. Scr. HirosuimA Univ. SEr. A-1
25 (1961), 135-352

On Potentials in Locally Compact Spaces.”

Makoto OuTsuka
(Received September 18, 1961)

Table of Contents

B eN R g oYs RO LeLA Lo s TR
Chapter I. Fundamental notions

1. 1. Potentials and exceptional SELs -« - rvvmmvrrriiiiiiiii 137

1. 2. Principles .............................................................................................. 141

1. 3. Relations among principles ........................................................................ 145

1. 4. Local behavior of POtentials ««««: e oovmmrmrriiaiiiiiiii 159

1. 5. Global properties of POLENIALS <+ oveeeeea 179

1. 6. Topologies ...............................................................................................

1. 7. Strong comp]eteness ....................................................................................

Lo 8. CAPACILY «+vvvre e erriin et

1. 9. Sequence of potentials

L.10.  NOteS and QUESEIONS -+« rrrrveeetrrennerttie ettt
Chapter TI. GAUSS VATIALION -« cccvvrrrermnmnteatnne ettt ettt ettt ettt et e e s ae e anas

2. 1. Potential of an eXtremal MEASUIE: -« -« ot tternrmtntniti e

2. 2. Problem on compact ol A R R R R R R R

2. 3. Some genera] BT 1Y ot T N

2. 4. Change OF €XEIEIIAL VALUES -+« -« e e enmeettet ettt et et et e e e e

2. 5. Behavior at =0 aNd = 00« t tttttmtam

2. 6. Further study of the graph of T(guy) - --c v orrmrrmm

2. 7. EXAMIPLES - evvimtiitiii et

2. 8. UNCONAItIONA] VATIALION « -« vt errretnntetattt ettt ettt e et ettt eaiaaee e aaees

2. 9. Multiple variational problem ------

2.10. Applications to energy principles.----...

2.11. Maximum and domination principles

2,12, NOES ANd QUESLIONS -+ +- - cvvveeemniiiti ittt
Chapter III. Inner and outer problems -« . -oorooiiiii

3. 1. Inner variational PLODLEIL < vvvvniiii et

3. 2. Inner problem for kernels of POSItIVE tyPe: -« v ovvriiriiii 291

3. 3. Outer variational problem . - -« - . oooorrviiiii 299

3. 4. Sets with T (g, x, f) =00 or with T§(g, %, F)=00 « crirrrmiriiiiii, 308

3. 5. Change Of SEES - .euieeruniimii i 320

3. 6. Coincidence of Ii(g, %, ) and I§(g, @, f) «wovevermeeonoiiiiiie 3927

3. 7. Inequalities for I%(g, %, f) and TE(g, 2, f) «wreroreerremimmmmiin 329

3. 8. Change Of CONAITIONS -« -:rxtunrtnmmntnttttiit it 331

3. 9. Graphs of I(g, %, £) and T§(g, @, f) ++eeereommmmmiroiioii e 336

3.10. Unconditional inner and outer problems -« ooevvoeiiiiiii 340

311, NOLES And QUESLIONS -+« cvvtneventeiniit ittt 345
Bibliography ............................................................................................................ 347
0 Vo = < 351

*) The research in this paper was partially supported by National Science Foundation Grant
NSF G-8154.



136 Makoto OHTSUKA

Introduction

In early 1940’s Kametani ([1; 2; 3]) became interested in the funda-
mental work of Frostman [1] and initiated an attempt to study poten-
tials with more general kernels. The several mathematicians in Japan like
Ugaheri, Kunugui and Ninomiya joined him under the isolated circumstances
from other countries, which were caused by the war. They tried to find
general kernels which retain almost all properties of Newtonian potentials.

On the other hand, potentials were independently and vigorously inves-
tigated in France during the war, particularly by Brelot and H. Cartan, and
the study of Newtonian potentials culminated in the works [5; 6 ] by H.
Cartan. Some attempts to discuss general kernels, seen, for instance, in H.
Cartan [4], flourished after the war in Deny [1] who treated distributions.
A detailed story of the development is found in Brelot [1].

These people began to contact each other around 1950 and some of them
published papers with the intention of seeking relations among the energy
principle, the maximum principles, the existence of equilibrium measure and
the possibility of sweeping-out process. We mention the works of H. Cartan
and Deny [1] and Ninomiya [4; 5; 6] in this connection. However, it was
not very far before 1955 that people started to seek a possible full generality
in the theory of potentials.

In 1952 the present author began to be interested in capacity of product
sets ([3]) and needed some results on potentials in a locally compact metrice
space. This led him to the study of potentials in a locally compact space.
He tried to examine each of the known main properties of potentials under
the possibly least conditions. The present paper is a result of his efforts al-
though it covers only a part of the field.

It was a coincidence that Choquet started a similar study and, in par-
ticular, that both Choquet and the present author observed independently the
fact that a very weak form of maximum principle means the continuity prin-
ciple. The present author found that the boundedness principle satisfied on
every compact set is actually equivalent to the continuity principle for a large
class of kernels. This continuity principle is known as Evans-Vasilesco’s
theorem in the theory of Newtonian potentials and its importance had been
recognized by many mathematicians. This principle and the continuous
potentials still play important roles in many papers, e.g. those by Anger and
Kishi. Soon Kishi, Fuglede and others joined us in investigating potentials
in locally compact spaces and the investigation is still being actively conducted.

This paper consists of three chapters. In Chapter I we call many pro-
perties, well known in the case of Newtonian potentials, principles, seek re-
lations among them, introduce local notions like Choquet [2] and study re-
lations among them and also their relations with principles. Next, several
topologies are defined on classes of measures, and the completeness is investi-
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gated, particularly, with respect to the strong topology. The remaining part
of the chapter is devoted to refining some results on set functions related to
capacity and on convergence theorems; these will be used in Chapter III.
Chapter II is concerned with Gauss variation. Discussions are rather ele-
mentary and carried out in a general form. In the last three sections we
generalize some theorems of Ninomiya. We close the paper with Chapter I1I
in which we deal with the inner and outer Gauss variational problems. These
are extensions of the problem of finding inner and outer capacitary distri-
butions and studying their properties. Some notes and open questions are
stated at the end of each chapter.

The author wishes to express his deepest gratitude to Professor N.
Aronszajn who kindly enabled the author to join his seminar at the University
of Kansas in 1959. Without this opportunity the publication of the present
paper would have been further delayed. Appreciation is expressed to Profes-
sor T. Ogasawara of Hiroshima University who listened to talks by the author
in a seminar which lasted for a year after his return from Kansas and gave
him many valuable suggestions. Thanks are also due to Professor B. Fuglede
who sent a manusecript of his paper [1] and his comments to the author. Sub-
jects in his paper overlap partially with those of the present paper and some
of his discussions influenced this paper considerably.

Chapter I. Fundamental notions

1.1. Potentials and exceptional sets.

We shall be concerned with a locally compact Hausdorff space £. We take
for granted the definition of positive (=nonnegative) Radon measure p on £,
that of its (closed) support S, and the notion of integrals with respect to . of
p-measurable functions; we refer to Bourbaki [1; 2] and Fuglede [1] for these
notions. Any set containing S, is said to support . The class of all Radon
measures will be denoted by .# and a positive Radon measure will be called
simply a measure hereafter. Whenever we consider an integral, we presume
that the value is determined, finite or infinite (& co).

We take a lower semicontinuous function @ (P, Q) defined on 2 x £ and
satisfying —co <@ (P, Q)<< oo, and call it a kernel. Given a measure pu, we
consider the integral

v)= 0P, O du@=|0*P, ©du(@ ~ |07, Q@

We shall call the set of points P for which S@“(P, Q)dp(Q) is defined and finite

(i.e. u-integrable) the domain of definition of the potential U*(P) of p with
kernel @. The class of measures, whose potentials are bounded from below
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on every compact set in £ and not constantly equal to oo, will be denoted by
M.
The kernel d(P, Q)=0(Q, P) is called the adjoint kernel and

vp)= 00, Pran(@
is called the adjoint potential. If @(P, Q) is symmetric, namely, if (P, Q)

=0(Q, P), then U*(P) and U*(P) have the same domain of definition and U*(P)
=U*P) there. For the kernel

the potential
04P)=\b(P, Qdn(Q)

has a domain of definition which contains the intersection of the domains of
definition of U“(P) and U*(P).

In general, potentials are not lower semicontinuous in the domains of
definition. However, in the special case that S, is compact or in the case that
O(P,Q)=0 in £ x £, the domain of definition is equal to £ and U*(P) is lower
semicontinuous in 2. If, in addition, U*(P)=s oo, then u & .#,.

The mutual energy of two measures p and v is defined by

(s = [0 P, Qan@an ()
=\, @an@a@)-{jo-, 0 an@a ),

provided that @-(P, Q) is integrable with respect to the product measure X v.
Then the points of £ which do not belong to the domain of definition of U“(P)
(U(P) resp.) form a set of v-measure (u-measure resp.) zero and we have

(s )= |0 (P (P) = SI?“(P)dM(P).

We call (u, 1) simply the energy of u provided that it is defined. For a set
X4, we put

Ex=A{p€ Mo; S, CX, (u, p) is defined and finite}.

We write simply & for &,.

We shall consider some set functions which are related to the classical
notion of capacity. A measure will be called a unit measure if its total mass
is equal to one. For a measure ;=0 we set
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V(p)=sup U“(P),
PES#

and, for a set X=~ 4, we put
Vi(X)=inf V(w),
o

where the infimum is taken with respect to the class of all unit measures .
with compact support S, CX. For the empty set g, we put Vi(Z)=c0. We
shall say that a property holds on a set 4C 2 p.p.p. (or nearly everywhere)
if the V;-value of the exceptional set in A4 is infinite. We define also

V/(X)=sup Vi(G) for open sets GD X.

In the case of a Newtonian potential, the reciprocals of 7;(X) and V,(X) are
defined to be the inner and outer capacities of X respectively. We shall say
that a property holds on 42 q.p. (or quasi everywhere) if the V,-value of
the exceptional set in 4 is infinite.

The corresponding set functions defined with respect to an adjoint kernel
will be denoted by 7,(X) and V' (X). Also 7(X) and ¥ (X) will correspond to
0.

For the sake of later applications we prove

Prorosrrion 1. Let {4,} be sets which are measurable for every measure
on 2 and X be an arbitrary set. Lf Vi(Ad,NX)=co for each n, then V;(\UA,NX)

=oco, Incase ®(P,Q=m>—c0 on (UA,NX)*x(JA4A,NX), we have

1 - 1
. <>
Proor. We assume that V;(\vA4,NX)<co, and choose a unit measure x
with compact support S, C\UA4,NX such that V(u)<<co. Then 1=p(L)<>)

- (4,) and, for some n, say for no, u(4,,)>0. We take a compact set K C 4, such
that «(K)>0, and denote by u, the restriction of  to K. We extend this
restriction to the whole space by the value 0 and call this extension the re-
striction too; by a restriction of a measure we shall mean such an extension
in this paper. It holds that

V(u)=Sgp U*(P)=sup (U"E(P)+U""K(P))
I "
> sup U"K(P)+ inf U* "5 (P)
SM S”

= guP U#K<P) +P,igefs o (P, Q) {//’(Q)—/"’K('Q)},

¢

and hence V(u,)<oo. Taking S,, C4,, "X into consideration, we conclude
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that 7;(4,,nX)<eo. Consequently the assumption V;(4,NX)=00, n=1, 2,
..., implies V;(\UA,NX)=c0.

Next we assume that @ (P, Q)>m> —o on (U4,NX) x (U4,NX) and
that V;(u4,NX)<oo. Given ¢>0, there exists a unit measure x with com-
pact S, C\UA4,NX such that

V(u):sgp U*(P)<V;(Ud,NX)+e.
I n

We can find a compact set K, C 4, such that 4 (4,—K,)<e/2". We shall denote
the restriction of y to K, by u,; S., C4,NX. It follows that

Vi(vd,NX)+e—m> V(,M)—m=sé}1pg(¢—m)d/w
n 2
g;?pyw—mmm=Vm»—mmw>
F'n

If 4,70,

V(/"ﬂ) .
Q) =Vi(4NX).

In any case we have

Viiud,N\X)+e—m

< n
m(Q) = VAN X)—m

and

Vi(ud,NnX)+e—m

Vi, A —m

ES SORES WO ETESS

Inequality (1.1) now follows.

ProrosiTion 2. Let {X,} be a sequence of sets such that, for an open set
Gy DO \UX,, O(P, Q)=m>—oc0 on Gyx Gy. Then we have

1 =3 1

(12) Ve(UXn)_m Ton Ve(Xn)_m’

and hence, if V,(X,)=oco for each X, CG,, then V,(\UX,)=oco.

Proor. Given ¢ >0, choose an open set G, such that X, CG,CG, and

1 1 e
<
ViGy)—m = V.(X,)—m + 2"
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We have

1 1 1
< < > -
VE(UX,,)—m - V,(U G,,)—m — V,(Gn)—m

1 _ e
< Al Bl
=2y Ry—m 2y

by (1.1). From this follows (1.2).

1.2. Principles.

Let # be a class of functions defined in 2. We shall define principles in
this section and see relations among them in the next section.

(D) F-relative domination principle”. If UX(P)<f(P)on S, for a meas-
ure € &, p7%0, with compact support and for a function f€ #, then

U*(P)<f(P) in 2.

(DV ) Z-relative vicinal domination principle. If the support S, of € &,
p=0, is compact and U*(P)<f(P) on S, for fc &, then there exists, for any
¢ >0, a neighborhood V' (=V(y, f, ¢)) of S, such that

U*(P) < f(P)+¢ inv.

(Ug) F-relative Ugaheri’s domination principle. There is a constant ¢ >0
such that, whenever the support S, of €&, p5%0, is compact and U*(P) < f(P)
on S, for fe #, we have

U*(P)= ¢f(P) in £.

This may be called also the #-relative dilated domination principle.

(Ug), F-relative c-dilated domination principle. This is the same as
above but we specify the constant c.

(UVy) F-relative vicinal Ugaheri’s domination principle. There is a con-
stant ¢>0 such that, whenever the support S, of p€ &, x40, is compact and
U*(P)<f(P) on S,, there exists, for any >0, a neighborhood ¥ of S, such
that

Us(P)=Z ¢f(P)+e inV.

(UVyg), F-relative vicinal c-dilated domination principle.  This is the
same as above but we specify the constant c.

(Uz) F-relative weak Ugaheri’s domination principle. For any compact
set KC £, there is a constant c=c(K)>0 such that, whenever U*(P)<f(P) on
S, for pe€ &g, p%0, and f€ #, we have

" Relative principles were first introduced in Choquet and Deny [37].
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U*(P)= cf(P) in .

This may be called the #-relative weak dilated domination principle.

(U'Vg) Z-relative vicinal weak Ugaheri’s domination principle. For any
compact set KC 2, there is a constant c=c(K) >0 with the following property:
Whenever U*(P)< f(P) on S, for u€ &k, p=0, and f€ %, we can find, for any
e >0, a neighborhood ¥ of S, such that

U*(P)< cf (P)+¢ in V.

(U'Vg). F-relative vicinal weak c-dilated domination principle. This is
the same as above but we specify c.

(Ks) #-relative Kishi’s domination principle. For any compact set KC £,
there is a constant c=c(K) >0 such that, whenever U*(P) < f(P) on K for
wEEk and f€ F, we have

U (P)= cf (P) in 2.

(KVg) Z-relative vicinal Kishi’s domination principle. For any compact
set K C £, there is a constant c=¢(K)>0 with the following property: When-
ever U*(P)<f(P) on K for n€éx and f€#, we can find, for any >0, a
neighborhood 7 of K such that

U(P)= cf(P)+e in V.

(KVg), F-relative vicinal c-dilated Kishi’s domination principle. This is
the same as above but we specify c.

(K%) F-relative weak Kishi’s domination principle. For any compact set
KC £, there is a constant ¢=c(K)>0 such that, whenever U*(P) is continu-
ous? as a function on K for u € &x and U*(P)< f(P) on K for f€ #, we have

U (P) < cf(P) in 2.

K'Vg) F-relative vicinal weak Kishi’s domination principle. For any
compact set K £, there is a constant c=c(K) >0 with the following property:
Whenever U*(P) is continuous as a function on K for x€ &k, and U*(P) < f(P)
on K for fe #, we can find, for any ¢ >0, a neighborhood ¥ of K such that

U“(P) < of (P)+¢ in V.

K'Vg), F-relative vicinal weak c-dilated Kishi’s domination principle.
This is the same as above but we specify the constant c.

(Bs) F-relative upper boundedness princplie. If the support S, of p€é&,
p7#%0, is compact and U*(P)<f(P) on S, for fc &, then there is a constant
¢>0 which may depend on  and f such that

2) By continuity we mean that the value is finite and continuous. If we allow co or —co or both,
we shall say that the function is continuous in the extended sense.
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U“(P)< cf(P) in 2.

(B%) F-relative weak upper boundedness principle. If the support S, of
wEE, p##0,is compact, if U*(P) is continuous as a function on S, and if
U*(P) < f(P) for fe #, then there is a constant ¢>0 which may depend on
and f such that

U*(P)< cf(P) in Q.

If a principle is satisfied on every compact set, being considered as a
space, we denote the principle with the subscript K. Constants will depend
on each compact set in general. Principles (Ds) and (DV;), however, will re-
main unchanged. We shall write down one example explicitly.

K'Vk, &) F-relative vicinal weak Kishi’s domination principle satisfied on
every compact set. Let K be any compact set in £. For any compact subset
K' CK, there is a constant c=c(K, K') >0 with the following property: When-
ever U*(P) is continuous as a function on K’ for p€&x, and U*(P)< f(P) on
K’ for fe #, we can find, for any ¢ >0, a neighborhood V of K’ in £ such that

U*(P) < cf(P)+¢ in VNK.

In special cases we shall use specific terminologies and notations. In
case & consists of all finite constants, (D) is called the first maximum prin-
ciple and will be -denoted by (F); it is called also Frostman’s maximum prin-
ciple. Similarly (DVy) will be called the vicinal first maximum principle®
and denoted by (FV). In the other principles up to (K'V,), (also in the cor-
responding prineciples satisfied on every compact set) the word & -relative will
be omitted and the word domination will be replaced by the word maximum.
In the notations the subscript & will be dropped. For instance, (U) will mean
Ugaheri’s maximum principle. We shall write simply (B) for (Bs) and call
this the upper boundedness principle. The corresponding changes will be
made on other similar prineiples.

In case # consists of all potentials which are defined everywhere in £,
(D) will be called the domination principle and denoted by (D). This is
called also the second maximum principle or Cartan’s maximum principle. In
the other principles up to (K'V;), the word #-relative will be omitted. The
principle (DV) will be denoted by (DV) and, in the other notations, &# will be
replaced by d. For instance (Uy) will be denoted by (U,). We shall call (By)
the relative upper boundedness principle and denote it by (By). The corre-
sponding changes will be made on the similar prineiples.

In case # consists of all potentials of measures of & with compact sup-
port we add the adjective ‘restricted’ and replace & by *. For instance, (Dx)
will be called the restricted domination principle and denoted by (D™).

3) Choquet [2] called this le principle du maximum local faible.
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We assume in the following definition that each function of & is positive
in 2.

(Cy) F-relative continuity principle. If, for a p with compact support
and an f<€ £, the restriction of U*(P)/f(P) to S, can be defined and is con-
tinuous, then U*(P)/f(P) can be defined and is continuous in £.

In the special case when &% consists only of the constant 1, the principle
is called the continuity principle. Such a kernel is called regular by some
mathematicians.  This principle is closely related to the maximum and
boundedness principles defined above.

We shall define quasicontinuity principles and discuss them on some other
occasion; see Kishi [2; 3] and Ohtsuka [7] for these principles.

We give also

(S#). F-relative c-dilated sweeping-out principle (c>0). For any compact
set KC £ and any f€ £, there is a measure x supported by K such that |U*(P)
=f(P) p.p.p. on K and U*(P)< ¢f(P) everywhere in £. We omit the word
c-dilated and write (Sy) if c=1.

In case # consists of potentials of measures with compact support, this
principle will be called the c-dilated sweeping-out principle (the sweeping-out
principle if ¢=1) and denoted by (S), ((S) resp.). In case & consists of poten-
tials of measures with compact support, we shall add the adjective ‘restricted’
and use the notations (S8*). and (S*).

For positive kernels the following principle coincides with (S,), for =
{1}.

(EBy). c-dilated equilibrium principle (c>0). For any compact set KC 2,
there are a constant ¢ <o and a unit measure x supported by K such that

U*(P)>= const. a p.p.p. on K
and
U(P)< ca in £.

For c¢=1 this principle is called the equilibrium principle and denoted by (E,).
(E); c-energy principle (c>0). The kernel is symmetric and, for any dif-
ferent p, v &,

(s W)+ (v, ») =2(p, v)>0

whenever (u, v) is defined. In case c=1, the principle is called the energy
principle or the kernel is called strictly positive definite, and the principle is
denoted by (E).

(E®), Restricted c-energy principle (c>0). The kernel is symmetric and,
for any different u, v € & with compact support,

(/“: [b)'*‘C(V, v) —2(p, v)>0.
(E"). Weak c-energy principle (c>>0). The kernel is symmetric and, for any
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Wy VEE,

(s ) +e(vy ) = (p, V) =0

whenever (i, v) is defined. In case c=1, the kernel is called of positive type
or positive definite, and the principle is denoted by (P). We obtain the same
principle if we restrict u, v€ & to those having compact supports, because
every integral is approximated by the integral taken on a compact set.

There are other principles defined and discussed by some writers; see
Choquet and Deny [3], Ninomiya [8; 10] and Kishi [8]. However, we shall

limit ourselves to the above principles in the present paper except in § 2.11.

1.3. Relations among principles.

Now our problems are

(1) to see relations among these principles,

(2) to characterize the class of kernels which satisfy principles.

We shall discuss (1) rather in details and refer occasionally to some known
results about (2).

In case @ (P, Q) is symmetric, finite outside the diagonal set of £ x £ and
continuous in the extended sense that oo is allowed, we have the following
diagram as was shown in Ohtsuka [4]; we put ? at the end because it is not
a priori true for more general kernels:

(B) (=

/ % . .
13) (F) 2Z () W) \ / (By) — (B{) =~ (C)?

Here («-) means that this relation is true if —co < inf @ (P, Q) on £ x £. Since
the proof for this result is scattered in several short notes (Kishi [1], Choquet
[2], Ohtsuka [2; 4]) and since we need to examine relations for kernels more
general than those in Ohtsuka [2; 4], we shall start from the beginning. We
divide the discussions into several steps.

(I) Principles (Dg), (Uy), (Us), (Ks), (K&), (Uk, ), Kk, ), Kk #), (Bs),
(B%), (Bk,#), Bk, #). We first write obvious relations:

yd .
(1.4) (Dy) — Us) — (UZ) \ (B%.#)
e

and
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(Bs)—(B3)
i ?
(1.5) (U;:)H(Iiy)—%l%)
(Kg,5) —> Kk, #)
} "
Bk, s) — Bk, #).

We shall establish exact diagrams in a special case and here we prove
only two general facts.

Lemma 1.1. Let X be any set in £, K be a compact set in £, and f(P) be a
Sfunction defined on K\JX and bounded on K. Consider a kernel which is posi-
tive® on the diagonal set and assume that if the potential of any measure of &x
18 continuous as a function on K, then it is nonnegative on K\JX. Assume also
that, whenever U’ (P) is continuous as a function on K and U’ (P)<f(P) on K
for ve &g, U'(P)< cf(P) on X with a finite constant c=c(K, X, v)>0.  Then
there is a finite constant ¢’ =c'(K, X) >0 not depending on p such that, whenever
U*(P) is continuous as a function on K and U*(P) < f(P) on K for p€ &g, UX(P)
= f(P)on X.

Proor. Assume, to the contrary, that, for every integer n, there exist
pn With S, CK and P,€ X such that U**(P)<f(P) on K, the restriction of
U*"(P) to K is continuous and

U () >2"n f(P,).

We set v,=pu,/2"” and v=§un. Certainly S, CK. Suppose that the total
n=1

mass of v were infinite. Then there would be a point P, € K such that the »-
value of any neighborhood of P, is infinite. Let N, be a neighborhood of P,
such that @(P, Q)>a >0 on Nyx N,. Then

1
2”

oo

< S fP)=f(P)< oo

n=1

on NyN K. This is impossible and it is proved that the total mass of v is finite.
Since f(P) is bounded on K by assumption, the convergence of ij U™(P) is
n=1

uniform on K and hence the restriction of U’ (P) to K is continuous. On the
other hand

U (P)=U"(P,) >nf(P,).

4) In this paper a positive function is strictly positive; it never vanishes in its domain of defini-
tion or on the specified set. Fuglede [ 1] defined it otherwise; i.e., a kernel is strictly positive if it
is nonnegative in 2 x £ and never vanishes on the diagonal set in 2 x 2.
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This contradicts the assumption and the lemma is proved.
Similarly we can prove

Lemma 1.2, Let X and K be the same as above, and f(P) be a function de-
fined on KX and <o on K. Consider a kernel which is positive on the di-
agonal set and assume that the potential of any measure of &x 18 nonnegative
on KUX and that U (P)<f(P) on K for v€ &g implies U (P)<cf(P) on X
with a finite constant c=c(K, X, v)>0. Then there is a finite constant ¢
=c/(K, X)>0 such that U*(P) < f(P) on K implies U*(P)=c f(P) on X for any
14 S & K-

Lemma 1.2, We obtain the same conclusion as in Lemma 1.2, if we add
the mew assumption that the kernel is positive on K x K but weaken the condition
f(P)< oo on K, by replacing it with f(P)=<co on K.

From these lemmas follow easily

(1.6) B) (=) &) and B (=) K,

where (—) indicates that — is true provided that the kernel is positive; the
meaning of (—) may be different later.

(II) Principles (F), (U), (U"), (Ux), (B), (B"), (Bx), (Bk). We shall show
by examples that there is no more — relation in (1.4) in the special case that
& consists of all finite constants.

Example for (U)--(F) (Ohtsuka [4]): Consider £=[0, 1]\ {2} as a sub-
space of the x-axis, and set @(x, y)=0(y, x)= —log |x—y| for x, y<[0, 1],
0 (2, 2)=co, O(2, x)=0(x, 2)=a>log 4 for x< [0, 1]. This @(x, y) is sym-
metric, continuous in the extended sense and finite outside the diagonal set
in 2x 2. Let u, be the unit measure on [0, 1] which gives a constant poten-
tial there. Then U"0(x)=log 4 on S,,=[0, 1] but U"0(2)=a>log 4. Thus (F)
is not satisfied. On the other hand, for any u supported by [0, 1], we have

sup U*(x)=<a sup U*(x)

rEQ xES’u

and (U) is satisfied.

Later we shall give examples for (U)->(FV) which apparently serve as
examples for (U)->(F). One of them will be a so-called a-potential.

The following theorem by Kametani [2] and Ugaheri [1; 2] motivated
the terminology of Ugaheri’s maximum principle:

Let ¢(z)=0 be a decreasing continuous function such that ¢(z)— oo as
t—0. Then there is a constant ¢,>1, depending only on the dimension n of
the euclidean space E,, with the property that

sup U*(P)<c, sup U*(P)
En S“

for every measure 0, where p(PQ) is taken as the kernel. We refer to
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Choquet [2] and Ninomiya [7] for various generalizations of the result of
Kametani and Ugaheri.

Example for (U’)->(U) (Ohtsuka [4]): Consider Q=Ci/0([ 2n, 2n+1]v
{2n.+3/2}) as a subspace of the x-axis, and set

D (x, y)=0(y, x)=—log |x—y| for x, y € [2n, 2n+1], n=0,1, 2,...,

B (20+3/2, 2n+3/2)—= oo,

O(2n+3/2, x)=0(x, 2n+3/2)=n if x€[2n, 2n+1],

O (x, y)=0(y, x)=1 if x€[2n, 2n+1] and y € [2m, 2m+1], nsm,
or if x=2rn+3/2 and y € [2m, 2m+1], nF~m.

This @ (x, y) is symmetric, continuous in the extended sense and finite outside
the diagonal set in £ x 2. Let u, be the unit measure on [2n, 2n+1] which
gives a constant potential on that interval. Then U"*(2n+8/2)=n— co while
U*(x)=log 4 for x€S, =[2n, 2n+1]. Thus (U) is not satisfied. Next let K
be any compact set with V;(K)<<e in £ and x be any unit measure with

N N
S,CK and V(p)<eo. If KCU((2n, 2n+1]\VU {2n+ 3/2}), then S,C Ull:zn,
n=1 n=
2n+1]. Let u, denote the restriction of u to [2n, 2n+17]. If 1,540, we have
U (x)=U"(2)+1— () <V () + 1 — 1, (£2)

=ység1;n Ut(y)= ilg Ut(y)=V () for x€[2n, 2n+1]
and
Vi) =V (pn) + 1= pn () = n(2) log 44+1—p,(2)>1.
If 4,=0, then
Ur(x)=1<V(w) for x€[2n, 2n+1].
We observe also that
U"(2n+8/2) < N < NV () for n=0,..., N.

Consequently we can take N for ¢(K) in (U’). Thus (U’) is established.
Example for (B) » (Ug) (modified form of the example in Ohtsuka [2]):

Consider 9= U [@rn+1)7Y, (2n)"']U {0} as a subspace of the x-axis, and set
n=1

D (x, y)=—log |x—7y]| if w, ye[(2n+1)7, (2n)~1],

D (x, y)=0(y, x)=n log {8z (2n+1)}
if xe[(2n+1)"Y @)™'], ye[(Cm+1)", Cm)™ ], n<m,
or if x€[(2n+1)7Y, (2n)~], y=0,

0(0,0)=00.
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This @ (x, y) is symmetric, continuous in the extended sense and finite outside
the diagonal set in £ x 2. Let u, be the unit measure on [(2n+1)", (2n)""]
whose potential is constant there. Then U"*(x)=log {82(2n+1)} on the in-
terval. We set

pin= ptn/ 10g {8n(2n+1)}.

Then U**(x)=1 on [(2z+1)"}, (2n)"'] and U**(0)=n. This shows that (Uy)
is not satisfied.

