , + Σ (( hjk(P, Q) dμv\Q) dμ(k\P)-2 £ </Λ, ^ >

among μ(k) e#Ak>φk(gk, Xk, fk), k=l, ,n, for which (2.52) has a meaning. We

give

THEOREM 2.29. With the above notations, suppose that there are extremal
measures {μ*} giving a finite minimum to expression (2.52) among μ(k)

(gh χh fk), fe=l, , n, for which (2.52) has a meaning. Then we have, if

(2.53) tf£i(P)^/*(P)---^ Σ Jj Ay*(P, Q) + hkJ(Q, F)

Φk'V-P-P on Ak with

equality holds μt-a. e. in (2.53). 1/ ί ί ΛyΛ(P, Q) +hkj(Q, P) \ dμf(Q\

7 = 1, •••, fc —1, fc + 1, •••, 7z, α?tίZ — /Λ are io^er semicontinuous on A and if gk is
continuous on A^ then the inverse inequality is true on Sμ*kΓ\Ak.

PROOF. We observe that μ* minimizes

0*, μ)*k+< Σ \{W> QHhkΛQ, P)) dμf(Q)-2fh μy

among μe £Ί

Ah,*k(gk, %i, /*). Applying Theorem 2.1 in the case n= 1 we obtain
the conclusions.

We can prove the following theorem in the same way as Theorem 2.6.

32) This idea of considering different kernels is due to Ninomiya Cll]]. When more than one
kernels are considered, they will be specified as subscripts.
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THEOREM 2.30. In addition to the properties assumed at the beginning of
the present section, suppose that {Ak} are compact sets {Kk}, each hjk(P, Q) and
each —fk(P) are > — oo and lower semicontinuous on Kj x Kk, j φ k, and Kk re-
spectively, each gk(P) is positive continuous and xk ^ 0. Then (2.52) is always
equal to oo or there exist {μf} which give finite minimum to (2.52).

We remark that, in the case where each Ak is a compact set Kk and where
each hjk(P, Q) is > — oo and lower semicontinuous on Kj x Kk, our problem is
equivalent to that of § 2.2. In fact, we regard K=Kχ -f. -f Kn as a sum space
and define a kernel o n l x l b y

[Φk(P,Q) if
Φ(P,Q)=]

(hjk(P, Q) if PeKh QeKk and jφk.

We also define /(P) by fk(P) on Kk and g(P) by gk(P) on Kk(k=l, , n). Then
(2.52) is equal to I(μ), and a measure on K which is equal to μ(k) € &κk,Φk(gh %k,
fk) on Kh fc=l, .., n, belongs to #κ,φ(g, x, f) with x=(xu.. , xn). We can write
(2.53) in the form

p.p.p. on Sμ*Γ\Kk,

where μ*=μ* on Kk and

This inequality may be identified with (2.11). It follows also from Theorem

2.7 that the equality in (2.53) holds μk-&. e. and that the inverse inequality is

true on Sμ* if fk(P)<°° is upper semicontinuous and gk(P) is positive and

continuous on Kk.
Conversely let Ku •-, Kn be mutually disjoint compact sets, and /(P) and

n

g(P) be functions on \J Kk. If we take the restrictions of Φ{P, Q) to KkxKk

and to KjXKk, jφk, for Φk(P, Q) and hjk{P, Q) respectively, and take the re-
strictions of /(P) and g{P) to Kk for fk(P) and gyfe(P) respectively, then the pro-
blem to minimize I(μ) for μetfxig, χ\ χ=(χ\, •-, χn\ is transformed to a pro-
blem in the present section.

Next we are interested in minimizing

(2.54) (//>, μ)φ-\-(v, v)ψ — 2(μ, v)@

with symmetric kernels Φ, Ψ and Θ. If Ψ=cΦ and Θ=Φ, (2.54) is the expres-
sion which appeared in the definition of energy principles given near the end
of § 1.2. In the rest of our chapter we shall consider only symmetric kernels
without mentioning the symmetry sometimes. As a corollary of Theorem
2.29 we obtain

THEOREM 2.31. Let Φ(P, Q), Ψ(P, Q) and Θ(P, Q) be symmetric kernels, and
A\ and A2 be sets of 21 with S'Al>φ^{0} and ^ 2 , Ψ ^{0} such that (μ, v)Φ is well-
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defined for any μ^.Sr

Aχ,Φ and any ve<^Al>Φ, (/*, v)ψ is well-defined for any μ
€#Ά2,Ψ and any vζ£Ά2,ψ and (A6? V)® ^S well-defined for any μ€#Άltφ and any
v € #Λ2,Ψ as well as for any μ€ &Al>Φ and any v € <f ̂ 2,ψ. Let gι(P) (^(P) resp.)
be an %-measurable function on A\ (A2 resp.) such that (gu v) « g 2, v) resp.)
is defined and finite for any vζ.$ AχyΦ (βA2,^ resp.), and let xλ and %2 be non-
vanishing numbers. If there exist μ* and v* which give finite minimum to
(2.54) among μ€ί#Al,φ(gu %i) and v 6 f t 2 j ( ^ 5 χ2), then

(2.55) ϋf (P) ^ ϋ£ (P) + 7i gι(P) Φ-p.p.p. on Ax

and

(2.56) ϋ$* (P) ̂  υζ (P) + 72 g2(P) Ψ-p.p.p. on A2

with

xi 7i = (/χ*5 μ*)Φ - (A6*5 ^ * ) Θ a n d Λ2 7 2 = OΛ ^ * ) Ψ - (A6*? ^ * ) Θ

and the equalities hold in (2.55) and (2.56) μ*-a. e. and v*-a. e. respectively.

If, in addition, the closures A\ and Aa

2 of A\ and A2 are compact, if Θ{P, Q)
is continuous on At x Al and A\ x A\ and if gι(P) and gi(P) are continuous on
A\ and A2 respectively, then the inverse inequalities are true in (2.55) and (2.56)
on Sμ*r\Aι and Sv*r\A2 respectively.

THEOREM 2.32. Let Φ(P, Q), Ψ(P, Q) and Θ(P, Q) be symmetric kernels and
assume that Θ(P, Q) is continuous outside the diagonal set. Let K\ and K2 be
mutually disjoint compact sets with <f/flfφ^{0} and SΈ^ψ^ί®} respectively.
Let gι(P) and g 2(P) be positive continuous functions on Kι and K2 respectively,
and xι and %2 be nonnegative. Then there exist μ* and v* which give finite
minimum to (2.54) among μ<Ξ<?κhφ(gu χι) and ve£'κ2,y(g2, χ2).

We can state theorems corresponding to Theorems 2.29 and 2.30 in the
unconditional case. However, we shall be contended with giving the fol-
lowing theorems which will be needed later. We use Corollary of Theorem
2.28 and obtain

THEOREM 2.33. Let Φ(P, Q), Ψ(P, Q) and Θ{P, Q) be symmetric kernels, and
Aι and A2 be sets of SI with <^1)Φ^{0} and # ^ 2 J Ψ ^ { 0 } such that (μ, v)Φ is well-
defined for any μζ&Ά^Φ and vESΆ1>Φ, (μ, v)Ψ is well-defined for any μ€£"A2ιψ
and any vζSΆ^ψ and (μ, v)@ is well-defined for any μ£<£>

Aι,Φ and any v€^Ά2,ψ
as well as for any ^ ^ 1 ) Φ and any ve<?Ά2>Ψ. Let g(P) be an ^-measurable
function on A2 such that (g, vy is finite for any v^SΆ^ψ. If there exist μ*
and v* which give the finite minimum to (2.54) among μ^.Sr

Al,Φ and v€<?A2>ψ
(g, 1), then U^(P)^Uve(P) Φ-p.p.p. on Al9 U0>\P) = Ug(P) μ*-a.e.,

(2.57) U£(P) ^ U%\P) + {(,*, ,*)Ψ - (Λ Λ t e O P ) Ψ-p.p.p. on A2

and the equality holds there v*-a. e.
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//, in addition, the closures A\ and Aa

2 of A\ and A2 are compact, if Θ(P, Q)
is continuous on Al x A% and Al x A\ and if g(P) is continuous on A2, then Uζ(P)
<LUQ*(P) on Sμ*Γ\Aι and the inverse inequality is true in (2.57) on Sv*Γ\A2.

THEOREM 2.34. Let Φ(P, Q), Ψ(P, Q) and Θ(P, Q) be symmetric kernels, Kx

and K2 be mutually disjoint compact sets with Ar1>Φ^{0} and ^ 2 > ψ ^ { 0 } 5 and
assume that Θ(P, Q) is continuous outside the diagonal set and (μ, μ)Φ>0 for
every μ^O supported by Kι. Let g(P) be a positive continuous function on K2.
Then there exist μ* and v* which give the finite minimum to (2.54) among

ψ(g, 1).

2,10 Applications to energy principles.

Ninomiya [ 1 ; 4; 5; 6; 8; 9] considered the variational problem to minimize
the expression

and applied the results to prove the following theorems in case Φ — Ψ=θ.
We shall use Theorems 2.33 and 2.34 instead in the proof.

THEOREM 2.35. Let Φ(P, Q\ Ψ(P, Q) and Θ(P, Q) be symmetric kernels. If
(2.54) is nonnegative for any μζtfφ and v €Ξ SΎ with compact support, then the
following condition is satisfied:

[Ai] Whenever μ and v have compact supports and U%(P)<LU®(P) on Sμy

UΘ(P)<LU^(P) is true at at least one point of Sv.

THEOREM 2.36. Let Φ(P, Q), Ψ(P, Q) and Θ(P, Q) be symmetric kernels. If
(2.54) is positive for any different measures /χG^Φ and ve#Ψ with compact sup-
port, the following condition is satisfied:

[A 2] Whenever μζtfφ and vζtfψ are different and have compact supports
and U%(P)<,Ul(P) is true μ-a. e., U^(P)<Uψ(P) is true on a set with positive
p-measure.

PROOF for both theorems. We write

(2.58) (μ, μ)Φ + („, v)Ψ -2(μ,v)@ = ̂ {U%-Ul)dμ-^(U% - U£) dv.

If this is nonnegative and U%(P)^UV

&(P) on Sμ, then ί (E7§-0£) dv<0 and

U®(P)<LUv(P) at at least one point of Sv. If (2.58) is positive and U%(P)<^Ul(P)

μ-a. e., then \ (U& — Uψ)dy<0 and U%(P)<Uψ(P) on a set with positive v-meas-

ure.
Next we discuss the sufficiency of conditions.
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THEOREM 2.37. Let Φ{P, Q) Ψ(P, Q) and Θ(P, Q) be symmetric kernels such
that Φ^>Θ and Ψ I> Θ. Assume that Θ(P, Q) is continuous outside the diagonal
set, that both Φ and Ψ are pseudo-positive and that at least one of Φ and Ψ is
strictly pseudo-positive. If [Ai] is satisfied, (2.54) is nonnegative for any

q> and v € <fψ with compact support.

PROOF. First we consider the case that SμΓ\Sy= 0. We may assume that
Φ is strictly pseudo-positive and v is a unit measure. It is sufficient to prove
under [Ai] that (2.54) is nonnegative for μ*££'s ,Φ and i>*€<fsv,ψ(l, 1) ob-
tained in Theorem 2.34 in the case g ( P ) = l . Since U£(P)<:U£(P) on Sμ by
Theorem 2.33, U£(P)<iU£(P) at at least one point of Sv* by [A x]. The in-
verse inequality of (2.57) being true everywhere on Sv*5 it follows that (μ*y

(iΛ v*)Ψ. Theorem 2.33 gives (μ*, μ*)φ = (μ*, v*)Θ and there follows

V*) Θ -2(/,* 5 » * ) 0 = O .

Next let μ^O be a measure which vanishes outside a relatively compact Borel
set Bu and v be a unit measure which vanishes outside a relatively compact
Borel set B2 disjoint from Bλ. Let {K^} be a sequence of compact sets such
that>(irL1}) ftends to μ{Bχ) as 7?z->oo and {KL2)} be a similar sequence taken in
connection with v. We denote by μm and yw the restrictions of μ and v to
and K(

m

2) respectively. It follows that

(μ, μ)φ + (v, v)Ψ — 2(μ, v)Θ = lim {(μm

Finally let μ and v be any measures with compact support. We can decom-
pose SμVJSv into mutually disjoint Borel sets Bλ and B2 such that μ(B)^>v(B)
for a*iy Borel subset 5 C ^ i and μ(βf)^v(Bf) for any Borel subset B'CB2. We
denote by // the restriction of μ — v to #! and by v' the one to B2 of y — μ. It
follows that yC6—μ=v — v=X is a nonnegative measure. We see that

(2.59) (μ, μ)Φ + (y, v)Ψ - 20A, V)Θ

because (^^6^ and

THEOREM 2.38. Let Φ (P, Q), fP(P, Q) and Θ(P, Q) be symmetric kernels such
that Φ(P, Q) is strictly pseudo-positive and assume that [A 2] is satisfied and that
(2.54) is nonnegative for any μ € <f Φ and vetfy with compact support. Then
(2.54) is positive provided that μ^v.

PROOF. We suppose that (2.54) vanishes for different μ* € SΦ and v* e «fΨ
with compact support. We may assume that y* e A (l, 1). Since μ* minimizes
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(2.54), Ui\P) = Ug(P) μ*-a.e. by Theorem 2.33. This and [A 2] give
<Uψ(P) on a set of positive v*-measure. We use (2.57) which follows from
the fact that v* minimizes (2.54), and see that (y*, v*)Ψ>(^*, μ*)Θ. Therefore

This is impossible and the theorem is concluded.
We shall apply the above results to c-energy principles.

THEOREM 2.39. Consider a nonnegative kernel Φ(P, Q) which is strictly
pseudo-positive and continuous outside the diagonal set, and let c >̂ 1 in case
c—1, the kernel can be negative. In order that the weak c-energy principle (E')c

be true, [Ai] is necessary and sufficient where Ψ=cΦ and Θ=Φ are taken. In
order that the restricted c-energy principle (E*)c be true, [A 2] is necessary and
sufficient where Ψ=cΦ and Θ = Φ are taken.

PROOF. It is sufficient to point out that (2.59) is equal to

(2.60) (//, μf) + c (i/, v) - 2 (//, i/) + (c -1) (2J/ + λ, λ).

We shall give a different application of Theorem 2.33.

THEOREM 2.40. Consider a kernel which is strictly pseudo-positive and sat-
isfies the weak c-energy principle, and assume (μ*, /**) + c(y*, v*) — 2(μ*, v*)=0
for c 2> 1 and for μ*, y* £ £ having compact supports. Then

(2.61) UvXP)^U»XP)<cU^(P) p.p.p. in Ω,

U*\P) = UV\P) μ*-a. e. and U^(P)=cUv\P) v*-a. e. If c>l and the kernel is
nonnegative, then Ω is divided into mutually disjoint Borel sets Bx and B2 such
that μ*(Ω - BO = *>*(£ ~ B2) = 0.

PROOF. Since the kernel is strictly pseudo-positive, either / Ξ / Ξ O or
μ*Φ0, V*Ξ^ΞO. We assume that μ*^£0, y*^0. Let K be any compact set con-
taining Sμ* and set

β= £,n\
 a n d ϊ?== Zn\ '

Then μtESΈ and v G<f1sv%(l, 1). Since β and v minimize (2.54), we have U\P)
^ Uv(P) p.p.p. on K by Theorem 2.33. Consequently Uμ*(P)^UvχP) p.p.p. on
K. Because of the arbitrary character of K, Uμ*(P)^lΓf*(P) p.p.p. in Ω. We
can write

(A6 J A 6 )"f~c(y , v ) — 2(yi6 , v ) = = c { c[ ——, —— ) + (y , y*) — 2
(. \ c c J

Hence U^(P)/c<LUv*(P) p.p.p. on any compact set containing Sv*. It now fol-
lows that U^(P)^cUJ\P) p.p.p. in Ω. Consequently (2.61) is derived. It fol-
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lows that (/**, μ*);>(μ*, v*) and c(y*, v*)ί>(μ*, v*) and hence

Therefore (/**, /**)=(/**, V*) and φ * , v*)=(/Λ v*) and it is seen that Z7^(P)
= UV\P) μ*-a. e. and Uμ\P)=clΓ'XP) v*-a. e. Next we assume that C > 1 and
the kernel is nonnegative. In (2.60) we have (2i/ + λ, λ)=0, which concludes
λ^O because the kernel is strictly pseudo-positive. Hence μ^=μ and v*=i/.
This completes the proof.

As an immediate application of Theorem 2.39 we state

THEOREM 2.41. Assume that the kernel is nonnegative, symmetric, con-
tinuous outside the diagonal set and strictly pseudo-positive. If the restricted
c-dilated domination principle (U*)c is true, then the weak c-energy principle
(E')c is satisfied for c l>l (in case c=l the kernel can be negative).

We shall prove another result of Ninomiya [11] in a generalized form.

THEOREM 2.42. Let Φ(P, Q) be a nonnegative symmetric kernel which is
continuous outside the diagonal set and strictly pseudo-positive, and c I> 1 if
c=l, Φ(P, Q) can be negative. Let & be a class of functions such that, for any
compact set K, we can find / G ^ , defined at least on K, with the following pro-
perty: f(P) has a positive lower bound on K, and Uμ(P)<Lcf(P) on K whenever
μe^κ and U\P)<Lf(P) on Sμ. Then Φ(P, Q) satisfies the weak c2-energy princi-
ple.

PROOF. It is enough to show that (/**, μ*) + c2(v*, y*) —2(μ*9 V*):Ξ>0 for
μ* £ &κx and v* €Ξ <^2(15 1) obtained in Theorem 2.34, where K\ and K2 are mu-
tually disjoint compact sets whose Frvalues are finite. We have by Theorem
2.33

(2.62) c2UYXP)<,U^(P) + c2(v*, v*)-(/Λ v*) on Sv*.

This shows that UV\P) is bounded on Sv*. By our assumption there is
such that /(P) is defined on Sμ*\jSy* and have properties described above. We
determine a by

(2.63) sup {Uv\P)-af(P)}=0.

Then a is finite positive and it follows by our assumption that UV\P) <Lc<xf(P)
on Sμ . According to Theorem 2.33 it holds that Uμ*(P)<:UvXP) on Sμ* and
hence by our assumption again it follows that U"*(P)^c2 af(P) on Sv*. By
substituting this inequality into (2.62) we obtain

( ) ^ f() (v*9 „*)-(,**, v*) on

This and (2.63) give
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Since (μ*, μ*)=(μ*, v*) is seen on account of Theorem 2.33, we have

0**, μ*) + Λv*9 »*) *

COROLLARY. Lei Φ(P, Q) be nonnegative, symmetric, continuous outside
the diagonal set and strictly pseudo-positive. Let & be a non-empty class of
positive functions in Ω such that each function of ^ has a positive lower bound
on every compact set. If the ^-relative c-dilated maximum principle (U^)o

c ^ l , is true, then the weak c2-energy principle (E')c

2 is satisfied; in case c=l
the kernel can be negative.

REMARK 1. There is a kernel which satisfies (U)i = (F) but is not pseudo-
positive. Therefore we need at least the pseudo-positivity in the above as-
sumption. An example is given by

- 1 -a\
with a>l.

-a - 1 /

Another example is

S I f l I Γ 7 Γ 7 -I Γ1Γ7 -I

I log — — . - dxdγ - M l log ——-j dxdγ + 21 log τ - ^ - r dxdγ< 0.
ojo χ~y\ J 6 J 6 x—y\ Jo J6 |Λ—y|
REMARK 2. From Corollary it follows that (U*)c implies (E')c2. However,

Theorem 2.41 gives the better result (U?)c->(E')c.
In the preceding paper Ohtsuka [7] was proved (E)-^(C). We now state

(C) % (E)e ϊ> (E*)c ̂  (EOccϊί) (Uχ,7,

(Uί)c

where (+-) means that this is true if the kernel is nonnegative, symmetric,
continuous outside the diagonal set and strictly pseudo-positive. It is easy to
see that (E')c means (E')c for any c>c provided that the kernel is pseudo-
positive; if the kernel is strictly pseudo-positive, then (E')c-KE*)C/ for any
C>C.

In order to complement the above schema we give
Example to show (U)^7 -^ (E*)c and (Ud)c >̂ (E*)c (c ̂  1). Take two points

Pi and P2 for Ω, and define Φ(P, Q) by

Evidently ( U ) ^ is satisfied. We can check easily that (Ud)c is satisfied but
neither (Ud)c/ nor (EO^ with any c<c. It follows that (E')c is true. Let us
take the unit point measure at Pi for μ and the point measure with total mass
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1/V c at P2 for v. Then (μ, μ)-\-c(y, v) — 2(μ, v) = 0 and hence (E*)c is not true.
In Theorem 2.41 (the above Corollary resp.) we saw that the weak c(c2

resp.)-energy principle holds. Our example shows that we can not replace
c(c2 resp.) by smaller number in general.

2.11. Maximum and domination principles.

We were already concerned with (U)c and (UJ)C in the preceding section.
In the present section we still assume that kernels are symmetric, and con-
tinue to generalize other Ninomiya's results in [11]. He proved Theorem
2.43 in case Φ = Θ and Theorems 2.44 and 2.45 in case c=l.

Let us consider the following principles:
(i) (Φ, Ψ, Θ)-domination principle: If £7Φ(P) <1£/©(P) on Sμ for μe <f Φ and

v both with compact support, then UΦ(P)<LUψ(P) in Ω — Sμ.
(ii) (0, Ψ, Θ)-light domination principle: If U%,(P)<^θ(P, Q) on Sμ for

μetfφ and a point Q, then U%(P)<,Ψ(P, Q) in Ω-Sμ.
(iii) ($, ¥, Θ)-sweeping-out principle: For any compact set K with Vif Φ

(K)<oo and v with compact support, there is a measure μ supported by K
such that U%{P)^Ul{P) 0-p.p.p. on K and U%(P)^m(P) in Ω-K.

(iv) (0, Ψ^ βyiight sweeping-out principle: For any compact set K with
Vi>Φ(K)<°° and any Q, there is a measure μ supported by K such that Z7Φ(P)
^Θ(P, Q) 0-p.p.p. on K and Ui(P)<LΦ(P, Q) in β-K".

It is evident that (i)^-(ii) and (iii)->(iv). In what follows in this section
we shall assume that Φ(P, Q) is strictly pseudo-positive and continuous outside
the diagonal set. We shall prove

(iv)—>(i). Assume that μe.S'φ and v have compact supports and U%(P)
<JJ&P) on Sμ. For P0$Sμ there is μ0 supported by Sμ such that U^{P)^Φ(Py

Po) 0-p.p.p. on Sμ and U^(P)^Φ(P, Po) on SμQ by Corollary of Theorem 2.28.
For a point Q, we choose a sequence {Θm} of continuous symmetric kernels on
(Sμo\J{Q}) x (SμoVJ{Q}) increasing to Θ. There is a measure μm supported by
Sμo such that U^(P)^Θm(P, Q) 0-p.p.p. on Sμo and U£m(P)<θm(P, Q)^,Θ(P, Q)
on SμΛ. By (ii) we have UΦ^(P)^¥(P, Q) in ώ - S μ w , and

o, Q).

Hence

Likewise we can prove (vi)-*(i).
We shall establish the following lemma in order to derive (ii) -> (iv).

LEMMA 2.3. Furthermore assume that Φ(P, Q) is continuous in the extended
sense, Ψ(P, Q) is locally bounded outside the diagonal set and Θ(P, Q) is posi-
tive on the diagonal set. If (ii) is true, Φ(P, Q) satisfies the continuity princi-
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pie.

PROOF. Let μ be a measure with compact support on which U%(P) is
bounded. We set

VΦ(μ)= SUP U%(P).

Since 0(P, Q) is bounded from below on KxK for any compact set K in J2,
there is a finite number v such that VΦ(v)<^v for any restriction v of μ to a
subset in J2. Let Po be a point of Sμ which is not isolated in Ω and take an
open neighborhood NPo of Po such that a= inf Θ>0 on iV>0 x iVp0. Let Nf CNPo

be a compact neighborhood of Po such that NPQ — NrΦ$ and denote the re-
striction of μ to If by //. We have, for any point Q e NPo — N\

U% (P) ̂  -^- 0(P, Q) on Sμ,.

By (ii) it follows that U%{P)^a'lvW(P, Q) in J2-Sμ,. We infer that U%(P)
is bounded on N\ Since US'μ\P) is bounded in a neighborhood of Po, Ϊ7£(P)
is likewise bounded in a neighborhood of Po. Consequently U£(P) is bounded
on any compact set in Ω. It is concluded that Φ(P, Q) satisfies the continuity
principle on account of (IV) of § 1.3.

(ii) —• (iv) under the assumptions in Lemma 2.3 and the assumption that
$(P, Q) is nonnegative in Ωx Ω and positive on the diagonal set, that Θ(P, P)
= oo implies always Φ(P, P)=oo and that Θ(P, Q) is finite outside the diagonal
set. Let K be a compact set with VitΦ(K)< oo, We choose a sequence {Θm} of
continuous symmetric kernels on (K\J {Q}) x (K\J {Q}) increasing to Θ. There
is a measure μm supported by K such that Uφm(P)^>Θm(P, Q) 0-p.p.p. on K and
m™(P)<,Θm(P, Q)^θ(P, Q) onSμ m. By (ii) we have U^(P)^Ψ(P, Q) in Ω-Sμm.
Suppose that μm(K) is not uniformly bounded. Then there is a point PoeK
such that, for any neighborhood V of Po, μm(V) is not bounded. Let Vo be a
neighborhood such that Φ(P, P')^>a>0 on Vox Vo. If Q is isolated in j ^ and
Θ(Q, Q ) ^ 0 0 , then Φ(Q, Q)=oo by our assumption and Φ(Q, Q)μm({Q})<:Uζm(Q).
This shows that QζSμm for every m, because if QeSμm then Ugm(Q)<,θm(Q, Q)
< oo but Φ (Q, Q)^w ({Q}) = oo. Consequently Po ^= Q. lί PQφQ in general, we
have

aμm(Vo)^m™(Po)^max {Ψ(P^ Q\ Θ(PO, Q)}.

This is a contradiction and hence μm(K) is uniformy bounded. If P0 = Q is
isolated in Ω and 6>(Q, Q)< oo, aμm(V0) <LΘ(Q, Q). If P0 = Q is not isolated in 5,
we take any PφPQ in Vo and have aμm(V0)^ max {ζΓ(P, Q), β(P, Q)}. In any
case μm(VΌ) is uniformly bounded and a contradiction arises. We can choose
a subnet T={μ(ω); ωeD} of {μw} converging vaguely to a measure μ0. By
Theorems 1.15 and 1.16
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U£°(P)= lim U^\P)^ lim θm(P, Q)=Θ(P, Q) Φ-p.p.p. on K

and

t/£°GP)^li U^ω\P)^Ψ{PQ) in J2-ZV

REMARK 1. If there is no isolated point Q with Φ(Q, Q)=°° or if $(P, Q)
is positive and Ω contains at least two points, then we need not assume that
Θ(P, P) = oo implies Φ{P, P)=oo. For a proof under the second condition we
refer to the following proof of (i)—•(iii).

REMARK 2. Let Ω consist of two points, Φ be given by

1 0

0

and Ψ = Θ be given by

0

Then (ii) is true but not (iv). Thus we can not drop the condition that 0(P, P)
= oo implies Φ(P, P)=oo in general.

(i)^-(iii) under the assumption in Lemma 2.3 and the assumption that Ω
contains at least two points, that 0(P, Q) is positive in Ωx Ω and that Θ(P, Q)
is locally bounded outside the diagonal set. Let K be a compact set with
VifΦ(K)< oo and v be a measure with compact support. We choose a sequence
{Θm} of continuous symmetric kernels on (K\JSv)x(K\JSv) increasing to Θ.
There exists a measure μm supported by K such that U£m(P)^>U@m(P) 0-p.p.p.
on K and U^(P)^mm(P)^U^(P) on Sμm. By (i) we have U$»(P)^U£(P) in
Ω — Sμm. If μm(K) is uniformly bounded, we can choose a subnet of {μm} which
converges vaguely to a measure μ0 and obtain

^U^(P) 0-p.p.p. on K

and

£/£° (P) <; [7$ (P) in Ω - K.

In case ΩφK we take any point P0&K and a compact neighborhood NPQ.
of Po disjoint from K. We denote the restrictions of v to Ω — NPQ and iVp0 by
vi and v2 respectively. For vι we can find μ(1) which satisfies the two inequali-
ties, because the total mass of the measure μm corresponding to vλ and Θm is
bounded on account of the inequality

inf
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and the above discussion applies. By a similar reasoning we find μ{2) satisfy-
ing the two inequalities with v2. The measure μ{ι) + μ{2) satisfies the required
condition.

In the case Ω=K, we take two different points Po and Qo. We choose
compact neighborhoods of Po and Qo respectively so that they are disjoint
from each other. We denote their respective interiors by Nι and N2. By the
above discussion we know that there is a measure μx supported by K—Nu

which satisfies ί/£i(p):>[7*(p) 0-p.p.p. on K—Nu and a similar measure μ2

supported by K-N2. Then ί7£i+^(P)^£^(P) 0-p.p.p. on (K-N1)\J(K-N2)=K
and it is concluded that μ\-\-μ2 is a desired measure.

We state these results as the following theorem:

THEOREM 2.43. Let ΦiP, Q) be strictly pseudo-positive and continuous out-
side the diagonal set. Then the (Φ, Ψ, Θ)-light sweeping-out principle implies
the (Φ, Ψ, Θ)-domination principle and the latter is equivalent to the (Φ, Ψ, Θ)-
light domination principle. If, in addition, Φ(P, Q) is nonnegative in ΩxΩ,
positive on the diagonal set and continuous in the extended sense, if Ψ(P, Q) is
locally bounded outside the diagonal set, if Θ(P, Q) is positive on the diagonal
set and finite outside the diagonal set and if Θ(P, P)=oo implies always Φ(P, P)
= 00, then the above three principles are equivalent.

If, furthermore, Ω contains at least two points, if Φ(P, Q) is positive in
ΩxΩ and if Θ(P, Q) is locally bounded outside the diagonal set, then the (Φ, Ψ, Θ)-
light sweeping-out principle is equivalent to the (Φ, Ψ, Θ)-sweeping-out principle.

REMARK. In (iii) and (iv) U£(P) is not dominated by any potential on K.
It is preferable to have additional condition to bound Uμ(P) from above on K.
Let us say that the modified (iv) is true if, in addition to the properties of
Uμ(P) in (iv), U^(P)<Θ(P, Q) on Sμ and U$(P)^Φ(P9 Q) in Ω-Sμ. If we as-
sume, in addition to the above assumptions which guarantee (i)^(ii)^ί(iv),
that Θ(P, Q) is continuous in the extended sense and finite outside the diagonal
set we can prove by means of Lemma 1.10 that the modified (iv) is equivalent
to them. In fact, with the notations used in the proof of (ii)-»(iv), we have

0 ^ lim sup {U^(P)-Θ(P, Q)}^ sup {U£(P)-~Θ(P, Q)};

where G=Ω in case θ(Q, Q)< oo and G=Ω— {Q} in case Θ(Q, Q)=oo. It follows
that Uμ(P)<LΘ(P, Q) everywhere on Sμ. Another inequality holds by (ii).
However, it is still open whether or not one can add to (iii) the inequalities
£ / £ ( P ) ^ £ 7 Θ ( P ) on Sμ and U£(P)^U£(P) inΩ-Sμ while preserving the equiva-
lence to other principles.

We can apply Theorem 2.43 to principles (U)c, (U*) o (Eq)c and (S)c. How-
ever some assumptions can be weakened and sometimes independent proofs
will be given. First we obtain by taking Ψ=cΦ and Θ=Φ

THEOREM 2.44. Let Φ(P, Q) be strictly pseudo-positive and continuous out-
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side the diagonal set. In order that it- satisfy (U d ) c , the following condition is

necessary and sufficient:

[ Q 2 ] Let μ be any measure with compact support and P o be any point

outside Sμ. If Uμ{P)<,Φ(P, Po) on Sμ, then Uμ(P)<:cΦ(P, Po) everywhere in Ω.

THEOREM 2.45. Let Φ(P, Q) be strictly pseudo-positive and continuous out-

side the diagonal set. In order that it satisfy (U) c the following condition is

necessary:

[ Q i ] Let PQ be any point and X be any measure with compact support Sλ

not containing Po. If

0) onSλy

then X(Ω)<Lc.
If, in addition, Φ is nonnegative, [Qi] is sufficient for (U)c.

PROOF. We suppose that (U)c is satisfied. Let Po be any point and λ be
a measure with compact support S λ $P 0 such that

U\P)<Φ(P0,P) onS λ .

Let λ0 be a unit measure of <f5λ for which t/ λ °(P)^ Fi(Sλ) p.p.p. on Sλ and Uλ°(P)
^Vi(Sλ) everywhere on 5λo. Since the kernel is strictly pseudo-positive, Fϊ(Sλ)
= (λo,λo)>O. By(U) c

( ) i ( O in J2.

Therefore

whence x(Ω)<.c.
Conversely, we assume [Qi] and that 0 ^ 0 . We take v with compact

support and any point PO$5V . Since the kernel is strictly pseudo-positive,
there exists an extremal measure μ*e#sv satisfying £/μ*(P)^0(Po, P) p.p.p.
on Sv and Uμ*(P)<LΦ(P0, P) everywhere on Sμ*. From the latter inequaltiy
it follows that μ*(Ω)<,c by [ Q J . We have

UV - μ*(Ω)<,C SUp U\
J sv sv

Thus (U)c is proved.
We shall see relations between (U)c and (Ud)c. We showed already in

§ 1.3 that (F)^(U?X for any c ^ l (see Example for (F)-*»(D*)) and that (D)
^>(U)C for any c ί>l (see (1.13)). We shall now consider a convolution kernel
inEz. We denote the distance from the origin to x=(x\, •••, xn) in En by \x\.



282 Makoto OHTSUKA

Let φ(x)=φ(xu • ., xn) be a nonnegative function in En with the following pro-
perties :

It is symmetric: φ(x)=φ( — x)9

It is continuous outside the origin and lim φ(χ)^φ(0)>0,

I φ(χ)dχ< oo for some α>0,
J \x\>a

\ I φ{x— y)dμ(χ)dμ(y)>0 for any μ^O with compact support.

We set, for P=x and Q=γ,

Φ(P,Q)=φ(χ-γ)

and take it as a kernel in 2?3. Then, by Theorem 2.45, [Qi] is necessary and
sufficient for (U)c to be true. We can prove, in the same way as for Theorem
8 of Ninomiya [8],

THEOREM 2.46. // the above Φ(P, Q) satisfies (Ud)Cl and if

S φ(x)dx

\ φ{x)dx

for every p>0, then (U)ClC2 is satisfied.

COROLLARY 1. If the above Φ(P> Q) satisfies (U d) c i and if 0< \ φ(x)dx< <̂>,
J En

then (U)C1 is satisfied.

COROLLARY 2. // the above Φ(P, Q) satisfies (Ud) c i and φ(x) is a decreasing
function of | # | , then (U)C1 is satisfied.

Next we shall be concerned with α:-kernels in En. We consider Kelvin
transformation.3^ We fix a point Po and transform P(φPo) to P', lying on
the half line which issues from Po and passes through P, such that P^P
= 1. Given a measure μ with Sμί>P0 and a /^-measurable set A, we set

for the transform ^ ' of A. For such measure μ it holds that

because

PoP PoQ

33) M. Riesz £1] used Kelvin's transformation to study αr-potentials.
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Now suppose that ψQ'* satisfies (U)c. Then for any P

(2 64) c > — - — ^ - ^ — = PPoU^iP}
v ' J = sup Uμ'(T') sup TPS-U^T) *

Consequently if Uιx{P)^PPόΛ on Sμ, then Uμ(P)<,cPPόΛ in En. This shows
that (Ud)c is satisfied in virtue of Theorem 2.44. By the identity in (2.64), we
can prove similarly that if ψQ~a satisfies (Ud)c then it does (U)c.

We state

THEOREM 2.47. For a-kernel in En, if (U)c is satisfied then (Ud)c is sat-
isfied, and vice versa.

We know that there is an α-kernel which does not satisfy (FV) (Kunu-
gui's example stated in § 1.5). It is seen by the identity in (2.64) that kernel
does not satisfy (DV).

Leaving discussions on α-kernels, let us be finally concerned with (Eq)c

and (S*)c.

THEOREM 2.48. Always (U)c implies (Eq)c. // the kernel is strictly pseudo-
positive and continuous outside the diagonal set, then (Eq)c implies (U)c for

PROOF. Let K be a compact set with V{(K)< oo5 and μx be a unit extremal
measure which minimizes (μ, μ) among μ€tfκ(l, 1). We know that Uμi(P)
^(μu μ>i) P P P on K and U^P) <Hμu μι) on Sμχ. By (U)c it follows that Uμι(P)
^c(μι, μi) in Ω. Thus (Eq)c is satisfied. The latter half of the theorem fol-
lows from Theorem 2.43 if we take Ψ=c and θ=l.

THEOREM 2.49. Always (S*)c implies (U*)C3 and if the kernel is nonnega-
tίve, (S*)c implies (Ud)c.

//, furthermore, the kernel is positive on the diagonal set, continuous in the
extended sense and finite outside the diagonal set, then (U*)c implies (S*)c.

PROOF. We assume (S*)c and that Uμ(P)<U\P) on Sμ for μe <? and v with
compact support. There is for any P0<£Sμ, a measure μPo supported by Sμ such
that Uμpo(P)^φ(P, p0) p.p.p. on Sμ and Uμpo(P)<,cΦ(P, Po) in Ω. We have

This shows that (Uc?)c is true. We can similarly conclude (Ud)c if the kernel
is nonnegative.

To prove the latter half, take any compact set K with Vi(K)< oo and any
measure v with compact support. Let VK denote the restriction of v to K. As
in the proof of (i)->(iii) we find a measure μ supported by K with the pro-
perty that Uμ(P)^Uv-v*(P) p.p.p. on K and Uμ(P)^cUv~^(P) in Ω, although
it is not certain that the total mass of μ is finite. To prove this we first ob-
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serve that the continuity principle is true in virtue of Lemma 2.3. By (IV)
of § 1.3 (Bκ) is satisfied; namely the boundedness principle is valid on every
compact set. Let μί be a unit measure on K which gives (μu μι)=Vi(K)>0.
It holds that EΛ(P)^0*χ, μi) p.p.p. on K and Uμ^(P)^(μί μi) on Sμv By (Bκ)
it is bounded on Sv, say Uμi(P)<M on Sv. It follows that

= c(μu v — vκ)<LcMv(Ω).

This shows that μ(K) is finite. Since Uμ+^(P)^UV(P) p.p.p. on K and Uμ+V*
(P)<cUv(P) in Ω9 (S*)c is true.

2.12. Notes and questions.

It is well known that Gauss variation is useful in the sweeping-out pro-
cess. It was used also to prove the potential representation of a superhar-
monic function by Frostman [2]. The first paper which discussed the varia-
tion itself from a general point of view seems to be Kametani [1; 3]. Re-
cently Polish mathematicians Gorski, Leja and Siciak use general Gauss var-
iation in their works on transfinite diameters probably without knowing the
results of Kametani. In all these papers space is euclidean and function / is
defined and continuous on a compact set. Leja [1] was the motivation for
the author to investigate the zz-dimensional problem (see § 2.2 of our paper).

After our manuscript was completed, Choquet [ 8 ] was published. It
deals with problems which are partially common to our § 2.10.

Open questions.
2.1. The support Sμχ of an extremal measure μx on K, defined in § 2.2, does

not coincide with K generally. We ask when K=Sμχ. Every compact set of
finite Vrvalue contains such compact set; Sμχ itself is such a set. This ques-
tion depends on given /, g and x generally.

2.2. Can we improve the coefficient 2 in the inequality Vi(X) —
(X) — m) in Corollary 2 of Theorem 2.7? What is the best possible value?

2.3. Question stated at footnote 26).
2.4. Question stated after Theorem 2.15.

n

2.5. Let K= yj Kk be a disjoint union of compact sets. When is i

quadratic in yu ..., γn?
2.6. Are the conditions Φ^>Θ and Ψ^Θ really necessary in Theorem

2.37?
2.7. Let us add to (iii) in § 2.11 the condition that Ug(P)<U£(P) on Sμ

and Ug<LUψ(P) in Ω—Sμ. Is this modified (iii) equivalent to (i) (^(ii)^ί(iii)
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Chapter III, Inner and outer problems.