Next let 1 be a measure such that the supremum of U*(x) on S, is equal
to 1. We denote by u, the restriction of 4 on [(22+1)7%, (2n)"']. Naturally
w({0})=0. On [(2z+1)"%, (2n)"'] we have

U™(x)= sup U™ (y)= sup U*(y)=1.
yESMn yES“
If 4,70, we have, for x€[(2n+1)"%, (2n)~1],

n—1 oo
U“(x):kz;,k log {8k(2k+1)}+ () + U (x)+n log {8n(2n+1)} -kglpk(ﬁ)

< sup U"(x)+U""*(x)=sup U*(x)<1.

RN xS
Fn “n

If 4, =0, we have, for x€[(2n+1)"%, (2n)™],
n-1 oo
U~ (x)=k;2.; k log {8k(2k+1)} « up(2)+n log {8n(@n+1)} -k_z o 2
< kil k log {8k(2k+1)} + s (£)=UH(0)< 0.

Therefore U*(«x) is uniformly bounded in £. Thus (B) is proved.
Example for (Ux)~>(B’): £=E; 0(P, Q)=1+P(Q. Obviously this does
not satisfy (B). But if S, CK, then
sup U*(P)<(1+diam K) p(2)<(1+diam K) sup U*(P)
PeK

PesS,

~and (Uy) is satisfied.

This example serves to give (Bx)->(B’) and (Bf)->(B’). As logical con-
sequences we obtain (B)-(U"), (B")->(Uk), (Bx)-~(Uy), (Ux)->(B) and (Uy)
~>(U"). From (Bx)->(B’) and (B)—(B’) it follows that (Bx)->(B).

Next we shall examine if (Bx)—(Bx) as in (1.3) in our general case too.
The answer is negative.

Example for (Bi)~>(By). Consider 2= U {1/a} UL {—1/a} U {0} as a
n=1 n=1
subspace of the x-axis, and set

0(1/n, 1/m)=min (n, m),
00, 1/n)=01/n, 0)=n/2,
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0(0, 0)=co,
000, —1/n)=@(—1/n, 0)=2""1,
O(/n, —1/m)=0(—1/m, 1/n)=0(—1/m, —1/n)=2min®m),

Let i be the measure supported by C] {1/n} {0} such that the mass of the

restriction at 1/n is equal to 1/2” and the one at 0 is zero. Then

1 1 . Tf-‘ k ww i ) Al
v 0(7) a k%'l ?_Fnk%Ll ok’ v )= k2='1 2’”1

and

(-1)- 55

=1 k=m+1 2k

Thus U“(x) is bounded on S, but not on 2. Next let x be any measure on 2
for which the restriction of U*(x) to S, is continuous. We denote the mass
at 1/n by a, and the mass at —1/2 by 5,. We have

U“( 1 ) L hay+n ST gt z 2b+2" S b

n k=n+1 k=n+1

and

S kgt S 24 b,
UH(0)= & =

As n— oo, U*(1/n)—>2U*(0). Therefore S, contains only a finite number of
{1/n}. Similarly we can see that S, contains only a finite number of {—1/a}.
Consequently, there exists N such that

N N
scl{Llul (-1,
n=1 n n=1 1

Then U*(x)<2U*(0)< oo in £. Thus (Bk) is satisfied.
This example serves to show (B)->(B) and (B)~>(Bx) naturally. Now
we know the following diagram:

Y (B) ——~ (B
. e

1.m (F) __— (U) —— (U) HXH
N

(Ux) —— (Bg)

(Bk)

N\

there is no — relation more than in (1.4).
(II) Principles (K), (K"), (Kx) and (K%). We know by (I) that
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(U)—(®) > (K)) (Ky) > (Kf)
Ao adf
B)= (B) (B2 (BY)

see (II) for (B) 22 (B’) and for (Bx) & (Bk).
Example for (B)->(Kk). A simple example is as follows: £=1{0, 1},
@(0,0)=0and #(0,1)=0(1, 0)=0(1, 1)=1. This @ may be expressed by

( 0 1 )
1 1/.
Take x=0 for K and let ; be the unit measure at x=0. Then

sup U*(x)=U"(0)=0 and U+()=1.

xeK
There is no ¢ which gives ¢U*(0)=U"(1) and hence (K') is not satisfied. It

is clear that (B) is satisfied.
However, in this example a constant ¢, actually ¢=1, exists such that

c{sup U”(y)—‘rp(lj)} > U (x) for xc Q.
yeK

We shall give a little later an example in which such kind of inequality is not
satisfied.

We know by (1.6) that (B)—(K) and (B")—(K’) if the kernel is positive.
Let us suppose that @ (P, Q) >m > — oo, m<0,0n £x £ and set 0,(P,Q)=0(P, Q)
—m. If (B") is true for @, it is true for @, and, by the above result, (K') is
true for @;. Namely, there is ¢(K)>1 such that

U (P) < U (P)=mp( @) = e(K) | sup U (Q—mp (@)} in 2,

whenever S, C K and the restriction of U*(P) to K is continuous. We can say
that, if @(P, Q) satisfies (B’) and is bounded from below on £ x £, there are
constants ¢ (K) and ¢, (K) such that

(1.8) sup U*(P)<ca(K) iu}{) U*(P)+c2(K)

Peg

for any unit measure p, provided S, C K and the restriction of U“(P) to K is
continuous.

We can state a similar remark in case (B) is satisfied.
We shall give an example of kernel which satisfies (B) but not (1.8). Con-

sider £= Cl{l/n} UG{ —n} as a subspace of the x-axis and set
n= n=0
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O(1/n, 1/m)=01/n, 0)=0(0, 1/2)=0(0, 0)=1,
O(—n,1/n)=01/n, —n)=n,

O(—n,1/m)=01/m, —n)=—n if n=tm,
@(—n, 0)=0(0, —n)= —n,
O(—n, —m)=1.

This kernel is symmetric and continuous. We take {1,1/2,...,0} for K. Let
1, be the unit measure at x=1/n. Then U*"(x)=1 for x€ K and U""(—n)=n.
Thus (1.8) is not satisfied. Next let x be any unit measure with compact sup-
port and let », be a number such that x= —n,, —n,—1,... do not belong to S,.
It is easy to see that U*(x) is bounded for x> —n,. Let x’ be the restriction

of u to 61 {—n}. We have, for n>n,,

(== @+me ({ 21)=n 33w ({1-}) =muion.

n kxn

This is bounded from above if

()= mr(E e

except for a finite number of n. Let us examine the inverse inequality:

({1 D)> Su(f 5 ) +ntion=1-pc@.
If W(2)< 1, there are only a finite number of » for which this inequality is
satisfied. If u'(2)=1, then x({1/2})=0 for every n. Therefore it is concluded
that U*(x) is bounded from above in £2.

We consider the examples given in (II) to show (Bg)->(Bk) and (B) -~ (Uy).
In the first example the space is compact and the kernel is positive. There-
fore (K) and (Kk) are satisfied but (K) and (Kx) are not. Thus (K’)-(Bg),
(Kx)~ (Bg), (K)~»(K) and (K")~>(Kg). Secondly, since the kernel is positive
and satisfies (B) in the example for (B)->(Uy), it satisfies (K). It does not
satisfy (U’), because if it did it would satisfy (Ux) in virtue of (U")— (Uk).
Thus (K)-»(U’) is shown. This example gives also (K)->(Ug). Finally, since
(Ux)~»>®B), (Ux)—>Kk), (Ux)— K% and (K)— (B, it follows that (Ug)-»>
(K", (Kx)~(K’) and (Kx)->(K’). Taking easy logical consequences into con-
sideration, we now have
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(B)\: (B") (K) (K")
ERCIRE N4
(1.9) (V) == (K) —— K) (Ux

K
It 2
(Bx) —— (Bf)
(K) (<) (B), X)) (<) B),
(Kx) (<) By, (%) (<) (Bk),

)
It Z AN |
(K

i3

where (<) means that < is true if the kernel is positive.

(AV) Continuity principle (C). First we give

Example for (F)~>(C). We observe first that, if there are points P, and
Qo in £ such that @(Q,, Qo)< oo and

Iiﬁ 0<P, Q0)>¢(P0, QO),
P-P

then (C) is not satisfied. In fact, let 1, be the unit point measure at Q,. Then
U*(Qo)=0(Q,, Q)< oo and U**(P) is certainly continuous as a function on
Suo= {Qo}, but U*(P)=0 (P, Q,) does not tend to & (P, Qo) as P—P,.

In particular, if (C) is satisfied, the kernel must be continuous in the ex-
tended sense at every point of the diagonal set.

For later use (in §1. 4) we shall give an example which is not quite the
simplest. Consider

R A A s SRVA S sls L RAR S Sh 8
as a subspace of the x-axis and set
(0, 0)=1,
O (%, x)=o0 for x=~0,
000,1/k)=01/k,0)=1—-1/k,
00, x)=0(x, 0)=1 for x=~0, 1/k;

otherwise we define it so that it is continuous in the extended sense and finite
outside the diagonal set. If we note the discontinuity at the points (0, 1/k),
we see that (C) is not satisfied by the above reasoning. Now let 1 be any unit
measure on £ which gives susp U*(x)<oo. It follows that S,={0}. We see
that e
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susp Ut(x)=1, and Ut (x)=1 for x=~0.
re "
Thus (F) is satisfied. '

The example given in (II) for (Ux)->(B’) serves to show (C)~(B"). How-
ever, we can prove

(C)—(Bk): Let i be a measure with compact support such that U*(P)<1
on S,. We assume that there is a sequence of points {P,} on a compact set
K>S, with U*(P,)>n2". First we consider the case that @(P, Q)>=0 on Kx K.
By Lusin’s theorem we choose a compact set K, CK such that the restriction
of U*(P) to K, is continuous on K, and that x(K—K,) is arbitrarily small. If
we denote by u, the restriction of x to K,, the restriction of U**(P)=U*(P)—
U“™*(P) to K, is continuous because it is at the same time upper and lower
semicontinuous on K,. By (C) it is continuous in £. Sinece U"*(P,)— U*(P,)
as u(K—K,)—0, we could choose K, such that U*"(P,)>n2". We divide p, by
2" and denote the measure thus obtained by v,. We set S} »,=». Since U™"(P)

is continuous and not greater than 1/2" on S,, the restriction of U’ (P) to
S.> S, is continuous and by (C) U”(P) is continuous on £, particularly on K.
Consequently U”(P) is bounded on K. However, U (P,)=>U""(P,)>n and we
have a contradiction. Thus our proof is completed in the case @ (P, Q)=0 on
KxK. In the general case we set m=min @(P, Q) on KxK and 0,(P, Q)
=@P, Q)—m. If we assume (C) on &(P, Q), then &,(P, Q) satisfies (C) and

| 0.2, @an@ =§ 0P, Q)dyu(Q)—mpu(2)

is bounded on K. Therefore S O (P, Q)du(Q)=U*(P)is bounded on K and (C)—

(Bx) is completely proved.

In the following lines we shall prove that, on a compact space, (B) (=(Bk))
means (C) if @(P, Q) is continuous in the extended sense and finite outside the
diagonal set of 2x 2. In our example in (II) for (B)->(Uk) the condition is
satisfied and (C)-(Uy) follows; this was stated also in Choquet [2]. Thus
we have now

(F) = (C) — (Bg)

7N

(Ug) (B) .
If we take (1.7) into consideration, we have

(F) == (C) == (Bx)

78N

(Ux) (B") .
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Next we shall prove
(1.10) G 2B 2B

under the hypothesis that @ (P, Q) is continuous in the extended sense and
finite outside the diagonal set in £ x £. It is sufficient to prove

(B%)—(C) (Ohtsuka [2; 4]): Let the restriction of U*(P) to the compact
support S, of x be continuous. It is enough to show that U*(P) is continuous
at an arbitrary point Py of S,.. If @(P,, Py)< oo, U*(P) is obviously continuous
at P,. Suppose O(P,, Pj))=co. We take a neighborhood Ny, of P, such that
O(P,Q)>0 on Np,x Np,. Since the potential of the restriction of ; to the out-
side of Np, is continuous at P,, we may assume from the beginning that £ is
compact and the kernel is positive on 2x £. We denote by u, the restriction
of u to

B,={P; 0 (P,, P)>nj}.

Then the restriction of U*”(P) to S, is continuous. Since U*(P) is finite,
U""(P) decreases to 0 with 1/7 on S, and the convergence is uniform by a
theorem known as Dini’s theorem in the classical case.
If we take S, as a compact set K in the definition of (K’), there is a con-

stant c=¢(S,) such that

sup U*“"(P)<c¢ sup U""(P)

Peg PESM
for every n by (B")— (K’); note that (Bkx)=(B’) in the present case because £
is supposed compact. Therefore sup U (P)\0 as n—>oo. Given ¢ >0, we take

e

no such that U*0(P)<e in £. Since U*™*0(P) is continuous in B,,, we have,
for P sufficiently near P,

[T (PY— T 70 (P | < ¢
and hence
|U*(P)—U"(Py)| <e+U"0(P)+ U0 (Py)<3e.

Remark. By the aid of Lemma 1.1 we can generalize this result as fol-
lows: Let K be a compact set and X be an arbitrary set in 2. Instead of
(B%) assume that whenever the potential U*(P) of a measure p with S, CK is
continuous as a function on S,, it is bounded on X. Then U*(P) is continuous
as a function on S,\UX.

(V)  Supplementary relation between (B) and (B"). First we notice that
(B")— (B) provided that @ (P, Q) is continuous in the extended sense and finite
outside the diagonal set and that Lnsiz" O(P,Q)>—oo. In fact, (B)—Bk)—(C)

and the proof for (C)— (Bk) applies to show (C)— (B) under the condition that
inf @(P, Q)> —oco. We have given an example for (B")->(B) (originally for
2xQ
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(B)~>(Bk)) in (IT) in which the kernel is positive but discontinuous. Now
we show that (B")->(B) even if @(P, Q) is continuous in the extended sense
and finite outside the diagonal set in 2 x £.

Example for (B)~>(B): Consider 2= D {1/n} v COJ {—n} as a subspace
of the x-axis and set =l "=

0(0, 0)= oo,

00,1/n)=01/n, 0)=n,
O (1/n, 1/n)=nd,

01 /n, 1/m)=min (n, m) if nstm,
—n if m<n,
O(—n, 1/m)=0(Q1 —n)=
(=, 1/m)=0(1/m, —m)={ _ | Emm 0,
O(—n, 0)=0(0, —n)=3n° if n=~0,
O(—n, —n)=o0 if n=~0,
O(—n, —m)=0(—m, —n)=1 if ns=m, n=~0, m==0.

The kernel is continuous in the extended sense and finite outside the diagonal

set. Let o be the measure on v {1/n} such that each point 1/» supports the
mass 1/7°. We have n=t

n-1 1 = 1 9 = dx S“" dx
Mo (. — N _ T INY & . Bkt 3 A
U(—n)=—n k; B + 3n kE B > —n <—78 +S 3 > + 3n e

with n. It holds that

1 n=l [k =1 =1 = dx

0 i P N v ~ N adadl

v (n) %k3+1+nk}w’r1k3<%kz+l+ngnx3
a1 1
2w Tt

and
U”o(()):i L
PR C I

Thus U («) is bounded on S,,= i {1/n} v {0} and (B) is not satisfied.
n=1
Next let x be a unit measure such that U*(x) is continuous as a function
on S, C U {1/n} {0} and x({0})=0. It is easy to discuss the case in which
n=1

S, contains only a finite number of points and hence we assume that 0€S,.
We set u({1/n})=m,.
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We have

1 -1 £
U"<—) = > kmp+ndm, +n > my

n k=n+1

:

e
[l
-

and
Us(0)= 3" kmp.
k=1
Our assumption requires that U*(1/n)—U*(0) as n— co. Hence n*m,—0 as

n—oco. Then it follows that » >) m;—0. Therefore U*(x) is continuous as a

k=n41

function on S, if and only if n3m,—0 as n—oco. We have
n-1 o
Ut(—n)=—n k21 my + 82 S m.
= k=n

For a large » it holds that

n-1
SV > L and Fomg < L if b>n
Py 2 6
For such n
= 1 3 1 = dx 1
by — B o v b oo (L ax\ _1 _n , n
U <=5+ 5 23 < 2+2<n3+gnx3)<2 o Ty
1 _»n _ 1
I R R

This shows that U*(«) is bounded from above in £ and it is verified that (B’)
is satisfied.
We now know that

1.11) (B) (=) (B),

if (P, Q) is continuous in the extended sense and finite outside the diagonal
- set in £x £ and if inf @ (P, Q)> — o, and that both the continuity in the ex-
2x8Q

tended sense and the lower boundedness of @ (P, Q) are necessary for — to be
true.

(VD) Domination principle (D) and restricted domination principle (D*).
First we give

Example for (D*)~>(D): 2= {0}uU{l}U{2}, 6(0, 0)=0(1, 2)=0(2, 1)
=000,2)=002,0)=1,01, D)=0(2, 2)=c, 0(1, 0)=0(0, 1)=2. It is obvious
that (D*) is satisfied. Let x be the unit point measure at 0 and » be the point
measure at 1 with total mass 1/2. Then U*(0)=U"(0) but U*(2)=1>1/2
=U"(2). Thus (D) is not satisfied.

Examples for (D)~ (B%). First example: Consider 2= Gl{l/n} {0} as
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a subspace of the x-axis, and set @(1/n, 1/m)=nm, 00, 1/n)=01/n, 0)=n,
@(0, 0)=1. This does not satisfy (Bk); consider a measure at x=0. Next we
observe that, for any p,

U(1/m)=nu({0)) +n 3 mu({1/m}) =nU*(0).

Let x, v be measures such that U*(x) <U”(x) on S.. Then it follows that
U*(0)<< U’ (0) and this shows that U*(1/n) < U’ (1/n) for every n. Thus U*(x)
< U’(x) everywhere in £. We have the conclusion that (D) is satisfied. :

Second example: £={0}\v {1}, (0, 0)=1, 21, 1)=0(0, 1)=0(1, 0) =co.

In the first example the kernel is finite-valued in £ but discontinuous at
(0, 0), and in the second example it is continuous in the extended sense but
infinite even outside the diagonal set. If the kernel is continuous outside the
diagonal set and positive on the diagonal set, then we can derive more than
(Bk) from (D); Ninomiya [8], Lemma 3, proved (D)— (Bk) under some ad-
ditional conditions. We shall prove general results in § 1.5.

Next we give

Example for (D)->(B’), even if the kernel is positive, symmetric, con-
tinuous in the extended sense and finite outside the diagonal set. We take
for £ a unit ball B and a sequence of points {P,} outside B in E; which tends
to the point at infinity.

We set
1
P:Q for P, Q< B,
O, N=00Q,P)=(n for PeB, Q=P,,
mn for P=P,, Q=P,(m=~n),
oo for P=Q=P,.

Let us see that @ (P, Q) satisfies (D). If p€é&, S,US, CB and U*(P)<<U’(P)
on S,, then U*(P)<<U’(P) on B as it is known for Newtonian potentials. Let
) be the unit equilibrium measure on S,, B being as a space, and W(S,) be the
equilibrium constant. Then U*(P)<W(S,) on B and U*(P)=W(S,) p.p.p. on
S.. Therefore

(s N=W(S8,) u(B) =< (v, \) = W(S,)»(B),
and hence x(B)<»(B). Consequently
Ut (Pp)=nu(B)=nv(B)=U"(P,).

Thus U*(P)<<U’(P) everywhere in 2. The next case is when p €& and
S.CB, but S, is a general set. We denote by vz the restriction of v to B and
by v, the restriction of v to P,. We have
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U (P)=U"B(P) + ) nvn(2) on B.
n=1

Suppose that U*(P)<<U”(P) on S,. Let )\, be the uniform unit measure on
OB, and set u’=u3+i‘; . (DN We have
n=1

UH(PY< U’ (P)=U"B(P) + 51 n(2) UM (P)=U"(P) on S,.
This is true on B. Using the same ) as in the first case we find
W(S) BYZWS) aB)+ 3] w2
Therefore
p(B) 5 (B)+ 33 mn(4).

If v, 50, then U’ (P,)=co and naturally U*(P,)<U’(P,). If v,=0, then U*(P})
— ku(B) and U” (P =hvs(B)+k 2 won(2). Therefore Ut(P)<U’(P,). Thus
U*(P)<<U”(P) everywhere in £ and (D) is true. However, if we consider ),
on OB, then U*(P)=1 on B but U*(P,)=n. This shows that (B’) is not sat-
isfied.
Finally we give
Example for (F)->(D*): The simplest example of @ is given by
c c c\
c ¢ 1

c 1 ¢

with ¢ >1. This shows that, given ¢ > 1, there is a kernel which satisfies (F)
but not (U¥)..

We refer to the work of Ninomiya [8] for some results in the direction
(D) — (F); this will be discussed in § 2.11 of Chapter II in our paper.

Let us repeat what we have obtained so far:

(1.12) F) -~ (D*) 5(D)~ (Bk).

Even if @(P, Q) is positive, symmetric, continuous in the extended sense and
finite outside the diagonal set,

(1.13) (D)~ (B).
We shall discuss again (D) and (D*) in § 1.5 and in the next chapter.

1.4. Local behavior of potentials.

A point P, € £ is called by Choquet [2] a point of c-undulation (c>0) for
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kernel @ if, for any neighborhood N of P, there is a measure x with compact
support S, C N such that

sup U*(P)>c¢ sup U“(P); ®

PeN PES’L

he defined it in case the kernel is positive. We denote by O, the set of all

points of c-undulation and set O_=NO,. These sets are naturally closed.
c>1

Choquet [2] observed several relations of these sets with some principles.
Let us define the undulation coefficient o(P) of a point P by the supremum of
¢ such that P€O..

We shall define different kinds of points and see relations among them.
First we define, for a kernel of general sign and a class # of functions in £,

Point of F-relative c-undulation Py(c>0). For any neighborhood N of
P,, there are a  with S,CN and an f€ £ such that U*(P)<f(P) on S, but
U*(P")>cf(P’) at some point P’ € N.

We denote by O the set of all points of Z-relative c-undulation and

set 0= N0, We define the #-relative undulation coefficient o-(P) by
c>1

sup {c; P€0O¢’}. In case & consists of all positive potentials, which are de-
fined everywhere, and # is not empty, a point of O will be called a point of
c-revolution and denoted by R.. The notations R.. and r(P) will be used. In
case # consists of all positive potentials of measures of & with compact sup-
port and & is not empty, we add the adjective ‘restricted’ and the symbol *;
for example, R¥ will mean the set of all points of restricted c-revolution.

Furthermore we define

Point of F-relative c-cliff Py(c>0). P, is not isolated and, for any neigh-
borhood N of P;, there are an f< %, which does not vanish in a neighborhood
of P;, and a measure p with compact support S,, containing P, and included in
N, such that

= U*(P) usp).
(114) lim pes:f'}—»Po 70#)’

PPy f(P) > ¢

the value at P, is not considered when we take 1im as P—P, but the right side
is replaced by U*(P,)/f(P,) in case P, is isolated on S,.
We shall denote the set of all points of #-relative c-cliff by P¢ and set

PO =N PP, The Z-relative cliff coefficient ps(P) is defined by sup {c;
c>1

PeP®}. In case # consists of positive constants we drop the adjective ‘#-
relative’ and the superscript #. In case & consists of all potentials, which
are defined everywhere in £, we shall call a point of P¢* a point of ¢-gap and
write S, for P{”. We also write s(P) for ps(P). In case # consists of all
potentials of & with compact support, we add the adjective ‘restricted’ and

5) Originally Choquet [27] included the equality with the additional assumption that the right
side is finite.
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the symbol *.

In (1.14) we can not take c=oo if the upper limit on the right side is
positive. Suppose, however, that there is a point P, with the following pro-
perty: For any neighborhood N of P, there is a measure ; with S,, containing

P, and included in N, such that U*(P) is bounded from above on S, butplm

"’PO
U*(P)==co. We shall denote the set of such points by P.. More generally,
we can define P, in a similar fashion.

Point of F-relative unboundedness Py. In any neighborhood NV of P; the
& y-relative upper boundedness principle is not true, where £y consists of
the restrictions of the functions of # to N.

We shall denote the set of all points of #-relative unboundedness by Q.
In case # consists of all positive constants we drop the adjective ‘#-relative’
and the subscript #. In case & consists of all positive potentials, which are
defined everywhere in £, and # is not empty, we call a point of Q. a point
of relative unboundedness and write Q; for Q». Corresponding change is to
be made in the restricted case.

Point of F#-relative weak unboundedness P,. For any neighborhood N of
P, there are an f€.# and a measure p with compact support S, CN such that
the restriction of U*/f to S, can be defined and is continuous but U*/f is not
defined or is not bounded in M.

We shall denote the set of all points of weak unboundedness by Q7. In
special cases we shall make changes of terminologies and notations in the
same way as for points of (#-relative) unboundedness.

Point of F-relative discontinuity P,. For any neighborhood N of P, there
are an f€ % and a measure ; with compact support S, CN such that ghe re-
striction of U*/f to S, can be defined and is continuous but not in N.

We shall denote the set of all points of #-relative discontinuity by D.
In special cases we shall make some changes of terminologies and notations.

We shall see relations among these sets. An obvious relation is

Q5 C Qs CO.

In (IV) of the preceding section §1.3, we proved that (C)—(Bx). From this
fact it follows that

QCD.

The example for (Bk)-~>(Bk) given in (II) of § 1.3 shows that Q’ can be empty
while Q=g . Taking the inclusion relation into consideration, we shall ex-
press this fact by Q'&€Q. The example for (F)-(C) given in (IV) of § 1.3
shows that QD and that, for every ¢>1, O, can be empty while D=~g. We
shall express this fact by D¢/ O.. The example for (B)->(Ug) given in (II)
of § 1.3 shows that Q& O.. even if the kernel is symmetric, continuous in the
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extended sense and finite outside the diagonal set. This example shows also
that (C)-~»(Uy) and hence that O.¢/ D. We now have

Q&EQCO., Q@@QQ for any c¢>1.
0.

If the kernel is continuous in the extended sense and finite outside the
diagonal set, we have

Q=Q'=D
by (1.10) of §1.3.

Next we are particularly concerned with P, and O, (¢ << o).

(i) We shall give two examples as to undulation coefficient.

For any c, 1< ¢ < oo, there are a positive kernel, which is continuous in the
extended sense and finite outside the diagonal set, and a point Py such that o(P,)
=c and P& O..

We consider 29— U ([@n+1)71, @2n)']U{—1/n})U {0} as a subspace of the

n=2

x-axis, and, denoting [(2n+1)"%, (2n)~'] by I,, we set
O(—1/n, x)=0(x, —1/n)=c log {8n(2n+1)} if x€1l,,

O, ) =0(y, = log 1 L -

If we take a unit measure yx, on I, which gives a constant potential on I,, then
U (x)=log {82(2n+1)} on I, and U**(—1/n)=c log {8n(2n+1)}. This shows
that 0€ O, for every ¢'<c. Let x be any measure with sup U#< 0. Then S,

for any other (x, y).

is included in the positive axis. Since @(x, y) is logarlthmlc for x, y =0, U*(x)
< sup U*(y) for x=0. If u(1,)>0, we have

yeS‘u
Uﬂ(—i)=g log L du(y)+eu(ly) log {8n(2n+1)}
n ; ye&el, ‘y-l- 1 i
n |
1
=Sy<e1,, o8 |y — '] d/b(y)-f-cxiléi)”[] (=)

for every point »’ € I,, where u, is the restriction of x to I,. Therefore

U+ (——1——) <c sup U*(x)=<c sup U*(x).
\ n xesﬂn xeSH_
If 4 (I,)=0, then @ (—1/n, y) is logarithmic for every y €S, and hence U*(—1/n)
< sup U*(x). Therefore

IEIJ.

U (x)<c sup U*(y) in £

yes,



On Potentials in Locally Compact Spaces 163

in any case and it is proved at the same time that 06 O, and o(0)=c.
Secondly, given any c, 1< c < oo, there are a positive kernel, which is con-
tinuous in the extended sense and finite outside the diagonal set, and a point P,
such that o(Py)=c and P, € O,.
We choose ¢, ¢, -+, ¢y >c, decreasing to c. We take the same £ as in
the first example and set

O(—1/n, x)=0(x, —1/n)=c, log {8n(2n+1)} if x€ 1,

@ (%, y)=0(y, x) = log Idx}y_l for any other (x, y).

Let 4 be a measure with S, C U I, and with finite sup U* on S,. Asin
k=n

the above example we see that

Ut(x)<c, sup U“(y) in .
yESM

Therefore 0(0)<<c¢. For the unit measure u, on I, which gives a constant
potential on I,, U“*(x)=1log {8n(2n+1)} on I, and U**(—1/n)=c, log {8n(2n-+1}.
Since ¢, >c¢, it follows that 0 O,. Hence o(0)=c.

(ii) Let ¢>1. Consider a nonnegative kernel which is continuous outside

the diagonal set and assume that @ (Py, Py)=co or IE@ O (P, Py)<c O(Py, Py)< oo
=40

for a point Py. If, for any neighborhood N of P,, there is a measure pu with
compact support S, > Py, contained in N, such that

1.15) lim U“(P)=c¢ lim U*(P) (< o),
P-Pg PesS,, P>P

then there exists ¢’ >c for which P, €P,..

From our assumption on &(P,, P,), it follows that &(P,, P,)>0. Hence
& (P, Q)>0 on Nx N for some neighborhood N of P,, We assume the existence
of »70 with S, CN and satisfying (1. 15). By our assumption on @ (P,, P),
S. does not coincide with P,. Let x/ denote the restriction of x to the outside
of Py. If W/(N)=0, 0 (P,, P,)< > and by (1.15) we should have

0=(c—1) UM'(P@&({POD{@O 0P, P)—c 0P, Po)} <0.

This is a contradiction. Accordingly ,'(N)>0 and hence U*'(P,)>0. We de-
note also the upper limits in (1.15) by « and B respectively. We take a di-
rected set D which provides P, with a base of neighborhoods, and denote by p,,
the restriction of . to ¥'€D. As V€D converges to Py, Su, tends to P,. We
set

avzﬁo U*v(P) and By=_lim U"(P).

PeS,, P-Py
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Since ay = ay-, and By =By if VOV, ay tends to a certain value =0 and
By does to By=0as V—>P,on D. We see that a=U"""V(P;)+ay and that the
right side tends to U¥(P)+ o as ¥V—P,. Similarly 8=U"(Py)+B,. By (1.15)

a=U"(Py)+ ao=c(U"(Py)+ BRo)
and hence
ap—cBy=(c—1) U*(Py)>0.
We find ¥V, € D such that V3 CN and

By <Bo +~;— <1 ——16—> U (Py) for every VCV,, VeED.

We denote the second term of the right side by ¢’ and have
ay =g =cBo+2cc" >cByytec’ =(c+cc’/Bvy) Bry=(ct+ec”/Bry) By if VT V.
This shows that P, € P.. with ¢'=c+cc’’/By,.

Cororrary. Let ¢c>1 and assume that there are a measure u and a point
Py, not tsolated on S,, such that

lim U*(P)=c lim U*(P)< oo.
P-Py PES#, PPy
Then Py € P, for some ¢’ >c unless O(Py, Py)< o and }:i—rg O (P, P))=c O (Py, Py).
=0

Remark. Let c>1. Consider a nonnegative kernel which is continuous
outside the diagonal set. If P,€P., then P, P, for some ¢’ >c.
Suppose that there is a measure u satisfying

a=lim U*(P)>c lim U*(P)=cp.
PP P 0

ES“, -

We choose ¢’ such that «/B8>c¢ >c. Let V be any neighborhood of P,, and use
the same notations p,, a, and 3, as above. It holds that a=U""v(P)+a«,
and B=U"""(Py)+B,. Therefore

a,>cB,+( —1) U™ (P) =cBy.

This means that P, e P,..
(iii) For a nonnegative kernel which is continuous outside the diagonal
set,

P.CO, Jor any c>1.
We take PycP,. If llgi_xgl O (P, Py) >c®(Py, P,), we see Py O, immediately.
40

Therefore we assume the existence of a unit measure y with S, > Py, S.={Po},
satisfying
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lim U"(P)>c lim U*(P);
P-Py ;L’P”PO

we denote the upper limits by « and @ as in (ii). First we suppose that the

kernel is positive on £x 2. With the same notations as in (ii) we find, for V7,

chosen in (ii), an element 7, € D included in V, with the property that

sup UVo< By, +c".
Vins,

Therefore

(1.16) sup Uiz ay, = ao=cBy,+cc’ >c gug Uvo>c¢ sup Utvs,
in y.Vl

This shows that P, € O,.

Next consider @ >0. We choose ¢ >0 such that a >c8+¢(c—1) and denote
by U.(P) the potential with kernel @ (P, Q)+ ¢ of a measure ». Since this kernel
is positive, (1.16) holds for it and

sup Usivi= sup U*Vi+4epy (2)>c sup UVi=c sup U'Vi4cepy (2).
V1 Vi SPLVI SMVI

Thus P, € O, in this case too.

CoroLLARY. If the kernel is continuous in the extended sense and finite
outside the diagonal set, then

P.CO. for any c<1.

Since any potential is continuous at P, for which @(P,, P,)< oo, @ (P,, Py)
=oco at P, belonging to P, with ¢>>1. Our problem is local and hence we may
assume from the beginning that the kernel is positive. Thus our case reduces
to (iii).

(iv) 0€0, but P.= & for every c=1 in the example for (B)->(Ux) in (II)
of §1.3.

It is seen in (II) that 0 € O... We shall denote by I, the interval [(2n+1)7',
(2n)7']. Let u be any measure and x, be any point of S,. If % €1,

lim U“(x)= lim U*(x)

x—-2x0 z&S8,, 2-2%)

because we are concerned with a logarithmic potential. If 0€S, and x(Z,)=0,
then U*(x) XU ”(O)< llm Ut(y) for x € I, as was shown in (II). If n(Z,)>0,
Sy 30

sup Ut (x) < sup U+ (x) Therefore

xely, rES ey

11m U*(x)= lim U“(x)

xe,,’x—»

in this case too. This shows that P.= & for every c>1.
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(v) Consider a monnegative kernel which ts locally bounded outside the
diagonal set. If c,, 1<c,< oo, tends to ¢ and if P,€O., with ®(P,, P,)=co
converges to Py, then, for any >0, there is a measure u with S, > P, such that
U*(P)<1on S, and lim U*(P)=c—¢ as P—P,.

We may assume that all ¢, are finite. In a neighborhood N; of P, =P,
which does not contain P, and-on whose product @ (P, Q) >1, we choose y; and
a point P; such that

sup U"(P)<1, U (P))>e,™} and Ut (Po)<%,

PeS
#1

where ¢ >0 is a given number. Assuming that P, a neighborhood N; of P,
wi With Su, CN; and P} € N; are chosen up to i =k so that

O(P, Q)>i on N;xNj,
By bbby & e
s;ip U < 5 Tt i1
sup UH(P) =1, Ui(PH) >~
[ 4
and
i-1
U(P)< s on U S, U {P},
2 =1 i

we choose Py, , a neighborhood N, of P»,, , #., and P;,; so that S, C
Nis1, Prs1 € Npsa,y

@(P, Q)>k+1 on Nk+1><N)H_1,
sup UF+-+*x(p <L+“,+i,
S"kI:l ( ) 2 2
1
Ute+1(P) << “e+1(PY,, 1
girjl P) =1, U t+1(P} 1) > cpar |
and
E
U*e+1(P)< k_e__l on U Su. \U{P}.
28+ i-1 !
If we set

o=y + g+ ...,

we have
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2
U“(P)<1+%+—€2—+---:1+e on each Sy, and at P,.

Thus sup U*(P)<1+e¢. On the other hand U*(P.)>c,—1/n. Since the kernel
ESy

is locally bounded outside the diagonal set, since @(P, Q)>k on N,x N, and
since N, > P,, tends to P, it is seen that IV, tends to P, as a whole. Therefore
P/, tends to P, and

Tim T7* > ¢ &(P).
lim U°(P)= ¢, sup UP)

Since ¢ is arbitrarily small, our assertion is seen to be true.

Cororrary. Consider a nonnegative kernel which is locally bounded outside
the diagonal set. If c, tends to c and if P,€ O, with @ (P,, P,)=co converges to
Py, then Py € P, for any ¢’ <c if c< oo and Py e P, if c=co.

(vi) We shall show by an example that P, is not necessarily closed.

An outline of the construction is as follows. We shall choose P, P, so
that P,— P, and that, for every k, we can find a neighborhood of P, in which
the (c+1/k)-dilated maximum principle is true. Then P, € P, for every ¢'<c
by (v) and P,& 0., for every ¢’ >c. Consequently p(Py)=c and Py&P. by
Remark in (ii).

We consider £,= §/1 [@Cr+1D7Y @) ' Ju{—1/n})U{0} as a subspace of

the x-axis and denote by 2.(a, ) the set obtained by contracting £, by the
ratio / and then translating it so that a corresponds to the origin:

s D

We set

mc,a,l(xs y):wc,a,l(y7 x):C IOg %%ﬂ

for x which is the transform of —1/» and for y which belongs to the trans-
form of I,=[(2n+1)7%, (2rn)"'], and set

1

. — for any other (x, y).
x—y|

@c, a,l (xa 9’) = mc, a, 1(9’, x): 10g T

Setting

g— Antl
" 4n(2n+1)’°

we consider £,(a,, [,) for each n; a, is equal to the middle point of I, and {i,}
are chosen so small that log |x—y|=c log |2'—y| whenever x, x" € 2o(au, l.)
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and y € £ (am, ln), m7*n. We put
0= U 2(az L) {0}
n=1

and define 0,(x, y) on » by

mc,a,,,l,,(xa y) for «, VAS Lo(an, 1),
1
Sl

We denote by o (az, I;) the transform of » obtained in the same way as 2(ay, 1)
was obtained from £, and by. &, ., ,(, y) the function obtained from @.(x, y)
similarly. We set

0. (x, y)={

log for any other (x, ).

2=\ o(az L)\ {0}
k=1
and define @ (x, y) on £ by

wc+1/k,ak, lk(x, y) fOI' Xy y S (D(Cbk, lk)7
1
o=yl

We see that a; €P..21-1 by (v). Let u be any measure supported by

log for any other (x, y).

G o(a;j, 1;)\U {0} such that it is bounded on the support. If x is not equal to
j=k

any transform of any point of 2, of the form —1/n, @(x, y) is logarithmic for
any y€ £. For such x we see that U*(x) < sup U*(y), because S, does not
yeSM

contain any transform of any point of the form —1/n. We assume that x
€ w(aj, l;), j=k, is a transform of —1/» and denote by £; the transform of
£ which contains x. We assume that . (£20)40; if x(£20)=0 then U*(x) < sup
U*(y). We have

0@=| | Oeorsopo Dau()+ | dog L du(y)

0 0
As we have seen in (i)
1
S,{)(’) ¢c+1/j,aj, ,].(x, y)d,w(}’) g <C + ]') zeSSI:rI\)_Q(') g[)o 00+1/j,éj.lj(z, y)d/b(}’)
for x € 2.
Since




On Potentials in Locally Compact Spaces 169

for any x, x’ € 2y and y< 2—%2; on account of the choice of {l,}, it follows
that

1 1 1
Ut)<|c+-—) s g lo d +S lo d
(x)_<c ) up o I:3 =71 uw(y)+e 0.0 98 T —— ()

S ’
] e IJ-n'QO 0

for any x’' € ;. Consequently

U* (%) g(c +}_) sup U"(y)<<c +_]1~) sup U*().

eSung;
The proof is now completed.
CororLrary 1. We can not replace ¢’ by ¢ in (v).
CoroLLVRY 2. Given any ¢, 1<c< oo, we can find P with p(P)=c.

(vii) Consider a kernel which s locally bounded outside the diagonal set
and positive on the diagonal set. Assume that there are a sequence {P,} of
points tending to a point Py, a sequence {u,} of measures and a sequence {V,}
of compact neighborhoods of Py with the following property: VaN\Su,= &, V, and
Su, tend to Py as a whole, U""(P,)— oo and U"*(P)<1 on Su. \JV,. Then there

is w such that U*(P) is bounded on S, and lim U*(P,)=occ. If, in addition, the

n—oco

kernel is continuous outside the diagonal set, u can be chosen so that U*(P) is
continuous as a function on S,.

We may assume that the kernel is positive. We choose a measure p,
such that U*"1(P.))>1. We set

my= inf &P, Q) and My= sup O, Q)
VixVy V]'XSIJ'”I

and choose #x, such that Su,, (¥, and U*"2(P»,) >max (4, 4Mimi*). We see that
mita,(£2)<1 and hence

Ut (PY< M, M, on Su,.
my
We set =1, By=ps, (max (2, 2M; m7'))"! and observe that
Uh(P>2 and  UE(P)<o on Sk USi; UV,

k-1
By induction we can find easily {n;} and {x:} such that Su; =Su,, CVa,_,, (j\_/1 Se;)
NSuy= &, U (P)>2"" and U*H(P)<2-#-D on S={P} U U Sii. Now we

set w=p\+up+.... Since U**(P)<2 %~V on S, U’*=§‘i U* is bounded on S
k=
=S,. On the other hand U*(P»,) =U"* (Ps,)>2F"'. If the kernel is continuous
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outside the diagonal set, each U" k (P) may be assumed continuous as a func-

tion on S. Since the convergence is uniform on S, U*=3 U"* is continuous as
k=1

a function on S=S,.

(viii) We consider a kernel which is locally bounded outside the diagonal
set and positive on the diagonal set in £x L. If P, is a point of accumulation
of O, and has a countable base of nmeighborhoods, then there exists p such that

U*(P) is bounded on S, but 1@ U*(P)=oo. If, in addition, the kernel is con-
—4£0

tinuous outside the diagonal set, the restriction of U*(P) to S, may be assumed
continuous.®’

Let us see that the conditions of (vii) are satisfied. We may assume that
the kernel is positive in £ x £. Let {V,} be a sequence of relatively compact
open neighborhoods of P, decreasing to P,. We choose a point P,€ 0., dif-
ferent from P,, a neighborhood N, of P, and a compact neighborhood 7, of P,
disjoint from N,. We set

my,= inf @ (P, Q) and M,= sup O(P, Q);
NyxNy Vax Ny
0<m, and 0< M,< oo by our assumption on the kernel. We choose a finite
number a, >max (1, M, m;") and a measure v, such that S, CN,, U"(P)<1 on
S, and sup U*" >na,. We see that m, »,(2)<1 and hence

U (o) = My (D)< .
It is easy to verify that u,=v,/a, fulfils the conditions required in the lemma.
In the above we may assume that P,, N, and V7, all tend to P, as n—>oo.

Cororrary 1. We assume that the kernel is locally bounded outside the
diagonal set and positive on the diagonal set. If each point of accumulation of
P.. has a countable base of neighborhoods, then P, is closed.

Cororrary 2. (Choquet [2]). We assume that the kernel is continuous
outside the diagonal set and positive on the diagonal set. If O_ is not discrete
and at least one point of accumulation of O. has a countable base of neighbor-
hoods, then the continuity principle is not satisfied.

However, the fact O_.=~ & does not mean that the continuity principle is
not valid. In fact, an example will be given in Corollary 4 in (Uk), (ii) of the
next section.

(ix) We consider a kernel which is locally bounded outside the diagonal set

6) Choquet [2] announced the following theorem: If the kernel is continuous outside the diagonal
set and positive on 2 x 2, then, for the limiting point P, of a sequence of points of O and for any
neighborhood ¥ of P, there exists a measure u with compact S, C¥ such that the restriction of Ur(P)
to S, is continuous and Ux(P) is discontinuous at P,. We note that no countability condition is re-
quired there. Proof is not given.
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and positive on the diagonal set in £x L, and assume that each point of ac-
cumulation of P.. has a countable base of netghborhoods. Then we have

Q=P..
If, in addition, the kernel is continuous outside the diagonal set,
Q=P..

We may assume that the kernel is positive. By the definition of Q, given
any neighborhood N of P, € Q, there exists x with compact S, CN such that
U“(P) is bounded on S, but unbounded in N. If P, is a point of S, with the
property that U*(P) is unbounded in any neighborhood of P,, then P, belongs
to P.. Otherwise there is a point of P_ in N and it follows that P, is a point
of accumulation of points of P_CO.. Consequently P,cP. by (viii). The
inclusion P, C Q is evident.

The identity Q=P.. will follow if we can choose {P,}, {#,} and {V,} as in
(vii). Assume P, €P,_ and that the kernel is continuous outside the diagonal
set. Then by (1.16) there is a measure v, such that S, contains P, it is near to

Py, U"(P)<1on S,, and lim U"(P) >n as P—P,. Let P, be a point sufficiently
close to P, such that U’*(P,)>n. Suppose that we can choose v, such that
vu({Po})=0. Then the restriction u, of v, to the outside of some neighborhood
of P, satisfies U*"(P,) >n. Since U**(P)<<U™(P)<1on S, DS, \U{P:} and, by
the continuity of the kernel, there is a compact neighborhood 7, of P, disjoint
from S, on which U""(P)<1, all the required conditions are satisfied. Let us
see therefore that we may assume v,({Po})=0. This is so if @(P,, Py)=co and

hence @(P,, P,) is assumed to be finite. If IF}} O (P, P,)=c0, evidently P, € Q.
-0
Hence we suppose @ (P, P,)< M< oo in a neighborhood ¥ of P,. Let A, satisfy
lim U™(P)>n ]Si—rn— U™ (P) as P—P,. Denote the restriction of A, to the outside
An

of Py by ), and the mass at P, by a. It follows that

lim U™ (P)+ aM>n{H U (P)+ a®(P,, Po)}.
P-P, S\,

Since M<n®(P,, P,) for large n, Ilﬁ U™ (P) >n lé_m U™(P). We divide the re-
~Py An

striction of )\’ to a sufficiently small neighborhood of P, by its total mass and
take it for v,; then v, ({P,})=0 certainly.
In the proof we have proved more than Q=P_,. Namely

CororLLARY 1. Under the assumption that the kernel is continuous outside
the diagonal set and positive on the diagonal set, a point P, belongs to Q=P,,
if and only if there is a measure i such that P, €S, U*(P) ts continuous as a
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Junction on S, and Il)ix;x U*(P)=co.

CoroLLARY 2. Assume that the kernel is continuous in the extended sense,
Jfinite outside the diagonal set and positive on the diagonal set. Then, for any
Py €D, we can find y whose potential is continuous as a function on S, and sat-

isfies ;i@ U*(P)=oco. Namely we can let a discontinuity arise at Py; in the
-0

definition of D 1t 1s sufficient that a discontinuity exists near P,.
This is because D=Q and by Corollary 1.

CoroLLARY 3. Assume the same on the kernel. Let P, be a point with the
following property: Any meighborhood of P, supports a measure u such that
U*(P) is continuous as a function on S, and

lim U*(P)>c lim U“(P)=cU*(P,)

P-Py PESM, P-Pg
with c=1. Then we find u with the same character as in Corollary 2; we can
hawve thus the inequality with arbitrarily large c.

(x) Consider a nonnegative kernel which is continuous in the extended
sense, finite outside the diagonal set and positive on the diagonal set in £x L.
Then

SFDOP, for every c¢=>1.

We assume P,&SF and that P, is not isolated in £. Then there is a
neighborhood N of P, such that the kernel is positive on Nx N and

—TNP) —  UMP)
Uy ~ v
0 TPy =€ ped L TP

whenever P, €S, CN,v € & has a compact support and U*(P,) >0. We take any
w such that S, CN, P, €8S, andP Sl“ug U*(P)< oo. If @(P,, Py)< oo, UX(P) is con-
€8y, P-Pg

tinuous at P, and P,¢&P,.. Therefore we assume that @ (P,, Py)=-co. It follows
that P, is not isolated on S,. We can find a compact set KPP, in N with the
property that

0<ssup U*E(P)< oo,

¢

where ux is the restriction of x to K. We set ux/U"k(P))=v. This belongs to
& and ;ir‘p U'(P)=U"(Py)=1. We have
-0

e — U*(P) s U*(P) -
1 (] = < = [ .
pf;% us(p) 11011;10 U'(P) = pes, p-py U(P) CPE..]#}III’—»PO U“(P)

Thus P,&P, and S* DP,.
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Remark 1. Similarly we can show S,D P, for every ¢ under the assump-
tion that the kernel is nonnegative, positive on the diagonal set and con-
tinuous outside the diagonal set.

Remark 2. If, in addition to the condition in Remark 1, @ (P, P)=c at
each point of P,, then S} D P..
Remark 3. If we do not assume that @ (P, Q) is continuous in the ex-
tended sense, S¥ PP, in general. To show this, we consider v {1/} \ {0}
n=1

as a subspace of the x-axis and define @(0, 0)=1, @(0, 1/2)=01/n, 0)=n,
O (1/n, 1/m)=min (n, m) for n=~m, ®(1/n,1/n)=-oco. For the unit point measure
w at 0, we have

cU*(0)=c< lim U*(1/n)=lim n=oco

n—oco n—oco

for every ¢. Thus 0 €P_ but S} is empty for every ¢>1.
(xi) We assume the same as in (X) on the kernel. Then

RXD VO, for every c=1.

¢’>c

Take P,&R¥. Then there is a neighborhood N of P, such that U*(P)
<cU”(P) in N whenever UNP)<<U>(P) on S, for » with S, C&y and for ve¢&
with compact support. If @(Py, P,)< oo, every potential is continuous at P,
by assumption. Therefore we assume that @ (P, P))=oco. If there exists a
neighborhood of P, which does not support any non-vanishing measure of &,
there is nothing to prove. Therefore we assume that there exists a measure
v € &, with compact support S, D P, whose potential is equal to 1 at P,. Given
e >0, we take a neighborhood N; CN of P, such that

1—c<U(P)<1+-¢ in N;.
Take p such that S, C NV, and V(,;J)zs;lp U*< . Since
I

UH(P)=QA—e)"'V(w) U*(P) on S,
we have
UF(P)<c(1—e) " V() U’(P)<c(A—e)t(A+¢) V(w) in M.
This shows that P& O,1.¢)1-) and hence that
RY D O0;14e)/1-0)-
Therefore
R¥D VU O,.

c’>c¢

Cororrary. Consider a kermel which is nonmmegative, continuous outside
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the diagonal set and positive on the diagonal set. Then
R.DOP..
If, in addition, the kernel is continuous in the extended sense, then
R¥DP..
These facts are proved by making use of Remark in (ii).

Remark 1. Similarly we ean show R.D U O, under the assumption that
¢r>c .
the kernel is positive on the diagonal set in £ x £ and continuous outside the

diagonal set.

Remark 2. If, in addition to the assumptions in Remark 1, &#(P, P)=oco
at each point of P, then R} D> U O,..
c’>c

Remark 3. In the example in (x), R¥=¢& but 0€0...

Remark 4. If a kernel is locally bounded outside the diagonal set and
positive on the diagonal set, then R,.= & for some ¢>1 implies O_= &.

(xii) Let c=1 be given. There.1is a positive symmetric kernel which s
continuous in the extended semse and finite outside the diagonal set, and for
which R, DO..

Lemma. Consider a positive symmetric kernel which is continuous in the
extended sense and finite outside the diagonal set. In order that (Uy), (c=1) be
true the following condition is necessary and sufficient:

Let € & be any measure with compact support and P, be any point outside
S.. If

U (P)=0 (P, P,) on S,

then U*(P)< cO (P, Py) everywhere in L.

This will be given as Corollary to Theorem 2.44 and we omit the proof
here.

We consider

o3l Lo

as a subspace of the x-axis and set, with any positive number d< (2¢)7},
0(0, 0)=oo,
@(0, L)= @(L, 0>=n,
n n

11y .
@(*, 7>—m1n (nr, m),

n
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a)(o, —J_): a)(—i, O>=n +a
n n n
1 1y . d 1
¢<~T, ?>—m1n (n, m)+ min G, m) T ) n=m,
1 1\
0= =)=
a)(—_1~,—1— —of . ——1—>=min (n, m)Jri n==m,
n \ n n
1

This is a positive symmetric kernel which is continuous in the extended sense
and finite outside the diagonal set.
We consider the unit point measure p, at x=1/n. Then

u, /1
snp U "=U#"K——>=n
S n

o

and

Therefore

sup U””(x)@c(n +-Z—>>c %up U,

~1l/n=x=lin
[ By

This shows that 0 € O..
Let us see that 0¢&R,. Let x40 be a measure in &, and set a,=u({1/n}).
For x,& S, assume that

U (%) < @ (x, x0) on S,.

First we consider the case xy=1/n,>0. The inequality reads
e (L) =Y kay 471 S) @, <min (n, no) if 1/n€S,.
n k=1 k=n+l

For the largest number 1/n; in S,, we have

U"(L>=n1 ‘%akg@(L, L)zmin (ny, no) <my

n n 2

and hence the total mass %‘, @, <<1. Therefore, for n<n,,

U* (—1—>§ n > ap < n.
n %
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If S, C[1/n, 1], we have, for 1/2€[0, 1/n,],
1
Uﬂ(n) S_,kak (no)éno.

If S, [1/no, 1], we have, for 1/n& [0, 1/no],

0 (,1_> =3y UM<L

n (2]

)g 20,

where 1/n,>>0 is the smallest number in S,. Thus U*(1/n) <min (n, ny) for
any n<Z oo, Next we observe

U"( 1 ) Lkak+c(n+~é~)an+n M ak+*Lak

n k=n+l n

gc(% ak+n§ ak)+—2,ak (c—l)(E_I kap +n _%i ar)
<c U"(—l—) o < ¢ min (n, noy) +i <c¢<~L, —1«>
1] N n ()
for finite n. Thus it is concluded that
Ur(x) <cO(x, x0) for any x€ £2.

Secondly we consider the case x,=0. Let 1/m; be the largest number in
S,.. Since

U"<~1*>=n1 PN @<L, 0>=n1,
ny k ny
the total mass %‘, a,<1. Therefore, for any n, >0,

UM( 1 > Lkak-i-n Z ak<71»2.ak<n~¢(w,0>

n k=n+1

and

U"< ___1«> < cU“<—1—> + od <en +ﬂ =c¢< _L, 0)_
n () n n n
Since U*(0) <<c@(0, 0)=co, U*(x)<<c®@(x, 0) in all cases.
Finally we consider the case xy=—1/n,, and let 1/n; be the largest num-

ber in S,. We have

Un( 7}1 ) n Zak<a)<_li1? 1 )< {mln (n1, n0) +i} <e <n1 +_Cl07>
Hence
(117) Zak = C<1+ nodnl )
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On the other hand let 1/n, >0 be the smallest number in S,. Then

U#(;) St hay <a;( 12 %)écimin(no,nz)-l—nio}.
If ng<n=< oo,
(L))l )2 2)

Consequently we shall consider » such that n<<n,. If, in addition, n<n;, then
by (1.17)

U"(—%>§n}k']ak§cn<l+ d >§cn+c—c—l—§60)<—1—a _L>

g 1y o

For n>n,, it follows that n,<n, and

U"<i>=2kak=U“<i>gnz + 94 -y +i§q)<_1_, _L)
n % ny . o o

n o
If ny<n<n,, we take the nearest greater number n, and the nearest smaller

number n; in S,: ny> n >n3; n3<<ng because n=<"ny. It holds that

73
U#(L): ST kay+ns }_. ar < q)( - __1_):,13 +i
3

3 k=1 =ny o 4

and

U"(—l—): % ka, +n4 Z a <@( 1 —L)gc<n4 —l—i>

In k=1 k=ny Y2 o

We consider the following linear expression in «:

(C—L ak)x+?— Zkak

._n4

This is nonnegative for x=ns; and n,. Hence it is so for any » in between.
Thus

U"< 1 ) Zkak +n 2_. ak<c(n+—d—>< @( 1 , ,_,1‘)'

n n 10

Next we shall evaluate U*(—1/n). Naturally

U“<_j_><c@<_L, __1.)200_
o o g -

If 1/n€S,, U*(1/n) <01 /n, —1/n5). For n<no, we have as before

U“(—%) _ch’“‘<—1—>)+ﬁ > ap.

n n k
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It follows that

U"(——L)gca)(—l—, - > La -—cn+~ci+ Za
n n
=Cw<——_1_, —-..1__>—-ﬂ+ d +__§_,ak
n Ty n Ty no
— cgp<__L’ _.__,L>_A,
n o
where
A:ﬁ_ﬁ_FL__El_Zak_

n o no n "k

Let us show that 4>0. First we observe that, if 1/», is the largest number
in S,, then 1/n; >1/n>1/n,, and we derive

I
g 111
as before. We see then
A_d_d 1 _ds,>4d_d_ 1 i(HJ,,,)
Cc n o o n k n o o n g 11
2
=—1—(1~d~ d )gl 2d>0
o nmny / o

Thus

We have, for n > n,,

U"< )S @( >+ a cno-l-c——-l—ic—leak

n k
( 1 1
c —_— —_——
n o
_1

-
seo(- 2 2)

n T3

ﬁ
4

_C
n

I

<1+ nodm > <Cw<—_rlz—’ —7—:{)’

where we used (1.17).
If n=~ny and 1/n&S,, then a,=0 and

n—1 oo
U"(—L)= Dkar+n > ak+—d—2ak=U"(L)+iZak.
n E=1 [ Frrs] n % n

We know that
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U*‘(%) §c¢<—1—, ——1—): c{min (m, n0)+ni0;» for n=£n,.

n o

By (1.17) we see that

U“( )g {min (n, n0>+ni}

i)

{ +i+__< } < —]——+~—>-c@< 1 L) for n<ny,
:{ {n0+i+—< n1n0>}<c<n0+——+—1—> C¢<—U7ll”—7:ll‘o>
for n>n,.
In any case
(=) =eo(= )
Consequently

U* () < cO(x, x0)

is concluded for any x from the inequality U*(x) <@ (x, x,) assumed on S,.
Let » be any measure whose potential is defined everywhere in £ and
satisfies U*(x) <U”(x) on S,. By Lemma it follows that

Ut(x) < cU”(x) everywhere in £.

This shows that 0¢R,.

We have proved more than 0 € O, —R, in the above. Actually 00O, and
(Uy), is satisfied. In case c=1 this example gives (D)-»(F), although we
showed already (D)->(B’) in (VI) of § 1.3.

1.5. Global properties of potentials.

Under this title we shall investigate some principles, in particular, (FV),
(UV) and (Uy), in connexion with the local properties obtained in § 1.4.

(FV)and (UV). (i) Let c=1. If
(1.18) lim U*‘(P)Sc lirg . U*(P)

PPy
for every measure u with compact support and at every point Py on S,, then
(UV), is true; in case P, is isolated on S,, we let the value cU"(P,) replace the
right side of (1.18). Conwersely, if the kernel is continuous outside the diagonal
set and nonnegative in £x 2 and if (UV), is satisfied, then (1.18) is true for
any p with compact S, and for any P, € S,.
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Proor. The first part is easily proved by Heine-Borel’s covering theo-
rem. We suppose that (1.18) is not true with ¢>1 for some x with compact
support and for P, not isolated on S,. Using the same notations as in (ii) of
§ 1.4, we have

lim U*Vi(P)=ay,>c sup U“vi(P)
e

PoS
My V1

by (1.16), where ;iga U*v1(P) is defined by igf sup U*v1(P) for open set G
s c S
D Suy, =ViNSe Thus (UV), is denied. If P, is isolated on S. and ;irlr} U~(P)
. -0
>cU*(P,), we have, for the restriction y, of 1 to Py,

EEP U (P)>cU(Py)+(c—1) U™ 0(Po) = c U™ (Py)
-0
and it is seen that (UV), is not satisfied. Finally suppose that (1.18) is not
true with c=1. We can find ¢/>1 with which still (1.18) is not true. Then
we see that (UV),. is not satisfied. Naturally (UV),;=(FV) is not satisfied.
By (ii) of § 1.4 we see that (1.18) is true if U O..= g. Hence we obtain
c’>c

Cororrary 1. Let c¢>1. Consider a nonnegative kernel which is continu-
ous outside the diagonal set. If O.. is empty for every ¢’ >c, then (UV), is sat-
isfied.

In case c=1, this corollary was given by Choquet [2] as Proposition 3.

From (xi) of § 1.4 and Corollary 1 follows

CororLLARY 2. Let c=1. For a monnegative kernel which is continuous
in the extended sense, finite outside the diagonal set and positive on the diagonal
set, (UM~ (UV),. In particular, (D*)— (FV).