3.1. Inner variational problem.

Let Xu .., Xnhe non-empty sets in Ω. We shall say that they are Φ-se-
parate if they are mutually disjoint and Φ(P, Q) is bounded on each Xj xXk,
jφk. Assume that they are (^-separate and that Vi(Xk)< °° for each k. Let

n

f(P)< °° be an upper semicontinuous function on X= \JXk and g(P) be a posi-
k*= 1

tive continuous function on X. Let #iI>0, ..., xn^>0 and x = (xu • ••, xn). We
denoted in the preceding chapter by μx a conditional extremal measure on K
consisting of mutually disjoint compact sets {Kk}. In this chapter we shall
denote it by μκ(g, x, /) or by μκ(χ) or simply by μκ. As before we set for

(31) XkΎk(μ)=\ U*dμ-\ fdμ
k

if xk>0. If xk = 0, we do not define γΛ(μ) itself but set xkyk(μ) = 0. The inner
vαriαtionαl problem is to consider

inf I(μ) = lKg, x, /) = /ΐW = /i,

where #χ(g, x) is equal to {μ € &\ Sμ is decomposed into compact sets Ku , Kn

such that KkCXk and \ gdμ=xk for each k}. We shall call the restriction
J κk

Γ Γ
of μ to Kk the restriction of μ to Xk, and write I gdμ for \ gdμ. If there is
a subset YkCXk with Vi(Yk)<OG for each fe such that /(P) is finite on 7 ,̂ we
see Iχ<oo without difficulty. In other cases, including the case that £χ(g, x)

n

= 0, we set U = oo, For μ e <?χ(g, x) we define xk yk(μ) by (3.1), where \J Kk

=Sμ.
Let us recall that Si denotes the class of sets which are measurable for

all measures. Since μ(A)= sup μ(K) for compact KCA if Ae% I A is equal

to inf I(μ) for μe£'A(g, x,f)={μe<?; μ(Ω — A) = Q, \ gdμ=xk for each k and

<(/, μ) is defined}.
Let {μ(m)} be a sequence of measures in #χ(g, x) such that I(μ{m)) tends to

Ix. We are interested in finding a limiting measure of {μ(m)} and its pro-
perty. We shall discuss this problem in two manners. One is under the as-
sumption of the continuity principle and the other is, essentially speaking,
under the assumption of the completeness of some subclass of β.

We assume in this section that the kernel Φ satisfies the continuity
principle. If some of {xk} vanish the problem reduces to a lower dimensional
case and hence hereafter we assume that Λ;I>0, ,xn>0 except in § 3.8 and
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§ 3.9. We shall state the conditions precisely. Let X consist of relatively
compact (^-separate sets {Xk} such that Vi(Xk)<°° for each k9f(P)< oo be an
upper semicontinuous function on X such that it is finite on some set Yk C Xk
with Vi(Yk)< °° for each k and g(P) be a continuous function with a positive
lower bound on X. Assume that 7 |> —co and let I(μ(m)) tend to Ix. We
choose a subsequence {μ(m^} of {μ(m)} such that each lim 7k(μ(mp)) exists. Since

( gdμ(m)=χh μ(mXΩ)^(inΐgy
1 Σ xk and {μ(m)} is bounded in Jt. By Proposi-

tion 3 in § 1.6 we can find a subnet T= {μ(ω); ωeD} of {μ0*^} such that the re-
striction /4ω) of yi6(ίϋ) to Xk converges vaguely to some measure for each k; in
this chapter the subscript k of a measure will always mean the restriction of
the measure to the k-ih component of a set. This measure /4ω) is supported

n

by the closure X% of Xk in Ω and will be denoted by μι

Xk. We set μx = Σ A***

and write γ for the point in E3 with coordinates {γ̂  = lim γjfe(/χ(ω))} This meas-

ure μx will also be denoted by μx(g, x, f) or by μx(x).

An alternative condition to ensure that {μ(m)} is bounded in Jί is F, (X)
>0. In fact, on account of the continuity principle, there is a measure V
(g, x) which gives a continuous potential ΐίv (P) and finite I(y). Since (μ(w

and hence (μ(m) — v, μ{m) — v) is bounded from above. It holds that

(μ(m)-V, μ(m)-v)^ Vi(X){μ(m)(Ω)}2-2 SUP U" ,*<»>(£) + (v, v)

and it is seen that μ(m\Ω) is bounded.
We write

Σ

We note that the last sum of mutual energies is a bounded quantity. This
shows that each /(^iω)) is bounded from below, because if I(μif) were not so

we should see that I(Σ /4ω°) + /4o)) ^s n ° t bounded from below for any fixed ω0.
k 1

This contradicts our assumption 7 |> — oo. Consequently each 7(/4ω)) is bound-
ed. Since

04ω), ^ ) ^ m i n ί ( P , Q) (μΐ
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(/4ω), / 4 ω ) ) i s bounded from below. It follows that

(3.2) 2xk 7*0*<»>) = J04->) + 2 Σ (μT\ μϊ^

n

is bounded from below. Consequently lim Σ XkΎk(μ(ω)) exists and equals Σ
Xk Ύk>

Now by our assumption there is a compact subset Kk of X* for each k on
which /(P) is bounded and whose Vrvalue is finite. We shall use vGίf ΰ ^

(g, x) which gives a continuous potential £/v(P). We have

It follows that

Therefore

lim Σ χh 7Λ(^(ω)) = Σ »*γ*<oo,

We have already seen that each γ*(//ω)) is bounded from below. Hence each
yk(μ(ω)) must be bounded. It follows from (3.2) that each </, /4ω)> and (μiω\
/4ω)) are bounded, say, |</, ̂ ω ) > | <Λί and |(/4ω), ^

We set

Hk={PeXk; UμkP)-f(P)<

Let us suppose that F f(fl*0)<oo. We can find a compact set K0CHkQ with
Vi(Ko)<oo and a positive number 77 by Proposition 1 in § 1.1 such that

(3.3) UμkP)-f(P)<Jkg(P)-v on Ko.

We observe that /(P) is bounded from below on Ko. Let v e <?κo(g, χk0) be a
measure which gives a continuous potential C/V(P) in Ω. For any ί,
it holds that

= I(μ^) -2tXkQ y

and follows that
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-2txk0 γ*0 + 2ί

Cancelling /i, dividing the rest by t and letting t-^0, we obtain

On the other hand (3.3) gives us the following contradicting inequality:

It is now proved that

# 4 p.p.p. on Xk

for each &.
In case f(P) is defined and continuous on Xα, the equality

n

follows from

We state these results as

THEOREM 3.1. Let X be a relatively compact set consisting of Φ-separate
sets Xu . . . , I M such that Vi(Xk)< °° for each k, /(P)<oo be an upper semicon-
tinuous function on X such that / (P)> —oo on some set YkCXu with Vi(Yk)
< oo for each k, and g(P) be a positive continuous function on X. Assume that
Φ satisfies the continuity principle, and that one or both of the following con-
ditions is satisfied:

(ai) g(P) has a positive lower bound on X,
(a2)i Vi(X)>0.

Assume also for x = (xu • •., xn), xx > 0, ., xn > 0, that

/ i = inf

and let {μ(m)} be a sequence of measures in <?x(g, x) which gives

lim

Then there is a subnet {μ(ω) ω G D} of {μ(m)} such that the restriction /4ω) °f
μ(rj>) to Xk converges vaguely to a measure μχk, lim 7*(μ(ω)) exists and is finite for

ω

each k. Setting Σ μxk=μχ and lim jkiμ^^Ύh we have
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(3.4) U^iP) ~f(P) ^ Ίk g(P) P P.p. on Xk.

If f(P) is defined and continuous on X",

In the above definition of μi we started from {μ(m)} in &χ(g, x) for which
lira I(μ(

m))=Γx. It follows that

lim I(μ^) > lim I(μSμ.w) ^ Iχ

and hence

lim

Thus there is always an increasing sequence {K(m)} of compact subsets of X
such that I(μK(m)) tends to Γx. If we restrict ourselves to vague limits of
subnets of {^(w)}, we have

THEOREM 3.2. Let Xu •-, Xn be any mutually disjoint sets with finite Vr
n

value, f(P) <oo be an upper semicontinuous function on some set i O X = Σ -X*

such that f(P)> ~ °° on some set YkCXk with Vi(Yk)<OG for each k and g(P) be
a positive continuous function on Z. If there is a net {i£(ω)} of compact subsets
of X such that /*#«») converges vaguely to μk and ykiμ^ω)) tends to a finite number

yk for each k, then

(3.5) U\P)-/(P)^γΛ g(P) on

n

where μ = Σ μu>

PROOF. We recall that

ϋμκCω\P)-f(P)<Ύk(μκ(ω))g(P) on ^ (

if Γκ(«» is finite, according to Theorem 2.7. By Lemma 1.10 it follows that

0 ^ lim sup {#^ ( ω ) -/-7*(/^))#}^sup {#"-/-7* #}.

Thus

on Sμkr\Z.

In the special case/=0, we have

COROLLARY. Let us consider the special case where / (P)=0, x = l and n=l.
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Under the same conditions on X, Φ and g(P) as in Theorem 3.1, let {K(m)} be
a sequence of compact subsets of X which gives

lim (μκ(m),μκ(m))

Then, for the limit μx of any vaguely converging subnet of {μK(m)}-> it holds that

(3.6) ϋμ*(P)^ Vψ\X)g(P) p.p.p. on X

and that

(3.7) ί/4(P) <C Vψ\X)g(P) on Sμlχί\Z

if g(P) is defined and positive continuous on some set Z^>X.
For g(P) defined on the closure Xa, we shall call a measure satisfying

(3.6) and (3.7) a weak inner g-equilibrium measure and, in case g(P)~l, a weak
inner equilibrium measure. Its potential will have the corresponding nom-
inations.

We shall give criteria for a relatively closed subset of an open set to be
an Fσ-set.

LEMMA 3.1. Let G be an open set in Ω and B be a relatively closed subset of
G with Vi(B) = oo. If one or both of the following conditions is satisfied, then
B is an Fσ-set.

(bi) G is an Fσ-set,
(b2) The kernel Φ(P, Q) has the following two properties: For every point

PEG and every neighborhood NP of P, the kernel is bounded from above on {P}
x(G — NP), and, at each point P£dG with Φ(P, P)<°o 5 there is a neighborhood

NP of Pin Ω such that Φ(Q, Q)< oo for every QeNPΓ\G.

PROOF. If G=\J F(m), B=\J(Br\F(m)) is an Fσ-set. Next assuming (b2),
m m

we set

J(p)={PeG; Φ(P, Q)<p for all QedG}.

This is a relatively closed subset of G and \J J(P)=G. Suppose that Br\J(p) is
P

not a closed set. Let Po G 3G be a point of accumulation of Br\Jω. If Φ(P0,
Po) = °°, Φ(P,Q)-+oo as P, Q-+Po by the lower semicontinuity of Φ. This
is impossible, because if so there would exist Pej(p) for which Φ(P, PQ)>p.
Therefore Φ(P0, Po)<°°. By our assumption there is a point Pr eBίΛj^ for
which Φ(P', P')<°o. However, such a point P' has a finite Vrvalue, contradic-
ting the fact that ^ ( 5 ) = c o , Thus each Br\J(p) is a closed set and B=\J

P

{Br\JiP)) is an i^-set.
34) We recall that V& (X) = inf (μ, μ) for μe S χ(g, 1).
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REMARK. (b2) is satisfied if the kernel is continuous in the extended sense
and bounded from above outside the diagonal set.

In case a component of X is an open set, we prove

THEOREM 3.3. Assume that a measure μ and constants {<yk} satisfy (3.4)
and that Xko=Gko is an open set. Assume one or both of (bi) and (b2) of Lemma
3.1 for GkQ. Then

- f(P) ^ ykQ g(P) q.p. in GkQ

and the exceptional set H in Gko is a Kσ-set.35)

PROOF. We set

Certainly H= \J H(m\ Since the function on the left is lower semicontinuous,
m

H(m) is a relatively closed subset of GH with Vi(H{m)) = oo. By Lemma 3.1 it
is a i ς -set; we write H(m) = \J K(m>p\ Certainly Vi(K(m>p)) = °o for each m and

P

p. We see that Vi(K(m'p)) = Ve(K(m>p)) in virtue of Theorem 1.4 and that Ve(H)
= 00 on account of Proposition 2 in § 1.1. Thus the theorem is concluded.

We write yk for lim jk(μ(m)) so far as μ(m) £ £x(g, x) and I(μ(m)) tends to
Ix provided the limit, finite or infinite, exists for each A:; it is not required
that μ(m) converges vaguely. Finally in this section we shall study the set of
points γ=(71, •••, jn) in En. The set will be denoted by Γχ(x) or simply by Γx.
We shall prove

THEOREM 3.4. The set Γx is compact in En under the assumptions in Theo-
rem 3.1.

PROOF. Let {y(m)} be a sequence of points in Γx such that each sequence
{ΎΪ"0} °f components converges to a finite number or diverges to +co or to

— 00. For each m we choose a measure μ(m) e <?x(g, x) such that y(m)y(μ(m))<l/m
and I(μ(m)) <Ix + l/m. Hence I(μ(m)) tends to Γx and {μ(m)} is a sequence in
which we were interested in Theorem 3.1. For each /b, 7^(/χ(w)) tends to a finite
number or diverges to +00 or to —00. We showed in the proof of Theorem
3.1 that the last two cases do not happen. The point with coordinates {lim

7k(μ(m))} belongs to Γx and {y(m)} converges to it. Thus Γx must be compact
mEn.

3.2. Inner problem for kernels of positive type.

Throughout this section we consider a kernel of positive type, mostly

35) A Kσ-set is a countable union of compact sets.
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without mentioning it. We prove first

THEOREM 3.5. Let X consist of Φ-separate sets Xu • ••, Xn in Ω such that
Vi(Xk)<°° for each k. Let f{P)<^ be an upper semicontinuous function
on X such that / (P)> — oo on some subset YkCXk with Vi(Yk)<°° for each k,
and g(P) be a positive continuous function on X. Assume that Ix > — °o and
that, for a sequence {μ(m)} of measures in tfxig, x),

(3.8) lim I(μ(m))=Ix

and μ(m) converges strongly to some measure μx G £. Unless the kernel is non-
negative on eack Xj x Xk, j^ψk, we assume also one or both of the following con-
ditions :

(ax) g (P) has a positive lower bound on X,

(a2)i Vi(X)>0.

Then, any sequence of measures in <fχ(g, x) on which I tends to Ix converges
strongly to μι

x and Ύk(μ(m)) tends to a finite value for each k. If it is denoted by
ηk, then

(3.9)

and each ηk does not depend on the choice of {μ(m)}. It holds also that

(3.10) irkP)~f(P)^ 7* g(P) VΦΦ. on Xk.

If a measure μ^S and finite constants {ck} satisfy (3.9) and (3.10) re-
placing μx and {yk}, then ck=

rYk for each k and μ(m) converges strongly to μ. If
(μ, μx) is defined, \\μ — μx\\=0 and if, furthermore, the energy principle is sat-
isfied, μ = μιχ.

Before the proof we give

LEMMA 3.2. Let X, f(P), g(P)> Iχ and {μ(m)} be as above, and assume lim

7£(μ,(m))=7* for each k and (3.9). Assume also that

(3.11) IP%P) - / ( P ) ^ ch g(P) p.p.p. on Xk

for a measure μ G £ and finite constants {ck}. Then

n

J\H>) = = 2 2-Λ
 χk ck — 0^5 [*>) ^ ί Iχ>

If, in addition, (μ, μx) is defined, we have

Proof. We integrate (3.11) with respect to μ(m) and obtain
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It follows that

A - l

Therefore/(μ,)< lim /(μ ( m ))=/i. If (μ,, μi) is defined, we have

PROOF of Theorem 3.5. Let {u(m)} be a similar sequence in &χ(g, x) for
which /(v(OT)) tends to Iχ as 7»^- <=o. Since

It follows that

lim H ^ - v ^ l l ^ l i m {2/0*(w)) + 2 /(v ( m ))-4/i} =0.

Consequently y(w) converges strongly to /4>
Now we choose a subsequence {m }̂ such that lim jk(μ(mp)) exists for each

fc. We shall denote this limit by 7 .̂ Suppose that there is a set A C Xk0 with
Vi(A)<oo on which

We take γ £ <^(#, ^ 0 ) and have

(3.12) (μχ,v)-<f,00

We proceed under the assumption that there is a finite constant M such that
| |^ m ) | | <Λf for every m and fc. For any ί, O ^ ί ^ l , it holds that

0 , \ v)

o)ll + IMD2

Since μim) converges weakly to μι

x, we have

Γχ<Ik-2txkoyko + 2t(μι

x, y)-2ί</, v> + ί2(M+||HI)2.

Cancelling / | 3 dividing the rest by t and letting t-+0, we obtain
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This contradicts (3.12), and (3.10) is concluded. To see that yk is finite, we
take xe<?γk(g, 1) such that /(P) is bounded from below on Sλ. We have by
(3.10) that (μx, λ)— </, λ>^γ^. This shows that each rfk<oo> The finiteness
is seen from

2 Σ xu Ίk = 2 lim Σ xk 7k(μ(mp))= lim {I(μ(m)) + (μ(m\ μ(m))} =Iί + (μi, μi).
k=l p~+oo k = l m->oo

This gives (3.9) too.
Now we shall show the existence of above M. If the kernel is nonnega-

tive on each XjxXk, jφk, | | /4 W ) | |^ | !A6 ( W ) ! | and this is bounded. In case the
kernel is not always nonnegative on each Xj x Xk, jφk, we assume (ai). Then
the total mass of μ(m) is bounded. It is so too if we assume (a2)i because (μ(m)

(Ω))2^\\μ(m)\\2VrXX). From the identity

Σ [|,.(™)[|2 ,\\ (m)\\2 v ^ / (m) l # (ro)\
\\μk II ~\\μ II ~~ 2-j \μ>j > μu )

we see that each ||/4ra)ll is bounded.
Suppose that μ and {ck} satisfy (3.9) and (3.10) replacing μί and {γ^}. It

holds that J(μ)=Γx. Since \\\μ(m)\\-\\μ\\\2<\\μ{m)-μ\\2<I(μ(m))-I!z as is seen
n n

in the proof of Lemma 3.2, we have ||/A|| = 11/̂ 11 and hence Σ ockck= Σ %kΊk-

We observe also that μ(m) converges strongly to μ. We integrate the ine-
quality Uμ(P)~f(P)^ckg(P) with respect to μpp* and obtain

Xk

Since ||//.

lim

Hence χk(ck — γ^)^0. It is concluded that ck=jk because Σ %k c ^ ^ Σ ^ 7* I n

particular, it follows that lim yk(μ(m)) exists regardless of the choice of {μ(m)}.

Then Γx, defined in § 3.1, consists of a single point. If (μ, μx) is defined,
11̂  — ̂ 1:11=0 by Lemma 3.2, and if, furthermore, the energy principle is true
then, μ = μχ.

As is seen in the proof we may replace the condition that Φ is bounded
on each XjXXk, jφk, by the weaker condition that Φ is bounded from below
on each XjxXk, jφk. The same remark applies to some of subsequent theo-
rems.

We shall denote yk by yXk for each k; this notation will be used only if yk

is uniquely determined.
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For later use we give

LEMMA 3.3. Besides the conditions in Lemma 3.2 assume one or both of
i) and (a2)i stated in Theorem 3.5, unless the kernel is nonnegative in each
x Xk, j Φ k. Then we have

with

a =
77(χV~77.

\Wx

if (aO is true,

'̂ ~F (n *\ 1 Q "t'V'il O

if Φ~^>0 on each Xj x X^ j φ k,

where

c = max sup (— Φ (P, Q)).

PROOF. Like in the proof of the above theorem we have

If we examine the reasoning in the above proof to show | | ^ m ) | | < M < o o 5 it is
easily seen that Hm ||/4w)

In the special case/=0, we have

COROLLARY. Let X be any set with Vi(X)<oo in Ω, and g(P) be a positive
continuous function on X. Assume that, for a sequence {K(m)} of compact sub-
sets of X, Vψ\K{m)) tends to Vψ\X) and μκ(m) converges strongly to a measure
μx. Then Vψ\X)= \\μx\\2 and

Uμχ(P) ^ Vψ\X)g(P) p.p.p. on X.

If g(P) is defined and positive continuous on Z^>X, and if μx is the vague
limit of some subnet of {//.#<»}, then

on Sμiχr\Z.