(i) Let c=1. If (1.18) is always true, then P.= & . If a nonnegative
kernel is continuous outside the diagonal set in 2x £ and if P.= &, then (1.18)
18 true.

Proor. The first assertion is obviously true. Next we assume the ex-
istence of 4 and P, such that (1.18) is not true. Let N be any compact neigh-
borhood of P,, and denote by uy the restriction of 4 to N. Then S., CN
and

lim U"N(P)>(c—1) U Py +¢ lim UNP)=c¢ lim U"N(P).

P-Py PES#,P—»PO PES#N,P—-J’O
This shows that P, e P,.

Combining (ii) with (i) we have

CororLrAarY. Let c>=1. If a nonnegative kernel is continuous outside the
diagonal set, then (UV), is true +f and only if P.= &.
(iii) Let c=1. Consider a nonnegative kernel which is locally bounded
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outside the diagonal set and equal to co on the diagonal set. Lf (UV), is sat-
isfied, then O.. has no point of accumulation for every ¢’ >c.

This follows immediately from (v) of §1.4. In case c=1, this was stated
by Choquet under a slightly different condition.”

(iv) Examples to show (U)->(FV) were given by Kunugui [17] and Choquet
[2]. Here we reproduce the example of Kunugui (p. 77).

Example for (U)->(FV). £=EFE;and 0(P, Q)=PQ % 0<a<1l. On a half
line issuing from the origin 0 we take points {P,} such that OP,=1/n. We
set

h—1—_ 1 ~p
2

-2)
a
and choose ¢, 0< ¢ <k,/2, in an arbitrary manner. We set also

C

dp=———.
2" 2y (n+1)

We denote by C, the spherical surface with P, as center and d4.'* as radius,
and by ., the uniform measure on C, with total mass d,. The support of .

=i 1, 18 equal to U C,{0}. We can see by computation that
n=1 n=1
v (r,)=1 and U"(P)=2""1—a/2)" on C,,
and that, for m=~<n,

- c
U (P)< g on C,
and
el (1) ———
O)< 2"+ (n+1)
Therefore
U+(P,)>1
and
: U“(P)<2‘“(1—a/2)'1+c<1—kw+—k2i: 1 ——"21<1 on S,.

Namely, for any neighborhood 7 of S,,

sup U*(P)>sup U*(P) +£,
Pev Pes, 2

7) Proposition 4 of Choquet [2].
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contrary to (FV). It is well known that any a-kernel PQ~* satisfies (U).

(v) We shall complete the relations of (FV).

Example for (FV)->(Bi): £2={0}uU{l} and 0(0,0)=0(1, 1)=1, @#(0, 1)
=0(1, 0)=oco

However, if we assume that @ (P, Q) is continuous in the extended sense
and finite outside the diagonal set, not only (Bk) but also (Bk) follows obvi-
ously from (UV). The fact that (FV)->(B’) is seen by the example @ (P, Q)
=PQ in E;. The example given before for (B) > (Ug) provides an example for

(FV)~>(Uy). Actually if we use the same notation p= i 1, as there and if
1s the highest subseript with uy==0, then we have U#(P)< sup U“(Q) on
V—U [@r+DY @2n) ], If0€S,, then U* (P)ggg}; U*(Q) in the whole £.
It is evident that (F)— (FV) and we have now
(1.19) W FV)Z Bk

K
)

If (P, Q) is continuous in the extended sense and finite outside the diagonal
set, we have

(1.20) B)ZEFEV)Z(Bx)
¥
(Ux)

It is easily observed that Example 3 in Ohtsuka [7] satisfies (FV). Hence
(FV)->(P). Since (FV)—(Bk)— (C) and Example 2 in Ohtsuka [ 7] shows that
(E)~>(C), it follows that (E)-~>(FV). Taking (1.19) and (1.20) into considera-
tion, we have

(P) (E)

(FV)

|

(Ux)

)
F)\\ ////’ (B
(1.21)
- -

- (Bg)

(vi) First we shall give an example for (Ux)->(UV) and then establish
relations of (Ux) with other principles.

We found in (vi) of §1. 4 a compact space, a positive kernel which is con-
tinuous in the extended sense and finite outside the diagonal set and which



On Potentials in Locally Compact Spaces 183

satisfies (U)..1, and a point P, of the space with p(P))=c. For every », we
take such a space K,, a kernel @,(P, Q) satisfying (U),,, on K, x K, and a point
P,€K, with p(P,)=n. We consider the sumspace £ of K,,n=1,2,.., and
define the kernel @ (P, Q) on £ x 2 by

?,(P, Q) if P,QeKk,,
(P, Q)= { .

1 otherwise.
It is easy to see that (Uy) is satisfied. Since p(P,)=n, (UV). is not true for
every c=>1. Thus (Uyx)->(UV).

This example shows also (B)~>(UV). Let us still consider positive kernels
which are continuous in the extended sense and finite outside the diagonal
set. Then we see (UV)->(Uyg), (UV)-~(®B"), (UV)->(U), (UV)->(P) and (UV)
~>(FV) in view of (1.20). It is easy to see (UV)—(Bx), and as in (iv) we ob-
serve (E)->(UV) and (UV)~>(P). Thus we have

(P) (E)
//(BK>

(1.22) (FV) . (uv) <—— (B)
2w

for kernels which are continuous in the extended sense and finite outside the
diagonal set.
For general kernels we obtain, in view of (1.19),

(1.23) FVHZUV)&(Bx)

¥
)

(Ux). () If (Uy) s satisfied, then O.= . Conversely, 1f O.,= g for a
nonnegative kernel which is locally bounded outside the diagonal set and positive
on the diagonal set in 9 x 2, then the kernel satisfies (Ux).® -

Proor. It is obvious that O.= g if (Uy) is satisfied. Let us assume that
O.= & and take a compact set K in £. At every point P€ K there are a rela-
tively compact open neighborhood Ny of P and a constant ¢p such that

(1.24) sup U*(Q)=cp sup U“(Q)

QeNp

for any p with S, CNp. In each Np» we take a compact neighborhood N5 of P.

8) This result is stated in Choquet [2].
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We can find N5,,..., Np, which together cover K. We set F= k\njl Np,. Letp

be any measure with S, C N5, and with sup U*< oo. By our assumption, U*(P)
"
is bounded on F—Np, because

{(Pa Q)a PEF—NPw QES#}

is a compact set disjoint from the diagonal set in £ x £. Combining this fact
with (1.24), we see that U*(P) is bounded on F. By Lemma 1.2 of (I) in § 1.3
it follows that there is a constant ¢,=c(/Np,) =1 such that

sup U*(P)=<c, sup U*(P)=c;cp, sup U*(Q)
PeF PeN%,k QESF_

for any p with S, CNp,.
Now let » be any measure with S, CK and decompose S, in such a way

that SAzg/le and each F, is a compact set contained in Np,. Denoting the

restriction of A to F}, by \,, we have
n n
sup UM(P)< >) sup U¥(P)< D) chep, sup U™*(P)
PeK k=1 PeK k=1 PES)\k
< (>} ckcp,) sUp UNP).
k=1 PeS)

This shows that (Uy) is satisfied.
Since the new O_ is empty if we restrict us to the space 2—O0._, we have

CoroLrary 1.  Consider a nonnegative kernel which is locally bounded
outside the diagonal set and positive on the diagonal set in £x 2. Then it sat-
isfies (Ux) in £ —O0.., this being considered as a space.

CororLARY 2. We consider a kernel which is continuous outside the diago-
nal set and positive on the diagonal set. If (Uy,,) is satisfied, (Ux) is true.

Proor. Let K be any compact subset of £2. By the relation R,D> U O,
c’>c

given in Remark 1 in (xi) of § 1.4 it followt from (Ug ,) that O.NK=¢g for
some c< 0. Therefore O_= g in L.

If we can show that U*(P)>=0 on K for any px€ &, then we can apply
Lemma 1.2 to show (Uy) in the same way as in (i). So we give

Levma 1.8. We consider a kernel which s continuous outside the diagonal
set and positive on the diagonal set. If (U¥) is satisfied, U*(P)>0 in 2 for
any p€ & with compact support.

Proor. Take any €& with compact support and assume that there are
points P, and Q, such that @ (P, Q;)<0. We take a compact neighborhood N
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of Q, such that @(P, Q)>0 on Nx N and @(P,, Q)< 0 for Q€ N. Let us assume
that (U¥). holds. If x(N)50, we denote by p, the restriction of n to N.
Then U“N(P)< U*N(P) on Su,=S. N N with k>max (1, 1/c) and hence U"¥ (P)
<cU™N(P)=keU"N(P) in Q. ThlS shows that U"¥(P)>0 in £. In particular,

vtspy=| 0, Qau@z0.

This contradicts the fact that @(P,, Q)<0 for every Q€ N. Thus it is proved
that, for every Q€ S,, (P, Q)=0 for all P 2. Therefore U*(P)=0 in £.
If we use the relation R} D U O, proved in (xi) of § 1.4, we have
c’>c

CoroLLARY 3. We consider a kernel which s continuous in the extended
sense, finite outside the diagonal set and positive on the diagonal set. Lf (Ui )
1s satisfied, (Uy) 1s true.

CoroLLARY 4. There exists a positive kernel with the following property:
It is continuous in the extended sense and finite outside the diagonal set, it sat-
18fies the continuity principle and O is not empty.

Proor. We consider the example for (B)->(Ug) in (II) of §1.3. By the
above result O_ is not empty. Since (B) is equivalent to the continuity prin-
ciple for our kernel, it fulfills all the requirements.

(i) We shall show that the above-stated condition on the sign of the kernel
on the diagonal set is really necessary.

First we give

Example of >0 for (D)~ (Uy): £= \jl{l/n} v {0}, @0, 0)=0(0, 1/n)

=0(1/n, 0)=0, ®(1/n, 1/m)=(m)"'. Let n€&, 10, and assume that U*(x)
<U’(x) on S, with some ». We denote »({1/n}) and v({1/n}) by a, and b,
respectively. We have

 E S I e S S
i-1 nk k=1

n

If l/llo S S,,,,

Vx

i g % and hence V% sy O
=1

-

Therefore U*(1/n)<<U"(1/n) for every n. Since U*(0)=U"(0)=0, U*(x) < U’ (x)
is true in . If S,= {0}, U*(x)=0 everywhere and U*(x)<U’(x) in £. Thus
(D) is satisfied. On the other hand, if we give a point measure p, at x=1/n
with mass »?% then U**(1/n)=1 but U*”(1)=n and (Ux) is not satisfied.
Example of @=~0 for (D)~ (Uy): £={0}U{l}, @0, 0)=—-2, 6(1, 1)=1,
0(1,0)=—1,0(0,1)=2. Let x be a point measure at 0 and v be any measure
such that —2u(2)=U*(0)<<U’(0). If we denote the restrictions of v to the
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points 0 and 1 by v, and v, respectively, then U’(0)= —2u,(£) + 2v,(2) = —2u(2).

We have Ur(1)= —p() < —v1(@)+v:(2)=U"(1). If 1 is a point measure at 1

and U*(1)<U’(1), we see similarly that U%(0)<<U”(0). Thus (D) is satisfied.

On the other hand (Ug) is not true because, if sgp Ur<c s181p U* with ¢>0 for
3

any u, then we see that ¢ >2 by considering the unit point measure at 1 and
also that ¢<{1/2 by considering the unit point measure at 0.

There is a kernel which has general sign on the diagonal set and satisfies
both (D) and (F) as the following example shows:

L£={0} U {l}, 000, 0)=0(0, H)=—-1,0(1, 1)=0(1, 0)=1.

However, if we require furthermore that the kernel is symmetric, then
there is no kernel which has general sign on the diagonal set outside {(P, P);
P< Gy} and satisfies both (D*) and (Uk), where G, is the set of points each of
which has a neighborhood supporting no non-vanishing element of &. To
prove this, assume that Q, is a point with @(Q,, Q,)<0 and Q; &G, is a point
with @(Q, Q;)>0. We denote by p, the unit point measure at Q,. Naturally
p €& and 0€&. Since U (Qo)=0(Qo, Qo)< 0=U’(Qo) on Su,={Qo}, it follows
by (D*) that U"(Q)=0(Q, Qo)=0(Q,, Q)0 for every Q< £. Let V be a com-
pact neighborhood of Q; such that @(P, Q)>0 on V'x V, and u,2<0 be a measure
of &y. Since U"W(P)<U*1(P) on Su,, U1(P)<U*1(P) in £. Hence U"(P)=0

in £. In particular 0 U “I(Qo)zgm(Qo, Q)du:1(Q). We have seen that @(Q,, Q)

<0 for every Q € 2. Hence there is at least one point Q] € ¥ at which @(Q,, Q1)
=(. Therefore

U"(Q)=0(Q4, Qo)=0.
On the other hand
V(o) = %uP U =U"(Qo)= 0(Qo, Q)< 0.

0

If we take for K the union of Q, and V, there is no ¢(K)>0 which satisfies
sup U 0 < e(K) V(o).

Finally we give

Example of #< 0 for (D)->(Ug): !2=”\Z{1/n} v {0}, ©#(0,0)=—1, #(0,1/n)
=01/n, 0)=—1/n, @(1/n, 1/m)=—(mm)~!. It is shown as in the first example

that (D) is satisfied. If we denote by u, the unit point measure at 0, then
U*(0)=—1 and U"°(1/n)= —1/n. There is no ¢ >0 which satisfies

U“0<—1—> < ¢ sup U= —¢
n S’u

0

for each n.
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(Bk), (Bk) and (C). It is easy to verify:

(i) Consider a kernel which is locally bounded outside the diagonal set. A
necessary and suffictent condition for (Bk) (Bk) resp.) to be true is that Q= &
(Q'= & resp.).

(ii) Consider a kernel which is continuous outside the diagonal set. A
necessary and sufficient condition for (C) to be true is that D= & .

1.6. Topologies.

We shall introduce several kinds of topologies on the class .# of all meas-
ures . in £, on the class .#, of measures, whose potentials are bounded from
below on every compact set in £ and not identically equal to o, and on the
subeclass & of .#, of measures with finite energy.

1) Vague topology.

Let €,(£) be the set of continuous real-valued functions with compact
support in £. The vague topology is defined on .# by the semi-norms u—v

ﬂ{gfdp—gfdu , f€%u(£). The space .# is then a Hausdorff space. We

call a set HC .# vaguely bounded if each semi-norm is bounded on H. This
amounts to say that, for every ecompact set K £, sup u(K)< oo,
neH

We state two facts which will be used later; see Bourbaki [1] and Fuglede
[1] for them.

Prorosition 3. Any vaguely bounded set H is relatively compact in 4 with
respect to the vague topology.

Prorosition 4. Consider a nonnegative kernel or the class #x of measures
which are supported by a fixed compact set K. Then the mutual energy (u, v)
18 lower semicontinuous on M X M or on M g X Mg respectively. Also U*(P) is
lower semicontinuous as a function on A X 2 or on M xx K respectively.

We consider the unit point measure at every point of £ and define a
topology of £ by the vague topology of the corresponding unit point measures.
" Then this topology of £ coincides with the original topology of £.

2) Fine topology.

This was first introduced by H. Cartan [6] for the Newtonian kernel.
We shall denote by % (:? resp.) the set of measures \ € .#, with the property
that (\, ) ((u, \) resp.) is defined and finite for every u € .#,. Obviously £ Cé&.
The fine (adjoint fine resp.) topology is defined on .#, by the semi-norms p—v
1O 1) = )|, NEL (—v—> (s N)— (v, \)|, NEZ Tesp.). The space .4,
with this topology may not be a Hausdorff space.

In case there is no P for which @(Q, P) (#(P, Q) resp.)=co as a function
of Q, we define the fine (adjoint fine resp.) topology of £ by the fine (adjoint
fine resp.) topology of the corresponding unit point measures; every point
measure belongs to .#, in our case. This is the weakest topology which makes
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all potentials (adjoint potentials resp.) of measures of ,?(,é’ resp.) continuous.
We shall discuss the fine topology in £ later (not in this paper).

3) Weak topology.

Under the assumption that the kernel is of positive type, the weak to-
pology is defined on & by the semi-norms p—v—|(z, u)— (=, v)|, = €&, pro-
vided that (=, 1) and («, v) are defined and finite.” The space ¢ with this
topology may not be a Hausdorff space.

4) Strong topology.

Under the assumption that the kernel is of positive type, the semi-norm
I o—v||=+ (e, p)+ (@, v)—2(, v), considered under the condition that (x, ») is
defined, defines the strong topology on &. This may not give a Hausdorff space
again. A Cauchy net in & with respect to this topology will be called a strong
Cauchy net.

H. Cartan [5; 6] proved in the Newtonian case that, in the space &, the
strong topology 4) is stronger than the weak topology 3) and 3) is stronger
than the fine topology 2), and that, in the space .#,, 2) is stronger than the
vague topology 1). He showed also that, if the energy of each element of a
sequence in & is bounded, then the first three convergences are equivalent.

Let us consider a general kernel of positive type. Obviously 4) is strong-
er than 8), and 3) is stronger than 2)on #. However, we give

ExampLE 1 to show that 2) is not stronger than1). For £ we take E; and
two points P, and P, which do not belong to E;. We preserve the topology of
E; and regard P, and P; as isolated points. We set

O (P, P)=0 (P, Py)=oo,
¢<P1, Pz):Q(Pz, Pl)ZQ(P, P,')———Q(Pi, P)zl for PeE; and Z=1, 2,
o(P, Q)=PQ" for P, Q€ E;.

We observe that % is a subclass of the #-class in E; for the Newtonian kernel
and each measure of # has a finite total mass. We denote the unit measures
at P and P, by x; and p,.  Since (A, p1) =0, p2)=M£) for every A€ %, p; and
w2 are not separated in the space .#, with the fine topology. This shows that
2) is not stronger than 1) because .# with the vague topology is a Hausdorff
space.

We note that the energy and continuity principles are satisfied but u,
e & & in this example.

Next we are concerned with a net 7 in & with bounded energy. Without

9) Choosing 7y, -, ™, in & such that each (n}, u) is defined and finite,
f\l{VE ¢ ; (y, v) is defined and |(wy, p)—(mp ¥)| <1}
k=

is taken as a neighborhood of x and all such neighborhoods constitute a base of neighborhoods of
e
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any condition there is no equivalence relation among 1), 2) and 3); the situa-
tion is different from the Newtonian case.

ExampLe 2. We shall show the existence of a kernel, satisfying both the
energy and continuity principles, and a strongly converging sequence of meas-
ures which does not at all converge vaguely. We consider a positive con-
tinuous strictly positive definite function ¢(x) defined on the x-axis. We take

for £ the subset \Z {1/n} U {—1} of the x-axis and define
1 1) 1 1°
o( )=l )

o( -1, )=0( - ~1)=( )
0(—1, —1)=¢(0).

This kernel satisfies both the energy and continuity principles. We denote
by u, the unit measure at the point x=1/n, and by p, the unit measure at »
=—1. We see that (u,, px)=¢(0) for every n and that

(pn— 205 fin ~Mo)=fp(0)+¢’<0)_2‘p<—71z_>

tends to 0 as n—oco. Hence the sequence ), po, p2, o, -~ cOnverges strongly
to u. However, it does not converge vaguely at all.

ExampLe 8. We shall show the existence of a sequence of measures, with
bounded energy and supported by a fixed compact set, which converges vaguely
but not finely.

We modify Example 9 of Ohtsuka [7]. Let K, be the segment 0 <{x <1,
y=0 in the (x, y)-plane E,. We define @(P, Q)=0(Q, P) in a neighborhood
VxV of Kox K, as in that example and by PQ~' for every Q if P lies suffi-
ciently far, say outside a neighborhood 7; D> ¥V of K,. For other pair (P, Q) we
define @(P, Q)=0(Q, P) arbitrarily so that it is continuous in the extended
sense and finite outside the diagonal set in E, x E,. The uniform unit measure
1o on K, belongs to #. In fact, as P approaches K,, U“°(P) stays bounded as
is calculated in the quoted example. Therefore if 1 is a measure for which
U*(P)#= oo, and if 1y, denotes the restriction of x to V;, then

(/““Vp o) = Sg u'e d/LV1 = Sll}p Uo. #(V1)< o
. 1

and

1
(=puvs o) = SS}’;Q d(p—pv,) dpo = SK U1 dpo,

where U“™*v1 is the potential of p—py, with kernel 1/PQ. Since it is con-
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tinuous in V3, it is bounded on K,. Therefore (i — v, o)< oo. Thus (s, o)< oo
for any p with U*(P)s=c and it is concluded that y,€.2. Now we take the
uniform unit measure on the segment K,,: 0 <x<1, y=1/nfor x,. Obviously
it converges vaguely to uo. If n is sufficiently large, then K, C¥V and

v 1 _ 8
o Vla—El dx dé:--—?.

However, lim U*(P)=4 as P approaches K, along K,. Therefore

(pns pon) = (g0, o) = S: S

lim o, o) 24>~ = i, o).
Thus {u.} does not converge finely to p,.

In this example the kernel neither is of positive type nor satisfies the
continuity principle. We shall give later an example in which the energy and
continuity principles are satisfied and yet there exists a sequence of measures
with bounded energy and converging vaguely but not finely; see Remark 1
to the corollary of Theorem 1.8.

Fuglede [17] denoted the following condition by (CW):

Any vaguely convergent net in & with bounded energy converges weakly
to the vague limit.

Let us denote by (CW)’ the following weaker condition:

Any vaguely convergent net in & with bounded energy and supported by
a fixed compact set converges weakly to the vague limit.

First we give

Lemma 1.4. If the kernel is of positive type and satisfies the continuity
principle, then every v €& can be approximated with respect to the strong to-
pology by the restriction v, of v to some compact set K with the property that
U E(P) is continuous in £.

Proor. Given ¢>0, we choose a compact set K; such that [v—vg [|<e
where v, is the restriction of » to K;. Since the subset of K;, where U %1(P)
is finite, has a vanishing v-value, we can find by Lusin’s theorem a compact
set K C K; such that v(K; —K) is arbitrarily small and the restriction of U %1(P)
to K is continuous. We shall denote by vx the restriction of v to K. Since
U k17"E(P) is lower semicontinuous, the restriction of

U'E(P)=U"k1(P)—U"E1""K(P)

to K is upper semicontinuous and hence continuous on K. By the continuity
principle, U'%(P) is continuous in 2. Let us suppose that we have chosen K
such that [lug, —vk||<e is satisfied. This is possible because

i —onl=, 0@ Q@ d@©
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approaches 0 as v(K; —K) tends to 0. We have then
[v—vell <My —vi [ + [l ve, —vrll < 2e.
Now we prove

Turorem 1.1.  If the kernel is of positive type and satisfies the continuity
principle, then (CWY 1s satisfied.!”

Proor. Let 7= {u.,; o € D} be a vaguely convergent net with [u|| <M< e
and S, CF, a compact set, and let x, be the vague limit. By Proposition 4

floll = lim ||, ]| < M< oo,

For given ve & let vz be a measure with the property described in Lemma
1.4. If ||v—vgl|<e we have for p,eT

|(V> ll’m)_(’)K: /J'm)] =< ”V— VK” “//JH <eM.
Similarly
[y po)— (i, o) | = eM.

We take a continuous function f,(P) with compact support which is equal to
lon F. Then

lim (vk, p,)= lim S UVKfo d/bﬁ,zg UVKfo d/ﬁozg UVKd,uo———(VK, 140)-

Since

|(V7 Iu’w)_(vs /1’0>| é |(V> Il’w)_ﬁ(VKa Mw)l + I(VK, ll’m)~(VK9 :U’O)l
+ ‘(VK> /‘60)_(’)) /"’0>t§2€M+ l(VK) /Lac)—(VK’ /Lo)l)

we see that

hm (V) /‘(’m):(’)) /V!’O)'
Thus T converges weakly to 1.

Exampre 4. We shall show that the energy principle alone is not suf-
ficient in Theorem 1.1. We take a positive continuous strictly positive de-
finite function ® (x) on the x-axis, and a positive bounded lower semicontinuous
function +r(x) which has a discontinuity at x=0. We take the interval [x| <1
for £ and shall show that

D (o, y)=P(x—y) r(x) P (y)

10) This was essentially proved in Ohtsuka [17].
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satisfies the energy principle. Let u, v be different measures in £. Then

S dp and S Jdv can be regarded as different measures in £. It follows that

[} 06 9= @ a9 ) =[] oo =) = y@)@ i) (>0

We denote the unit measure at x=1/n by u, and the one at x=0 by p,. Evi-
dently p, converges vaguely to u,. We observe that

(s )= (1)

and
i 0=t (1) 40000 1 (1)
7 p(0)*(0)=(tro, o),

which shows that ., does not converge weakly to . Thus (CW) is not true.
Fuglede gave a similar example, i.e. Example 5 in [1].
This kernel is not continuous even in the extended sense. So we raise

Question 1. How about if we require the continuity in the extended sense?

We have only one example, Example 2 of Ohtsuka [[7], of kernel with the
following property : It is positive, symmetric, continuous in the extended sense,
equal to oo only on the diagonal set and satisfies the energy principle but not
the continuity principle. It is easy to see that this example does not answer
Question 1.

The next problem is as to when the weak (fine resp.) convergence im-
plies the vague convergence. By Bourbaki[1] a family of nonnegative func-
tions is called positively rich if, for every compact set K in £, we can find a
relatively compact neighborhood N> K such that every nonnegative continuous
function with support contained in K can be approximated arbitrarily close
by functions, with support contained in N, of the family.

We have as in the Newtonian case (see H. Cartan [5; 6])

Tueorem 1.2, If the family of nonnegative functions with compact support
of the form

k}_‘ick Ut v =0, pg € & (€ L resp.)

18 positively rich, then the weak (fine resp.) convergence implies the vague con-
vergence.
Next we establish

TueoreM 1.3.'Y  Suppose that the kernel satisfies the energy principle and

11) This was proved essentially in Kishi [17].
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(CWY. Then every weakly convergent net T= {u.; ® € D} in & with bounded
energy and supported by a compact set K converges vaguely to the weak limit.

Proor. First we observe that min || x| for unit measure p€ &y is at-
tained by some measure p*. In fact, we choose a sequence {u,} of unit meas-
ures of &x such that ||u,]|—inf |x]. By Proposition 3 there is a subnet {u;;
@ € D} of {u,} which converges vaguely to some unit measure »*. By Pro-
position 4 it holds that

@ (o> o) = (™, p*)>0.

It is easy to see that u* € &x and our observation is justified. The assumption
lpol] <M, o€ D, implies that u,(K) is bounded for €D, because

! M

o<ipiz] | <2
"l o) ._

Now suppose that T' does not converge vaguely to the weak limit .

Then there exists f€ %,(£2) such that S fapo—~ S fdpo, o€ D.  Let T'={p,; o

€D’} be a subnet of 7' such that lim g [y = g fdy exists.

By Proposition 3, there is a subnet 7”7 ={u,; o’ €D”} of T’ which con-
verges vaguely to some measure u;. This y is different from x, because lim

w

S fdps= S fd o= S fdme. By condition (CW), 7 converges weakly to uj.
Since (v, pz0)=lim (v, p%,):lir'n vy pg)=(, o) for any ve &, it follows that (v,

—po)=0. Taking uo and pg for », we have ||z —pol|=0. Consequently =0
by the energy principle. This is a contradiction. Thus 7 converges vaguely
to 140

Combining this theorem with Theorem 1.1, we have

CoroLLARY. If the kernel satisfies the energy and continuity principles,
then we have the same conclusion as in Theorem 1.3.

Les us consider Example 2 of Ohtsuka [7]. The kernel is given in E, x E,.
It is equal to PQ~'"? on Kx K, where K is the interval [0,1] on the x-axis, and
the support of any measure of & is contained in K. Hence it satisfies the
energy principle and (CW). However, no function with non-empty support
disjoint from K can be approximated by a linear combination of potentials of
&. This shows that Theorem 1.3 cannot be derived from Theorem 1.2.

We can not replace the energy principle by the positivity of type in the
theorem. This is shown by @(P, Q)=1 in E; X E.

In the case that the measures of a net are not necessarily contained in a
fixed compact set, we have to assume stronger conditions in order to conclude



194 Makoto OHTSUKA

(CW); the necessity is actually seen by Example 2 and Theorem 1.5.

TuroreMm 1.4. Suppose that the kernel is nonnegative and of positive type
and satisfies the continuity principle, and that, given any measure v with com-
pact support and >0, we can find a measure )\ such that |[\]<e and

U'(P=UNP)
outside some compact set. Then (CW) is satisfied.

Proor. Let T={u.; o€ D} be a vaguely convergent net with |u.,|<M
< oo, Let po be the vague limit. By Proposition 4

lisoll < i [lpf| < M < co.

Given v€ & and >0, we can find by Lemma 1.4 a compact set K such that
the potential of the restriction vx to K of v is continuous in £ and ||y —vg| <e.
By our assumption there are a compact set F and a measure \ such that ||A]]
<eand U'K(P)<UNP)on £—F. Take f(P) of () such that 0<f(P)<1
in £ and f(P)=1on F. We have '

lim S UK fdfbfg UK fdyo,

S UE1— f)d,%ggg_F U”Kd,%ggg U =06 p) = M| <M

and
S UK (1~ f) duo < <M.

It follows that (vk, px.) tends to (vg, 1o). From

‘(V’ /“bw)_o‘)’ //’0)|§I(Va /’Jw)—(”K) l"w)| + I(VK’ /*bw)—<VK, FJO)I + |(VK, /460>_(V: #'O)I
§|(VK> /u'w)_'(VK: /I’O)I +2€M>

we can conclude that (v, p,)— (v, po).

QuesTioN 2. Is the following condition sufficient for (CW)? The kernel
& (P, Q) is monnegative and of positive type and satisfies the continuity princi-
ple, and @ (P, Q) tends to 0 as P tends to the point at infinity while Q stays on a
compact set.

Corresponding to Theorem 1.3 we have

Tureorem 1.5. Suppose that the kernel satisfies the energy principle and
(CW) and is nonnegative. Then every weakly convergent net T = {u,; o € D} in
& with bounded energy converges vaguely to the weak limit.

Proor. Let K be any compact set, and (u,,)x be the restriction of ., to K.
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Since the kernel is nonnegative, [[(u,)x! <./ < M<oo for @€D. As in
Theorem 1.3 we see that 4, (K) is bounded on D. Therefore we can apply
Proposition 3. The rest of the proof is the same as in Theorem 1.3.