If μ satisfies \\μ\\2 = Vψ\X) and U^P)^V(

i

g\X)g(P) p.p.p. on X and (μ, μι

x)
is defined, then \\μ — μι

x\\=0. If the energy principle is satisfied, μ=μιχ.
In the proof we need Theorem 3.2. We shall call μ, which satisfis \\μ\\2

= V(f\X) and Uμ(P)^ Vψ\X)g(P) p.p.p. on X, an inner g-equilibrium measure
for X. In case g(P)=l, we simply call it an inner equilibrium measure. Its
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potential will have the corresponding nominations.
We prove next

THEOREM 3.6. // Γx is finite and every strong Cauchy net in tfχ(g,x) is
strongly convergent, then any sequence {μ(m)} of measures in <?χ(g, x) for which
lim I(μ(m))=Iχ, converges strongly to some measure.

PROOF. Since (μ(m) + μ(p))/2 e £χ(g, x\ we have

and observe that {μ(m)} is a Cauchy sequence. It converges strongly to some
measure by assumption.

The next question is as to the strong convergence of a Cauchy net. We
defined in Chapter I the following notion of Puglede [1]: A kernel is called
consistent if it is of positive type and any strong Cauchy net converging
vaguely to a measure converges strongly to the same measure. He called a
kernel of positive type X-consistent if any strong Cauchy net, whose elements
are supported by a fixed compact set and which converges vaguely to a meas-
ure, converges strongly to the same measure.

In terms of these notions we shall give several sufficient conditions for
any strong Cauchy net in #χ(g, x) to be strongly convergent.

(i) The kernel is consistent and g(P) has a positive lower bound on every
relatively compact subset of X.

(ii) The kernel is consistent and F/(X)>0.
(iii) The kernel is nonnegative consistent and Vi(KίλX)>0 for every com-

pact set K in Ω.
(vi) X is relatively compact, the kernel is K-consistent and g(P) has a posi-

tive lower bound on X.
(v) X is relatively compact, the kernel is K-consistent and Vi(X)>0.
To prove that (i) is sufficient, let K be any compact set in Ω and {μω} be a

strong Cauchy net in £χ(g, %). Since

±X^\κgdμω^ψg.μω(K),

μω(K) is bounded from above by a constant which may depend on K. By Pro-
position 3 of § 1.6 there is a subnet of {μω} which converges vaguely to some
measure μx. By our assumption that the kernel is consistent, the subnet con-
verges strongly to μx and {μω} does too.

In case (ii) is satisfied, let {μω} be a strong Cauchy net. As is well known
(μω, μω) is bounded for ω ;> ω0, where ω0 is some element. We have

and hence μω(Ω), ω ^ ω 0 , is bounded. The rest is the same as in the first
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case. Likewise we can see that each of (iii), (iv) and (v) is a sufficient con-
dition.

In general <g, μXk)<L\im(g, μκMy=Xk as μκM converges vaguely to μXk.

In' a special case we can show the equality. In fact we prove

THEOREM 3.7. Let X, Xu • , Xn he as in Theorem 3.5, f(P) be a continuous
function with compact support defined on the closure Xa of X, and g(P) be a
positive continuous function on Xa. Assume that the kernel is consistent and
nonnegative on each Xj x Xk, jφk, and that 0<IXk(g, Xk, / ) + Vψ'^iXuX °° for
each k. Then I(μx) = Iχ(g, x, f) and (g, μXk)=%k for each k. If, in addition,
the kernel is nonnegative in ΩxΩ or X is relatively compact in Ω, then xk yXk

— (f, μxk>fθr each L

PROOF. Let {K(m)} be an increasing sequence of compact subsets of X
such that / ( / V r a ) ) t e n d s t o Iχ=Iιχ(g, x, / ) , and set K^=Kim)r\ Xk. We see by
Lemma 3.2 that {μκ{m)} is a Cauchy sequence. It converges strongly to μ x by
(i). Furthermore we observe that there is a subnet {/4ω)} of {μκ^} converg-

ing vaguely to a measure μXk for each k and μx = Σ μιχk- Since /(P) is con-
k=l

tinuous oτvXa and has a compact support, <(/, /4ω))> tends to </, μXk) for each

k. Using the relation lim 11^ )̂11 = ||μi-|| w e observe that

Hence by (3.9)

n

x, μx)

On account of Theorem 3.2, (3.5) holds everywhere on Sμ» . We integrate it

with respect to μXjt and obtain

(μX9 μx)-(f, μXy ^ Σ 7 * <^5 μιχk>.

Therefore we derive

n n

Σ Xk 7k<L Σ ig, μιXk> 7k-
k=i k=i

Since

χ(g, Xk, f) + Vψ^\Xk) >0
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by our assumption, γ^ = lim Ίk(μK{m))>® for each k. Taking into considera-

tion

<g, μxk>

we now conclude that <g, μx^)=χk for each fe.
If the kernel is nonnegative in Ω x Λ2 or X is relatively compact in J2, then

we have

xk Ίχk ^ (>x, μ£Λ) - </, μiΛ>

by Proposition 4 of § 1.6. Since we obtain an equality by summing up both
sides for &=1, • ••, n, each must be an equality. Thus our proof is completed.

Fuglede [1] proved a special case in Lemma 4.2.1. In his case n==l, x=l
and /WO; then Γx(g, *, f)+V<fXX)=2V<fXX).

We remark that, although S^χCXa and <(g , μιxky=χk for each &, we can

not always write μιχ££χa(g, x) because S^χ may not be compact; see the de-

finition of £χa(g, x) in § 2.1.
For later use we shall prove the following well known

LEMMA 3.4. Take XCΩ and y, λ € S for which (v, λ) is defined. If

for ί ^ O o ^ I , then

PROOF. We may assume that Vi(X)<oo. We take a compact set KCX
with Vi(K)<°o9 and denote by μκ a unit extremal measure satisfying | |/^| |2

= Vi(K). Then

Hence

KczX K ==

LEMMA 3.5.36) Let Go be an open set in Ω on whose product the kernel is
bounded from below and Abe a set of the form \J (F(m) Γ\G{m)) where each F(m) is

m

a closed set and G{m) is an open subset of Go. Assume that there is an inner
equilibrium measure μι

A for A in case Vi(A)<oo; in case Vi(A) = <χ> we have no
such requirement. Assume also one or both of the following conditions:

(bi)* Every open subset of Go is a Kσset,
(b2)* Go is a countable union of relatively compact open sets, the set
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Jeo={PeΩ; Φ(P, P) = oo}

is closed and, for every point P<E Go and every neighborhood NP of P, the kernel
is bounded from above on {P} x(G0 — NP).
Then

Vi(A)=Ve(A).

PROOF. First we consider the case where Vi(A)< oo. Since the kernel is
of positive type, Vi(A)~^> Ve(A)^0 and hence we may also assume that V{(A)
>0. By our assumption there is a measure μA such that \\μA\\2=Vi(A) and

U'^(P)~^> Vi(A) p.p.p. on A.

The exceptional set H is equal to

The set inside [ ] is a relatively closed subset of G(m) whose Vrvalue is in-
finite. By Lemma 3.1 it is an i v set; hence H is so too. It follows that H is
a iC-set on account of (bi)* or (b2)*. We know by Theorem 1.14 that, for
every compact set K, Vi(K)=Ve(K). By Proposition 2 of Chapter I it follows
that Ve(H)=oo. The set A — H is contained in the open set

G ( w ) =

By the above lemma we have

m

It follows that Ve(A-H)^ Vi(A). Since Ve(H) = °°, we have

Ve(A)=Ve(A~H)

by Proposition 2 of Chapter I. Consequently Vi(A)=Ve(A).

Next we consider the case where Vi{A) = oo. Evidently Fi (F(m)AG( ίn)) = oo

for each m. By Lemma 3.1 we observe as in the first case that each F(m)r\G(m)

is and hence A=\J(F{m)Γ\G{m)) is a iς.-set. Therefore vβ(A) = °o by Proposi-

tion 2.
Condition (bi)* or condition (b2)* is imposed in Lemma 3.5 in order to

reduce open or closed sets to Kσ-sets. If we consider a consistent kernel we
can replace (bi)* and (b2)* by (bx) and (b2). It will be proved as Lemma 3.8
at the end of the next section.

3.3. Outer variational problem.

Let X consist of mutually disjoint non-empty sets Xu ••-, Xn. We shall
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say that open sets Gu ,Gn separate Xu •••, Xn if {Gk} are mutually disjoint
and Gk Z> Xk for each h. We shall say then that Xι9 •-,!„ are separate by open
sets. If, in addition, Φ(P, Q) is bounded on each GjxGh jφk, Xu ••-, Xn are
separable by (^-separate open sets. In this section we are concerned with the
outer variational problem to discuss

sup /K#, *,/)=#(# *,/Wi(*)=fi,

where X= \J Xh G=\J Gk and {Gk} separate {Xk}.

In the special case that X is a compact set we can prove

THEOREM 3.8. Let K consist of mutually disjoint compact sets Ku •••, Kn

in Ω and Go be an open set containing K. Let /(P)<°o be defined and upper
semicontinuous in Go and g(P) be defined and positive continuous in Go. Then

Γκ(g,χ,f)=Ik(g,χ,f).

PROOF. The function

is lower semicontinuous and does not take -oo in Gox Go. Therefore it may
be taken for a kernel in Go. It holds that

for μe<?G0(g, x). Therefore our theorem follows from Theorem 1.14 applied
to the kernel Φ(P, Q).

Like in § 3.1 and § 3.2 we shall investigate extremal measures in two
cases.

(1) THEOREM 3.9. Let X consist of relatively compact sets Xu • - , Xn which
are separable by Φ-separate open sets and G0^X be an open set in Ω. Let /(P)
< co be defined and upper semicontinuous in Go and g(P) be defined and positive
continuous in Go. Assume that Φ(P, Q) satisfies the continuity principle, that
Iχ is finite and that one or both of the following conditions is satisfied:

(aO g (P) has a positive lower bound on G0,
37)

(a2X Ve(X)>0, and /(P) (1 +#(P))~1 is bounded from above on G0.
38)

Then, for any sequence {G(m)}, XCG(m)CG0, of relatively compact sets such that
G(m) can be divided into Φ-separate open sets G{m\ ,G(

n

TO) separating Xu ••, Xn

and /£o») tends to Γx, there is a subnet {μ(ω); ωeD} of {μU™)} such that μ4ω)

37) This condition is not completely the same as (a^ of Theorem 3.5 but we use the same letter.

38) The question as to whether we can replace (a2)e by (a2)e Ve(X)>0 is open.



On Potentials in Locally Compact Spaces 301

verges vaguely to some measure μXk for each k and each lim 7 ^ exists, where
ω

7Cβ°=(7ίω), ..., 7(,ω)) is suitably chosen in Γι

G(m), m being determined by the
n

equality μ,(ω)=μ[o). This limit is not equal to — °o? and if we set ]>] μίk=μχ

and denote the above limit by yk, then we have

Uμχ(P) - /(P) ^ Ίk g(P) p.p.p. on Xk.

If, furthermore, /(P) is defined and continuous on Gg, then

(3.13) Ii + <f, μβχ> = *Σxk Ίk
k= 1

PROOF. By Theorem 3.1 it holds that

UμίG^\P) - / ( P ) ^ 7ίm)g(P) P.p.p. on G<»>

with some 7

(TO) = (7(

1

TO)

? ..., γ£">) e Γbw. It is easy to see that μU>»)(Ω) is bounded
if (aO is assumed. Let us assume (a2%. There is a finite number M such
that

We conclude that μUm)(Ω) is bounded in this case too because

onG0.

}

for any μe<?G(
m)(g, x). Consequently there is a subnet T={μ(ω); ωeD} of

{μUm)} such that /4ω) converges vaguely to some measure μeχk and ηf} tends
to a limit which will be denoted by ηk, where 7iω) is equal to 7*T} with m de-
termined by μ(ω)=μU™) According to Theorem 1.16 it holds that

lim UμCω\P) = ϋμχ(P) P.P P. in Ω.
ω

Therefore

UμHP) -f(P) ^ Ίu g(P) P.P.P on Xk.

It will be shown near the end of § 3.4 that each yk> — 00. Equality (3.13) fol-
lows from the similar equality in Theorem 3.1.

If g(P) is defined and positive continuous on Gg and each μh(m) is the vague
limit of some subnet of a sequence {μK(m,P)}, K(m'p)CG(m\ then we have in-
equality (3.5) for μe

x.
The measure μx will be also denoted by μx(g, x, /) or by1 μx(χ). It is not

sure that the support of μx is contained in Xa. See Problem 3.4 in § 3.11 in
this connection.

If we use Theorems 3.3 and 1.17 we can prove
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THEOREM 3.10. In addition to the conditions required in the first part of
Theorem 3.9, we assume that Φ(P, Q) is continuous outside the diagonal set and
that Φ(P, P) = oo at each point P of O^ which is defined with respect to Φ. As-
sume also one of the following conditions:

(bi)* Every open subset of Go is a Kσ-set,
(b2)* The set Δ^= {P; Φ(P, P) = oo} is closed.

Then each yk is finite and for each k

(3.14) ίK(P) -f(P) ^ γ, g(P) q.p. on Xk.

The finiteness of each yk will be proved at the end of § 3,4.
In case a positive continuous function g(P) is defined on an open set

£(OX, we write Vc

e

8XX) for inf Vψ\G\ where G is an open set such that
XCGCGo. We have

COROLLARY. We consider the special case rc=l, x = l and f =0 in the theo-
rem. Then

(3.15) U»i(P)^ Vcf\X)g(P) q.p. on X.

If g(P) is defined and continuous on Go, then

(3.16) 0"i(P) <£ Vί*\X)g(P) on Sμ}.

For g(P) defined on Gg we shall call a measure satisfying (3.15) and (3.16)
a weak outer g-equilibrium measure and, in case g(P) = l, a weak outer equili-
brium measure. Its potential will have the corresponding nominations.

We define Γx(x) = Γx as the set of γ=(γi, , yn) appeared in Theorem 3.10
and can prove as before

THEOREM 3.11. The set Γx is compact in En under the assumption of Theo-
rem 3.10.

(2) In the following Theorems 3.12, 3.13 and 3.15, we consider X con-
sisting of sets Xi, , Xn which are separable by (^-separate open sets Gu , Gn

in Ω, an upper semicontinuous function /(P)<oo in an open set G0^>X and a
positive continuous function g(P) in Go. We assume also that the kernel is of
positive type and that Iχ=Iχ(g, x, /) is finite.

We shall denote by #G0(g, x) the closure of <?G0(g, x) with respect to the
strong topology and prove

THEOREM 3.12. Assume that every strong Cauchy net in #G0(g, x) is
strongly convergent and that (μG, μ

ι

G') is defined for any open subsets G and Gr

of Go both including X. Unless the kernel is nonnegative on each Gj x Gk, j φk,
assume also one or both of the following conditions:

(ai) g(P) has a positive lower bound on Go,
(a2). Ve(X)>0.
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Then, for any sequence {G(m)}, XCG(m)CG0, of open sets such that each G(m) is
decomposed into open sets separating Xu ..., Xn and UM tends to /£(»»), μUm>

converges strongly to some measure μx=μx(g, x, f) and 7c(m) tends to a finite

constant yk for each Jc. This measure μx is a strong limit for any sequence of
open sets of the above character, and each yk does not depend on the choice of
{G(m)}. We have also

(3.17)

and

(3.18) TTKP) ~f(P) ^ 7* g(P) VΦΦ on Xk.

We may require furthermore that the support of μx is contained in Xa.

PROOF. By Therem 3.5 we have

(3.19) UμίG^\P) - / ( P ) ^ 7£<>) g(P) p.p.p. in Gc

k

m\

For G=G(m)Γ\G(p) it holds that

in virtue of Lemma 3.2. Similarly

and hence

Thus {μUm)} form a strong Cauchy sequence and this converges strongly to
some measure μx by our assumption. The fact that μx is a strong limit for
any sequence like {G(m)} follows if we mix two such sequences.

We set G(1)r\ ..r\G(m)=D(m\ Since

) f ( ) ^ k ( μ ) g ( ) p.p.p. on G?\

by Lemma 3.3 it follows that

{Ύk(μUm)) — Ύk(μUm+P))} Xk<La\\μG(™)— μb(™+P)\\,

where a is a nonnegative constant not depending on the choice of {G(m)}. It
follows that

lim 7*(μc(™))

for each k. We infer by (3.9) that
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lim 7y(/4("0) + 2 ^ lim

y lim 7y(/*cθ»))<12 Σ #/ 1
l

It results that lim 7k(μU^)) exists and is finite for each k and that, if 7* de-

notes this limit, (3.17) holds. The independence of yk of the choice of {G{m)}
is concluded by mixing two such sequences.

Let E{m) C G{m) be the set where (3.19) does not hold. By Proposition 1 of
Chapter I, Vi(\JH(m)) = oo and, for PeXk-\jH(m\ it follows naturally that

m m

lim iro^XP)

In view of Theorem 1.18 we have

TTKP) -f(P) ^ Ίu g(P) P P.p. on Xk.

Finally we shall show that we can choose μx so that Sμ^CXa- We de-

note by D the directed set consisting of all open sets G such that XCGCG0

and G is decomposed into open sets separating Xu .., Xn; the direction in D

is defined by the inclusion, namely G<LG' if and only if G^>Gr. We see that

{μc Ge D} form a Cauchy net in <?G0(g, a). It converges strongly to a meas-

ure μ by our assumption. Since r\Ga=Xa, Sμ C Xa- There is a sequence {G(m)}

of open sets in D such that μfa) converges strongly to μ and Γΰ(m) tends to 7|.

As observed already μ is a strong limit of the original sequence {/4θ)}5 and

hence we may take μ for μe

x.
In case yk is uniquely determined like in this theorem, it will be denoted

b y 7eχk.

If g(P) is defined and positive continuous on Go, if each μUm) ]is the vague
limit of some subnet of a sequence {μK(m>p)\, K(m>p)CG and if {μU™)} contains
a subnet converging vaguely to μx, then we have inequality (3.5) for μx.

By Lemma 3.2 we obtain immediately

THEOREM 3.13. If Ix and Ix are finite under the assumptions of Theorem
3.12 and if (μι

x, μx) is defined, we have

In the special case that X is a compact set K we have seen that Pκ=Ik in
Theorem 3.8. We shall prove

THEOREM 3.14. Let K consist of mutually disjoint compact sets Ku •••, Kn

and G0CΩ be an open set containing K. Let j f(P)<oo be defined and upper

semicontinuous in Go such that f(P)> — °° on some set YkCKk with Vi(Yk)< °°
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for each k, and g(P) be defined and positive continuous in Go. Consider a kernel
of positive type, and assume that every strong Cauchy net in #G0(g, x) is strongly
convergent. Then

11 μκ - M>κ 11= ° a n d Ίu (μκ)=Ίκk for each L

PROOF. By Theorem 3.13 the first equality follows immediately. The
second equality follows from the equality Iχ=Γκ, (3.18) and the last paragraph
of Therem 3.5.

Corresponding to Theorem 3.7 we state

THEOREM 3.15. Consider a consistent kernel. Let Go be an open set, f(P)
be a continuous function with compact support on Go, and g(P) be a positive
continuous function on Gζ. Assume that (μ/G, μc,) is defined for any open subsets
G and G' of Go both including a fixed set X, that Go consists of mutually disjoint
open sets G\, •• ,Gn such that the kernel is nonnegative and finite on each Gj x Gu,
jφk, and that 0<Iχk(g, χk, f) + Fc/'*^(X*)<oo for sach h where Xk=Xr\Gk.
Under these conditions I(μx)=Ix(g, x, f) and (g, μXk)=Xk for each k. If, in
addition, the kernel is nonnegative in ΩxΩ or Xis relatively compact in Ω, then

(f μχk> for each k.

COROLLARY. //, in paricular, each Xk is a closed set Fk,

(3.20) ϊF(g,x,f)=ΓF(g,x,f\

n

where F= \J Fk.

PROOF. AS proved in Therem 3.12 we may assume that S^ CFk. Since
Fk

(g> PF^>=Xk, ΓF(g, x, f)<*I(μF)=IF(g, x, / ) . The inverse inequality ΓF(g, x, f)
~^>IF(g, x, /) being evident, we conclude the equality.

Fuglede [1] proved Vi(Fo)=:Ve(Fo) for Fo with Ve(F0)>0 under the ad-
ditional assumption that the space is normal; see his Lemma 4.2.2. He show-
ed also that we can not replace Ve(Fo)>O by Ve(F0) = 0. See his Example 10
in § 8.3.

In order to show that the inequality (3.9) is true q.p. on Xk we shall prove
two lemmas.

Lemma 3.6. Let Go be an open set in Ω such that the kernel Φ(P, Q) is
bounded from below on Go x Go, and XCGobe any set. Suppose that the kernel is
of positive type and that, for any sequence {F(m)} of closed sets and any sequence
of {G(m)} of open subsets of Go, each having a positive Vrvalue, we have

Vi (\J (F(m) r\ G(m))) =Ve(\J (F{m) r\ G{m)).
m m

Let μ, v be measures of £ such that (μ, v) is defined. If ί > 0 and Uμ(P)^>Uv(P)
-ht q.p. on X, then
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PROOF.39) In view of Proposition 2 of Chapter I we may assume that
Uμ(P)^Uv(P) + t everywhere on X. For any number 5, 0 < s <t, X is contained
in the set

H={P£G0; Uμ(P)>U\P)-hs}.

We set, for every rational number r,

and

and have H= \J (Fr r\ Gr). By Lemma 3.4 we have V{(Gr)^(r + s)21| μ \\"2 > 0.
r

Consequently Vi(H)=Ve(H) by our assumption. Hence from Lemma 3.4 fol-
lows Ve(H)^s2\\μ — y||"2. Since 5 may be taken arbitrarily close to t9 the re-
quired inequality follows.

Lemma 3.7. Consider the same Go and Φ(P, Q) as in Lemma 3.6. Then,
for any sequence {μn} converging strongly to μ0, we have

lim Uμn(P)<,Uμo(P) q.p. in Go.

Proof. We set

0; Uμ°(P)< lim Uμ%P)},

)
p<n

and

Then

H=\jHPtQ and Hp>q = r\Bn>q.
P, Q P<n

By Lemma 3.6

n—μoll"2 for each n>p.

The right side tends to oo as ra->oo and Ve(Hp>q) = oo. Consequently Ve(H) = oo

39) cf. Fuglede Ql], Lemma 3.2.3.
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by Proposition 2 in § 1.1.
If we use Lemma 3.7 instead of Theorem 1.18, we can improve Theorem

3.12 under some additional condition.

THEOREM 3.16. Let Go be an open set in Ω on whose product the kernel is
bounded from below, and X be any subset of Go. Let jf(P)<oo be defined and
upper semicontinuous in Go, and g(P) be defined and positive continuous in Go.
Consider a kernel of positive type, and assume that Ix is finite, that every strong
Cauchy net in #G0(g, %) is strongly convergent, that (μc, μ^) is defined for any
open subsets G and G' of Go both including X, and that one or both of (bi)* and
OW* of Lemma 3.5 is true. Unless the kernel is nonnegative in each Gj x Gk,
jφk, assume also one or both of (ai) and (a2)e of Theorem 3.12. Then with {7k},
defined in Theorem 3.12, it holds that

Uμχ(P) - / ( P ) ^ Ίu g(P) q.p. on Xk.

COROLLARY. We consider the special case that n = l, χ=l and f(P)~0 in
the theorem. Then \\μe

x\\2 = Vig\X) and

Uμχ(P) ^ Vψ (X)g(P) q.p. on X.

We shall call a measure satisfying these relations an outer g-equilibrium
measure and, in case g(P)~l, an outer equilibrium measure. Its potential will
have the corresponding nominations.

REMARK. If we consider a consistent kernel, the following conditions may
replace (bi)* and (b2)* required in Theorem 3.16:

(bi) Every open subset of Go is an Fσ-set,
(b2) zL is closed and, for every point P€G0 and for every neighborhood

NP of P, the kernel is bounded from above on {P} x(G0 — NP).
To justify the assertion it will be sufficient, in view of Lemma 3.6, to prove

LEMMA 3.8. Consider a consistent kernel. Let Go be an open set in Ω on
whose product the kernel is bounded from below, {G(m)} be a sequence of open
subsets of Go, each having a positive Vrvalue and {F(m)} be a sequence of closed
sets. Assume one or both of (bi) and (b2). Then

Vi(\J (F(m) A G(m)))= Ve{ \J (F(m) A G(w))).
m m

PROOF. Set A= \J (F(m) A G(m)) and consider the case 0<Vi(A)<oo first.
m

There exists an inner equilibrium measure μι

A for A. With the same nota-
tions as in the proof of Lemma 3.5 it holds that

i Tϊl

The set inside [ ] is an ivse t by Lemma 3.1 and hence H is so too. Since
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Vi(G(m))>0, H can be written as \j E(p) with closed sets {E(p)}, each having a
P

positive Rvalue. Now by (3.20) we see that Vi(E(p))=Ve(E(p)) for each p. By
Proposition 2 of Chapter I it follows that Ve(H) = oo. The rest of the proof
is similar to that of Lemma 3.5.

3.4. Sets with Ix(g9 x9 /) = co or with Ix(g9 x, f) = oo.

We shall give conditions for Γx(g, x,f) = °° and for Ix(g, x, / ) = » , Even

if the kernel is not of positive type, we may use the notation ||μ|| f or V (μ,, μ)

provided that (μ, μ);>0. We are still under the condition that xι>0, 9xn>0.
In § 3.1 we set 7i=oo unless each Xk contains Yk with Vi(Yk)< °° on which

/(P) is finite. This is justified by

THEOREM 3.17. Let X consist of Φ-separate sets Xu --,Xn in Ω, /(P)<oo
be an upper semicontinuous function defined on X and g(P) be a positive con-
tinuous function on X. Then I(μ) = (μ9 μ) — 2 <(/, /ί)=oo for any μ such that

Sμ is decomposed into compact sets Ku , Km each KkCXk, and that\ gdμ=Xk

for each k, if and only if / ( P ) = — °° p.p.p. on some Xk.

The proof is easy.

By Proposition 1 in Chapter I we have

COROLLARY. Let {A{m)} be a sequence of sets of Si such that each A{m) is
decomposed into %1-measurable sets A{m\ ••-, A^with the property that each A^
increases with m and {\J A^} are Φ-separate. Set A=\J A(m\ Let X be a set

such that AψΓ\Xφ0 for each k, / (P)< °° be an upper semicontinuous function
on Ar\X and g(P) be a positive continuous function on Ar\X. If ΓA(^)nχ(g, x,
f) = oo for each m, then IlAnx(g, x, f) = oo.

The proof of the corresponding result in the case where Ix(g> x, f) is in
question is not as simple as the preceding one. We shall prove several lem-
mas first.

LEMMA 3.9. Let B be a Borel set in Ω. Then, for any μ such that μ(Ω — B)
= 0 and (μ, μ) is defined, we have

PROOF. First we take μ with compact Sμ C B. The inequality evidently
holds if μ=0. Otherwise μ/μ(B) is a unit measure and

In case SμCtB but μ(Ω—B) = O and (μ, μ) is defined, we approximate μ by the
restrictions of μ to compact subsets of B and obtain the inequality.
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LEMMA 3.10. Let Go be an open set in Ω with Vi(G0)>0 such that the kernel
is bounded from below on Go x Go, and BCG0 be a Borel set. Then, for any μ
with μ(Ω — G0)=:0 and for the restriction μB of μ to B, we have

where m'^max (0, — inf Φ).
GQXGQ

PROOF. We have μ\Ω)<, \\μ\\2 Vfiβv) by Lemma 3.9. Therefore

If we assume that the kernel is of positive type, we shall obtain an in-
equality which is sharper in a sense than the above one. In fact we can prove
the following:

Consider a kernel of positive type. Let Go be an open set in Ω with Vi(G0)
> 0 such that the kernel is bounded from below on Go xGo, and BCG be a Borel
set such that

(3.21) ( " ) 2

with a positive constant c. Then, for any μ with μ(Ω — G0) = 0 and for the re-
striction μB of μ to B, we have

PROOF. Since the kernel is of positive type, \\μ — μB\\'^0. Therefore,
by Lemma 3.9,

By (3.12) it follows that

Hence

LEMMA 3.11. Let GQ be an open set in Ω on whose product the kernel is
bounded from below. Let Xbe a set in Go with Ve(X) = °°, and h(P) be a nonne-
gative finite-valued upper semicontinuous function defined in Go. Then, given
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ε, 0< ε < 1, we can find an open set Gs such that XCGSC Go and

<h,μ>^ε\\μ\\

for every μ with SμCGs.

PROOF. In this proof we shall use subscript p to indicate a term of a
sequence. We choose an open set GO such that XCG0CG0 and Vi(G'0)>m~.
We set

Dp={PeGΌ; h(P)<p} and Xp=Xr\Dp.

Certainly X=\j Xp. Since Ve(Xp) = ^ for each p, we can find an open set
P

Gp C Dp such that Xp C Gp and

Let μ be any measure with Sμ contained in \J Gp. If μp denotes the restric-
P

tion of μ to Gp,

<,/> £ Σ ( ^ Σ P M ^ Σ
P }GP P P

where we make use of Lemma 3.9. Lemma 3.10 is applied to obtain

This inequality yields

Hence we may take \J Gp for Gs.
P

We begin with the case Λ = 1 .

THEOREM 3.18. Consider the case n=l. Let Go be an open set in Ω on
whose product the kernel is bounded from below, X be any subset of Go, / (P)< °°
be an upper semicontinuous function on Go and g(P) be a positive continuous
function Go. Assume also at least one of the following conditions: (ai) g(P) has
a positive lower bound on Go, (a2)e Ve(X)>0; if the kernel is nonnegative in
Go x Go, we do not need any of these assumptions. If f(P)= — ©o q.p. on X, then
Iχ(g, x,f) = °o. Conversely if Γx{g, x, f)=oo and the Vrvalue and the Ve-value
coincide for the intersection of every open subset of Go with every closed set,40)

then / ( P ) = — oo q.p. on X; in the converse we need neither (aθ nor (a2)e.

PROOF. First we assume that F e(X)=oo. We may suppose Fi (G 0 )>l.

40) This is so if the kernel is of positive type and (bj)* or (b2)* of Lemma 3.5 is true.
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We set

O; ί^ <P and

and XP=XΓΛDP. Each Dp is open and \j DP=GO. Since Vβ(Xp) = oo for each
P

p, we can find for given e5 0 < e < l , an open set Gp such that

XpCGpCDp and Vi(Gp)^( ^ - ) max {1, (m')2},

where 7?z~=max (0, — inf Φ) as before.
GQXGQ

We shall show

P

p-i

for any μe^u Gp(g, χ\ where μp denotes the restriction of μ to D'P=GP— \J Gk

We set

We observe that

04> μ>p)=(μ>

a n d

(μp+u μUύ^-y
Vi(G0)

| 2 , II / | | 2 \

Hence

It follows that

Let us evaluate \\μp\\. Since | | ^ + i | | ^ 0 ,

41) Since the case rc=l is concerned in this theorem, we may use lower subscripts to denote sets
without indicating any components.
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Therefore

for p ^ 1. We have also

Adding these inequalities for p=l, •• , g , w e obtain

Σ
p=i

It follows that

Secondly we shall show that K ε ^ Σ IWI2. Since μp(Ω-D'p) = 0, μp(D'p)
P

ε " ". Hence

and

Naturally

Making use of Σ ||/^/,||2^3 ||μ||2, we have
P

Σ \ ^-gdμp
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By the arbitrariness of μ€ S u Gp(g, x), it follows that

x2

p

By letting e—•(), we obtain

Next we assume that Ve(X)<oo but f(P)= — °° q.p. on X. If the kernel
is not always nonnegative we assume furthermore at least one of (aθ and (a2)e.
We set

Bp={PeG0;f(P)<-pg(P)}.

This is an open set and Ve(X—Bp)=oo. Making use of Lemma 3.11, we take
an open set Bf

p such that

X-BpCB'pCGo and <f++Pg, μ><\\μ\\

for every μ with μ(Ω-Bp)=0. If Ve(X)>0, we may assume Vi(G0)>0 and,
for any λ with Sλ C Go and its restriction Xp to B'p, we have

by Lemma 3.10. If g(P) has a positive lower bound on Go, the total mass of
any measure λ e ^GQ{g > x) is bounded: X(Ω)<La < oo. Hence

If the kernel is nonnegative in GQxGo, obviously ||λ/,|| <I| |λ| |. We take any
v G &BP u B' (g, x). Then we have, with the restriction vp of v to B'p,

or

2 = U \\ v \\2 + m 'a2-1)2 + 2px -m~ a1-

— m~ a2 — 1.
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Consequently

ΆpuB'lg, *,f)^2px - 1 - - ^ or 2p*-τιΓα2-l

and hence

To discuss the converse we assume that there is F C I on which f(P)
> — oo and which has Fβ(Γ)<oo. We may assume then that 7=Z. The set

— \
P

is an open set and \J EP=GO. If Ve(Xr\Ep)=oo for each p, then Ve(X) = ooy

P

contradicting our assumption. Therefore Ve(Xr\EPQ)<°o for some p0. It will

be sufficient to show IXΠEP (g, χ,f)<°°- Hence we assume from the begin-

ning that g(P)>a>0 on Go.

The set

is closed relatively to Go and G0=\JHq\j{PeG0; /(p)= —oo}. We see simi-
0.

larly that Ve(Xr\Hqo)<°° for some q0. We take a decreasing sequence {Gp}
of open sets such that

Xί\HPoCGpCGo and lim Ibp(g, x, f)=IχnH9o(g9 *>/)•

r, x) satisfy (μ, μ)^V<ig'x\GprΛHqo)-hl. Then Vψ'x\GpΓ\Hqo)
x2 a'2 Vi(Gpr\HQQ) and

fGp(g, X,

~^ Vi(Gpr\Hqo)-h l + 2q0 - ^

because Vi(Gpr\Hqo)= Ve(Gpr\Hqo) by our assumption. Consequently

p-*°o (X

Our theorem is completly proved.
Next we consider the case zzi>2. Let Xu •••,Xn be subsets of an open set

GQ and assume that they are separable by (^-separate open sets. The condi-
tion that each Iχk> — oo and IXl = oo are not sufficient to have ii—oo. As an
example we take the point Pi=(0, 0, 2) in E3 for Xx, the ball OP<1 for X2=G2?

and the ball pPi<l/2 for Gx. We set Φ(P, Q)=l/pρ on Gι xGu Φ(P,Q)=-1
on Gi x X2 and on X2 x Gu Φ(P, Q) = 0 on X2 xX2, /(P)=0, gr(P) = l on d and =1
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- OP on X2. Then ΓXl = oo and Γχ2 = 0. We shall show that ΓXχ Ό χ2 = - oo. Let
G be any open subset of G\ containing Px and take any μξκ?Guχ2(g,x). De-
noting the restrictions of μ to G and X2 by μx and μ2 respectively, we have

I(μ) = I(μί)-hI(μ2)-h2(μu μ2) = I(μ1)-2μ1(Ω) μ2(Ω).

It holds that χι = \ gdμι=μι(Ω) and #2 = \gdμ2 = I (1 — ΌQ) dμ2(Q). If we take

μ2 arbitrarily close to OP=1, then μ2{Ω) becomes arbitrarily large. This shows
t h a t IGUX2= — OO.

In order to avoid this situation we assume at least one of (ai) and (a2% in
Theorem 3.9 we may replace Ve (X) > 0 in (a2% by Ve (Xk) > 0 (fc = 1, ..., ή). Take
(^-separate open subsets G{°\ • •-, Gc

re

0) of Go separating Xu ..., Xn. We may as-

sume that Go = \J Gc^. In case Iχk(g, ^ , / ) < o o ? we consider, for each k, the

subclass A of £G^(g, %k) such that I(μk)<(ΓXk(g, xh /)) + + l for any μke#ky

where (/l^)+=max (IXk, 0). We see by (aθ or (a2)β that each /AΛ(ώ) is bounded
on #k. Let G be any open subset of Go containing X such that £kr\£GΦ$ for

n

each k. We set μ=*Σ μk for / i ^ A ^ ^ j fc=l, •••, zz, and observe t h a t

Therefore β(g , Λ, /) is not equal to oo. We see also that Ix(g, x, / ) = — oo if
any one of Iχk(g, χk> /) is - oo.

Conversely assume that Iχ(g, x, f) is finite and that one or both of (ax)
and (a2)β in Theorem 3.9 is true. We may assume Fϊ(G0)>0 and that Go con-
sists of (5-separable open sets Gf\ ..., G(

n

0) separating Xu ..., Xn. We denote
by #o the subclass of #G0(g, x) such that I(μ)<LIx(g, x,f)-hl on ^ 0 . We have
seen that each IXk(g, Xk, / ) > — °°. There is GJ, XC Go C GOj such that /cΛ(gr, ^ ,
/) is bounded from below for each k and every G, XCGCG0, where Gk = G
ί\Gf\ By our assumption μ{Ω) is bounded on <f0 and hence

where ^ is the restriction of ^ to Gc/}. For an open set G such that XCG

C Go, we take any μ e tfcig, χ)r\&0. We have

Since each /cΛ(gr5 %h /) is bounded from below, each Ick(g9 %k, f) is bounded.
Hence each Iχk(g, χk,f) is finite. It is also seen that if Iχ(g, x, / ) = — °°, at
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least one of Iχk(g9 Xk, f) is - ^ o .
We consider a kernel of positive type. Assume, for each &, that every

strong Cauchy net in #G<-°>(g9 xu) is strongly convergent and that (μG9 μG') is
defined for any open subsets G and G of Gψ both including Xk such that IG(g9

xk9 f) and IG'(g9 Xk, f) are finite. Then we may assume Ve(Xk)>0 (fc=l, ..., ή)
instead of (ax) or (a2%. If the kernel is nonnegative in each Gj x GΛ, φk9 we
do not need such condition. In fact, we assume that each Iχk(g9 Xk-> /) is finite
and take (^-separate open subsets G^\ ..., G£° of Go separating Xi, ..., Xn such
that || / 4 J < ί II /*£ΛH + l/2 holds for any open subset Gk of G(/) containing X*
•(fc=l, ••-, Λ); see Theorem 3.12. For each Gh we find VGk£#Gk(g, x) such that

and

We write G* for \j Gk and have

.Σ K,

^ i i / κ ) + Σ K j ^

Consequently /I(g , x, f)<°°. Next assume that each ft/g , ^ , / ) < °° but some
of them are -oo, We consider /iΛ(g, #*, —/") for each fc where / ' = m a x (0,
—/). It is naturally nonnegative, and finite on account of Theorem 3.18 under
the assumption that the kernel is bounded from below on Go x Go and that F",
(Gr\F)=Ve(Gr\F) for every open subset GCG0 and every closed set F. Con-
sequently

Conversely assume that */|(g , χ> f) is finite. We suppose that Go consists
of (^-separate open sets Gf\ ..., G(

Λ

0). We consider still a kernel of positive
type, and suppose (a2)e F e(X)>0, that every strong Cauchy net in <?G0(g, x) is
strongly convergent and that (μGi μG,) is defined for any open subsets G and
G of Go both including X. If the kernel is nonnegative in each GjxGk, jφk,
we need not condition (a2)e. We choose an open subset G of Go containing X
with the property that |/i—7c| <[1 and ||/>6l-/4|| <11 for any open set G such
that XCGCG. We shall denote by &r the class of measures μ in u <^G(#, #)

such that \Iχ — I(μ)\^2 and | | ^ i — / A | | ^ 2 . If (a2)e is true, we may assume
Vi(G')>0. It follows that μ(Ω) is bounded on &'. Hence \\μk\\ is bounded be-
cause

Σ IÎ IΓ=NΓ -Σ^f t )-

It is evidently so if the kernel is nonnegative in each G;xGk, jφk. Let M
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be an upper bound for \\μk\\9 k=l, ..., n. Suppose that there is {μ(m)} in £' such
that Kjiff) tends to — oo as m~>oo. We have

} + Σ ι*T)<>iW)+ Σ /(/4 1 })+^

This is impossible and it is shown that I(μk) is bounded from below on £'.
From the inequality

Σ I(μk) = I(μ) - Σ (μP

valid for any μ€tf\ it follows that /(/**) is bounded on £'. Since £G(g, x)Φ0

for any G, XC G C G\ ΓG n G^(g, **,/) (^/(/**)) is bounded from above by a con-

stant not depending on G, XCGCG'. Consequently Iχk(g, Xhf)<°° for each

fc.
So we state

THEOREM 3.19. Lei Go be an open set in Ω, Xu ••-,Xnbe subsets of Go which

are separable by Φ-separate open sets, / ( P ) < o o be an upper semicontinuous
n

function on Go and g(P) be a positive continuous function on Go. Set X= \J Xk

and assume at least one of conditions (aθ and (a2% of Theorem 3.9 we may
replace Ve(X)>0in (a2X by Ve(Xk)>0 (fe=l, ••.,ra). If Iχk(g, % / ) < ° ° for each
k, then Ix(g, % 5/)<oo ? and if any one of Iχk(g, x^ f) is —oo then Ix(g, x, /)
= — oo. Conversely Γx(g, x, /)<oo implies Iχk(g, Xk, / ) < °° for each k and Γx

(g, x, f)= — °° implies Iχk(gk, %k, / ) = - ° ° for some k under the assumption of
one or both of (aθ and (a2% w Theorem 3.9.

iVeatf consider a kernel of positive type. If, for each k, every strong Cauchy
net in #G(o:>(g, xu) is strongly convergent and (μJG, μG,) is defined for any open

subsets G and G' of Gk such that Iίig, Xk, f) &nd Ih'ig, Xk, f) are finite, and if
Ve(Xk)>0 (fe=l, ...,n), then -°o<rXk(g % / ) < o o (fe=i, ...,7Z) imply Γx(g, x, f)
<oo some Iχk(g, Xk, f) may be —oo if the kernel is bounded from below on
GoxGo and if Vi(Gί\F)=Ve(Gr\F) for every open GCG0 and every closed F.
Conversely — ^<Fχ(g, x, / ) < ° ° implies Iχk(g, Xk, / )<° ° for each k if every
strong Cauchy net in #G0(g, x) is strongly convergent and (μG, μG')is defined for
any open subsets G and G' of Go both including X and if Ve(X)>0.