We prove also

TueoreM 1.6.  Suppose that the continuity principle is satisfied. If a met
T of measures supported by a fixed compact set converges vaguely to iy and if
|U"(P)| < Mp<oo(|U"(P)| < Mp<oco resp.) on any compact set F in £ for
every pu, € T and wo,'® then (v, p) (i, v) Tesp.) tends to (v, o) (o, v) Tesp.) for
any v € & with compact support.

Proor. Given v€ & with compact support and ¢ >0, we can find a com-
pact set K S, such that »(S,—K)<e and the potential of the restriction vx of
v to K is continuous in £. We have ’

lign (ks 1r0)=(vK, 10)

and
| (v, o) — (v, /Aw)lég l[j#w|d<V~VK)<MSyV<Sv—K)< eMs, for w€D.

The same is true for x, and lim (v, 4,)=(v, uo) follows. The left case is simi-

lar.

1.7. Strong completeness.

A class of measures is called strongly complete if any strong Cauchy net
in the class converges strongly to an element of the class.

Before stating theorems concerning strong completeness we shall in-
troduce several new terminologies. Fuglede [1] called a kernel consistent if
it is of positive type and any strong Cauchy net converging vaguely to a meas-
ure converges strongly to the same measure. Likewise he called a kernel
- K-consistent provided that it is of positive type and that, if any strong Cauchy
net in measures supported by a fixed compact set converges vaguely to a
measure, then it converges strongly to the same measure.

A kernel is called by Fuglede [1] pseudo-positive (strictly pseudo-positive
resp.) if (u, p)=0((p, #)>0 resp.) for every p(x5~0 resp.) with compact sup-
port. It will be called strictly pseudo-positive in the strong sense if (u, 1)>0
for every ;=0 for which (x, 1) is defined. We shall give an example of a
kernel which is strictly pseudo-positive but not in the strong sense. Consider
the logarithmic kernel on Ly: |x| <2 on the x-axis, and the unit equilibrium
measure o on Ly, and take |x| <2 for £. Then (i, x)>0 for every =0 with

12) It will follow from Theorem 1.15 that |T*o(P)| <X My (| U* (P)|< Mp resp.) if this inequality
is assumed for every u, € T.
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compact support in £ but (uo, zo)=0, ;o being considered as a measure in £.
First we prove

Lemma 1.5. (Fuglede [1]). A kernel of positive type which satisfies (CW)
((CWY resp.) is consistent (K-consistent resp.).

Proor. We consider a kernel of positive type which satisfies (CW). Let
T={u.; ® € D} be a Cauchy net which converges vaguely to a measure x,. We
may assume that |[x,|| is bounded. By (CW) it converges weakly to x,. We
take any v € & and see that

[0 —v|| < lim [, — ],
because

o —wll*=Tim (o —v, pro—») < T 120 =], =1

Given ¢ >0, if we take a suitable w,, then

(0 — prol| S UM ([ — pro|| <€ for every o= w,.

This shows that T converges strongly to u. The case when (CW)’ is satisfied
is similar.

Tueorem 1.7. Let K be a fixed compact set in 2, and assume that the kernel
1s strictly pseudo-positive and K-consistent. Then &g s strongly complete.

Proor. Let I'={u.,; » € D} be a Cauchy net in £x. We may assume that
li2,]] is bounded. As we have shown in the proof of Theorem 1.3, there exists
a subnet 7” of T which converges vaguely to some limit u, € &x. By Lemma
1.5 it converges strongly to o, and hence T converges strongly to .

CoroLLARY. If the kernel satisfies the energy principle and the continuity
principle, then &k is strongly complete.

Remarx 1. If we consider the class of measures of general sign of the
form p—v, pu, v € £k, it is not necessarily strongly complete as an example in
the Newtonian case was given in H. Cartan [5], footnote 13.

Remark 2. Even if the kernel satisfies both the energy and continuity
principles, & is not necessarily strongly complete. We shall present an ex-
ample.’®

13) An example was first communicated orally to the author by Aronszajn in 1959 at Lawrence.
The present example was proposed by Ogasawara at Hiroshima in 1960. Fuglede (Example 4 of
[1]) showed that & is not complete for the kernel 1/PQ+1 considered in E;. If we compactify 2

with the Alexandroff point co and define the kernel by 1 when at least one of the variables is oo,
then ¢ defined with respect to this extended kernel is complete.
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We exclude the closed unit ball with center at the origin from E; and
take the rest for 2. We consider the Newtonian kernel (P, Q)=1/PQ. It
satisfies the energy principle and the continuity principle in £ naturally. Let
i, be the uniform unit measure on the spherical surface with center at the
origin and with radius equal to 14+1/2. The sequence {u,} is a Cauchy se-
quence but there is no strong limit; the unique strong limit in F; is the uni-
form unit measure on the surface of the unit ball excluded from FE;.

In the example, however, & becomes complete if we add the surface of
the unit ball to £. So the following question was raised orally by Kishi:

QuESTION 3. Are there a space £ and a kernel @ satisfying the energy and
continuity principles such that, for any extension £ O 2 and any extension @’
satisfying the energy principle, & defined with respect to £’ and @' is not strongly
complete?

If we assume more, we have

TueoreM 1.8. If the kernel is nonnegative, strictly pseudo-positive’® and
consistent, or if inf (u, p) for unit measures u with compact support is positive
and the kernel is consistent, then & is strongly complete.

Proor. Let T={u,; » € D} be a Cauchy net. We may assume that ||u,||
is bounded by M<eo. If the kernel is nonnegative, ||(u.)x| <M is true for
the restrictions (u,)x to any compact set K and we see that {u,} is vaguely
bounded in .#. Under the alternative condition we have the same conclusion.
In fact, observing that W=inf (u, ) is the same for unit measures yx with or
without compact support, we obtain

VW 11 (2) < || pol| < M.

The rest is the same as for Theorem 1.7.

CoroLLARY. In the example in Remark 2 to Theorem 1.7, (CW) is not
satisfied.

Remark 1. Actually w, in Remark 2 has bounded energy and converges
vaguely to 0 but not finely to any measure.

We may need a proof for the last statement. Suppose that the sequence
converges finely to u. Every u, belongs to % and (up, p,)=1+1/m)"" for
every n<<m. Therefore 1,==0 but this contradicts the following Remark 2.

Remark 2. In the same example, every finely convergent sequence of
measures converges vaguely to the same limit, thus showing that condition
(CW) is not always necessary to have the conclusion in Theorem 1.5.

Proor. It is known (Cartan [5]) that every nonnegative difference p of
uniform measures on spherical surfaces belongs to # and that the family of

14) Asisremarked in § 2.1 of Fuglede [1], a kernel is nonnegative and strictly pseudo-positive
if and only if @ (P, ¢)=0 and 0 (P, P)>0 for any P, Q€.
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all linear combinations with positive coefficients of potentials of above meas-
ures u is positively rich; see the preceding section for the notion of positive
richness. This proves the assertion.

We take this occasion to discuss the question raised in footnote at p. 166
of Fuglede [1]. The question is as follows:

Consider a kernel which satisfies the energy principle and assume that &
is complete. Does then any strongly convergent net converge vaguely?

Let us see that Example 2 in the preceding section gives a negative

answer. We consider _Q(,:Cl{l/n} U {0} as a subspace of the x-axis and set

@o(x, y)=@(x—y). The space & defined with respect to 2, and @, is certainly
complete and the completeness of ¢ defined with respect to £ and @ follows.
However, as shown in Example 2, there is a strongly converging sequence
which does not at all converge vaguely.

ArpricaTion 1. For the kernel PQ™%, 0<a <n, in E,(n=3), & 1s com-
plete.r® -

Since it is well known that both the energy and continuity principles are
satisfied, it will be sufficient to show (CW). One needs to examine the con-
dition on the existence of ) required in Theorem 1.4. Let » be a measure
with compact support and ¢ >0 be given. We may assume that v is a unit
measure. Let B, be the ball with origin as center and with radius », which
contains S, in its inside. Let )\, be the uniform unit measure on the surface

OB,, and o, be the surface area of ©B,. We have

; 2 1 1 ﬁan—Z—-w 1
“M'Z_’;E’Sag, Sw, ey dS(P)dS(Q)= . Swl SBBI on dS(P)dS(Q)

_ Mz
rre;
Therefore if r is sufficiently large, |[\,||<<e. As P tends to the point at in-
finity, U’ (P) divided by 2U" (P) is approximately equal to PO*/(2P0%)=1/2
<1, and hence 2\, is a required measure in the theorem.
AppricaTiON 2. Let £ be an n-dimensional Greenian space (n>>2)'® and

G(P, Q) be the Green’s function with pole at Q on L. Then (CW) 1is satisfied for
the kernel G(P, Q).}"

15) By Theorem 1.8, it is seen that & is complete. This was first proved in Deny [17]. The authors
Aronszajn and Smith of [1] assert at footnote that they have a different proof. It is also proved by
Fuglede 1], applying a result concerning the completeness of & for some convolution kernels (Theo-
rem 7.4).

16) See Brelot and Choquet [1] for Greenian spaces.

17) By Theorem 1. 8, again ¢ is complete. The possibility of extending Cartan’s theory to hy-
perbolic Riemann surfaces was already asserted in Bader [1] and Parreau [[1]. An explicit proof
of the completeness of & in the case of a hyperbolic Riemann surface was first given in Edwards
[1]. We believe that our proof is more direct (see § 6 of his paper). Furthermore, we observe that
only the fact that the kernel is of positive type and not the energy principle is proved there.



On Potentials in Locally Compact Spaces 199

We begin with an outlining of the proof of two principles.!® We use the
notations x, y,... for points in E, and recall the following well known property

L —2or 1 =3 inE:
|~y lx—y|"

of a potential with kernel log

lim U*(x)= lim U*(x)

x-x0 xESy, 2-%0
if the right side has a meaning. In order to have such an equality in the
case of a Greenian potential, it is sufficient to prove it for x whose support is
contained in an image in E, of a neighborhood of a point of £. In the image
in E, we can write

6P, Q)=log — L + iz, ) if n—2
[x—y|
and
1 )
GP, Q)= |7x—y|"‘2‘ + h(x, y) if n>38

with a function 2 which is continuous in (x, y). On account of the equality
holding for potentials in E,, we obtain

lim U*(P)= lim U*(P)

P-Py PES#,P-—)PO
for any Greenian potential of a measure x with compact support in £ and for

P, not isolated on S,.
Let 1 be a measure with compact support in 2 such that its potential is

bounded on S,: U“(P)<M on S,. Let {2,}, 2,>S,, be'an exhaustion of £
with smooth boundaries, and G,(P, Q) be the Green’s function on £2,. Ob-
serving that G, vanishes on the boundary 9£, and applying the above equality
at each point of S,, we see that

SG,,<P, Qdp(Q =M on £,

on account of the maximum principle for harmonic functions. As n—> oo the
left side tends to U*(P)= S G(P, Q)du(Q) and it is concluded that the first max-

imum principle ((F) of § 1.2) is satisfied; the continuity principle follows
from this by (1.10). By Ninomiya’s theorem the kernel is of positive type;
see Corollary of Theorem 2.42 in the next chapter. The fact that |u—v|=0
only if u=v can be proved as follows: We infer that U*=U" from the fact
(w—v, M)=0 for any measure \ which is equal to the uniform measure on an

18) When these facts were stated to be true in Ohtsuka [17, in the case of a hyperbolic Riemann
surface, the author had in his mind the proof which is given here.
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image in E, of a neighborhood in £. On account of the following lemma, we
can conclude that p=v.

Lemma 1.6.  Let u, v be measures with compact support in E, (n=2), and
h(x) be a harmonic function in an open set GCE,. If U*(x) and U’ (x) mean

the potentials, with kernel @(x, y)=log ﬁ or (—x_—;'ﬁ, of i and v respec-
tively and

Ut(x)=U"(x)+h(x)

i G (except for a set of Lebesgue measure zero), then p—v vanishes for every
Borel set in G.
A proof will be given at the end of the present section.

Let us prove the existence of \ in Theorem 1.4. Let v be a unit measure
with compact support. We take an exhaustion {£,}, with smooth boundary,
of 2 such that £,U08,C2,,, and £, contains S, in its inside. Let Q, be an
arbitrary point of S,. By Harnack’s theorem, there is a constant ¢>1 which
depends on Q, and S, such that

% G(P, 0)<G(P, Q)< cC(P, Q0) for any P& 2, and QES..

Therefore for P& £, we have
(1.25) U (P)<cG(P, Qo).

Let »f be the harmonic measure at P€ £, with respect to the domain £2,.
Then S fdyr, gives the value at P of the Dirichlet solution in 2, for the given
continuous boundary function f(Q)on 92,. Particularly for f(Q)=G(Q, Qo),
S G(Q, Qo)d,w,f(Q)=U‘“5(Q0) is equal to G(P, Q;) on 28,. Therefore G(P, Qo)

-U "5(Q0) is equal to the Green’s function G,(P, Q,) in £, with pole at Q,. On
account of its symmetry, it is equal to G(Q,, P) —U"SO(P). Thus U*#°(P)
=G(P, Q,) on 2£,. We shall write simply u, for ;0. If m>n, then

U (P)=Gn(P, Qo) on 0£,U0%,,.

By the maximum principle for harmonic functions, this is true on £2,,—2,.
By letting m — o it follows

(1.26) U*(P)=G(P, Qy) in -9,

Although we need only this inequality, a similar reasoning leads us to the
inverse inequality and hence to the equality in 2—2,.
We can compute ||u,||? explicitly:
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(s )=\, U PVApa(PY = G (P, Qddpa (P = U@
This is the value at Q, of the Dirichlet solution in £, for the boundary value
G(P, Qy). We see that lim U**(P)=hA(P) is harmonic on £. If it were posi-

tive, then G(P, Qy)—A(P) would be a positive harmonic function in £ except
for its singularity at Q,, which is really smaller than G(P, Q,). This is im-
possible and hence U*"(P) decreases to 0 as n—>oo. Consequently we can
take cu, with large n for \ on account of (1.25) and (1.26).

Proor of Lemma 1.6. It will be sufficient to prove ;(K)=v(K) for every
compact set KCG. We take a sequence {f,(x)} of three times continuously
differentiable functions decreasing to the characteristic function Xz of K. We
assume also that the support of each f,(x) is contained in G. We know that

Ful)= L Sm, 2 AL () dy

Oy

in the classical potential theory, where o, is the area of the surface of a unit
sphere. We have '

| ve s gty ={ aue| 06 )8 DAy =0 | S

and similarly S U Af, dy=o, S fodv. Since S hAf, dy—0, it follows that

Sf,, dﬂzgf,, dv.

By letting n — o we obtain

,l(K):S Xx d,ﬁzg X dv=v(K).

1.8. Capacity.

There are many ways to define capacitieé for a positive kernel. One way
is to define an inner capacity by

sup {u(£); compact S.CX, U*(P)X1 in £}

for any set X. In case the kernel has general sign, it is difficult to define
capacity in this manner. We shall, instead, consider 7;(X) and V,(X) defined
in§1l.1or

Vi X)= inf sup U*(P)
n  Pee

for any set X=£ ¢, where the infimum is taken with respect to unit measures
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w with compact S, CX. We set V(g )=c and
VE(X)=sup Vi(G),
GoX
where G is an open set. Obviously V;(X)<V}X) and V(X)<V*(X) but, as
Example 5 of Ohtsuka [7] shows, there is a case in which V;(K) and V}(K)
are essentially different for a compact set K.

Choquet [3; 5] obtained several results on C/(X)=1/V}#(X) and C}(X)
=1/V*(X), in case kernels are positive. We shall aim at giving similar results
on V;(X) and V,(X) in our section. Our intention, however, lies primarily in
preparing for the next section and a full account on set functions related to

capacity will be given on another occasion.
We begin with studying sets on which potentials are equal to oo.

Tureorem 1.9. For a kernel whose adjoint kernel satisfies (Bk) the potential
of any measure p with compact support is finite p.p.p. in L.

Proor. Suppose that there is a compact set K with ¥;(K)< oo on which
U*(P)=co. We take a unit measure » € £, whose potential is bounded on S,,
and find a compact subset K’ of K such that »(K")>0 and U”(P) is continuous
as a function on K’, by means of Lusin’s theorem. By our assumption U’ (P)

is bounded on S,. Hence S U du< oo, But this is impossible because

S U’ d,bzg U* dy=oo.

Thus U*(P)<oo p.p.p. in £.

Tuaeorem 1.10.  If Ugaheri’'s maximum principle is satisfied, then the ad-
joint potential U*(P) of any measure j with compact support is finite q.p. in £.

Proor. The set

is open in £. We assume that G,-= & for each n. Let v be any unit medsure
with compact support S, CG,. If sup U’(P)< oo, by assumption there is a con-

stant ¢>0 such that
sup U'(P)<c¢ sup U (P).
Q v

We have
n<g l7"dv=g Udp<c ssup U'(P) u(£).

It follows from this that n<cu(2)V;(G,). Since the set {P; U*(P)=oo} is
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equal to N G, its V,-value is infinite.

If we assume the continuity principle, we have

Turorem 1.11.  Consider a kernel which is locally bounded outside the di-
agonal set and which satisfies the continuity principle. Assume that @ (P, P)
=oo at each P€0,.. Then U*(P) is finite q.p. in 2 for every u with compact
support.

Proor. Since the potential of any measure with compact support is
locally bounded outside the support, we may assume that the space £ is com-
pact and, by adding a positive constant if necessary, that the kernel has a
positive lower bound; O_ for the new kernel is included in O, for the old
kernel. We set

G,={P; sup O(P, Q)>n}.
=0 _

Then G, is an open set and decreases to O, as n—oo. Since the kernel is
locally bounded outside the diagonal set, there is, for given m, a number »n
such that the closure of G, is contained in G,. According to Corollary 1 of
(Uk) () of §.1.5, Ugaheri’s maximum principle (U) is true on £ —G,, this being
considered as a space. Let us denote the restriction of a measure u to G, by
un.  The potential U*™**(P) is finite q.p. in £—G, by the preceding theorem.
Since @ (P, Q) is locally bounded outside the diagonal set, U**(P) is locally
bounded in £ —G,. Therefore U*(P) is finite q. p. in £—G,.. It follows that
U*(P) is finite q.p. in U (£ —G,,)=2—0. by proposition 2 of § 1.6. Corollary

2 of (viii) in § 1.4 shows that O_ consists of at most a finite number of points.
Since @ (P, P)=co at each of them, V,(0_)=co. Consequently U*(P) is finite
q.p. in £.

Lemma 1.7.19  If O(P, Q)>m> — oo on the product K x K of a compact set
K, then

Vi(K)—m=<4¥;(K)—m).

Proor. We may assume that 7;(K) <. Given ¢>0, let x be a unit
measure supported by K such that

sup U*(P)<V;(K)+e.
PESH
For z:>I7',-(K)+e, we set
E,={P€K; U*(P)>t} and E,={PeK; U*(P)<t},

and denote by ;; and u, the restrictions of u to E; and E, respectively. We

19) See Choquet [3; 5].



204 Makoto OHTSUKA

have
P+ =m=| @ = | @ =) dp= | @=m) dyt
= (| @—m) dpdys = 0 —m) i = (1= K,
Therefore
oK) =1 Ky =1 - VKt e =

We observe that

Vi) oK) = V)= 51D | @—m) dp =y ()

2

< sup S (@ —m) dpp+mps(K) <t — s (K) < £ — -+ mpun(K)

L)

and

Vi) —m< LT ot
(Fomm= p2(K) 7™ P (K) —e

Now follows

ViK)—m < ¢-m
t—V,(K)

for any t>V;(K). The minimum value of the right side with respect to ¢ is
equal 04 ; (K )—m) and our lemma is proved.

Remark. It may deserve attention that this lemma holds without any
additional assumption, contrary to the result by Choquet in which the c-dilated
maximum principle is assumed and the number ¢ appears in the inequality.
The coefficient 4 will be replaced by 2 in the next chapter.

From this lemma follows easily

Trreorem 1.12.  If O(P, Q)>m> —co on X X X, then
Vi) —m =AW (X)) ~m).
If Gy is an open set such that @ (P, Q)>m> —co on Gy X Gy, then for any X CG,,
V(X)=m=4F.(X)—m).

CoroLLARY. The notion of p.p.p. is the same for @ and &. The similar
fact is #rue for q.p. on any compact set in L.
We shall say that a function f(P)in £ is quasicontinuous if, for any >0,
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there is an open set G with V;(G)=1/¢ such that the restriction of f(P) to
£—G is continuous.
First we give two lemmas which are essentially due to Choquet [3; 5].

Lemma 1.8. Consider a positive kernel which is continuous outside the di-
agonal set, and assume that the kernel satisfies the continuity principle and the
adjoint kernel satisfies the c-dilated maximum principle with ¢c=1. Then, for
any measure u with compact support, any ¢ >0 and any >0, there is an open
set G with V;(G)>=1/¢ and a decomposition p=yv + = such that =(2)<n and the
restriction of U*(P) to £—G 1is continuous and not greater than 4cu(2)/-.

Proor. We set G={P; U*(P)>4cu(2)/s} and see V;(G)==4/< as in the
proof of Theorem 1.10. By Theorem 1.12, ¥;(G) =V ;(G)/4=1/s. We denote
the restrictions of ; to G and 2—G by u and u; respectively. There is a
compact set KCG such that 4(G—K)<7/2. We shall denote by ux the re-

striction of 1 to K. Since U“6(P) is finite on Su=Su— G, there exists a com-

pact subset K; CS,—G such that x(S,—G—K;)<#/2 and the potential U“K1(P)
of the restriction g, of xto K; is continuous in £ on account of the con-
tinuity principle. The measures v=px+ux, and z=p—v have the required
properties respectively.

Lemma 1.9. Consider a positive kernel which is continuous outside the
diagonal set and assume that the kernel satisfies the continuity principle and
the adjoint kernel satisfies Ugaheri’s maximum principle. Then the potential
of any measure p with compact support is quasicontinuous in L.

Proor. We denote by G, vi, 71 an open set and measures obtained in
Lemma 1.8, corresponding to u, ¢=8/2, =(5/2)°>. We shall define G,, v,, 7,
by induction. Corresponding to 7, i, e=6/2", n=(5/2")*, we obtain G,, v,, =,
as in Lemma 1.8. We set G=u G, and, by Proposition 1 in § 1.1, we have

n=1

.-
© =2

We see that Mzi‘, v, and hence that U“(P)zi U(P). By definition the re-
n=1 n=1

striction of U™(P) to £—G, and hence to £—G is continuous. On 2—G, we
have

for n=2,

00 (P) < dem, (@) 5 ) < aef T

2n 1 T_~ 46 2n—2

where ¢>1 is a constant such that the c-dilated maximum principle is true
on £ for the adjoint kernel. Therefore the convergence of > U"*(P) on 2—G

is uniform, and hence the restriction of U*(P)=3) U"(P) to £—G is continu-
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ous.
Now we prove

Turorem 1.18. (cf. Choquet [3; 5], Kishi[2; 3]). Assume that the kernel
18 continuous outside the diagonal set and that @ (P, P)=oco at each point P of
O.. If both the kernel and the adjoint kernel satisfy the continuity principle,
then any potential of a measure u with compact support is quasicontinuous.

Proor. Since the potential is continuous outside S,, we may assume a
relatively compact open set containing S, to be the space. So we suppose
from the beginning that £ is compact and that the kernel is positive. By
Corollary 2 of (viii) of § 1.4, there is only a finite number of points {P,} of
O,_ for the adjoint kernel. Given ¢>0 we can enclose each P, by an open
neighborhood N, such that V{(%/Nk)>1/€. In each N, we choose a neighbor-

hood N, of P, which is relatively compact in NN, and denote the restriction of
w to ‘Q_\/N;’ by x/. By Corollary 1 of (Ux) (i) of § 1.5, Ugaheri’s maximum

principle is true on £ — %/Ng for the adjoint kernel. There exists an open set
G C £— UN;, such that V;(G) >1/¢ and the restriction of U*(P) to £2— \kJNZ—G
k

is continuous, in virtue of Lemma 1.9. Then the restriction of U*(P) to £
— \k/Nk—G is continuous, because U~~*(P) is continuous in .Q—kkJNk. We see

that

1 1 + 1 < 2e.

<
Vi(\];/NkUG) - Vi(\k/Nk) Vi(6) —

Thus U*(P) is quasicontinuous.

We shall discuss the so-called problem of capacitability in § 3.6. Here
we shall prove the coincidence of the V;-value and the V,-value of a compact
set. This was first proved in Fuglede [1] under our general circumstances.

We shall use the following lemma in a special case in this section; it will
be used in Chapter III in full generality.

Lemma 1.10.  Let f(P)<co be an upper semicontinuous function and g(P)
be a continuous function, both defined on a set X C 2. Let D be a directed set
and T={u,; o€ D} be a net of measures, converging vaguely to o, and {a,;
o €D} be a net of real numbers converging to a finite number ay. Let {Y,;
» €D} be a net of subsets of X and Y, be a subset of X with the property that
every neighborhood of any point of Y, intersects all Y, o =>wo; this o, depends
on the point and the neighborhood in general. Then

1.27)  lim sup {U™(P)—f(P)—a,g(P)} ZSI}})D {U(P)— f(P)—ao g (P)}.

Proor. We set
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Vi(uo)= sup {U*(P) = f(P)~a, g(P)}, w€D or v=0,

and assume V;(u)> —oco. Given t<¥V;(uo), let P, be a point of Y, such that
U (Po)—f(Po)—ao g(Po)>t. In case the left side is finite, we take a number
t; in between. In view of Proposition 4 in § 1.6, there are a compact neighbor-
hood N of P, and a neighborhood M of u, with respect to the vague topology
such that U*(P)—U"(Py) > —(t1—8)/4, — f(P)+ f(Po) > —(t1—t)/4 and |g(P)
—g(P)| <min {(t;—¢) (4|ao|)"", 1} for any PE NN X and any u€ M. There
is wo € D such that u,e M, Y,NN=Z for every w=w, and —a,g(P)+aog(P)
> —(;—t)/4 for every PENNX and o >w,. We take an arbitrary point P,
of Y,N\N for each w=>w,. It holds that

t<U"(P,)— f(Po) —a, g (Po) < V()
for every v =>w,. Therefore
e lim V().
By the arbitrariness of ¢ we obtain (1.27). The case U"(P,)— f(Po)—ao g(Po)
=oco can be treated in a similar fashion.
Tureorem 1.14.  For any compact set K C £
Vi(K)=V{(K).

Proor. We may assume that £ is a compact space. The set D of all
open sets G containing K is directed by C. We shall write G, >G, if and
only if G, CG,. We assume V,(K)<V;(K), and take a number « in between.
For every G € D there is a unit measure u supported by G such that

(1.28) Vipe) <.

The set {u¢; G D} is a net and bounded in .#. Hence a subnet {u; 0 €D’}
converges to some measure y, vaguely by Proposition 3. We observe that Sy,
is contained in K becauser\DG=K. Therefore V(u)=Vi;(K). On the other

hand, by (1.27) and (1.28) we have

a= 11111 V(M(“’)) = V(o).

This contradicts the assumption a<V;(K). Thus V;(K)<V,(K). The in-
verse inequality being evident, the equality follows.
1.9. Sequence of potentials.

The next topic is concerning the convergence of potentials as measures
converge vaguely or strongly. First we give without proof
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Tureorem 1.15. Let D be a directed set and T= {u,; ® €D} be a met con-
verging vaguely to uo. Lf the kernel is nonnegative or if all measures of T
are supported by a fixed compact set, then

lim U*(P)=U"(P)

wm L. In case every measure of T is supported by a fixed compact set K, if the
kernel is continuous outside the diagonal set, then

lim U*(P)=U"(P)

outside K.

Remark. There is an example which shows that the condition that every
measure of T be supported by a fixed compact set is necessary in order to
have the last equality outside a closed set containing UDS”‘*’ even if y(2), w €D,

we

is bounded; in E; we take for u, a unit measure at P, P, which tends to the

point at infinity and set @ (P, P,)=n. However, if for any given ¢ >0 and for

a point P, lying outside the closure of UDS#w we can find a compact set K
we

such that |@(P,, Q)| <e whenever Q€ 2—K, and if x,(2), o€ D, is bounded,
then the equality is true at P,.
Next we prove

Tueorem 1.16. (cf. Brelot and Choquet [2], Ohtsuka [5], p. 62). Assume
that the adjoint kernel satisfies the continuity principle. If a subnet T= {u.;
® €D} of a sequence of measures, supported by a fixed compact set, converges
vaguely to a measure po, then

lim U*(P)=U"(P) p.p.p. 1 L.

Proor. On account of Theorem 1.15 it is sufficient to prove that lim

U*(P)<U"(P) p.p.p. in £. If we deny this, we can find, by the condition of
the continuity principle, a unit measure » with compact support such that its
adjoint potential is continuous in £ and

lim U"(P)>U"(P) on S,

Since {x.} is a countable class of measures, we can apply Fatou’s lemma and
see

oy )< | lim U (P)s (P) < lim | 0Py (P) = tim. | 0P (P)= o, ).

This is a contradiction and the theorem is concluded.
It is known (Choquet [3; 5], Kishi [2; 38]) that, if a sequenc {u,} sup-
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ported by a fixed compact set converges vaguely to o, then

lim U*(P)=U"(P)

n—oo

except on a set X with V}*(X)=oco in £ under some additional condition. In
the second chapter we shall need a similar theorem in a slightly general case,
and so we prove

Turorem 1.17.  Assume that the kernel ts continuous outside the diagonal
set, that @ (P, P)=oco at each PO, and that both the kernel and the adjoint
kernel satisfy the continuity principle. If a subnet T={u,; o€ D} of a se-
quence of measures, supported by a fixed compact set K, converges vaguely to 1,
then

lim U*(P)=U"(P) q.p. in L.

Proor. It is sufficient to prove that

lim U*(P)<U"(P) q.p. in 2,

on account of Theorem 1.15; we may suppose that £ is compact in view of the
same theorem. If we use the notation <C for the order in D, then

Vi P)= inf u*'(P)

O=0

increases to lim U (P). Given ¢>0, we can find by Theorem 1.13 and Pro-

position 2 in § 1.1 an open set G, such that V;(G.)>1/¢ and the restriction of
U (P) for each €D to £—G, and that of U*(P) are continuous. For >0
we set

E(n)=A{P; V,(P)—U"(P) =7}
and
Efe, n)={P€Q—G; V(P)—U"(P)=n}.

Since the restriction of V,(P) to £—G. is upper semicontinuous, E,(¢, ) is a
compact set in £ and hence V;(E, (¢, )=V, (E, (s, )) by Theorem 1.14.

If V;(E,(e, n)) were finite, we could find a unit measure v with S, CE,(¢, )
such that U*(P) is continuous in £ on account of the continuity principle. It
would follow that

7= S V(P)—=U"(P)dv (P) < S (U™'(P)—U"(P)dw(P)

for any o’ € D such that o'>=wo. AS p,— po, the right side tends to 0 and we
should arrive at a contradiction. Therefore V,(E, (¢, n)=V;(E(¢c, n))=c= for
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each w€D. By Proposition 1 in § 1.1 we have, with m<inf @(P, Q) taken on
2x 8,

1 - 1
ViES(p)—m — VES(e, PIG)—m
1 1 1 1

RO T LTI LTS VT

Since ¢ is arbitrary, we have V,.(E,(5))=cc for every >0 and o€ D. On ac-
count of the relation

{P; lim U*(P)—U"(P)>0} = G \V Em<L>)
— k=1 weD k

the V,-value of the left set is infinite by Proposition 2 of § 1.1. Namely,
lim U*(P)LU"(P) g.p. in 2.

Next we consider a weakly convergent sequence of measures.

Tureorem 1.18.  Assume that the kernel is of positive type and let {u,} be a
sequence of measures in & converging weakly to po. Then
lim U"(P) <U"(P) n G,

except on a set H whose any compact subset vanishes for every measure with
finite energy.

Proor. Suppose that lim U""(P)>U"(P) on a compact set KCG, with

n—co

V(K)<oo. We can find by Egoroff’s theorem a compact subset K; of K with
Vi(K,)< eo such that in}:f U**(P) tends uniformly to lim U""(P) on K; as m—>co.

n—co

Hence U**(P) is uniformly bounded from below on K;. We take any v €éx,
(1, 1) and have by Fatou’s lemma

a0y )= lim o ) = Qim U)o > (o, )
This is a contradiction.

It will be shown in § 2.2 of the next chapter that the above stated char-
acter of the exceptional set H is equivalent to V;(H)=oo. Therefore the in-
equality is valid in fact p.p.p. in G,. It will also be proved that the inequality
holds q.p. for a strongly convergent sequence under some additional condition
(Lemma 3. 8).

1.10. Notes and questions.

One of important tools in classical potential theory was the selection theo-
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rem concerning measures; see Frostman [1] for instance. This was genera-
lized to the case of locally compact spaces by Dieudonné [1; 27 (placed in
Bourbaki [1] and our Proposition 3 in § 1.6) and it made the discussion of
potentials in locally compact spaces possible. This and the importance of
kernels which satisfy the continuity principle were recognized and empha-
sized independently and simultaneously by Choquet and the present author.
The idea of applying Egoroff’s or Lusin’s theorem goes back to Y. Yosida [1].
I recall the following comment on [1] by Kametani stated in Kagaku, 12
(1942), p. 230, in Japanese:...... The above results are rather topological. It
seems that the another aspect of the theory of functions, namely the part
using the theory of functions of real variables or the metrical part, has been
developing centering around potential theory. Recently Mr. Yéiti Yosida of
Hokkaido University proved nicely the main theorem in potential theory, i.e.
the maximum principle of Frostman, by the aid of the fundamental results in
the theory of functions of real variables, particularly using Egoroff’s theorem,
without applying the theorem on the existence of equilibrium mass-distribu-
tion. Aren’t there many other theorems and proofs which can be improved
after his excellent idea?

We shall state open questions; some other questions as to principles were
raised in Ohtsuka [7].

1.1. How are principles related to each other if we restrict ourselves to
convolution kernels?

1.2. Question 1 in § 1.6.

1.3. Question 2 in § 1.6.

1.4. Question 3 in § 1.7.

1.5. Under the assumption of Theorem 1.18, is the inequality lim U*"(P)

> U"(P) true in G, (with some exception)?

Remarks by B. Fuglede through a letter dated Dec. 20, 1960.

......... I take the liberty of making a few comments, in particular con-
cerning the three questions raised on p. 192, p. 194 and p. 197. In this con-
nection I shall refer to my examples 3 and 4, p. 208 ff in my Acta paper. (In
example 3 I have forgotten to add the hypothesis that the set of points x
where f(x)= + oo should not be an open set unless it is empty). I use your
notations in the sequel.

Ad Question 1. Let 0<f(P)=<+ oo, and suppose f is continuous in the ex-
tended sense (i.e. from £ to R*) and that the set SC£ of points where f(P)
= + oo is neither void nor open. (Example: 2=R= the real line; f(x)=1/4%
interpreted as+ oo for x=0). Then the kernel

(P, Q)=f(P)f(Q)

is of positive type, but not K-consistent (and hence does not fulfill (CW)"). In
fact, let P, S denote a non-interior point of S, and let {Q.; » € D} denote a
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net converging to P, and such that Q,&S. If we put pu,= the mass 1/f(Q.)
placed at the point Q,, then these measures u, constitute a strong Cauchy net
which converges vaguely to 0 (because f(Q,)— f(Po)= + o) but not strongly
(because the energy of each y, is 1).— If we want an example in which the
kernel moreover satisfies the energy principle, we merely have to add f(P)
f(Q) any finite, continuous kernel satisfying the energy principle. I have no
example in which @(P, Q) is, in addition, finite for P=~Q. Perhaps this was
what you meant? ‘

Ad Question 2. The answer is no. Example: Again @(P, Q)=f(P)f(Q),
where now 0 <f(P)< + oo, f being continuous, and where f(P)—0 as P ap-
proaches infinity. In fact, the measures xp= the mass 1/f(P) placed at P de-
termine a strong Cauchy net which approches 0 vaguely, but not strongly, as
P— infinity.— If we want an example in which, in addition, @ satisfies the
energy principle, we may take, e.g.,

0P, Q)=fP)f(Q A+PQ™)

in 2=R? (with f as above). In fact, this kernel is equivalent in the sense of
§ 5.1 in my Acta paper to the kernel studied in my Example 4, and hence in-
consistent.

As to Question 3, I have no answer, but it is easy to answer the corres-
ponding question concerning perfect kernels. In fact, the kernel on R® just
mentioned has no perfect extension. For let ¢ denote any kernel on a space
£ DL such that @'=0 on £x 2. If P’ denotes a point of the closure 2 of £ in
£, and if P'& @, then for any Qe £

o'(P, Q)< lim inf @(P, Q)=0

P-P’,PeQ

and for Q' c Q2 —Q
o'(P', Q)< lim inf @'(P’, Q)=0.

Q-Q’, Qe
In particular, @'(P’, P’)<<0 for any P'€ 2—£. Consequently, 2=2 (i.e. 2 is
closed in 2") if @’ satisfies the energy principle, or just if @' is strictly pseudo-
positive. It follows now that @’ cannot be perfect, for the restriction of @ to
the closed set £ would then likewise be perfect.

According to another letter he is writing a paper on perfect kernels, con-
sistent kernels, strong completeness, etc. '

Chapter II. Gauss variation.

2.1. Potential of an extremal measure.

Let 2 denote the class of all sets which are measurable with respect to
every measure in £. Let A€ be a set with ¢,5= {0}, and f(P) be a function
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on A which is 2%-measurable. We are interested in the problem of minimizing
the expression

@1 1= =2 | YA

for x € & with the property that (£ —4)=0 and S fdu is defined. This pro-

blem will be called Gauss variational problem. We shall write at times

X FPYAuPY=<f, >

for simplicity. A mutual energy can be written as {U*, v).

If we assume no further condition on p then the problem will be called
unconditional, and if we assume some additional condition on u the problem
will be called conditional. We begin with a conditional problem.

For measures x and x’ we shall use the notation p>pu' if p(4)=>pn'(4) for
every AcA. Let a set 4 of A be given and a measute ; with the property
that u(£2—A4)=0. A family of 2-measurable functions {g.(P)}, k=1, ..., n,
defined on 4 will be called u-independent if there are {u:}, k=1, 2, ..., n, such
that each u, < and

(2.2) 1<gs m>lI#0,

where || || means a determinant. Given f(P), {g:(P)} and finite numbers {x:},
we shall consider the following classes of measures:

Eal{ge}s Am}, f)=A{w€ &a; {gu py=x: for each k and {f, u) is defined},
Ea=A{pe€&; W(L—A)=0}

and
Ea{giys {me}, H={p€&4; {gs, p>=x for each k and {f, p) is defined}.

- Certainly #x({gs}, {®}, f)=¢%({g:}, {x:}, f) for any compact set K. For a
general set X we set

Ex({g}, {m})={n€&x; S, is compact and (g, 1) =x, for each k}.

In case f is upper semicontinuous and <oo on K, &x({g+}, {x}, /)=6x
({gs}, {x:}) because {f, u) is always defined for any p € &x.
First we prove

Theorem 2.1. Let A be a set of N with &45~{0} such that (i, v) and (v, )
are well-defined for p€ &y and any v € &4, f(P) be an A-measurable function on
A such that {f, v) s defined for any v€ &4 and {g(P)} be U-measurable func-
tions on A such that {g;, v> is defined and finite for each k and for any v € & 4.
If there exists an extremal measure p* € &4({ge}, {xi}, f) such that
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(2.3) oo >I(*)= min I(u)> —oo
/"Elgk({glt}: {xk}>f)

and (2.2) is satisfied with some measures p,<p*>” then, {v} being the solu-
tions of B

@4 33 e 1> V= O, = fy e
1t holds that
(2.5) D*(P)= F(P)+ 33 7 gs(P)

on A except H with €z={0} and the equality holds p-a. e. for each k.
If, in addition, f(P) is upper semicontinuous and each g,(P) is continuous
on A, then

(26) U (P) < £ (P) +k:2: %e gi(P) on US4

and the above exceptional set H is the imtersection of A with an F,-set*® im 2.

Proor. Our proof will follow a pattern in the calculus of variation; we
owe the technique to Nagumo [1]. Let v be any measure of £, and {t,}, k=1,
..., n, be the solutions of the equations

(27) k%‘i<g]> ll’k> tk:<gh V> ]:1, sy T2
With a positive parameter : we set
w(t)=p*—1 ;?:1 ty pp tv.
Since
wE =t 20 0 e = (L=t X3t ) ™,
k=1 k=1
w(2) is nonnegative for sufficiently small z. We have {g;, u(¢)>=x; for each

j in view of (2.7). If the coefficients of ¢ and ¢ in the polynomial I(u(z)) are
finite, 1(1(¢)) = I(x*) for sufficiently small : >0 and

0= DWW g e, = S3up— 2 vt >

| -

Substituting (2.4) and (2. 7), we obtain

20) {gx} are then p*-independent.
21) We recall that ﬁl‘*——_‘r 6 du* _—_—-% (Ue* 4. [}/J*);

22) An Fy-set is a countable union of closed sets.
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O, = 05 = 3300, wd—fy ik
=23t 23 g 1) Vi =235 238 1) te= 238> ¥ V-
= j=1 j=1 k=1 j=1

Namely

(2.8) O, vy ={f 237585 -

The coefficients of ¢ and #* in I(x(z)) are respectively

{f=Uw, ; th pr—v)
and
(; Tp por — v, ; b o — V)

If <U**, yy=o0 or {f, vp=—o0, (2.8) is true. Hence we assume that <U**, »>

< oo and {f, v)>—oco. Then the second coefficient is finite. ~The first coef-

ficient is <o and can be equal to —co only if (f,v>=co. However, if so,

I(p*) < I(w(t))= — oo this is impossible because we assumed I(*) to be finite.

Thus in any case (2.8) holds good. Since v € &, is arbitrary, (2.5) follows.
Next we integrate (2.5) with respect to x, and obtain

O, ey =<y oy 23 {gis -
We should have the strict inequality here if the strict inequality were true
on a set of positive y,-value in (2.5). It is. impossible on account of (2.4) and
the equality is true in (2.5) u;-a. e. for each k.

We assume now that f(P) is upper semicontinuous and each g,(P) is con-
tinuous on 4. If there were a point P, € Sv,N A at which

ﬁ#*(Po) >f(P0)+k2:"1 Ye gk(PO)a

then the inequality would be true on 4 in a neighborhood Nz, of P, by the
lower semicontinuity of U**(P) and by the upper semicontinuity of f(P)+ é

k=1
7. g+(P). On account of (2.5)

O, Mk>>S (f+j2=1 5 &7) dpe=<f; px) 2 {&is b Vi
This contradicts (2.4), and (2.6) is proved. Since

H,= { Pe 4; U(P) gf(P)+é‘i Ve gk(P)—%}
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is closed relatively to 4, the exceptional set H=\UH, is the intersection of an
b

F,-set with 4.

CoroLLARY. Assume that f(P)< co is upper semicontinuous and each g,(P)
18 continuous on A. If p* is an extremal measure giving finite 1(w*) and if
{pe} and {v.} are respectively measures and constants defined in the theorem,
then

0¥ (P) — f(P)=33 72 s (P)

on \J Su, N A except a set supporting no nonvanishing measure with finite en-
k=1
ergy.

Remarx. Let 4 be an A-measurable set with £,5={0} and f(P), g:(P),--,
g«(P) be A-measurable functions on 4. Assume that the following relations
are true for {v;} and constants {c;}, k=1, ..., n; we do not require any other
properties:

=31 ealah, (wh )
and, for each £,
23 g o> e =0, s> =< fy .
Then by adding these equalities for k=1,..., n, we obtain
(2.9) 1@):}; e u>=2k=z": s c— (v, V).

This is particularly true for our extremal measure p* if ,* =k_2,; [

We shall denote by .#* the class of all extremal measures in ¢4({g:},
{x¢}, ) which make I(x) minimum. For two measures y; and ., we shall call
apy +bpz, with varying ¢ =0 and b =0 such that ¢ +b6=1, a segment and denote

it by 1 pee.

Turorem 2.2. Let p*, p** € 4™ and assume that I(u*)=I1(u**) is finite.
Then
(2.10) (* = p™*, p* =) =0.

If the strict inequality holds then mo inner point of p*u** belongs to .4*, but if

the equality holds then u*u** C.#*.

Proor. Leta>0,5>0 and a+b=1. Obviously
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ap® +bp** € u({ge}, {xets )
A simple calculation shows that
I =1(**) < Hap™ +bp**)=T(*) —ab (™ — p**, ™ —p**).

Thus (2.10) follows. If (u*—p**, u*—u**)<0, then I(ap™ +bu**) >1(x*) and
ap* +bp™* is not an extremal measure. If (u*—p™*, p*—p**)=0, ap* +bp™*

€ .#** and hence *;.** is contained in .#*.

CoroLrLary 1. Under the assumption that 4%+ & and I(u*) is finite on
ME, M* 18 a convex set 1f and only if

(¥ — p**, i — ) =0
Jor any p*, W** €. a4*. This is so in particular if the kernel is of positive type;
then (/1;* —,u,**, /1,* ——/.b**):(). A

Cororrary 2. If inf I(w) for p€ &u({gs}t, {3}, f) is finite and the energy
principle is satisfied, .#* consists of at most one measure.

We shall give in § 2.7 an example (Example 1) in which .#* consists of
just two measures and A4 is a compact set.

Next we shall examine what follows from (2.4) and (2.5). Let us assume

them. We assume also that we could choose {u:}, k=1,..., n, such that i 1k
k=1

=u* and (2.2) is satisfied. Let v be any measure of 64({g:}, {x:}, f) and in-
tegrate both sides of (2.5) with respect to v. It follows by (2.9) that

2 (UM, vy = 2{f, u>+2kz:xk Ye=2 < f, o>+ 1)+ (u*, u®).

This gives
I*) + (" —v, p* =) <I1).
Thus we have

TraeoreEM 2.3. Consider a kernel of positive type. Assume that there are
{me} satisfying (2.2) such that p*, set equal to i‘, oy Delongs to &u({ g}, {xs}, f)
k=1

and (2.5) is true with {v.}, defined by (2.4), on A except H with &= {0}. Then
this p* is an extremal measure. ’
For a kernel of positive type we can prove also

TueoreMm 2.4. Consider a kernel of positive type and let u*, v™ be extremal
measures. Assume that I(p*)=I0*) is finite and that there are {u:} and {v:}

such thdt;i". /Lk:p,*,ki]'uk:u*, {giy my=<gj, vuy Sfor each j and k and (2.2) is
=1 =1
true. Then the solutions {v;} of (2.4) are identical for u*, {u:} and v*, {v;}.
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Proor. Let {vy;} be the solutions of
33 o> 1=0%, ) —<fy >
By integrating (2.5) we have also

¥, )= fy 98> 2 2348 > s
From these relations it follows that
(=%, 50 = 33gs, w6 (1= 7).
The left side is zero because

(,w*—-v*, Vk)zg(f“*——u*’ /"*_V*) (Vk) Vk):()

on account of Corollary 1 of Theorem 2.2. Consequently

Z‘I <{gi» vy (vi—v;) =0.
i

Similarly it holds that
,% g mey (V=) =0.

By assumption <{g;, u)=<gj, vs> for each j and k and hence
}1 {gi> my (vi—7})=0.

Since [|<{gj, w70, v;=v; for each j.

We shall find cases in which (2.2) is satisfied.

Theorem 2.5. Let A and f(P)be the same as tn Theorem 2.1, none of {x;}
be zero, and {gx(P)} be A-measurable functions defined on A such that g,(P)=0
on Ay for any different j and k, where

Av=A{Pec 4; x;, gi(P) >0},

and such that {g:, v> s finite for each k and for any v€&s. Then for any
wE EA({grts {xe}, f), the restrictions . of p to A, satisfy (2.2).

Proor. By our assumption {g;, uy=0 for any different j and £. It will
be sufficient to show that (g, u»#0 for each k. Since p€ &u({gs}, {x:}, )
and none of {x;} is zero,

Sgk dp=2x,70.
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If

L& Mk>:SA gr dp=0,
k

then

x% :kaA_Ak gk d},b = SA_Ak (xk gk) d/j; g 0
This is impossible and {g;, x> does not vanish for any k.

Remark. If, in addition, x; gx(P)=0 on 4 for each %, then we define 4,,...,
n-1

A,_1 as above and set A,’,:A—ku A,. We change the definition of 4, to the
=1

restriction on 4, instead of the restriction on 4,. These {u} satisfy (2.2) and

> me=p. This is so in particular if v 4,=4.
k=1 k=1

2.2. Problem on compact sets.

We shall discuss the existence of extremal measures. It is rather dif-
ficult to find conditions which ensure the existence under general circum-
stances and we shall limit ourselves to the special case in which 4=K con-
sists of a finite number of mutually disjoint compact sets {K;}, k=1,..., n, f(P)
is upper semicontinuous and < co on K and g(P) is positive on K; {x;} must
be nonnegative then. We shall write simply &x(g, x) for &x({g:}, {x:}), where
gr=g on K; and =0 on K—K, for each k and x=(xy,-.-, x,). The problem
which is concerned in

min I(p)
nee K(g, %)
is called n-dimensional. In case n=1 K is not divided into compact subsets
and x itself is a number. We shall use the same notation £x(g, %) in this case

too.
First we give

Tueorem 2.6.  Let K consist of mutually disjoint compact sets {K;}, k=1,
.., n such that Ex, 710} for each k, and O (P, Q) be a kernel which is bounded
on every K;x K, j k., Let f(P)< oo be an upper semicontinuous function on K
and g(P) be a positive continuous function on K. Assume.that it is not true
that f(P)= —co p.p.p. on any K,. Then, for any nonnegative finite numbers
{xs}, k=1,..., n, there exists at least one . € &x(g, x) which gives finite

I = min I(w).
<Mx) I*EZK(A"”) (M)

Proor. First we shall prove that there is a measure 1 € £k, such that
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{g, py=x and
(p1s p1) =2 fy pap< oo,
We assume x; >0 and set
B,={PcKy; f(P)> —n}.
By assumption there is ,uEé’g B,(g, #1). For some n, say no, u(Bry)>0. We

denote the restriction of 4 to B,, by x’. Then the measure x,'/<g, 1> has
the required properties. We take a similar measure p, for each k. It follows

that

kgl/,bkeéax(g, x) and inf , l(ﬁb)é_[(}hzl ;bk)< oo,

HECK (8, %

We choose 4™ € & (g, ») such that I(u) tends to the infimum. Since
5w = | gdu™ = min g(P)u"(K),

w™(K) is uniformly bounded. By Proposition 8 in § 1.6, {u™} is vaguely
bounded as a class of measures. Let T={v,; w€D} be a subnet of {.™}
which converges vaguely to some measure y,. It follows that

x,=lim S gr dv., =S g duy and lim S fdv, < S fas.

By Proposition 4 in § 1.6 we have

liil (Vun Vw)g (lu’x5 /‘bx)'

Since

(Vay Vo) =1 (v,)+2 mkg,x fe oK)

is bounded from above, we see that .. € £x(g, ). Therefore
inf  1G)= lim {(a w) =2 (f, 0}

MEE (8, %
= (e i) =2 fy gy =1(u) == inf  I(u).
PEE (8, %)

K,x

Thus I(u,)= inf I(x) for € &x(g, x) and the existence is shown. The in-
fimum is finite because ;,(K) is finite and

I(Mx):(#x, /-’Jx)'— 2 <fa ,UJx>
ZPI,%iEIII{ O (P, Q) piz(K)—2 max f(P) p:(K)> — .

Remark. Let ?’j x, >0 and consider
=1
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(P, Q=0(P, Q)—2f(P)g(Q)/ =

on Kx K. This is lower semicontinuous, and does not take the value —oco.
Therefore this can be taken as a kernel on the space K. If we denote by (u,
wv the energy of u€ &x(g, x) with respect to this kernel, then

(s v =y ) =2 {fy pp=I(w).

Consequently it is sufficient to prove Theorem 2.6 in the special case that the
space is compact, f(P)=0 and g(P) is defined in the whole space. We note
also that (u—v, p—v)e=@—v, p—v) if u,v€Ex(g, x). However, ¥(P, Q) de-

pends on ki‘. x; and hence is not suitable in case {x;} change.
=1

Theorem 2.7. For an extremal measure u, obtained in Theorem 2.6, it
holds that, if x>0,

2.11) U*(P) = f(P)+v:g(P)

on K, except H, with &y,={0} and

(212) U**(P) < f(P)+7:g(P) on S,.NK,,
where

2.13) mv=| O =P

It follows that
(214) L) =3 n 1= fy s> =2 3 0 0s— (s i)

Assume that the kernel is of positive type. Let p€ &k (g, x) and denote the
restriction of wto Ky by w,. Lf, for each k with x, >0, p and v, =U*—f, m)
/xy, satisfy (2.11), then u is an extremal measure.

Proor. If none of {x,} vanishes, this theorem follows from Theorems 2.1,
2.5 (see its Remark) and (2.9). If some x; but not all of them vanish, say if
21 >0,..., x,>0and x,,,;=...=x,=0, the problem reduces to the ‘“m-dimension-
al case”. Namely, the problem is to minimize () for u € é’k[,’lKk(g, x’) where

2 =(%1,---, ). Our theorem is then readily established. The last statement
is an immediate consequence of Theorem 2.3.

Cororrary. 1. For any compact set K :SJ K, such that no K is empty,
=1

e~ ] U“(P)—fP) _
I(pr)= inf k; ixkpegllrg{k P S Mk>}>
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where 1 is supported by K, . is the restriction of pto K, and {g, ur)=x; for
each k. In particular, V;(K) is equal to the infimum of (u, ) for unit measure
u supported by K.

Proor. We may assume that all x,>0. Let us denote the quantity inside
{ } by W,(u). We integrate the inequality W,(u)g(P)=x: U“(P)—x;, f(P)
—{f, 1) g (P) with respect to y; and obtain

wr Wi () = %z S U* dpp— 22, fy o).

It follows that kz W)= (u, @) =2 <fy pp=I). If &x(g,x) 7= &, 1) = I(me)

= k_il‘, Wi(ux) by our theorem. If &x(g,x)= &, I(u)=-cc and again the equality
in the corollary holds. This establishes the corollary.

We shall call y; giving (u1, p)="V;:(K) a weak equilibrium measure on K
and U"“1(P) a weak equilibrium potential. If we consider g(P) on K, a measure
which gives min (i, ) among p € &x(g, 1) will be called a weak g-equilibrium
measure on K and its potential a weak potential.

CoroLLARY 2. V;(X)=V(X), V;(X)=V:(X). If 6P, Q)=m>—co on
Xx X, then

27,(X)= max (V;(X), V(X)) +m
and
Vi(X)—m=2(:(X)—m).*®
Proor. Since

Vi) SV K=K = (g, p) < sup U4Q)

for any compact set KC X and any unit measure x with S, CK, we have V(X)
<V«(X). Similarly V(X)<V(X). If ®(P, Q)=m>— oo on Xx X, then

2 sup U*(P)=sup UYP)+m=V{(X)+m
Pesﬂ PES“

for a unit measure x with compact S, C X and hence 2V ;(X) > Vi(X)+m. It is
the same with 7;(X). Combined with V(X)=>7;(X), it gives the last ine-
quality in the theorem.

As a consequence of these corollaries the following two propositions are
equivalent:

A property holds p.p.p. on a set X.

A property holds on X except H with &z={0}.

23) This is an improvement of the evaluation in Theorem 1.12.
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Consequently (2.5) and (2.11) hold p.p.p. on 4 and K, respectively.
We shall denote by .#} the class of all extremal measures p, and set, if
x>0,

215) = (], 0= .

If x,=0, we set x v, (u.)=0.
Let us prove

Tueorem 2.8. Under the same condition as in Theorem 2.6, the class A5
s closed under the vague topology. If x, is positive, vi(u.) s continuous as a
Sunction on the space 4% with the vague topology. If the kernel is of positive
type, x v (1) 18 uniquely determined for each k.

Proor. Let T={u’; @€ D} be a net consisting of extremal measures
which converges vaguely to x*. As in the proof of Theorem 2.6, we can see
that ,* € £x(g, x) and we have

I =1im 1) = (u*, w*) = 2 {fy WO =1(") = 1 (),

where u, is any one of extremal measures. Thus I(x*)= inf I(x) and p*
is one of extremal measures. weK ()

To prove the last statement of theorem, we assume x; >0, ..., x, >0 and
Xme1=---=%,=0. We have that

25 0 74 () =1 )+ f, )
for any x“ €T by (2.14). Therefore
@ kgl. wr V() I +<f, p*> =k§, % Ve (™).
On the other hand, by (2.4) and Proposition 3 in § 1.6,

for k=1,..., m, where we use the fact that the restriction p§” of x* on K,
converges vaguely to the restriction pf of 4* on K;,. We can conclude that
each lim v,(1)) exists and equals v,(x*) for k=1,..., m.

The last statement in the theorem is an immediate consequence of Theo-
rem 2.4.

In case each x>0, let us consider (v;(u.), ---, v»(u:)) as a point of the
euclidean space E, and denote it by v(z,). We set

Ie={y(p)s ps € M5}
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We know that, if the energy principle is satisfied, .#F consists of a single
point. Then ", does too.

Theorem 2.9. Under the same condition as in Theorem 2.6 and the as-
sumption that every x, >0, I, is a compact set. If, in addition, #5 is a convex
set, I, 1s connected.

Proor. First we observe that each v,(i,) is bounded from below because
of its definition (2.15) and then that it is bounded from above in virtue of
(2.14). Therefore I, is bounded in E,. In order to see that it is closed, we
take a sequence {u™} C.#F such that each v,(u™) tends to some number v;.
We can find a subnet 7= {v,; o€ D} of {4} which vaguely converges to a
certain measure x’. By Theorem 2.8 4 is a measure of .#; and

Ye= limm Ve (Vo) = (/ﬁ/)-

This shows that the point (v, ---, v,) is equal to v(x’) and hence I, is closed.

Next we assume furthermore that .#} is convex. Hence, for any u,, u
e} and =0, b=0 such that a+b=1, au,+bp>€.#F. By a computation
we obtain

’ ’ b 7 Tl ’
Ve (a/l'x + bll'x) =avk (/’w) + b')'k (/Lx) - %k <Uﬂx - UM P lbgrk) _/Lx(k)>;

where x” and ,® are the respective restrictions of . and u; to K;. If we
set

8k=xL O — [7#;’ ul — O and §=(8y, ---, &),
k

then for ¢, 0 <{a <1, we have

Iy 39 (aps + (1 —a)pi) = ay (1) + (1 =)y (uz) —a(l - )3,

where + means a vector summation. The right side represents a curve con-
necting v(u,) and v(u,). Consequently I', is connected.

2.3. Some general cases.

We shall discuss the existence of extremal measures under different con-
ditions. If the kernel is of positive type, we can have various types of exis-
tence theorems. One example is as follows:

Let K be a compact set with &x={0} and v, N €& be measures with com-
pact support. Assume that every Cauchy sequence of measures of &x converges
strongly to some measure. Then for any x>0, there is a measure u* € & (U, x)
which gives

ln*—p||= min —y.
w* == _min s
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The proof is given in a customary way by using the identity

e e L P e et

We can consider other similar problems. However, we shall take another oc-
casion to discuss such problems in which potentials are taken for f or g or
both.

In this section we shall seek a possibility of generalizing f or g in another
direction. It does not effect the discussions in the subsequent sections and
we can skip over this section. We begin with

Tueorom 2.10. Let K be the union of mutually disjoint compact sets K,
-, K, such that €g,5={0} for each k, and g(P) be an upper semicontinuous
Jfinite-valued positive function on K. For each k, assume that (u, 1) >0 for any
w70 with S, C K, and that (u, w) =/, 1) of w=y'. Then for any positive xi,
.-, %, there exists at least one u, € &k (g, x) which gives finite

(Mx; /-l’x): inf (,Lb, #)~
nEFK (8, %)

Proor. We consider the special case that f=0,g=1 and x=1 in Theorem
2.6. We obtain at least one extremal unit measure y, € £x, which minimizes
(p, 1) for each k. By our assumption we have that (u;, ux)>0. We choose
w™ € &x(g, x) such that

lim (u™, ut= " inf (u, p).
Moo nef g (g, x)

Let x{™ be the restriction of 4™ to K,. Since

(™, 1) = LK} (s )

w™(K) is bounded. We can find a subnet 7= {v,,; © € D} of {™} which con-
verges vaguely to some y,. It holds that

wtim | gt <, sdu=g 1,
® Ky JKp
where x{¥ denotes the restriction of u, to K;. If we set p'=ux;, u/{g, u&¥>
on K for each k, 4’ € #x(g, x) and /<p,. By our assumption (i, u") < (s, sa)-
It follows that

inf  (u, )= lm (va, v) = Qe ) =@y W)= inf  (u, )
ne€ g (g, ) o reé g(g,x)
and all the equalities follow. Thus w, is an extremal measure.