In view of Proposion 2 in Chapter I we have

COROLLARY. Let Go be an open set in Ω such that the kernel is bounded
from below on GoxGo, {X(m)} be an increasing sequence of subsets of Go such
that each X(m) is decomposed into X[m\ •••, Xim} which are separable by Φ-se-
parate open sets, /(P)<oo be an upper semicontinuous function on Go and g(P)
be a positive continuous function on Go. Set \J X(m)=X and \J X(/°=X&, and

m m

assume one of conditions (aθ and (a2% of Theorem 3.9. Assume also that the
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Vrvalue and the Ve-value coincide for the intersection of every open subset of Go

with every closed set. Then Iχ(g, x, /) = °° if fio)(g, x,f) = °° for each m.

QUESTION. Let Go, {X(m)} be as above. Consider a kernel of positive type,
and assume that every strong Cauchy net in #G0(g, x) is strongly convergent and
that (μc, μc,) is defined for every open subsets G and G' of Go both including X
such that ΓG and /£/ are finite. Assume (a2)e Ve(X)>0 and that Vi(Gr\F)==Ve

(Gr\F) for every open GCG0 and every closed F. Is it true that Iχ(g, x, f)—°°
if each /J(«o (g , #, /) = oo ?

If this is true we can replace (a2% by (a2)e in Theorems 3.20 and 3.22. Let
us see why this question remains open. If /io»)(gr, #,/) = °o for each m9 there
is k0 such that /io»)(g , xkQ9 f) = °° for each m. Hence by Theorem 3.18 Iχk (g ,

xkQ, f) = oo. But we can not assure that Iχk(g, χk> f) is finite for other k. Under
these circumstances it is not certain that I£(g, x, f) = °° as Example 1 will
tell.

Coming back to Theorem 3.19 we observe that we did not assert there
that Iχ(g, x, / ) < ° ° implies Iχk(g, Xk,f)<°° in the case of kernel of positive
type. In fact this is not always true as Example 1 will show. We shall give
several examples to supplement the theorem.

EXAMPLE 1. In E3 take Pi = (0, 0, 2) for Xu the ball OP<1 for X2=G2 and
the ball ftP<l/2 for Gx. We consider the Newtonian kernel and set f(P) = 0
in Gλ and = ( 1 - O P ) " 1 in G2, g(P) =1 in d and ==1-ΌF in G2. Then IXl(g, 1,
/) = °°5 Iχ2(g> 1

J / ) = CO a n d Iχiuχ2(g> (1 ,1) ,/)=-° ° . Consequently Ix(g, *,/)
= — oo does not always mean that each I£k(g, XM, / ) < °°

EXAMPLE 2. Take Xu X2=G2 as above and regard Xχ\jG2 as space Ω; Xλ

is then taken for Gλ. We define Φ, f and g as in Example 1, the space being
restricted to XX\JG2. We see easily that IXι(g, l , / ) = oo, Iχ2(g, 1,/)=—oo
and U1{jχ2(g, (1,1),/)=oo. Consequently the fact that some I£k(g,xhf)
= — oo does not always mean that Iχ(g, x, / ) < °°.

EXAMPLE 3. Let Ω consist of two sequences of points on the #-axis: Xι
= {1/2,1/3, .. } and X2={1-1/3, 1 -1/4, ...}. We regard Ω as a subspace of
the Λ -axis and set Φ(P, Q) = l in ΩxΩ. This is naturally of positive type and
every strong Cauchy net in £ is convergent. Also F, («β)>0. We set 2/(P)
=k + 1 and g(P) = 1/k both at P = 1/fe and P== 1 - 1/k. Let us see that, for K{^
= {1/2, •-., 1/m}, min /(^) is attained by the point measure at 1/m with

mass m. We set μ({l/k})=kξk for μζSΈ^Kg) 1) a n d have

n n

(μ, μ) — 2(f, μy = ( Σ kξk)
2 — ^>

This takes its extremal values at some of (1, 0, ..., 0), (0, 1, 0, ••-, 0), ..., (0, ..,
m

0, 1) in the (£2, , ξm) space under the condition Σ IΛ = 1 5 tk^O. The value
k 2
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at the k-th point is k2 — fc(ft + l) = — fc. Hence the minimum value is —m.
Consequently IXl(g, 1,/)= —oo. Likewise Iχ2(g, 1, / ) = — °° To show that
/S(g, (1,1),/) is finite, take any ^ e Ar^g ,1) and μ2 e £χ2(g, 1) and set μι({l/k})
=kξk and yw.2({l — l//}) = 7?7y. It holds with some m and p that

* - 2

77Ϊ /?

because μι(Ω) = ̂ ikξk'>2 and μ2(Ω)= Σ / ^ - ^ 3 . We see that the last side

takes its minimum when one of ξk and one of η. are equal to 1 and other ξk's
and η/s vanish. The minimum value is equal to 4 + 3 = 7. Actually I(μι-hμ2)
= 7whenf2 = l , | 3 = =0, and 7/3 = 1,774= =0. ThusJ^(g , (1,1), /) = 7. Hence
it is shown that — ° °</ | (^ , x, / ) < ° ° does not always mean that at least one
of IXk(g, xh /) is finite.

EXAMPLE 4. We take the same Ω=XI\JX2 and g(P) as above. We set Φ
(P, <2) = 1 on Xx x Xι and X2 x Xi and = —1/2 on Xx x X2 and X2 x Xi, and set
2f(P)=k at P=l/k and P=l — l/k. The kernel is of positive type, every
strong Cauchy net in g is convergent and Vi(Ω)>0. We see as above that
IXl(g, 1, /)=/ί 2(βr, 1, /) = 0. Next take ^ € <fXl(g, 1) and ^2 € £χ2(g, 1) arbi-
trarily and set μι({l/k})=kξk and/χ2({l — l/j})=jηΓ It holds with some 7?z and
p that

and follows that /S(g, (1,1), / ) = — °°. Thus U(g, x, / ) = — °° does not always
mean that one of Iχk(g, 1, /) is — oo.

Now we shall prove that each γ^>—oo in Theorem 3.9. We shall use
the notations used to show Theorem 3.19. Let G be an open set such that
XCGCGΌ. We have, for any μe£G(g, *)n<f0, ΓGk(g, χh f)<LI(μk) for each h
and

as in the proof of Theorem 3.19. Since we may suppose that each Ick(g, Xk, /)
is bounded from below, each I{μk) is bounded. Accordingly

2χk yk(μ)=I(μk) + (μh ^ ) + 2 Σ (μj, μk)

is bounded from below for each L Since we can approximate each yk by
\J tfcig, ^)A^n, for each fe, it is concluded that each yk> — °°
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Next we shall prove that j k in Theorem 3.10 is finite for each k. We
have already seen that it i s> — oo. From our assumption that Iχ(g, x, f) is
finite and from Theorem 3.19 it follows that f(P)> - w o n some set YkCXk

with VeiYkX00- In view of Theorem 1.10, Uμ*(P) is finite q.p. in Ω. Hence
there is a set Zk C Y* with Ve(Zk)< °° such that

f() onZk.

If 7^=cx>? it follows from (3.14) that

Uμχ(P)-f(P)= oo q.p. on Xk.

Namely, the Fe-value of the subset of X, on which the left side is <oo ? is in-
finite. This is a contradiction and it is concluded that yk is finite.

3.5. Change of sets.

In this section we are interested in the behavior, as X varies, of Iχ(g, x, / ) ,
Ix(g, x, / ) , μίigy x, f) and μx(g, x, / ) . We shall assume in this and the next
sections the positivity of the kernel without mentioning it explicitly; only
exception is in Theorem 3.21. Simpler notations Ix, Ix, μx and μx will be used.

LEMMA 3.12. Let Φ(P, Q) be a kernel in Ωx Ω. Let Go be an open set in Ω
on whose product inf Φ=m> — oo? X consist of Xu ..., Xn which are separable
by Φ-separate open subsets Gu --',Gn of Go, f(P)< °° be an upper semicontinuous
function defined in Go and g(P) be a positive continuous function in Go. As-
sume that Ix is finite, that every strong Cauchy net in #G0(g, x) is strongly con-
vergent and that (/45 μc*) is defined for any open subsets G and G' of Go both
including X. If the kernel is not always nonnegative in each GjxGh jφk,
assume also at least one of the following conditions: (aθ g(P) has a positive
lower bound on Go, (a2)e Ve(X)>0. Let μx and <γXv ..., yXn be the measure and
the constants obtained in Theorem 3.12. //, for a measure μζ.£ and for con-
stants {ck}, it holds that

U^P)~f(P)^ckg(P) q.p. on Xk (fe=l, . . . , * ) ,

then

If, furthermore, (μ, μx) is defined,

(3.22) \\μ

and

(3.23) (ck
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where

*ίll2+^f~*2

ψgf
Go

if (ai) is assumed,

if (a2)e is assumed,

if Φ^>0 on each Gj x Gk,

PROOF. Let 0 < e < Ve (X) and set

; U»(P)-f(P)>(ck-ε)g(P)}.

This is an open set and Ve(Xk — Dp) = 00. We take/+-f- \ck\g for & in Lemma

3.11 and choose an open set GP^)Xk—DP having the property required there.

First we assume (ai). Then, the total mass of measure of £ 5 Gk(g, x) is bound-

ed by αo = (inf g*)"1^. We require that GP satisfies GPCGk and
Go

) 771 \ 2 I 771

Naturally

We take an open set Gr such that

X= \j Xk C G C

and

Ίk-ΊG>k
for each k,

and take a compact set KCG such that

and

We denote the restrictions of μκ to Gk and GέΛ) respectively by
set μψ=μ^ -μ?\ By the definition of DP we have

for each k.

' and LϋP and

If (/A, /χ(/))<0, then by Lemma 3.9 it follows that
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0*,
v ViiGr')

This is evidently true if (μ, μf) ;> 0. Hence in any case

By Lemma 3.11

and hence

(3.24) (μ, μ$>)-<J, μfy-Xk Ck^ -2ε\\μi»\\-eχk.

We have

and

We shall denote the last quantity by a. From (3.24) and from

we obtain

{Ίk(μκ) — ck}xk — (μκ — μ, μ^) ^ —2εa —

and

re

(μ, μκ)-2ζf9

We have

μκ) -2 </5 μκ> - 2 Σ

and

It follows that/(/x)^/|. If (μ, μe

x) is defined,
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and

{ck-Ύk(μκ)}xk<\\μ-μκ\\ \\μf\\ + 2εa + eχk.

Since \\μ^ψ^\\μκ\

(ck-ye

Xk-2ε)χk^Q\μ-μ

e

x\\ +2

By letting ε ^ O w e conclude (3.22) and (3.23).
n

Next we assume (a2)e. We require that Vi(\J Gk)> Ve(X) — ε and that Giky

k = i

satisfies Gψ> C Gk and

We use the same μκ and /4A) as above and see that both ||^iΛ) | | and \\μ^\\ are
dominated by

il Vi(\JGk)

Denoting sll-hm~(Ve(X) — e)"1 (||μ!|| +2ε) by α this time, we have

By letting ε ^ O we have (3.23) with α = | | ^ i | | ^l + m"(Vβ(X))'1. We obtain
(3.22) in the same way as above.

If the kernel is nonnegative in each Gj x Gk, jφk, then |l//1*
)|l<||/z^)|l<||μiΓ||

and (3.22) and (3.23) are concluded similarly.

COROLLARY. / /

n

Iχ = 2*ΣιXkCk — (μ, μ),

then ck=yχk for each Jc and μci™) converges strongly to μ, where XCG(m) C Go

and U(m) tends to Ix. If, furthermore, (μ, μx) is defined, then \\μ—μχ\\=0.

PROOF. We can conclude the strong convergence of μUm) to μ in view of
the inequality

in the above proof. The equality ck=
rίeχk follows from the identity
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= Σ ! * * 7 £ i k = I ί + Uχ\\2 if ck^jik. This is seen by

If (μ, μx) is defined, \\μ — μe

x\\ = 0 because μ, and μi are strong limits of the same
sequence {/4(™)}

Next we prove

THEOREM 3.20. Let {A(m)} be a sequence of sets of SI such that each A{m) is
decomposed into ^i-measurable sets Aim:>, •• , ^ £ " ) with the property that each
A^ increases to a set Ak as m->oo and Au --',An are Φ-separate. Let X be an
arbitrary set, /(P)< °° be an upper semicontinuous function on AίλX and g(P)
be a positive continuous function on AίλX, where A = \JA(m\ Assume that every

m

strong Cauchy net in SΆnxig, x) is strongly convergent and that (μι

A(
m)nx> μΆ(p)nx)

is defined for any m and p provided both IA(m)nX

 and IA(P)ΠX
 a r e finite. If lim

m ->°o

IAWΠX< °°5 then IAWnx tends to IAnX. If IAnX is finite and if (μA(™)nχ, μιAnx) is
defined for each m, μA(

m)nx converges strongly to μAnχ and each γ^(^)nx tends to

Next let Go be an open set in Ω such that the kernel is bounded from below on
Go x Go, assume that the above /(P) and g(P) are defined in Gθ9 and let {X(m)} be
a sequence of subsets of Go increasing to X which consists of χu , Xn separable
by Φ-separate open subsets Gu ,Gn of Go. Assume that every strong Cauchy net
in #G0(g, x) is strongly convergent, that (μι

G, μG,) is defined for any open subsets
G and G' of Go such that ΓG and IG, are finite and that (μiw, μi(p)) is defined for
any m and p provided /|(m) and I£(p) are finite. Assume one or both of

(bi)* Every open subset of Go is a Kσ-set,
(b2)* Go is a countable union of relatively compact open sets, Δ^ = {P; Φ

(P, P) = oo} is closed and, for every point P€G0 and every neighborhood NP of
P, the kernel is bounded from above on {P} x (G0 — NP),
and, unless the kernel is nonnegative on each Gj xGk, jφk, assume also one or
both of

(ai) g (P) has a positive lower bound on Go,
(a2)e Ve(X)>0 and fζl + g)'1 is bounded from above on Go.

Then Iχ(m) tends to Iχ. If /J is finite and if (μ-io), μx) is defined for each m,
μ|θ) converges strongly to μx and each Y^O) tends to ηeχk.

PROOF. First we assume that lim /iw n j is finite. We may assume that
πι ->oo

all IA(m)nX are finite. For m<p we have /j(™)nχϊ

by Lemma 3.2. As m, p->oo5 IA(m)nX—IA(p)nχ tends to 0 because of the as-
sumption that lim Iι

A(m)nχ is finite. Consequently {μA{m)^x} form a Cauchy se-
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quence and the existence of its strong limit μ0 is concluded. We choose a
subsequence {mq} such that lim γ ^ V n * exists for each k. Denoting this by

q-*ao k

7A, we have by (3.10) and Theorem 1.16

£Γ°(P)-/(P)^7*g(P) P.P P. on Akr\X.

From this we see as in the proof of Theorem 3.5 that each ηk is finite. It fol-
lows that

2 Σ**ΎiKTO)n* = /J(™)nX + (/ώm)n*, ^ ( ^ ) n x ) ~ > 2 Σ Xk 7* = Mm IAWKX + QJΌ, μo)
k = i k k = i ^-*°°

By Lemm 3.2 we have

On the other hand, lA(m)nX^>IAnX and hence / j n χ=l im IAWnx On account of

Theorem 3.5 it follows that rγk=
r/ιΛknx for each k and that, if μ(m) converges

strongly to μι

AnX and S^CAίλX, then μ{m) converges strongly to μ0. Since
μA(™)nχ converges strongly to μ0, it is derived that μA(™)nχ converges strongly
to μltnx We conclude also that JA^ΠX tends to yAk(]χ for each k.

If lim / i ( - ) n x = r - o o

? / i ( - ) n χ ^ ^ i n χ = - ° o and lim /jc-On^^/Jnx-

The latter half of the theorem is inferred if we use Lemma 3.7, Theo-
rem 3.16, Lemma 3.12 and its corollary, and Corollary of Theorem 3.19.

REMARK 1. If IA(m)nχ tends to <=>o then ΓA^X = °° in a special case where
Corollary of Theorem 3.17 applies.

REMARK 2. If the kernel is consistent, we may replace respectively (bi)*
and (b2)* by

(bi) Every open subset of Go is an ^-set,
(b2) ΔTC is closed and, for every point PζG0 and for every neighborhood

NP of P, the kernel is bounded from above on {P} x (G0 — NP).
See the remark given to Theorem 3.16.

We might propose next to prove the corresponding results in case X(m)

decreases to X. However, it is not true in general. For instance, we con-
sider the decreasing sequence {G(m)}: G ( w ) = { l < 0 P < l + l/7τz} in the euclidean
3-space. The Newtonian capacity of G(m) is equal to l/Vi(G(m)) = l + l/m. But
A G(m) is an empty set and its capacity is 0. Thus lim (l + l/ττz) = l=^O and a

counter-example is given.
We can prove only

THEOREM 3.21. Consider a kernel which may not be of positive type. Let
Ki, , Kn be mutually disjoint compact sets and, for each k, {K^} be a sequence
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n n

of compact sets decreasing to Kk. Set K= \J Kk and K(m) = \jKc

k

m\ Let /(P)< °°

be an upper semicontinuous function on K(1) and g(P) be a positive continuous
function on K(1). Then Iκ(™) tends to Iκ. Assume next that the kernel is of
positive type and that every strong Cauchy net in &κQ-)(g> x) is strongly con-
vergent. Then if Iκ is finite, μκ(^) converges strongly to μκ and jk (μκ(m)) tends
to <yk(μκ) for each k.

PROOF. Since μK(m)(Ω) ^x/min g, there is a subnet T={μ(ω); ωeD} of

{μK(m)} which converges vaguely to some measure μ0 € #κ(g, %)• Hence Iκ

<LI(μo). It is easily seen that lim Iκ(™)^I(μo)> On the other hand we have

Iκ(™)<,Iκ and obtain

lim IKM=I(μo)=Iκ' .
m-*oo

Consequently we may write μκ for μ0. If the kernel is of positive type and
every strong Cauchy net in &κ(™)(g, x) is strongly convergent, then

for m<p by Lemma 3.2. If lim /#(»») is finite, {μκ(m)} form a Cauchy sequence
m-*oo

and hence it converges strongly to some measure μ/0. By Lemma 3.2 again
we have

\\μκ-μΌ\\2<LIκ - l im /#(>») = 0.

Therefore μκ(^) converges strongly to μκ. We shall denote the restrictions
of μ(ω) and μκ to Kf^ and to Kk by /4ω) and μKk respectively; μ{ω) is equal to
some μ.K(m) and K(ω) means K^ for this m. We have

μ^\ μ^) -Ήm </, μ™>^(μ

Since

2 Σ Xk 7k(μκ)=Kμκ) + (μκ, μκ) = 2 lim Σ

the equality lim 7*(//ω))=γ*(//^) follows for each fe. The equality lim yk(μκ(™))

^Ύkiμx) is concluded by the arbitrariness in choosing a subnet and the uni-
queness of yk(μκ)-

Finally if lim IK(m) = oo^ IK(m)^Iκ = oo.

Under stronger conditions we can prove a similar theorem for closed
sets.