We may raise questions as to whether this theorem is true if we consider
I(w)=(u, ) — 2 {f, p> instead of simple (u, ) or if g(P) is lower semicon-
tinuous, and as to whether the condition (i, ) >0 for € &k, u==0, or the con-
dition (u, p) = (', ') for p =y’ can be dropped. Answers are all negative as
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will be shown below.

ExampLe 1. 2=K={t; 0=:<1}, 0@, s)=1, f(t)=1, g(t)=2—¢t for 0<_¢
<1and =2 at¢=1,and x<1. Observing that

SE P

for p€ €k (g, x) and that
I(w)=p*(K) —2p(K)=1— w(K))*—1,

we see that the problem is to maximize the total mass of a measure of &x
(g, x). The total mass becomes larger as a measure is distributed nearer the
point :=1 as a whole, and the infimum of I(x) is x*—2x. However, the I-
value of the point measure at t=1 is /4 —x. Therefore there is no extremal
measure.

ExampLE 2. @=K={t; 0=: <1}, @@, s)=t+s+1, f()=0, g(0)=1, gt)=2
for 0<:<{1. For pe€é&x(g, 1) we have

1) = (s, M>=S§ D (s+5+1)dp(0)du(s).

This becomes smaller as the measure y is distributed nearer the point ;=0 as
a whole and the infimum is 1/4. However, if 4 is the point measure at =0,
then I(u) is equal to 1. Hence there is no extremal measure.

Example 3. 2=K={r; 0=:<1}, 0(z, s)= —1, f(¢)=0, g(z)= the same
as in Example 1. In the same way as above the problem is to maximize the
total mass of a measure of £x(g, x) but there is no extremal measure.

Exampie 4. Ki={t; 0<:<1}, K ={t; 2<:<8}, 0(t,s)=1 on K;xK;
and K, x K, = —4 on K; x K, and K, x K, f(t)=0, g(¢) and g(:—2) are the same
as in Example 1 on K; and on K, respectively, and 2x;=x,. Let x=(x1, x,) and
BEEKk vk, (g, %). We set i(Ky)=m; and u(K;)=m., and observe that, for a fixed

my,
(s p)=mi+mi— 4mim,

takes its minimum —8m? when m;=2m,. Hence the problem is to maximize
the total mass of a measure of &k (g, x1). This again shows that there is no
extremal measure. Actually the condition (u, ) =(y/, ) for w=y' is not
satisfied as is seen by p= the unit measure on K; plus the unit measure on
K, ' =the unit measure on Kj.

Next we shall examine if f(P) can be lower semicontinuous.

ExampLe b. 2=FE;, K={P; OP<1}, ®(P, Q)=1/PQ, f(P)=1+0P for PEK
—0K, =1 for PeoK, g(¢t)=1. For pc€éx(1, x), we have
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169 =Gt 19=2 | FPYGuPY= Gy ) 20~ PP,

This value becomes smaller as a measure p is distributed uniformly and near-
er 9K as a whole. The infimum is equal to x*—3x but the uniform unit
measure on oK gives the value x2—2x. Thus there is no extremal measure.

As an applieation of this example we would point out that Lemma 3 of
Cartan and Deny [1] is not valid as it stands. In fact, according to the lem-
ma the following fact should be true:

Consider the Newtonian kernel, and let K be a compact set in Es and f(P)
be a positive bounded measurable function in Es. Then there is a unique meas-
ure u* which gives

I(w*)= g}% I(w).

Let us take K and f(P) as in Example 5. If there were an extremal measure
w* as asserted above, *5=0 and p* would give the smallest value to 7(x) among
measures of &£x(1, x) where x=p*(K). This is impossible as was observed in
Example 5.

Finally we consider the class

Yx(g, x)={/JJEc5°K;SK gdp=x, for eachk}.
3

TueoreM 2.6. Let K be the union of compact sets Ky, ..., K, with &x,72{0}
Sfor each k, @ (P, Q) be a kernel which is bounded on every K;x Ky, j7k, f(P)< oo
be an upper semicontinuous function on K and g(P) be an upper semicontinuous
Jfimite-valued positive function on K. Assume that 1t is not true that f(P)= —oo
p.p.0. on any K; and suppose that (u, 1)>0 for any =0 supported by K, for
any k. Then, for any x>0, there exists at least one p* € Zx(g, x) which gives
finite

£ .
I(w*)= pediin I(w).

Proor. We choose u™ € @x(g, x) such that I(n™) (<o) tends to the in-
fimum as m—co. Let yu; be the unit measure which gives min (g, x) among
unit measures supported by K. It follows for the restriction n{™ of u™ to
K, that

I(u™) = (& (Ka))? (s 1) — sup f (P) + u(Kp).

This shows that x™(K,) is bounded for each k. If 7= {v,; €D} is a subnet
of {u™} which converges vaguely to some o, then

)

lim SKk gdv. =< SKk gdpo
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and hence po € ¥x(g, x). Therefore
inf ) I(w)y=lim I(v,) =1(po)= inf I(uw)

wEGK(8 % hEZ K (8, %)
and the equality follows.
Hereafter we shall assume that g(P) is positive continuous on the set where
it is defined except in § 2.9

2.4. Change of extremal values.

We raise the question how I(u,) and v:(u,) change as f(P) or g(P) or both
change.
When we specify the function f in expression (2.1) of I(w), we write I(u).

TaeoreMm 2.11. Let K, ..., K, be mutually disjoint compact sets such that
&x,7={0} for each k, and @ (P, Q) be a kernel which is bounded on every K; X K,
jFk. Let f(P) be a finite-valued upper semicontinuous function defined on

K= \nJ K, and g(P) be a positive continuous function on K. Let {f(P)} be a
k=1

sequence of upper semicontinuous functions on K which tends uniformly to f(P),
and {g,(P)} be a sequence of positive continuous functions on K which tends
uniformly to g(P). Then, for any point x =(x1, ---, %,) N %, =0, ..., x,>0, the
minimum value of Is () for u€ Ex(gy x) tends to that of I;(w) for p€ Ex(g, x)
as p—oco. If there is the unique extremal measure p in &x(g, x), the sequence
{u®} consisting of the extremal measures, respectively in &x(gy, x), converges
vaguely to u and each x, v (u?) tends to x vi(w).

Proor. Let u® be any one of extremal measures in &x(g,, x) and denote
Iy p([b(p)) simply by I,. We denote also the minimum value of I;(x) for p€éx
(g, x) by I. Since the total mass x”(K) is bounded, we can extract a vaguely
convergent subnet 7'={v,; o € D} of {u®} and denote by .* the vague limit.

gWdv, = S gdp* and lim S (f —f) dv,=0, where
Ky Ky ®

g is the one of {g,} corresponding to », and f© is the corresponding one
of {f»}. It follows that ,*< &x(g, ) and also that

lim (f“, v,> < lm {f— £, v,> + lim (f, vo) < fy .
It holds that
lim I ()= lim {(ve, vo) =2 {f“, >} = lim (v,, v,)—2 lim {f, v,»

=(p*, )~ 2y w1

Let 4. be an extremal measure in #x(g, x) and define 1, by setting it equal to
wp p$P g, pP>"1 on K,, where ¥ is the restriction of u, to Ky; if =0,
we set M (Ky)=0. It belongs to &x(g“, x) and

It is easily seen that lim S
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li_m Ifm) (Va))é lim {O\w) Xm)—2 <f(m)’ )"w>} :(/"’m :u’x)_z <f, /l'x>=1

Consequently lim Iy« (v,) exists and equals I. It follows also that x* is an ex-

tremal measure in £x(g, x). Because of the arbitrariness in choosing 7, it is
concluded that lim I,=1. If there is only one extremal measuse y in £x(g, %),
Do

then 4 converges vaguely to x and by (2.14)
},Tm > 7e(p®) = }}m I+ },Tn {fy D I+, =33 % 1)

On the other hand, for each k,
lim ')’k(;b(p))Z lim (M(iz), i) — Tim <f, Flgp)>
== P preo

= (s po) —<fy ) =21 v (),

where the subscript & indicates the restriction of measure to K,. From these
relations it follows thet x; v, (u®) tends to x v, (x) for each k.

Remark. If all f,=f, f may take —oo (not o) but it is required that
f(P)> —co on some subset X, CK, with &x,7{0} for every k.

We shall assume in §§ 2.4-2.7 that Ky, ..., K, are mutually disjoint com-
pact sets such that &€x,== {0} for each k, that @(P, Q) is a kernel which is
bounded on every K;x K, j#Fk, that f(P)<co is an upper semicontinuous

function defined on K= CJK,; such that f(P)> — oo on some subset X, C K, with
k=1

¢x,7#{0} for every k, and that g(P) is a positive continuous function on K.
Also the assumption that kernels are symmetric will not affect any generality
in the following discussions and hence it will be assumed hereafter in this
chapter unless otherwise stated.

We shall study the change of /(1) in details when f(P) and g(P) are fixed
but x=(x, ---, x,) changes. When %, >0, ..., x,>0, we define g.(P) by g(P)/x

on K, k=1, ..., n; then SK g:dp=1 for any p€&x(g, x). We can apply the
k

preceding theorem (see its remark) and conclude that I(x,) is a continuous
function in %, >0,..., x,>>0. However, as any one of x,’s approaches zero, g.(P)
becomes unbounded and the continuity of I(x,) in %, =0, ..., x,=>0 cannot be
seen in this manner. '

Before proving the continuity in x>0, ..., x,>0, we shall show that
(wxs ) and each x;, v () are bounded if » is bounded in E,. We denote (1,...,1)
by e and take v € £x(g, e) such that f(P) is bounded on S,. We shall write in
general xv for the measure which is equal to x;, v, on K,, where v, is the re-
striction of v to K. It holds that

1Gue) =ty ) =2 f o> S )= z w5 54 (5, ve) —22 w1 <f, vip-
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The right side is a continuous function of x and hence I(i,) is bounded from

above if |x|=+yxi+ ... +x2<r,. On the other hand ;Lx(K)gﬁ %, (min g)~" and
-1
I(Mx)z gli}{l ¢'M:25(K)_2mi?‘xf'/ﬁx(K)

is bounded from below if |x| <r,. Therefore
(/«’-‘m ll'x) :I(/Lx) +2 <fa Mx> < ](#‘x) +2 m]?,X f * fx (K)

is bounded if |x|<r,. We see also that {f, x,> and each (MQ”, 1) are
bounded, where ;¥ is the restriction of ., to K;. It follows that 2. 2 Ve (i)
k=1

= (o, px) +1(j22) is bounded and that each x; v, () is bounded because x; 'yk(,ux)
=z, p)—{f, p¥> is bounded from below. One sees that each {f, ;¥
bounded too.

Let veéx(g, ), .20, -, x,20, and x=(x1, --, x,). Then xv € &x(g, x),
and we have

(2.16) I(pr) ZI(wv)= (v, 2v)—2 S fd(av) :;,éjlxj 2 (v, vi) —2 %31 xx fy va)-

Let us denote by P(v) the branch of the parabolic quadratic surface in x, >0,

., 2, == 0, expressed by the right side. For £é=(,, .-, &), £>0, .., £,>0, and
an extremal measure ., we define v € £x(g, ¢) by setting its restriction to K,
equal to the restriction of y:/&, to K,. The surface P(v¢) touches the surface
I(y) at x=§ and I(p,) <P(ve) in x>0, ..., x,>0. If £>0 we define v by

(’”/fk on K,, and by any measure v(k)Eé’Kk(g, 1) such that {f, v¢> is finite
1f £,=0. Similar fact is true for P(y¢) in this case. We denote by IT the
family {P(ve); 0<E1<eo, ..., 0<E,<oo}; we note that P(ve) is not uniquely
determined by . if some of {£,} vanish. We can state

Tueorem 2.12.  I(p,) 18 the lower envelope® of IT on %, >0, ..., x,=>0.
Let us prove the continuity of (i) in >0, ..., x,>0. As a lower
envelope of continuous functions, I(,) is an upper semicontinuous function

there. Let x,=(x{®, ..., ) be any point with nonnegative coordinates and
{x®P} = {(x, ..., x)} be a sequence of points with nonnegative coordinates

tending to xy. Since (u$”, ) and {f, u¥’> are bounded for bounded x,

(0) x/(bO)

I(/l’xo) < hm I(xO ')(p))— m { 2/ W (/455].)) F"i@’)) -2 Z“ xfp) <f /'l’x(b)>}

Do

where the superseript % indicates a restriction to K, and the summations

SV are taken over j, k for which x”, x> >0. The last side is equal to lim
P

24) This is defined at each point by the infimum of the values of the functions of IT.
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I(uy») if every x>0, and the theorem is proved. We shall show that in

general the last side is not larger than lim I(x.»); this will complete the
P

proof. For that purpose it is sufficient to show that

0 <lim { I(pr0)) — Zl W (anm ) +2 Zn” xfp; {f /ﬁx<p>>§

)

= { 2”, (/v"x(p% ll’x(p)) 2 EI” <f; /’(’x(ﬁ)>}

paao

where >V is taken over k for which x{”=0. Since the total mass of n&%),
tends to zero it converges vaguely to zero. Hence

lim (f, i) < <f, 0> =0
and
ling Guil, i) 2 0.

Since the kernel is bounded on any K;x K, j=#k, },iff_} (D, p%,)=0 for any

j#*k. Hence

lim {377 3% (i, ) —2 377 <o 2 20
TureoreMm 2.13. I(u,) 18 continuous on x; =0, ..., x,=0.
17

We shall use Theorem 2.12 to obtain further properties of the graph of
I(;). Let A be a compact set in x, >0, ..., x,>0. We have seen that (,ué"),
p) and {f, x> are bounded if |&| is bounded. Hence (»{”, v{”) and {f,v{">
are bounded on 4. Therefore for a large c4 and for any £€ A4,

Ple)—ca(al+ - +x3)

is concave as a function of (x;, .-, x,) € 4.2¥ Its lower envelope I(u,)—ca(x?
+...4+4x2) is concave there. It has a directional derivative at each inner point
of A and it is totally differentiable a.e. in 4. It follows that these facts are
true for I(;,) everywhere in x, >0,..., x,>0. We shall compute a directional
derivative explicitly in terms of {v,(1)}.

First we prove

Lemma 2.1, Let T={x’; » € D} be a net consisting of extremal measures
at some points and converging vaguely to p*. If x”={g, 13”) as a function
on D converges to x,>=0 for each k, then x* is an extremal measure for x. It
also holds that lim (u, ™) =(u*, *), im {f, u®@>={f, p*> and lim x§” v, (u)

=ux, 7,(w*) for each k.

25) This was suggested by Ogasawara.
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Proor. By assumption
(“”“g gdp’ — S gdui ==, as T'5u®—u",

and p* € &x(g, x). We take any extremal measure ., at x. On account of the
continuity of 7(;z,) in 2, >0, ..., x,==0, we have

1) =lim 1Gu) 2 lim (u, u)~2 Tim <fy @

=", =2y WO =10 = 1)

Thus I(x*)=1(x,) and it is shown that x*€.#¥. We see also that «§”v,(u)
—x, 7,(u*) for each k as in the proof of Theorem 2.11. Hence

lim (f, p)=lim { k>;?1 x5 () =1 (,w(‘“’)}
2;2‘1. %, 7, () = 1) =L, 17>
and
lim (9, 5 ) =Tim { 2 332, (u) = 1) | =%, 1)

Our lemma is established.
Let x{” >0 for k=1, ..., n, and 4 be a closed ball in x>0, ..., x,>0 with

center at xo=({", ..., x;‘” . In general we denote yxi+ ... +x2 by |x| for x
=(x1, -+, %), NOL necessarlly in x>0, ..., x,2>0, the point (x; — 2%, .-, x, — 2
by x—x, and the half line issuing from x, and passing x by /.. We have ob-
served that I(x,) is the lower envelope of {P(v¢)} and that J (x)=1(u.)—ca
i+ +2x2)=1I(u;)—ca|x|* is concave on A4 for a large c4. For a point £é=(&,,
, £, € 4 different from xo, the graph of P(v,)-—ca(xi+ ... +x%) touches the
graph of Ja(x). Therefore the derivative of P(v,)—ca(xi+ - +x) at £ along
l: is not larger than the derivative of J4(x) at x, along I;. The former is equal

to

(/Jaé, /L(k)) =2 2"3 <f, /~’Jiek>>
& e k=1 &

o 7 (:‘ n‘ <
=22 k gy ) = <fy w70) = 2ea 236, 1, =2 239, () m, — 2ca 25 & m

2 %‘, 7lk—2CA1§§k77k

where 7=, ---, 7,) is determined by &—xo=|E—x0|7. We set y(u,)=(71(s,),
-5 Vu(per)) and proved that "= {v(u.); iz € A7} is a compact set in E, in Theo-
rem 2.9. Hence for any y,,..., y, there are a measure of .#} which attains min

pea ¥

2, 7,()y, and a measure of .#} which attains max L 7wy, We denote

y.e.l =
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these values by r(x, y) and 7(x, y) respectively; in the case of one dimensional
problem we write y(x) and 7(x) simply. If we denote the derivative of I(u,)
along I: by dI(p,)/dl;, we have

(217) 21(E, ) —2ea 3} £, 7, 27 (E ) —2ea 2} 6, 7,
I(pee) = IQny)  |E]2— |22 Al o I o
= = A E | = A | xog ZCA% Xk Ny,

< I(xo, n)—2ca Z. xi())’?k

Let £ approach x, such that (&, —x3”)/|[6—x0| tends to a certain limit y,.
Naturally yi+...+y2=1. By Lemma 2.1, for any subnet {x“} of {u:} con-
verging vaguely to a measure p*e.#%, each v,(u™) tends to v,(u*). We
obtain from (2.17)

(2.18) lim L 7, £ EE g<w> = l L 7 @)y, =1 (%0, ),

where £¢ is determined by gy = #“.  We have the equality in the last in-
equality, and in view of the arbitrariness of {4}, we see that

lim 337, S (e, )
R [

whatever the values {v,(x,)} may be at &.

We shall show that y(xo, y) is continuous with respect to y. Let y®
=(y¥, .-, y?) with ly(”)l ~1 tend to y. We can choose x®=(ai”, ..., x%)
such that [x® —xo| <1/p, s —xo=| 2P — x|y and

l I<x<1>), y(p)) _ I(xo, y@))\ < %

Since 7(x?, y) tends to y(xo, y), it follows that y(xo, y®) tends to 7 (wo, y).
"~ Next let us see that there is ¢, tending to zero with r such that

lZ(ga }’)—I(xo, y)l <€l§—x0|

for any &=~w,, where £—xo=|E—x,|y. In view of (2.17) we assume, to the
contrary, that there is a sequence {£?} tending to x, such that y® =(&? —x)
/|E® —x,| tends to a certain limit y, and

(2.19) lim {y(E?, y) — 12, yP)} =1im y(E?, y®) — (o, y0)
proo preo
exists and is negative, where we use the fact that y(x, y) is continuous with

respect to y. Let u® € #%w» such that 2. v Py =7 (E?, ) and choose

a subnet {x’} of {u®} which converges Vaguely to a measure p*c.#%,. By
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Lemma 2.1 each v,(x“) tends to v,(x*). Therefore
},im 1EP, yP) = 1(x0, yo)-
This contradicts our assumption that the value of (2.19) is negative. On ac-
count of (2.17) again we have
I(/"’ ) I(#xo) 2r <§: lg o ) Ié_xol +e, Iel <e [ESENE)

with ¢, tending to 0 with r. From (2.17) follows also

: I(’UJE) —I(/Lx) f X s =
lim —2— % =2 lim (, °>2hm < )2 > Y),
toxg | E—mol oy L g |&— o vl 2 IE %o I, 7)
where £ approaches x, along a curve having a tangent at x, whose direction
is determined by a unit vector y.
Changing some notations we state

Tueorem 2.14.  As a function of vy, 7(x, y) s continuous on |y| =1 for any
xim x>0, ..., %, >0, and with any «" in 2, >0, ..., x,>0 we have

PSR St 2 YW
(2.20) 1) = 1) =21 |x,_x|)|x x| +e,

where || <e |y and ¢, tends to 0 with r. Let c, be a curve terminating at x
and having a tangent at x whose direction is determined by a unit vector y. As -
x’ approaches x along c,,
lim L) = 1) g yipy o <x', _x/;’i>z 2 lim 7 <x', L/l) —27(x, ).
| 2" — x| - | — x| | — x| -
CoroLLARY 1. I(i,) is totally differentiable at x vf and only if [, consists
of one point.

CoroLLARY 2. I(y,) 1s continuously differentiable in x>0, ..., x,>0 and
OI(j1,)/ Oy, 18 equal to 2v,(p.) if and only if {vi(u.)} are uniquely determined
wmn x>0, ..., 2,>0.

CoroLLARY 8. If {vi()} are uniquely determined at a point x in x>0,
oy %, >0, then each v,(ie,) 18 continuous at x tn the sense that each vi(p.) ts close
to vi(per) for x’ mear x.

We have observed before that I(y,) is totally differentiable a.e. in x, >0,

>0. This follows also from our theorem by the aid of a theorem of
Rademacher [17.

Next we shall compute the derivative of I(u,) and see the behavior of
v(u;) on the boundary of x>0, ..., x,=>0. Take x=(x1, ---, %, 0, ---, 0) with
x>0 for k, 1 <k <m<n, and denote by I the half line in x, >0, ..., x,>0, is-
suing from x and having the direction determined by a unit vector with com-



On Potentials in Locally Compact Spaces 235

ponents yi, -, y,. We include the case x=(0, ..., 0). For " onl and ., we
denote by @, and j,. the restrictions of p,. to \”J K, and U K, respectively;
k=1 p=m+1
these restrictions may be regarded as measures on K. We set dx,=x}—x,
and ¥=(0, .-, 0, ¥ms1, -, yu). We shall prove that (., i)/ |4x| tends to 0
as »' approaches x along /. Assume that g, converges vaguely to z and f,.
/| 4x| does to X; otherwise we take subnets and proceed in a similar manner.
Take any p,€.#5 and N€&,(g, ¥). We denote the restriction of ... to K,
by ¥ and set

x/ L m & .
% e =1 Xp s
It holds that
@.21) 1) ST et 420

/ /

—1( %, )42 (5 e V) o] O W) P2 <, 0 ]

. X

=1(jr)+2 éi Velpee)dooy +2 <U — f, N> | dw| +2 (-%px—,m, x) | x| + 0 (| 4x|?).
We observe also that
<—x—/u-xﬂ/xvx, 7\>|Ax| =0 (| 4x|?).
X

On the other hand, setting

n
x N X
21 7 Hx”s
Xp

we see that
1 gl(£‘,- )
(pr) = s
_ o v dxjdxe oGy o
=I()—2 > Vi (o) docy + >0 =75 (s )
k=1 jok=1 Xj Xp

Where x; 'Yk(:a’x'):(/zxﬁ /«L‘;@)—<f3 /"‘g:}i)>) k:la R R2) and hence
(2.22) (i) = 1) + 2, Fix) + 1 (7o)

= I(/"x) +2 kg‘i Tk (p'x’)Axk +2 <Uﬁx, —f& ﬁx’> + (/:"x’s ﬁx') +0( l Ax I 2)-
From this and (2.21) follows

(2.23) 2 ; V) ys+2 U —f, 3>
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Ms

=2

’Yk(,u,x/)yk-l‘-2<Uﬂx, f, IZ;/|>+ IA I (/~”x’a /"x)"'O(lel)

-

Now we set

inf Syt 0= o} =,

,ue.l;k,)teé'[{(s"y) =

Given >0, we choose x, and A so that the left side of (2.23) is smaller than
2m,+ ¢ and obtain

@20 2my+e=2m,+ 23 0 — (@) yi+ 2 (0~

k=1

+—|m (foxrs frxr)+ O (14x)),
where we use the fact that gz € .#F which follows by Lemma 2.1. Since

lim 74(ae) =lim - U™ —f, 1) =V, ) =1:p)

4x%-50 4x%-50

for each k<m, it follows that

2 lim (,L P ) 4 im

— i,
J7i50 | Ax| ) az>o

|
W (/zx’a ﬂx’)§e~

Since ¢ >0 is arbitrary, the left side is not positive. Now we make the fol-

lowing assumption:%®
(*) Whenever the potential of a measure 1. of ¢ | x, is continuous as a func-
k=1

tion on S,, it is continuous on U K.
k=m+1

This is naturally satisfied if the continuity principle is true or the kernel is
continuous outside the diagonal set. For given ¢ >0, there is by Lusin’s theo-
rem a compact set FCS, such that z(K—F)< e and the restriction of U*(P) to
F is continuous. We denote by g, the restriction of g to F. The restriction

of U"F(P) to F is continuous and hence U”F(P) is continuous on U K, by our

k=m41

assumption (*). Hence

lim (5, )=, .

Since

g ,j"" ><e w  SUp, 0- "’”(K)<e const.,
(m=ae 1, Skex O Ko |4l

26) It is an open question whether one can prove (2.25) without condition (*). In case m=0,
namely at the origin we have no such condition.
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we have that

lim (p, T%)Z(ﬂ, x)-

450
Consequently
lim (o=, <52 ) = (0 0=, 0=027

Therefore

m L (i, ) <0.

a5-0 | dx|
We can conclude
(2.25) lim -1 (7, 7e)=0

aam0 | A%

because

. 1 - - . _ :
lim mi‘ (,sz', ,U’x’)g _I_H_n_ ( |Ax| ]1?:;{ $|)20‘

PERY) 4%-0

We infer by (2.23), (2.24) and (2. 25) that

lim {kil Vil yu+ U™ —f, P }=my~

Zzs0 Li= x|

Let us evaluate the difference

d(x'):é—‘i V() ys — { éi V) i+ U™~ f, |Z§| >}'

We recall that the kernel is bounded on \/ K, % U K. As &', 5, (K)—0

k=1 k=m+1
and hence

SH M ) 1 =35 L s 1) =G 33 2 )0,
B = k

=1 x;a

27) 1In general cases it can happen that {x(P)} supported by a compact set K; converges vaguely
to a measure g, {¥(P)} supported by a disjoint compact set K, converges vaguely to », and

lim (P — g, ¥(P) <0.

pooo
For instance, take {1/p}\J{0} for K; and {—1+41/p}\U{~1} for K,, and consider K=K,\UK, as a
subspace of the real line. We set @(1/n, —1+1/p)=0(—~1+1/p, 1/n)=00, —1+1/p)=0(—141/p, 0)
=1 (n=p+1, ---) for each p. For other points in Kx K we set @=0. For the unit measure u(P) (v(P)
resp.) at 1/p (—1+1/p resp.) and the unit measure py(¥, resp.) at 0 (—1 resp.) it holds that

lim  (u(P) = pg, v(P))= —1.

poo
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Since

2’ 'Yk(}bx )_’)’k <Uﬂx _f llbx/ > <UMx/___f l/"’x' > < /13:/___ . |/Z;/| >

_ Ll iz
| 4 | =0,

we conclude that d(x)— 0 as ¥’ —>x. It follows that lim é‘i Velpe)yr=my. We
obtain from (2.21) and (2.22)

2 g}')/k(#x)yk‘*‘z <Uﬂx__f, )">Z~I(—lbx,|#l

m

_2 }.l (ﬂx)yk+2<qu __f} [A [ >+ lA [ (/ﬁx3l‘bx>+0(l4x')

Consequently
(2.26) lim _I(ﬂﬁTf(/ﬁ—z lim L (ax) Y
4%->0
—2 lim { S mamedyat 0 —f, B
= w_
2 it | S o)
We state

Tueorem 2.15. Let x=(%1, - -, %m, 0, ---, 0), where x,>0 for k, 1<k<m,
and denote by I the half line in x,>0, ..., x,>0, issuing from x. Let the direc-
tion of | be expressed by a point y=(yi, ---, y») with |y|=1. For a point «’
=(&4, -+, %) ON | we set dw,=x),—x; and take any p, € A7F. Let f,, G be its

respective restrictions to U K; and U K.. Then we have (2.26) under con-
k=

k=m+1
dition (*).
We remark that the limit along I, which lies in %, >0, ..., x,=>0, can be
computed by considering a lower dimensional problem.

QuesTionN. Do we have a relation similar to (2.20) at a point on the bound-
ary of x, =0, .., x,==0?

We have called a problem to minimize I(x) for u€ & (g, x) n-dimensional
when K consists of Ki, ..., K, and x=(xy, ---, x,). In order to make it clear we
shall write I,(u) in the following paragraph. Let us consider the question
how the problem to minimize L(x) for ;€ &x(g, x) and the problem to mini-

mize I,(u) for pe&x(g, é x;) are related to each other.?®
. P 8 &

28) This question was raised by Ogasawara.