THEOREM 3.22. Let F{m) consist of Φ-separate closed sets F{m\ , Fc

n

m} such
that i γ ° decreases to Fk as m->oo for each k, f(P) be a continuous function with
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compact support on F(1\ and g(P) be a positive continuous function on F(1\ As-
sume that the kernel is consistent and nonnegative on each Fψ x F^, jΦh that
(μUn), μUp)) is defined for any m and p provided //(»») and IF(P) are finite, and
that 0< J/α>(g , xk, f)+Vψ'Xk\F^)for each L Then Ik™) tends to ΓF as m-^^,

n

where F= \J Fk. If IF<°° and if (μι

F, /4 o»)) is defined for each m, μUm) con-

verges strongly to μF and yι

Fc^ tends to ηι

Fk for each k.

PROOF. If lim //(»») is finite, {μF(m)} form a Cauchy sequence by Lemma

3.2. A subnet {//ω)} of {μpc^} converges vaguely to a measure μ0 supported
by F and μFw converges strongly to μ0 by (i) in p. 296. Since f(P) is con-
tinuous on its compact support, <(/, μ,(ω)> tends to <(/, μoy. We recall that
IF(m)=I(μι

F(m)) and 7f <>o = 7jfe04 o»)) for each k on account of Theorem 3.7. We
observe

ΐT

lim /k»o = lim (μi OΌ, /4 (»)) - 2 lim

and conclude

xu lim 7*0^) = 0*0, μT)~<f, μΐ
ω

as in the proof of Theorem 3.2 for each fc, where /40) is the restriction of μQ to
Fk. We can infer Uμ%P)-f(P)<,\im Ίk(μ{ω))g(P) on Sμw for each k by Theo-

rem 3.2 and Lemma 1.10, and derive <g , μf^y=xk like in Theorem 3.7. We
can find a sequence {v{p)} of restrictions of μ0 to compact sets such that (gy

vc

k

p^y tends to xk for each k and I(v(p)) tends to I(μQ), where vψ is the restriction
of viP) to Fk. It follows easily that IF<LI(μ0) Since Ih™)<Llk we infer //
=I(μo) = \im //(«). We observe also that μ0 may be taken for μF and obtain

by Theorem 3.5

xk 7h = (^ ^k)~<f ^ * > = (̂ o, /40 ))-</, ^ 0 ) > = Λ * lim

ω

By the arbitrariness in choosing {μ(ω)} we conclude γj^ =

γί c.0.

3.6. Coincidence of ίzC^ x?/) and Iχ(gi x>f)-

We shall apply Choquet's method [1; 7] concerning capacitability. Let ξ>
be a class of sets in Ω which is closed under any formations of finite union
and countable intersection. Let S be the set of all finite sequences of integers
: > 1 : S={s=(nu •••, np)}, and Σ be the set of all infinite sequences of integers
2>1: Σ ==W=(nu n>2, •••)}• We write 5<^σ- (or s<^s) when s is some first sec-
tion of σ (or of s') A determining system on ξ> is defined by an application δ
of 5 into ξ>: s->Hs such that s < y implies HS^ΉS,. We extend δ to Σ by set-
ting Ha.= ΓΛHS for cr e Σ An Q-Souslinian set is equal to fl(δ)== V7 F σ . One

can show that the class of all ξ>-Souslinian sets is closed under any forma-
tions of countable union and countable intersection. Any element of the
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smallest class of sets with this closed character, containing ξ>, is called an
ξ)-Borelίan set. Hence every φ-Borelian set is ξ>-Souslinian. For further
properties of ξ)-Souslinian sets we refer to Choquet [6] and Sion [1; 2; 3].

Let φ be a real-valued increasing set function defined on the class of all
subsets of Ω. Choquet [7] called it an abstract capacity on (Ω, ξ>) if it satisfies
1) φ(r\ Hn) = \im φ(Hn) whenever Hneξ) decreases, and 2) φ(\JXn) = \\m <p(Xn)

whenever Xn increases. A set X is (φ, $Q)-capacitable by definition if φ(X)
= sup φ(H) where Heξ? and HCX. He proved that all ξ>-Souslinian sets are
(φ, ξ>)-capacitable.

We take Ix(g, x, f) for φ(X) and the class β of all compact sets K for ξ>.
Let us write simply Ix, μx, γi, etc. for Ix(g, * , / ) , μx{g, x,f), yx(g, x, f\ etc.
respectively. Since Ik=Iκ by Theorem 3.8,

sup ^ ( # ) = sup Ik=Iχ
HczX KczX

and the (φ, $)-capacitability is equivalent to IX=IX. The above requirements
1) and 2) are satisfied on account of Theorems 3.21 and 3.20 respectively. Con-
sequently we can apply Choquet's result. Making use also of Theorem 3.13
and Corollary to Lemma 3.12 we obtain

THEOREM 3.23. Consider a kernel of positive type. Let Go be an open set
in Ω such that the kernel is bounded from below on Go x Go, f(P)< °° be an upper
semicontinuous function in Go and g(P) be a positive continuous function in Go.
Assume that every strong Cauchy net in #G0(g, x) is strongly convergent, and
that (μx, μh) is defined for any subsets X and X' of Go such that Ix and Ix, are
finite. As to conditions (ai), (a2)e, (bi)*, (b2)* assume the same as in Theorem
3.20. Then, for any Si-Souslinian set A in Go, I A—II. If this value is finite
and (μA, μl) is defined, \\μιA— μlW = 0 and yAk=ΎeAk for each k.

If we take Remark 2 given to Theorem 3.20 into consideration, we have

THEOREM 3.24. Consider a consistent kernel and let Go, f(P) and g(P) be
as in the preceding theorem. Assume that (μx, μx,) is defined for any subsets
X and X' of Go such that Ix and Γx, are finite, and assume one or both of

(bi) Every open set is an Fσ-set,
(b2) Δ^ is closed and, for every point P and for every neighborhood NP of

P, the kernel is bounded from above on {P} x (Ω — NP).
Then we obtain the same conclusions as in the preceding theorem.

n

Another possibility of ξ> is the class % of all closed sets F= \J Fk with
k = i

positive Ipv -- ,I}n. It seems that one can show / i = / J for every ^0-Souslinian
subset A of Go by the aid of Corollary of Theorem 3.15, Theorem 3.22 and
Remark 2 given to Theorem 3.20. However, we have no handy condition under
which Fι, F2£%o implies F I W F 2 G S O It is assured if we limit ourselves to
the case where the kernel is nonnegative and of positive type, n=l and /<10;
it will be seen in Theorem 3.27. We can now state
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THEOREM 3.25. Consider a nonnegative consistent kernel in Ωx Ω and let
Go be an open set in Ω. Let /(P)<10 be a continuous function with compact
support in Go and g(P) be a positive continuous function in Go. Assume one
or both of (bi) and (b2). Then, for every %0-Souslinian subset A of Go, I}=IΛ-

If this value is finite, ||/AJ — μ%\\ = 0 and 7 ^ = 7 ^ for each k.
In Theorem 4.5 of Fuglede [1] it is stated that every σ-finite Borel set is

capacitable. A σ-finite set means a set covered by a countable number of sets
each of which is of finite outer capacity. In his paper, our (bi) and the nor-
malcy of the space are assumed; under (bi) the g-Borel class, the g-Borelian
class, the @-Borel class and the (S-Borelian class all coincide with each other,
where % (© resp.) is the class of all closed (open resp.) sets and the g-Borel
(©-Borel) class is the smallest class which contains g (© resp.) and is closed
under any formations of difference and countable union. Fuglede [1] gave
an example (Example 10, § 8.3) which shows the necessity of σ--finiteness in
his theorem.

The following result is due to Fuglede :42) A set A is g0-Souslinian if and
only if A is g-Souslinian and covered by \j Fm Fn e. So- This shows that our

theorem is an extension of his Theorem 4.5.
Finally in this section we prove

THEOREM 3.26. There are a Kσ-set Kσ and a G8-set Gδ such that K^CXCGs
and

Ikσ=H and Uδ=U.

PROOF. We shall prove only the first equality; the second can be proved
in a similar fashion. There is a sequence {K(m)} of compact sets such that

lim /i(m)=/i.

If we set \j K(m)=K(Γ, then KσCX, IkW^Ik^Ix and the equality Ikσ=H fol-

lows.
However, even for the Newtonian capacity, above G8 — Kσ may not be of

capacity zero. For instance, if X is a ball, if Kσ is the inside of the ball and
if G8 is the closed ball, then the capacity of G?> — Kσ is equal to the capacity of
the ball. The question then arises for any X with Iχ=Iχ whether we can find
Kσ and G8 such that K^CXCGs and /cδ-^<r=

o°. The author does not know
the answer even for the Newtonian capacity.

3.7. Inequalities for Ix(g9 x, f) and Ix(g, x9 / ) .

Let y(P)<oo be upper semicontinuous on XCΩ, g(P) be positive con-

42) This with a proof was informed to the author in a letter dated May 15, 1961. According to
a later letter, Fuglede [Y] will contain the proof.
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tinuous on X and x be a positive number. If X is an open set,

w *g(P)g(ff) g{P) g{Q)

can be taken for a kernel in X. In the general case it does not belong to the
range of kernels which we are concerned with.

We still assume that Φ(P, Q) is symmetric and shall prove inequalities
similar to (1.1) and (1.2).

THEOREM 3.27. Let {A(p)} be ^-measurable sets in Ω, X be any set in Ω,
/(P)<oo be an upper semicontinuous function defined on Y=\J A(P)Γ\X, g(P)

P

be a positive continuous function defined on Y and x>0. If Ψ{P, Q)^m on
7x7, then

(3.25) K λ

Iγ(g, x, f) — xm p lA(P)cix(g, %> f)—xm

here we do not talk about components of 7 and A(P)Γ\X, namely 1-dimensional
problems are considered.

PROOF. We shall write simply Ij and so on. We may assume that
(g , χ)Φ {0} for each p. Let μ € <fr(g , x). For each p we choose a compact set

K(P)CA(P)ΓΛX such that [ gdμ<e/2p and denote the restriction of μ

to K(p) by μ(p\ It follows that

Γ
- < / , μ> -xm = suv J g(Q) {Ψ{P, Q)-m) dμ(Q)

If μ ^= 0, xμ \gy μ> / £Ξ $A(P){\x(g) %) and

lx sup -

by Corollary 1 of Theorem 2.7. Hence

^ V?) g -

This is true even if μ, ( ί )=0. Therefore
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<,x(x sup -ΪJμ^dL -<y μy -xm) 2 — I + e .
V sμ g n J p I}(P)nχ -xm

On account of Corollary 1 of Theorem 2.7 again, we can choose μ so that the
right side is arbitrarily close to

x(Iγ—χm) Σ —-. + e.
P L { P ) x m

+Iγ—xπι p IJίWnx —ocm x(Iγ—xm)

Therefore

whence (3.25) is derived.
By making use of (3.25), or by regarding Ψ(P, Q) as a kernel in GoxGo

and applying (1.2) we can establish easily

THEOREM 3.28. Let Go be an open set in Ω, {X(p)} be a sequence of sets in
Go, /(P)< °° be an upper semicontinuous function defined in Go, g(P) be a posi-
tive continuous function in Go and x>0. If Ψ(P, Q)^>m on Gox Go, then

i x> f)—ocm p Iχ(P)(g, x, f)—xm

3.8 Change of conditions.

We studied how Iκ and Ί(μκ) change as/(P) or g(P) or both change in
Chapter II. In this section we shall see how / | and /J change; we shall con-
sider symmetric kernels.

First we prove

THEOREM 3.29. Let Φ(P, Q) be a symmetric kernel, X be a set in Ω on whose
product Φ is bounded from below, Xu ••, Xn be a decomposition of X into Φ-
separate sets such that Vi(Xk)<°° for each k, f(P) be a finite-valued upper se-
micontinuous function on X and g{P) be a positive continuous function on X.
Let {fp{P)} be a sequence of upper semicontinuous functions on X which tends
uniformly to f(P) and {gp(P)} be a sequence of positive continuous functions
on X which tends uniformly to g(P). Assume one or both of

(a2)ί V\ 0 0 > 0, and / (I +g)~λ is bounded from above,
(a3) 1/g and / (I +g)~1 are bounded from above.A3)

Iflΐcig, %, f) is finite for x=(χu •••, xn\ xi^O, ..., χn^0, then H(gP, x, fP) tends
to H(g, x,f) as p->co.

PROOF. We may assume that #i>0, •••, χn>0. Let KCX be a compact
set for which μκ(g, x, f) exists. According to Theorem 2.11

43) It amounts to assume that l/g and f/g are bounded from above.
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lim Ijtίgp, χ,fP)=Ik(g, %,f)
£->oo

Since

tKgp, x, fp)<LlKgp, x, fp)

for each p, we have

(3.26) lim Ii(gp, x, fp)<lKg, x, /).

Consequently we may suppose that {Iχ(gp,
 x> fp)} a r e bounded from above, say

By (a2)ί and the uniform convergence of {fp} and {gp} there is a finite number
Mf such that fp(P)<,M'(l +gP(P)) for large p. We have

for any μe #x(gP, x) giving Ifp(μ)=(μ, μ) -2 <jp, μ}<LM-h 1. Therefore μ(Ω)
is bounded and hence Iχ(gp, x, fp)^ —2M/(μ(Ω) + x) is bounded from below
uniformly with respect to p. It also follows that (μ, μ) is bounded from above
because

(μ, μ)^M-hl + 2M/(μ(Ω)+x).

It is seen also that (μJ9 μk) is bounded for any j and k, where μk means the re-
striction of μ to Xk. The same facts are true under the assumption of (a3).

We choose μ(p) e <?x(gp, x) such that

and set

The measure β(p) = ̂ Σ βψ belongs to £χ(g, x) and hence

We shall compute the difference of If(β(p)) and Ifp(μ(p)). We have

Σ
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Since {(μf\ μ™)} are bounded and <#, μ^y tends to lim <g>, μγ>>=xh the
/>->oo

first sum of the right side tends to zero. The second sum can be written in
the form

<3 27> ? xiw> <f-f**r>+
It is evident that {(fp, /Z/̂ } are bounded from above. They are bounded
from below too because

2 Σ <fp, μ^> = 2 </„ μ(P)> = (μ(P\ μ^)~Ifp{μ^)

are bounded. Therefore each term in (3.27) tends to 0 asp-^oo, It is now
verified that

Combined with (3.26), this proves the theorem.
If we assume the continuity principle, we can prove

THEOREM 3.30. // X is relatively compact in Ω and the continuity principle
is satisfied, we can replace (a3) in Theorem 3.29 by

(ai) g(P) has a positive lower bound on X.

PROOF. AS in Theorem 3. 29 we take μ(p) e £χ(gP, x, fp) such that Ifp(μ(p))
<Imax (-p, Iχ(gp, χ,fp) + 1/p). By condition (aθ {μ(p)(Ω)} are bounded, be-
cause gp(P) has a common positive lower bound for large p. It will be suf-
ficient to show that {(μγ\ μ^)} and {</,, μψy\ are bounded.

For each k there is a measure vk€£χk(g9 1) which gives a continuous
potential in Ω and for which </, v^ is finite. Since <g, μ,(/}> tends to xk as
p->oo5 we may suppose that <g, ^(/}> <2xk. With suitable numbers

f tψvk belongs to ^ ( g , *) and

X,

+ Σ «?V W , V,) + Σ i f t?\Vp V4)-2 Σ ί^ </, V4>.

We choose a vaguely convergent subnet {μ(ω); ωGΰ} of {/̂ (/>)} such that lim
ω

If(μ(ω)) =lim I/(μ(p)). Since ί^ converges to a limit for each ft, the last three
p-*°

terms tend to finite limits as μ(p) varies along the subnet. We take into con-
sideration the fact that (μ(p\ μ(p)) is bounded from below and see that I/(μ(p))
is bounded from below. We have assumed that fp converges uniformly to /.
Therefore
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- o o < l i m If(μ(p)) = lim 7 / >
c * ) ) = lim H(gP,x9fP).

/,->«,
On account of (3.26) it follows that If(μ{p)) is bounded.

We shall use the similar reasoning in order to show that lim 7/(///}) > - ° °
P^oo

for each k. We have

Σ

Σ

i + Σ Λ* v*)-2 </, ί i Λ

2

From this relation we can infer that lim 7/(yc6(/))> — oo. Similarly we see

that lim 7/(A6(/))> -oo for each fc, 2<:&<:rc. It follows that {If(μip})} are
/>->oo

bounded because {If(μiP))} are bounded and

Observing that

we conclude that {Ifjiμ^)} are bounded.

We now set y ( / } = ^ ^̂  < ^ , v^)"1 and v(/0 = Σ v(/}. This belongs to 6x(gp, x)

and it holds that

Xk

We choose a vaguely convergent subnet {//,(ω°; ω e.Df} of {/χ(/))} such that lim

(μ(ω'\ μ((θ/))==\un (μ(p\ μ(p)). We see from the above inequality that ϊίm (μ(p\

μ(p)) is a finite number. Since {(μf\ μ^)} are bounded from below, these are
bounded. We have already seen that {Ifp(μf^)} are bounded. Hence {CJP>
μγ^y} are bounded too.
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Next we shall be concerned with the outer problem.

THEOREM 3.31. Let Φ(P, Q) be a symmetric kernel, Go be an open set on
whose product Φ is bounded from below, Xu . ,Xnbe sets separable by Φ-separate
open subsets Gi°\ • ••, Gi0) of Go, f(P) be a finite-valued upper semicontinuous
function on Go and g(P) be a positive continuous function on Go. Let {fP{P)}
be a sequence of upper semicontinuous functions on Go which tends uniformly
to f(P) and {gp(P)} be a sequence of positive continuous functions on Go which
tends uniformly to g(P). Assume one or both of

(a2% Ve(X)>0, and filΛ-gY1 is bounded from above,
(a3) \/g and /(I -hg)'1 are bounded from, above.

If I£(g, x, /) is finite for χ=(χu , χn\ χi ̂  0, , xn^ 0, then U(gp, χ> fP) tends
to Iχ(g, x,f) as p->oo.

PROOF. We may assume that #i>0, • ••, xn>0 and that F, (G0)>0. By
Theorem 3.29 we know that, for any G such that XCGCG0, lim ΓG(gP, x, fp)

=U(g, x, / ) . Therefore

(3.28) IKg, x, /) = sup Ibig, x, /)^lim IKgp, *, /*)•
G~ZX p

For G, XCGCGo, we denote by £{G) the class of measures μ of SG{g,%) such
that If(μ)<U(g, Λ;,/) + 1. It follows that μ(Ω\ every (μp μk) and </, μk} are
bounded on \J g{G) for the same reason as in Theorem 3.29, where μk means the

G

restriction of μ to Gk. Take any μ e £{G) and set

This belongs to ^c(gP, x) and it holds that

(gP, ,fp)^φ) Σ ,

- 2 Σ X ±
1

?P, μk? J Λ-ΐ <^gPy μk) " "

We denote the difference of the last side and If(μ) by ap(μ). We see that
there is a number εp tending toOas p ^ o o and satisfying \ap(μ)\ <Lep for any

μ e \J<f(G). Consequently
G

and hence

This gives
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ίίm I£(gp, x, fp)<lHg, x, /).

On account of (3.28) our theorem is now proved.

REMARK. In Theorems 3.29, 3.30 and 3.31 we may allow - oo to /(P) if
all fp(P) are identical.

3.9. Graphs of Ix(g, *, / ) and IJ(#, x9 / ) .

The continuity of I&x)=Ii(g9 *,/) and / £ ( * ) = # ( # xj) in *i>0,.. ., XH>0

follows from Theorems 3.29, 3.30 and 3.31. We shall show that they are con-
tinuous on #i^>0, , # w ^ 0 under a less general condition. We shall assume
that Φ (P, Q) is symmetric.

THEOREM 3.32. Let Φ(P, Q), X, Xu , Xn and g(P) be the same as in Theo-
rem 3.29. Let y(P)<oo be an upper semicontinuous function on X such that
/(P)> — oo on some set Yk CXk with Vi(Yk)< °° for each k. Assume

(a3) Vg(P) and / (I -hg)"1 are bounded from above.
Then Iχ(χ) is continuous as a function of x in %ι ^ 0, , xn ^ 0.

PROOF. AS the lower envelope of a family of continuous functions {Iί(%)\
KCX}, Iχ(χ) is upper semicontinuous. Let Ko be any compact subset of X
such that IκQ(χ) is continuous. By (a3) we see that μ(Ω\ each (μj9 μk) and each
<jf, μky are bounded for μ=μκ(x) where KoCKCX and \x\<^r, μk being the re-
striction of μ to Kk bounds may depend on Ko and r. Consequently Iχ(χ) is
finite at each x. Let {x(p)} be a sequence of points in |%|<Ir, tending to x0

=(χΐ\ •••, ή°') We assume that 4 0 ) > 0 , ..., ^ 0 ) > 0 , ^ ^ ... = ^ 0 ) - 0 . We
take î o C K™ C ̂ ( 2 ) C such that

^ ) ) + — .

We denote μκ(p)(χ{p)) simply by μ(p) and define v(p) 6 &x(g, χo) by setting it equal
to xTixψ)'1 μψ on K^}, fc=l, ..., /re, and to zero elsewhere, where μψ is the
restriction of μ(p) to Xkr\K(p\ We have

It holds that

(0)

— τf..(P)\—
TO / (0)

^ 1 \ Λ^

The first and second sums tend to zero as p-> oo because (μ,^0, /x(/}) and </, μ
are bounded. By our assumption that g(P) has a positive lower bound,
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tends to zero as p->°o for each k, m-hl^Lk^Ln. Since there is M<oo such

that f<M(l+g) on X, it follows that lim </; /// }>^M ϊίin (μf (Ω) + x^) = 0
/>-»oβ ' £->oo

for fc, 77z + l ^ f c ^ τ z . We have also

lim (μf\ ///})^lim inf 0 . ̂ ( β ) μγ\Ω) = 0 if

Hence lim (I(v(p))-I(μ(p)))<L0 and

The continuity is now concluded.

REMARK. The continuity in a i^O, ..., Λ Λ ^ 0 is not guaranteed in general
by (a2)ί. We shall give an example in the one-dimensional case. Consider
the Newtonian kernel in Ω — E3, and take the unit open ball OP<1 for X, f(P)
Ξ=1 and g (P)=min (OP"1 — 1, 1). Given # < 1 , we denote by λ̂  the unit uni-
form measure on the sphere OP=(l-{-χ)~1. Since Xxe#x(g, x\ we have

Therefore lim 7i(#)<I —1. It is easy to modify this example to higher di-

mensional case.

THEOREM 3.33. Let Φ(P, Q), Xi, ..., Xn, Gθ9

same as in Theorem 3.31. Let /(P)<co 6β αr̂  ̂ pper semicontinuous function
in Go and assume that Iχk(l) is finite for each k. Assume also

(a3) 1/g and / (I +g)~ι are bounded from above.
Then Iχ(x) is continuous as a function of x in %λ ^ 05 . 3 χn^ 0.

PROOF. By the preceding theorem U(x) is continuous in Λ I ^ O , ..., xn^0
for each G, XCGCG0. As the upper envelope of Π(χ\ XCGCG0, I£(x) is
> —00 and lower semicontinuous. We see that μ(Ω) is bounded and hence
</, μ) is bounded from above by (a3) on \j <?G0(g, x) for any fixed r > 0 ; (μ9 μ)

1*1 ^ »

is bounded from below too. By assumption Hk(X) is bounded with respect
to open set Gh XkCGkCGf\ for each k. For an arbitrary μk£#Gk(g, 1) with
I(μk)<lGk(X) +1? (^5 )̂—7(/Λjfe) + 2 </, ^ > is bounded from above and hence is

n

bounded. We note that the measure μ='Σχk μk belongs to £* J Ĝ Cg? #). On

account of the fact that {Gf^} are ^-separate, (μ\ μ) and hence I(μ) have
bounds which may depend on r but not on the choice of {Gk} and {//./>}. Con-
sequently 7J(Λ;) is bounded on \x\ <Lr for any r>0.

We set

g9 x);
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for G such that XCGCG0. We see that (μh μk) and </, μky are bounded for
μ£ \J <f£G) with any r>0, where μk is the restriction of μ to Gk. Let x(p)

tend to * 0 =(*ί 0 ) , •••, *i0)). Assume that *ί°>>0, ..., *L0)>0, x^+1= ...=s«» = 0.
For any μ e ^ we define μ(/>) by xf^xf^μj on Cy, 1 < ! ; < > , and by 4 ^ v*
on G*, 7TZ + 1 < ; A ; < Λ where Gk=Gr\Gi°> and vΛ is any measure of ^ G Λ ( # , 1) such
that /(VJO<I/G£(1) + 1. It follows that vk(Ω), (yk, »k) and </, v̂ > are bounded.
We have

)= Σ Φ t
x) } x\ }

+2 Σ Σ -Z-£-(μj,vk)+ Σ *f

Since Gi0^ ••, G(

ra

0) are 0-separate and μ(Ω) and vk{Ω) are bounded,

lim Σ Σ
/ 1 fe

We see that | /( Σ Λ?^ VΛ) | is bounded by a number ap which is independent
k = m+l

of Gm+ί, , Gw and tends to 0 as p->oo. We observe also that

is bounded by a similar number 6̂ . Therefore

with c/, tending to 0. It follows that

and that

Consequently

lim / i ( « ( i ) ) ^

which gives us

lim lKx(p))=

on account of the lower semicontinuity of Ii(x0). Thus the proof is completed.
Under the same assumptions as in Theorem 3.32, let μ be any measure of
, χ\ where x=(xi, •••, xn) and Λ;I>0, , xn>0. The reasoning in the proof
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of Theorem 2.14 does not apply here and so we have to take a different way.
With x' = (χ'l9 •••, x'n) in #i>0, ..., xn>0 and Δxk=x'k — xky we have

For any η = (ηv •• , ^ ) w e set

γi(x,v)= inf . Σ 7 * ^ ,

and define fK#, ̂ ) in a similar fashion. We choose μ so that I(μ) is arbitrarily

close to Ix(x) and Σ γΛ(μ) yk is close to yi(<&, y\ where yk is defined by Axk

= I Ax 17*=V ΔΛ? 4- + ΔΛ ^JJ. Since C .̂, μk) is uniformly bounded, say | (μp μk) \
<a, we have

(3.29) Ix(x)<LIx(x)-h2γι

x(x, y)\Ax\ -ha Σ

and, by interchanging x and x,

(3.30) Ix(x')^>Ix(x) + 2γx(χ\.

Consequently

Therefore

(3.31) lim rιχ(χ\y)<>rιχ(χ,γ)

To prove the inverse inequality we take a sequence {x(p)} of points in
#i>0, ..., xn>0 tending to x such that Xx(x{p), y)G Γχ(x{p)) tends to a finite or
infinite number. We choose a sequence {μ(p)} of measures respectively in &x

(g , Λ;(/?)) such that

lim

and /(yL6(/))) tends to Iί(χ); this is possible because Ix(x) is a continuous function
of x by Theorem 3.31. It is easy to see that

lim Σ ΊkiTiXjixfY1 μψ)yk-\ιm ± 7k(μ^) yk.
P^oo k = l 7 = 1 P^°° k = l

n

Therefore lim Σ Ίk(μ{p))yk belongs to Γι

x(x, y). Consequently
p k l
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lim yx(x,y)^γx(
x'-*x

Combining this with (3.31) we obtain

(3.32) lim fx(x', y) = \im fx(χ\ y) = γx(χ, y).
x/-*x x'-+x

From (3.29) and (3.30) we have

(3.33) lim ^ ) / i ω

This result is less general than that expected from Theorem 2.14. We
do not know whether the result corresponding to Theorem 2.14 is true or not.
Above reasoning does not apply in the case of the outer problem and the ques-
tion is open in this respect too. We omit discussions corresponding to some
other theorems in Chapter II.

3.10, Unconditional inner and outer problems.

We shall study the unconditional problem in the case n=l. The inner
problem is to discuss

J | - i n f
μ*L*x

THEOREM 3.34. Let X be a relatively compact set with Vi(X)< oo in Ω, and
y*(P)<oo be an upper semicontinuous function on X. Assume that the kernel
Φ satisfies the continuity principle and that 7 | > —oo. Let {μω} be a vaguely
convergent net of measures in &χ for which I(μω) tends to / |, and μx be the vague

Then

(3.34) Uμχ(P)^f(P) VΦΦ- on X.

//, in addition, f(P) is defined and continuous on Xa, then

(3.35) / ! = - < / ; A*i>.

If f(P)< °° is defined and upper semicontinuous on some set Z^)X and if
μx is the vague limit of a vaguely convergent subnet of a sequence of measures
{μκn} ,45) Kn C X, such that I(μκn) tends to / | , then

(3.36) Uμiχ(P)^f(P) on SμiχΓ\Z.

44) So far μx has been used to write μχ(g, %9f) In this section it represents an unconditional

extremal measure. Similar remarks are given to IXi Ix and μx.

45) We may use the notation {Kn} to represent a sequence because K is not divided into subsets.



On Potentials in Locally Compact Spaces 341

In case X is an open set and one or both of conditions (bi) and (b2) stated
in Lemma 3.1 is true, then the exceptional set in (3.34) is a Kσ-set and hence
(3.34) holds, q. p. in X.

PROOF. If f(P)= — °° p.p.p. on X, (3.34) is evidently true. Excluding this
case we set

and assume that there is a compact set KCH with Vi(K)< oo and a constant
η>0 such that

(3.37) Uμ*(P)<f(P)-v onK-

On account of the continuity principle there exists a unit measure ve£κ such
that £/v(P) is continuous in Ω and </, y> is finite. For any t ̂  0 and ω we have

Γ dμ -f-£2(v, v) — 2ί < ŷ, î >.

It follows that

Cancelling / |, dividing the rest by t and letting ί->0, we obtain

^^ Δ \ U uμx — Δ \jy v/

or

On the other hand follows from (3.37)

These two relations are not compatible and (3.34) is established.
We can derive (3.35) from the relation

The rest of our theorem is proved like in the conditional case.

REMARK 1. Jl

REMARK 2. If Fi(X)>0 and I(μn) tends to / | > — oo5 then {μn} contains a
vaguely convergent subnet. In fact,
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4-
and hence

which shows that μn(Ω) is bounded.
We can prove in the same way as in the conditional case

THEOREM 3.35. Let X be a set in Ω with Vi(X)<oo and /(P)<oo be an
upper semicontinuous function on X. Consider a kernel of positive type, and
assume that Ix> — °o and that every strong Cauchy net in i x is strongly con-
vergent. Then, for any sequence {μn} of measures in £x for which I(μn) tends
to Ix, μn converges strongly to some measure μx, and we have

(3.38) Iχ=-(μx,μx)

and

(3.39) UμkP) ^f(P) V'VΦ' on X 4 6 )

Conversely if a measure μ,€<f satisfies (3.38) and (3.39) replacing μx in
them, then μn converges strongly to μ. If (μ, μx) is defined, then \\μ—μx\\ = 0.

THEOREM 3.36. Consider a consistent kernel. Let X be a set such that
0< Γf(I)<oo, and f(P) be a continuous function with compact support defined
on X\ Then I(μι

x)=Ix.
The unconditional outer problem is concerning

sup H=I1,
G

where G is an open set containing X Naturally Ix<L0. We shall state se-
veral results corresponding to the conditional case, without proof except for
Theorem 3.37.

THEOREM 3.37. Let K be a compact set with Vi(K)>0 in Ω, and
be defined and upper semicontinuous in an open set Go >̂ K. Then

PROOF. By Theorem 1.14 we know that Vi(K)=Ve(K). Hence there is
a relatively compact open set GO such that KCGΌCG0 and Vi(GΌ)>0. We set

46) If/(P)<oo is defined and upper semicontinuous on Z^X, if I(μκn), KnC X, tends to Ix and

if {p-Kn } contains a net vaguely convergent to μι

χ, then

on S ί nX.
μχ
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G'ί={PeGΌ;f(P)<max f+1}.
K

This is an open set containing K. Let Fo be a closed subset of GJ which con-
tains K in its inside. We direct by inclusion the class of all closed subsets of
Fo, each containing K in its inside, and denote the resulting directed set by D.
Since

Ik ^ Vi (GO) μ\ (Ω) - 2 (max / + 1 ) μF <β) for F e Όy
K

μF(Ω) is bounded for FeD. We extract a vaguely convergent subnet {μω;
'} of {μF; FeD} and see for the vague limit μ0 that

ω, μJ-2 lim </, /*„><: lim
ω

Since Sμo C A F=K, / ( ^ 0 ) ^ / | and hence Iκ<*IL The inverse inequality being

evident, we obtain the equality.

REMARK. Without the condition Fί (iΓ)>0 the conclusion is not always
true. For instance, let Ω=E3, Φ(P, Q) = 0, K= {OP<1} and f(P) = 0 on K and
= Q P - 1 outside K. Then /i = 0 but / ί = - o o ,

THEOREM 3.38. Lei I 6eα relatively compact set with Ve(X)>0 in Ω, Go
Z)Xbe an open set in Ω and / (P)< ©o be an upper semicontinuous function in
Go. Assume that Φ satisfies the continuity principle and that Ix> — oo. Let
{Gn}, XCGnCGo, be a sequence of open sets such that lhn tends to Ix. Then, for
the vague limit μe

x of any vaguely convergent subnet of {μGn},A7)

/(P) p.p.p. on X.

///(P)<oo is defined and upper semicontinuous on Gg, then

If in addition, /(P) is continuous on Gg, then

THEOREM 3.39. In addition to the conditions required in the first part of
the preceding theorem, suppose that Φ(P, Q) is continuous outside the diagonal
set and that Φ(P, P)=oo at each point P of O^ which is defined with respect to
Φ. Assume also one or both o/(bi)* and (b2)* stated in Theorem 3.10. Then

q.p.onX.

We shall denote the closure of S>

GQ with respect to the strong topology

47) The existence is ensured by Remark 2 to Theoem 3.34.
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by *h0.

THEOREM 3.40. Let X be any set in Ω and G0^)Xbe an open set in Ω. Let
/(P)< oo be defined and upper semicontinuous in Go. Assume that the kernel is
of positive type, that /J> — oo, that every strong Cauchy net in &Go is strongly
convergent and that (μι

G, μG') is defined for any open subsets G and G' of Go con-
taining X. Then, for any sequence {Gn}, XCGnCG0, of open sets such that IGn

tends to Ix, μGγι converges strongly to some measure μx. It is a strong limit for
any sequence of open sets of the above character. It holds that

and that

Uμί(P) 2>/(P) p.p.p. on X.48)

We can choose μe

x so that its support is contained in Xa.

THEOREM 3.41. Under the same assumptions as above, if (μx, μx) is defined,

\\μlχ-μx\\2<IX-IX.

THEOREM 3.42. Let K be a compact set in Ω such that 0<Vi(K)<oo and
G0^)Kbe an open set in Ω. Let /(P)< °° be defined and upper semicontinuous
in Go. Consider a kernel of positive type and assume that every strong Cauchy
net in <f Go is strongly convergent. Then

THEOREM 3.43. Consider a consistent kernel. Let Go be an open set such
that O<Vi(Go)<c<> and /(P) be a continuous function with compact support
defined on Gζ. Assume that (μG, μG,) is defined for any open subsets G and G' of
Go both including a fixed set X. Then I(μx)=Ix.

THEOREM 3.44. Let Go be an open set in Ω on whose product the kernel is
bounded from below, and X be any subset of Go. Let /(P)<oo be defined and
upper semicontinuous in Go. Assume that the kernel is of positive type, that
Iχ> — °°, that every strong Cauchy net in &GQ is strongly convergent, that (μι

G,
μG,) is defined for every open subsets G and G' of Go containing X and that one
or both of (bi)* and (b2)* stated in Lemma 3.5 is true. Then

Uμί(P)>:f(P) q.p.onX.

THEOREM 3.45. Consider a kernel of positive type. Let {An} be a sequence

48) If f(P)< oo is defined and upper semicontinuous on Gζ and if {μι

G } contains a subnet vaguely
n

convergent to μXf then

on S e.
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of sets of SI increasing to A, X be an arbitrary set, f(P) <oo be an upper semi-
continuous function on Ar\X. Assume that every strong Cauchy net in SΆnx
is strongly convergent and that (μAnΠX, μιAmnx) is defined for any n and m
provided both ΓAn n x and IAm n x are finite. Then lAn n x tends to IA n x, and μAγι n x

converges strongly to μAnX if IAnX is finite.
Next let Go be an open set in Ω such that the kernel is bounded from below

on Go x Go, assume that the above f(P) is defined in Go and let {Xn} be a sequence
of subsets of Go increasing to X. Assume that every Cauchy net in &GQ is
strongly convergent, that (μG, μG,) is defined for any open subsets G and Gr of Go

containing X provided IG and lG, are finite, and that one or both of (bi)* and
(b2)* stated in Lemma 3.5 is true. Then Iχn tends to Ix, and μXn converges
strongly to μi if Ix is finite.

THEOREM 3.46. Consider a kernel of positive type, let {Kn} be a sequence
of compact sets decreasing to K with Vi(K)>0 and let f(P)<oo be an upper
semicontinuous function on Kλ. Assume that every strong Cauchy net in £Kχ

is strongly convergent. Then Iκ is finite, IKn tends to Iκ, and μKn converges
strongly to μκ-49)

THEOREM 3.47. Consider a consistent kernel. Let {Fn} be a sequence of
closed subsets decreasing to F such that 0 < F, (Fι), and assume that (μFn, μFm)
is defined for any n and m. Let f(P) be a continuous function with compact
support defined on Fx. Then lFγι tends to IF and, if (μF, μFfl) is defined for
every n, μFn converges strongly to μF.

THEOREM 3.48. Consider a kernel of positive type. Let Go be an open set
in Ω such that the kernel is bounded from below on Go x Go? and /(P)< °° be an
upper semicontinuous function in Go. Assume that every strong Cauchy net
in £GQ is strongly convergent and that (μx, μxΐ) is defined for any subsets X and
X! of Go provided Ix and Ih are finite. Assume also one or both of (bi)* and
(b2)* of Theorem 3.20 ( = (bi)* and (b2)* of Lemma 3.5); if the kernel is con-
sistent, (bi)* and (b2)* may be replaced respectively by (bi) and (b2) stated after
Theorem 3.20. Then, for any Sΐ-Souslinian set A in Go, 1A=IA. If this value
is finite, \\μA-μA\\=0.

3.11. Notes and questions.

We assumed no additional condition when we discussed the Gauss varia-
tional problem on compact sets in Chapter II. In Chapter III, however, we
have some limiting process and so we need to assume something more. For
kernels of positive type we assumed the continuity principle too in the first
manuscript; we recall that if a kernel of positive type satisfies the continuity

49) We first observe that Vi(Kn)>0 for large n by Theorem 3.21 and then that μκn(Ω) is bounded
for large n.
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principle, then it is K-consistent and &κ for any compact set KCΩ is strongly
complete according to Corollary of Theorem 1.7. We changed it to the pre-
sent form under the influence of Fuglede [1]. One reason why we have not
started from a consistent kernel may be seen in the fact that the kernel Φ = l
is not consistent in any non-compact space.

In the outer problem one might think that Φ may be replaced in the
product of an open set, where / and g are defined, by

TO Q) =

because of the identity

However, often we state conditions on Φ, f and g separately (although one
condition requires that filΛ-g)"1 is bounded from above) and can not phrase
these conditions in terms of W and g only.

Open questions.
3.1. Is the inequality in Theorem 3.2 true for μι

x and μιχk obtained in
Theorem 3.1 ? And similar questions in other cases.

3.2. Can we replace (a2% by (a2)e Ve(X)>0 in Theorem 3.10 ?
3.3. Does it happen that some γ* = ©o in the same theorem ?
3.4. Can we require in Theorem 3.9 moreover that μe

x is supported by
Xa?

3.5. Is it sufficient to have /(P) and g(P) defined only in Go in Theorem
3.15?

3.6. Can we prove the converse part of Theorem 3.18 without the as-
sumption concerning the coincidence of F,-value and Fe-value ?

3.7. Question stated after Corollary of Theorem 3.19.
3.8. In case the kernel satisfies the continuity principle, is the identity

/j(g, x,f)=IXg, x,f) true for every β-Souslinian set A ? See the discussion
on capacitability in Kishi [3; 4; 7] in this connection.

3.9. Is the condition/(P)<;0 necessary in Theorem 3.25 ?
3.10. Can we find, for any X, a Kσ-set Kσ and a Gδ-set G8 such that Kσ

CXCG8 and IG8-K<r(g, *,/) = <*>? See the end of § 3.6.
3.11. Is the result corresponding to Theorem 2. 14 true in the inner pro-

blem ?
3.12. Do we have the equalities corresponding to (3.32) and (3.33) in the

outer problem ?
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