On Potentials in Locally Compact Spaces 239

We take ¢>0. Since I(u,) is a continuous function of x=(xy, -, x,), it

holds at some point xo=(x{", ..., x°) with }_. 2 =qa that

Il(Ma) = In(,“fxg) = min In(#x)
kzl Xp=a

Since 2 2’ =a>0, at least one of {x{”} is positive; we assume % >0. For

a sufﬁmently small : >0, the measure, defined by (1+t) w0 on Kko, by (1—tx5?
/) sy on K, and by p on K, for k=1, -1, k+1, . —1, belongs
to £x(g, ). Hence

x(O)
R =i S+ @ty + (1-078 )y )
) iié |
and
1 dI 20
0= 2 dt z‘=0: <U’L"0 _f’ I'l’g‘l(c)) xfg) /'(’x0>>—xk%> 'Yko(lﬁxo) ——x},%) Y (p,xo),

This is true for any k, between 1 and n—1. Therefore, for any &k, 1<k<n,
such that x> >0, it holds that

Vipng) =V #ftrg)-

This was derived under the condition that x{>0. We obtain similarly
Vi(erg) =V ipng)

if x>0 and x;” >0, and conclude that

227 v i(prxg) = Vi)

whenever x>0 and x{” >0. If all x;” >0, we have by Theorem 2.14 for some
extremal measure s,

In(Mx):ln(Mxo) +2 k=21] Ve (F'xo)Axk +o ( | dx | )

= Lpang) + 271 (ing) 25 dmato (14 ])=L(puze) +o (| 4x])

provided that i} xr=a. Therefore the derivative of I,(x,) at x=x, along the
k=1

plane }i} x,=a is zero. Conversely if the derivative of I,(u,) along the plane
k=1

is zero at x=x, with positive coordinates, then all v, are equal.
If the kernel is of positive type, and if all v, are equal at x,=(«{", -,
%), 23>0, ..., x>0, then u,, is a 1-dimensional solution. In fact, we have
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gy 130) =y o) =33 5 e i) =11(p) 3 257 =12 (),
and
U"(P) = f(P)+ 74 (tix) g (P) P-p.p. on K.
Hence
U™o(P) = f(P)+71(px) 8 (P) p.p.pon K.

By Theorem 2.3 it is concluded that .., minimizes I,(x) among x < &x(g, a).
With similar reasoning we can establish

Turorem 2.16. First consider the n-dimensional problem to minimize I(u)

n 71 g
for pe&x(g, x), where K= U K, and x=(x1, ---, %,). Setting D) xp=x}, D) x
k=1 k=1

k=nq+1
n 1 ny n
JE 4 <\ A J— 7 — ’ . 4
X2y vy 2.1 Xp=—%m a/nd \vj Kk"— 1s \V) Kk—Kz, ceey \Vj Kk_Km,
k=n'n__1+1 k=1 k=n1+1 k=nm_1+1

consider next the m-dimensional problem to minimize I(1) for € £x(g, ") where
K=\ K and x'=(x%, ---, x,).  If a solution at x, of the n-dimensional problem
j=1

gives a solution of the m-dimensional problem, then

(228) 71(/1’::0): c ='7n1(/1'x0), 7n1+1(/«5x0>: e :'Yn2<,uix0)a )
')’nm-l(/ﬁxo)z e :Vn(/"’x());

these equalities are considered only for {v.} which are well-defined. If all x§®
are positive, the derivative of 1(u,) at x=x, along the (n—m)-dimensional plane

n

1
D) ap=xi, -, D) xp=x, vanishes and this last fact guarantees (2.28) con-
k=1

=nm_1+1
versely.
If the kernel is of positive type, if (2.28) is true for x, and if the coordi-

nates of x, are all positive, then .., is an m-dimensional solution.

2.5. Behavior at x=0 and x=co.

We consider again the family 7= {P(ug); 0§ <oo, ..., 0<E, <o} and
recall that the graph of I(y,) is the lower envelope of II. Let y=(y, ---, y»),
¥1>0, .., y,>0, be a point with |y|=1 and [ be the half line issuing from the
origin and passing y. Any point £ of / is expressed by [£]y. The graph of
I(py) over [ is the lower envelope of

ITy={P(v,); 0 <r <oo}.
Hence the graph of J(x)=1(u.)/p, p=|x|, over [ is the lower envelope of

U/y:{@; 0§r<oo},
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where

P 7 n‘ i n\
POy S5 v =23 0 f o
P jok=1 k=1

= p(yvrys Yvry) —2 {fy y”fy>’ 0<p<eoo,

represents a line for each r. The graph of J(x) over [ is therefore a concave
curve.?” Hence it has a right derivative and a left derivative at every point
(this was already observed before Lemma 2.1), and they coincide with each
other with a possible exception of a ecountable number of points. We infer
also that (yv,,, yv,,) and {f, yv,,> decrease as r—co. By (2.26)

2 hm <f7 y”ry>: 2 sup <f, p>: —lim I(“ry)_.
7-0 velg(g,y) 70 r

We can express this value in a more explicit form. We shall denote by
M, the pseudo-maximum of f(P)/g(P) on K;. Namely

M,= inf {M;%gM p.p.p. on Kk}.

If M}, <M, and

By = [Pe K L0 mi,

then é*’Bk(M};)%{O}. For any ve ¢ kngk(M;e) (g, v), we have

2 v>=k>;lg f gdvzki‘lM;yk.

Kp &
Thus
SMyy= sup <{f,v)
k=1 vel k(g y)
and hence

E}

Sy Miyr= sup  <{f, v

veES K (8, )

_
n
-

On the other hand, for given ¢>0, we choose v.€ &x (g, y) such that {f, v.)
> sup <f,vp>—e. Since & ; p5,={0} for the set B,={PcK,; f/g> M},
k=1

ves (g, y) N
we have v.(\U B,)=0 and
k=1

<f vg>=SK S 3 My SKkgdvE=kz=iMkyk.

n
- UB
k=1

29) Ogasawara suggested the author to make use of this property of the curve.
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Hence §nj M,y = sup <{f, \)—e and the equality
k=1 .

re k(g y)

(2.29) ,;S;Mk yi= sup <fin>

\e€ K (g, 9)

follows.
We have already seen that lin(r)l r(Yvry y0ry)=0 by (2.25). We ask whether

(yvry, yvry) has a finite limit or not asr—0. First we assume that the V;-value

of the compact set F,={PcK,; f(P)=M,g(P)} is finite for each %, and take

M €€ § r,(g, y) which minimizes (A, \) among )\,Eévkﬁlpk(g, v). Since I(u,)
k=1 =

<I(no)=0ro, M) 72 =2 < f, Mo 7, We have
(ywrys yyry)r—2 <f’ Yry) < (N0, Mo) 7 —2 <fa No).

By (2.29)
fy o) S 33 Me =< f, Mo,

whence

(230) (ery) ery)éoVO’ No).

On the other hand, let 7= {v*); © € D} be a subnet of the sequence {v,,}
converging vaguely to . We observe that

lim (f, yo > <, 3>

and hence

ké} My <fs ' ‘—“S %gd(yu')gé M, yr.

Consequently f/g=M, v'-a.e. on K, and it is concluded that S,  C U F,. There-
k=1
fore

(2.31) 1711})1 (Yvrys yv,y)‘—“liwm (y@, y ) = (9, y") = oy No)
On account of (2.30) we have
Hm (yvry, yvrs) =00, No)
if Vi(F,)<<eo for each k. Let us write in general V(X)) for“E }E(fg ,x)(pJ, w. It
is seen from (2.31) that

hr(r)l (}’Vry, ypry): Vgg'y)(k\nj Fy)=o0
. -1
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if V(Fi)=oo for some k.
We summarize the above results as

Tueorem 2.17.  For each y=(y1, ---, yu), y1>>0, .-, ¥,>0, such that | y| =1,
I(pry)/r 18 @ concave function of r, and (yv,y, yv,y) and {f, yv,,) are decreasing
Sunctions of r.

If the pseudo-maximum of f(P)/g(P) on K is denoted by M,, v.e. if

M= inf {M; J;;((%gM D.D.p. ON Kkl’)

then
S Meyr= lim {f, yv,,p= sup {f, A
Py 70 \E€ K (g, )

— lim > N T L dl(pry)
ITIE)I k%l'%('wry)yk 2 lrlg)l r 2 dr  |r=0"

We have also
lim (yry, o) =V (UAPE K3 f(P) 2= Mig(P)}).
ro k=1

The next question is as to the behavior of I(x,) and v(u,) as x—>co. We
shall prove first

Lemma 2.2, Let %,=>0, ..., x,=>0. Let BCK be a K,-set and let € &%
(g, %). If a sequence {F?’} of compact sets increases to B, then

(1, )= V€2 (B)=lim V= (F®),
poo
Proor. Obviously Ve=(B)<V &= (F®) for each p. We assume (u, p)
< oo and define z® by setting it equal to =, u’ (g, ui”>~" on K;, where ui
is the restriction of x to K,NF®; if 4 =0 we set g =0 on K,N\F®, Then

g€ & (g, %) if p is sufficiently large. Since p{” increases to x on K, (a?,
a?) tends to (i, ). Therefore

(, w)=1lim (2, pg) = lim V= (F®),
poe oo
Next let » be any measure of &5(g, x). Then (v, v)=>lim V&= (F®) and hence
D oo

Ve (B)y=1lim VE= (F?P). Together with the inequality obtained at the be-
pooo

ginning, this completes the proof.
Now we set

B={PeK; f(P)> — oo} and BP={PeK; f(P)= —p}.

Each B® is compact and B= \ZB(M' Let us recall that we are still under the
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assumption that V;(BNK;)< oo for each k and hence V¥ (B)<eo. We shall
prove

(2.32) lim »'I(IL;—Q:lim (Yvrys yvry)=V 27 (B).
r 70

7>

Let v € &5 (g, ) give (y?, y)=V¥»(B?). By (2.16) we have

Tim I(/‘bfy) < (y?, P

m vy Yvy
and hence
(2:33) fim ) <y )
by Lemma 2.2.

On the other hand, we denote by ¢} the restriction of »,, to B?. Since
{fy yvryp> — 00, v, (K—B)=0 and v,, €65 (g, ¢). We have by Lemma 2.2

(yvry, yy”)z lim VS‘"’” (B(I’)): V(ig:w (B)
P

In view of the inequality

max .
I(/’er) (/‘r% lbry) 2 <f> /ﬁ7y>> ()’um ery)l —2r W k%} Vs

we obtain

lim I("’y) = 1im (yory, yory) 2 VE7(B).

7>

This relation and (2.33) give (2.32). By (2.14)

— > >

lim @4(/"3’) ﬂ:% lim { I(/ﬁ,ry),_*_ (yory, }’Vry)J‘ Ve (B)
7 > T 7>
and
lim S5 {”’y> — 2 1im { (s o) 1@@1} 0.
7->00 P r

In general, the energy of the vague limit of any subnet of {yv,,} is not
equal to V¥”(B) as Example 1 given after Theorem 2.18 will show. Let v be
the limit of a vaguely convergent net {v“>€&x(g, e); €D} such that (y»“,
) tends to V¢ (B). Then (yv, y»)=V¥»(B) if the following condition is
satisfied:

(&) f(P)>—oco v-a.e.
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To prove this, first we observe that V> (B)=(yv, yv) by Proposition 4
in § 1.6. On the other hand on account of («), » belongs to &#5(g, ¢) and hence
by Lemma 2.2

(yv, y9) = lim VE2(B,) =V & (B).
t)._)ca

Thus we obtain the equality.

Next we shall study lim {f, yv,,> asr—oco. We know that {f, yv,,> de-
creases asr— co. Let 7= {; w € D} be a subnet of {v,,}, converging vaguely
to some measure v;. It follows that lim (yv,,, yv,,) = (yv5, yv3) and

lim {f, yoryp=lim f, yo ) <{f, 3030
If {f, wi)=—oo, rllgl {fy yvryp=—o0 too. If {f, yp¥>> —oo,

(Yorys yor)r =2 {fy yvry) (v, yo)r—2f o3>
by (2.16) and hence

0 < {(yvry, yvrs) — (3, v r K2 f, yuryp =2 fy yvi.

Thus <{f, yv,,» decreases to {f, yv;> and {(yv,y, yv,y) —(yv¥, y»7)} r tends to 0
as r—>oco. In any case, lim {f, yv,,>=<{f, y»5>. We remark that each of

{fyyvyy and (yv¥, yv¥) is the same for all vague limits of subnets of {yv,,}.
In the case that {f, yv})>> —oo, we have V¥ (B)=lim (yv,,, yv,;)=(yv},

yv¥) in view of (2.32). This follows also from («) which is satisfied in virtue
of {f, yvy>>—oco. Example 2 given after Theorem 2.18 will show that («)
may be satisfied even if {f, y»; )= —oo.

Let {v“; @€ D} be a net in £x(g, ¢), converging vaguely to some measure
v, such that (y»®),; ) tends to V¥ (B). Denoting by .4, the set of all such
vague limits, we shall show that

(2.34) {fryvid= max <y

where v} is the limit of any vaguely convergent subnet of {v,,}. We consider
the above net {v*} and its vague limit ». Since

(Yorys Yry) = VEP(B)=lim (yo ), yu) = (yv, yv)

we have

0 <{(yvry» y0r3) = (yvy y)}r 2y yoryp =2 fy yo»
by (2.16). Therefore

<f’ y“>§1l_£l <f’ ery>:<ﬁ }’V¢>
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and (2.34) is concluded.
We state

TaEOREM 2.18.

> —>
lim _{(_r/‘;ﬁ Ov(pry) - Oy _ YV &(B)
r

7>

=lim (yv,y, yv,y)=lim

and

llm <f’ ery> =0

700 r

regardless of the choice of u,,€ 47, at each point ry, where B={PcK; f(P)
> —oo}. Denoting by v} the vague limit of any vaguely convergent subnet of

{v,y}, we see that
m f, yvryp ={fs yvi> = — oo,

Let us denote by 4, the class of all vague limits of vaguely converging nets in
¢x(g, e) such that (yv, yv) converges to V&7(B) as v tends to the limit along a
net. Then

<fryvio=max <f, y.
If {fy yv3) > — o0,
lim {(yvry, yors) = (903, y3)} r=0
and
I(pr) =y, ypoIr? =2{{f, y§> +o (D} r near r=oo.

Let ve #,. A sufficient condition for V¥ (B)=(yv, yv) is the following
and it is satisfied if {f, yp)> —oco:
() f(P)>—o0 v-a.e.

Exampre 1. If (@) is not satisfied, it can happen that lim (yv,,, yv,,)

>(yv¥, yvy) as the following example shows. Let K be the unit ball with
center at the origin in E; and consider the Newtonian kernel. We set f(P)
=—(1—-0P)™" and g(P)=1. We consider the case n=1 and hence y=1. By
Theorem 2.18 we have that (v,, v,) tends to (v, »..), where v_. is the uniform
unit measure on 9K. Let v} be the vague limit of some subnet of {v,}. Since
lim (s, ve) = 0F, vH) =0, v.), it follows that (oF, »F) =(v., v.) and hence »¥

% —>00

=yp_.. Let us set
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(é if P, Qe K—2K,
(P, Q)=1PQ
0 if PUQ€eoK.

For this kernel v, must be the same as above for every x=>0. If we add the
subsecript @ to inner products defined with respect to the new kernel, (v., v.)o
:(Vx, ”x) but (V;lk) ”T)@:O<(V;ka V)lk)zl

ExampLe 2. We shall show with an example that it happens that {f,
vi>=—co even if f(P) is finite-valued. Take £=K=[0, 1] on the x-axis and
O(P, Q)=log 1/PQ. The support of the equilibrium measure v. is identical
with K. If we let f(P) tend to — co rapidly as P tends to the end points of K
but set it equal to 0 at the end points, then {f, v_>= —oo.

Next we shall apply the above theorem to study lim I(y,,) as r—co. It is
seen that I(u,,) tends to oo or to — o according as V¥(B)>0 or<0. In case
VEr(B)=0, I(x,y) tends to —oo if (f, y»¥>>0 by the above theorem. If
Ve (B)=0 and 0>, yvi>, then (yv,,, yv,,) = V¥ (B)=0 and

L)y, yors) =2 fy porsy 2 =2 fy yorp—>—2 <y >

as r—oco. Therefore I(y,,) tends to co.
We state the above results as

TueoreM 2.19. I(y,,) tends to oo as r— oo if V& (B)>0, or if V¥ (B)=0
and {f, yvi>>0. It tends to —oco as r— oo if V&7 (B)<0, or if VE”(B)=0
and {f, yvi>>0.

2.6. Further study of the graph of I(x.).

We begin with

Treorem 2.20 Let y=(y1, ---, y») be a variable such that y, =0, ..., y,=0
and |y|=1. In order that I(1,) be a parabolic quadratic surface it is neces-
sary and suffictent that V& (F) is a quadratic form in yi, -, y, and V¥ (B)
=V¥(F) for each y, where

F=U{PEKy; f(P)ZMig(P)}  and  B={PEK; f(P)>—oo}.
k=
Proor. We assume that

(2.35) l(m)=§3 ajp, %j %p— 2 é by, 2
jok=1 k=1

in %, >0, ..., x,>0. We set |x|=r, p,==xv, and x,=ry, for each k. Since
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rj,%l @ Yi Yr—2 k% br yr
and

r(}’vm, }’Vr'y)—z <f’ yV”y>

are linear in r, coincide with each other at r=;" and the latter is not smaller
than the former, they are identical for any r>0. Hence

(2.36) (}’Vr’ya er’y):]_ k§=]1 ik YiYe
By Theorems 2.17 and 2.18 we have

<k Yry) = 17131 fy yvrs)= 122:{ My
and

(237) (yy,y, D’Vry)zlil? (er;h ery)z V%g.y) (F)

=lm (yv,y, yv,y)=V &7 (B).

Thus V¥ (F)=V ¥ (B) and they are quadratic in yi, -, y,.
Next we shall prove the sufficiency. We assume that

VEP(F)=VEPB)= 33 ajy; i
jiE=1
for each y. If (f, u>> —oo for € &x(g, y), then we have by Lemma 2.2
(wy W)=V (B)=,;1 @ik Yi Yo
fire

Let v, € £r(g, ) be an extremal measure which gives (yv,, yv,)=VE?(F). It
follows that

LCryvs)=Cyy, yon)r* =2 {f, yosp 1= "3 anys P23 Myyer
<Gy ) =2 | flu=1010.

The inequality is true if <f, u>=—co. We see that ryy,€.#,, and that
I(ryv,)=1I(p,,) for any y. Thus I(u.) is a parabolic quadratic surface.

A simple example in the case n=1 in which the condition is not satisfied
is the following: K=a unit spherical surface in E;, 0(P, Q)=PQ"', f(P)=1.
The equilibrium measure v, is the uniform measure on K and S, =K. If we
choose any nonconstant continuous function for f(P), I(x,) will not be a poly-
nomial.

If n=1 and f(P)/g(P) is constant on K, the condition in the theorem is
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naturally fulfilled. However, in case n>2, Examples 6 and 7 in the next
section will show that I(xz,) may not be a parabolic quadratic surface even
if f(P)/g(P) is constant on K.

One asks probably conditions for V¥ (K) to be a quadratic form in y,

.-+, ¥n, Where K=\U K, is a disjoint union of compact sets. We do not know,
k=1

however, any condition at present.

If I(s) is not entirely a polynomial, does it coincide with a parabolic
quadratic surface on some 0 <|x|<r  or on 0<ro<|x| <<co? We begin with
the first problem. We assume (2.35) for x in 0 <|x|<{r,. As in the proof of
Theorem 2.20 it follows that V¢’ (F) is a quadratic form in yy, ..., y, and that,

for any fixed y, (yv,y, yv,y) is constant on 0 <r <r, and {f, yu,y>=i M yp.
k=1
Let veéx(g, e). Then

(ryv, ryw) =2 fy ryw) Z (rywrys rywry) — 2 fy ryvyy)
=VEP(F)P—23 Myy,r
h=1

for r<r,. It follows that

(2.38) 2(;2.1 My yu—<fy ypo)) Zro{V &P (F)—(yv, y2)}

for any y with |y|=1. Conversely, if V¥ (F) is a quadratic form in y4, ...,
v, and if (2.38) is true for any v€&x(g,e) and y, then I(u,) is a parabolic
quadratic surface in |x| <r,.

We restrict ourselves to the case n=1; we write K and M instead of K,
and M,. We shall prove (2.38) for some r, in the case that there is «>>0 such
that

(2.39) v {pek; M—a<%<M}>=oo.

Let ve¢x(g, 1). We denote its restriction to F by v, and set v'=v—v,. Ob-
viously '

o C fP) 1\
u({PeK,M a<ﬁ}>_o.
We see that
M—<f> ”>2M—M<ga VF>'—(M—a)<g: Dl>:a<g3 V,>'

We shall write simply V¥ (X) for V¥ *(X) in general and prove that {V&(F)
—(v, v)}/<{g,v) is bounded from above by a constant not depending on v,
provided that {g,»">>0; it is obviously so if v=y'. Hence we assume that
vp7=0. Since
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V%g)(F) —(Qp+ vl, vrp+v')
g

_ V®F)=(r, vr) _ V' gy v Y
&> 2(om s )= s )
VEF)—(vrs vr)

= gy v

it is sufficient to show that {V'¥® (F)—(vr, vp)}/{g, »"> is bounded from above.
We set

+const.,

}\,:_,-_’.JL—H
<ga 2)F>

and note that V® (F)<(\, ). It follows that

Ve =0, (g vr)* . VEWFE) Q=g vr)")
1—<g, vp> = 1*<g, VF>
=V F) 1+{g, vrr) < max {2V (F), 0}.

Thus

VEFE) =@, v)
M—<f, »)

is bounded from above with respect to v €&« (g, 1) provided that {g,.">>0.
If (g,v">=0,S,CFand V®(F)<(v,v). Hence (2.38) is true with some positive
constant r,.

We state

Tueorem 2.21. In order that I(u,) is equal to a parabolic quadratic surface
on 0| x| <ro, Ut is necessary and sufficient that V&7 (F) is a quadratic form
W Y1, -y ¥u ONA

23 My ys—<f, yo)> oV E9(F) = (v, 390}

Jor any vE€Ex (g, e) and any y with |y|=1. This is satisfied in case n=1 if
there is >0 for which (2.39) is true.

In case n=1 we shall give in the next section an example (Example 3)
which shows that the last condition in the above is not always necessary for
(2.38), and another example (Example 4) which does not satisfy (2.38) with
any r,.

The next question is to find condition for I(x,) to be equal to a parabolic
quadratic surface on some part ro<{|x| <co. We assume that

(240) I(llzx): %flik X xp—2 7?_,"‘ by xp+c for lx[gr0>0
Jok= =1

By Theorem 2.14 and its Corollary 1 we see that x, v;(u,) is uniquely deter-
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mined at every x in r,<|x| <oo and that
(2.41) 2, (M,)=%@=z 7 agn x; — 2by

Xk j=1

if x,>0. On account of (2.14) we have from (2.40) and (2.41)

< _AGy) _ 2 by oy, ——C

fy yorp =20 ¥ Va(ptry) — =22 = S by .
k=1 r E=1 r
Using Theorem 2.18, we see that
k=§]1 bk Y= 1}}2 <f7 y“7y>=<f’ }’”}k>,

where v} is the limit of a vaguely convergent subnet of {v,,}. Let the point

©,..,0,1,0, ..., 0) on the wx,-axis be denoted by y*. We define v}* on K; by
considering a one-dimensional problem. We integrate the inequality

(2.11) U (P)= f(P)+7:(pr) g (P) p.p.p.on K,
and obtain
(2.42) S U = S U dipn = fy 0+ 0u (e =33 am

=1

for |x|=ry, x,>0, .-, x,>0.
Let us assume that
(2.43) U (P) < aj g(P) p.p.p. on BNK;
for each j and £. Then S Ut dp,x=12 ajz x; and all terms are equal in (2.42).
Therefore
(2.44) U™ (P)=F(P)+74(us) g(P) vik-a.e. on Ky

on |x|=ry, x>0, ..., %, >0.

Conversely we assume (2.44) and that each U y’*”’(P)/g(P) is constant p.p.p.
on each BNKj; let us denote the constant by a;,. It follows that (vj%, v}s)
=aj,=a;;. We integrate (2.44) and obtain

(l"x» V;k)=zi Qjp Xj =<f; V;k> +7 (//‘x)-
j=

On account of Theorem 2.14, the derivative at x=(xy, .-, x,), . >0, ..., x,>0,
in the direction given by z=(zy, ---, z,), |z| =1, is equal to

) _ g5 Ve(u)ze=2 > ajp%;2—2 > {fvik 7,
Sz k=1 Jjik=1 k=1



252 Makoto OHTSUKA

d L " .
= ds, ](%laik x; % —2 k% Sy v ).
Therefore
I(/’Jx)= i Ajr % xk—2 }r»—‘i <f, y;k> %, + const.
jok=1 =
We state

TueoreM 2.22.  Let vk be a measure which maximizes {f, v) among v € A k.

If U";k(P) <aj g(P) p.p.p. on BNK; for each j and k and if I(u.) coincides
with a parabolic quadratic surface on |x|=r,>0, then, for each k,

U*(P)= f(P)+7:(u) g(P) vik-a.e. on K

on |x|=rg, %, >0, ..., x,>0.

Conversely, if this is true and if each U ’;k(P)/g(P) is constant p.p.p. on
each BNK;, then I(u,) coincides with a parabolic quadratic surface on |x|=r,.

We shall give an example of continuous f(P) which does not satisfy (2.44)
as Example 5 in the next section.

In the same way as for Theorem 2.21, we can show

TuroreMm 2.23. In order that

I(/l,x>=';1ajk x,-xk—2kzl‘, by %1 on ro__g_,xl < oo,
i -
1t 1s necessary and sufficient that V¢ (B) is a quadratic form in yi, .., y, and

{yws )=V EPB)ry = 2(f, yop —<fs yv3))
Jor any y and v € &x(g, ) such that {f, yv) > — oo, where {f, yvi>= max 2

Finally we assume that the kernel is of positive type. According to Theo-
rem 2. 8, each x, 7,(u,) is single-valued. Therefore by Corollary 2 to Theo-
rem 2.14 I(y,) is continuously differentiable in x;>0, ..., x,>0. We take &/,
x”’, =0 and 5> 0 such that ¢+b=1 and set ax’ +bs”’=% Then

aps+buy €EEk(g, ) and  I(uz) <I(aper +bpyrr).
From this we obtain

(2.45) I(uz) + ab(pgr — ooy e — pgsr)
= al (pp) + 0 (pgrr) +(@+b—1) {alpprr par) +bQptarry prarr)t =al () +bI ().
Since
(s = pzrry foze = i) 20,
it follows that
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I(pz) Zal () + I (o).

This shows that I(x,) is a convex function in x, >0, ..., x,=>0. For a=5b=1/2,
we have

0= %”/’%’"‘/*%”Hzé L(M;—I(“"—")—I(m)

from (2.45). Since I(yu,) is continuous, the right side tends to 0 as »"—«"'—0.
Hence |/t,s — pyr||—0. Taking

e [ = 1] o] M e — g
into consideration, we see that ||u,] is single-valued and continuous on x,>>0,
..y 2,220. Hence

2 >3 () =)+ el
is single-valued and continuous on x>0, ..., x,=>0. Since I(x,) is convex,

oI (pry) — <
_8—7‘— kg'l Tk (Mry)}’k

is an increasing function of r.
We shall investigate this case furthermore. We assume that V> (F)

is finite, where F= v, {PEK;; f(P)=M,g(P)}. Consider the class of measures
k=1

of ¢r(g, y) whose energies are equal to V¥ (F) and 1, be a measure of the
class such that {f, \,o>=max {f, x) for x of the class. We have by (2.12),
(2.13) and Theorem 2.17

lyvry =M l2= 1 ywns 1P+ I 1P =2y, Ay)
Slyonsl+ nsli2 =2 33 %G+ 1)

<yl + InglP = 2]y, P —2 < M>j<f’ yors
§|I)”y”2'“”y1’ry”2"0 as r—0.

We defined .+, before as the class of measures which are the vague limits
of vaguely converging nets in £x(g, e) such that (yv, yv) tends to V»(B) as
v tends to the limit along a net, where B={Pc K; f(P)> —oo}. - Let v} be any
measure maximizing {f, yvy among v€ #",. We integrate (2.12) and obtain

(pters )’V;()Z<f, M>+kz=‘,1 Vk(#x)yk'

Therefore, if {f, yv}) is finite,
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s =33 P s+ 1331 = 2 {3 + 35 T yaf >0 28 7> o0
on account of Theorem 2.18.
We state

Tueorem 2.24. If the kernel is of positive type, then I(u,) 18 convex and
continuously differentiable, i, s continuous in semi-norm, and ||u.| is single-
valued continuous in x>0, ..., x,=0. Asr—0, |[yv,y—N\y[| >0 2f VEI(F) is
Sinite, and || yv,y —yv¥l|—0 as r—co if {(f, ywi>=Nm {f, yv,,> is finite.

CoroLLARY. In case n=1, if the kernel is of positive type, Y(u.) is an in-
creasing single-valued function on 0 < x< oo,

2.7. Examples.

In the first five examples, n=1. Namely we do not divide K into K, ...,
K.

ExamprLe 1. 2=K= two points P, and P,, g(P)=1, f(P1)=1, f(P;)=2, and
& (P, Q) is given by
~<1 d‘)
a 2/.

Let 1 be a measure on K with total mass x>0, and set x;=p({P:}) and x;=p
({P:}). We have

I()=23 + 2x3 + 2ax, x, — 2% — 4,
\ 2
=(3—2a) (m +25F L ‘z’i)z 4202 — 4y — (@ F1—2x)"

3—2a 3—2a
We first give the graphs of I'(x,) and v(u,).
i) a> %
I(px) Y(px)
2~ 2x 2-1
x—1
l_
N 3 ‘ R *
— 14 :' — 14 2x~2
: 2z’— 4z
-— 2— - — 2_4
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.. 3
11 aQ=-—
i) a=>
the same as (i)
2_
x—1
1—
T T
1 2 3
-1 [2x2—2
.—2_
3
(iil)) 1<a< -
2
x?—2x
3—2a
(a—1)2
2—a?)x*+ 2 (3a—4)2—1
: 3—2a
1 |
1
12—112 | T=1
T i T —L
22— 4|
|
. | .
/ 4a—6 2z—2
(2—a)?
_2_ _2,—
(iv) —V2=<aex1
(2—a2)1+3a74/
3—2a
1 /
2—ua
; T T T :Ig
2x*—4x | 1 2 8
I
— 14 :
4a— 6
—_ 2
— 24 (2=a) (2—a?)x2+ 2 (3a—4)z—1
3—2a
_.3—

255
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V) a<—42
1 1
zl—a T T 2=
T T T
22— 4z |\! 1 2 | 1 2
I
_1—- _1—‘:
|
(2—a?)x+ 3a—4
— 2] —odo2x—2 3—2a
(2—a?)x?+2(3a—4)x— 1
3—2a
._3-—-

Let us examine when @ (P, Q) is of positive type. Let x, » be any measures
and set u({P1}) =21, p({P2}) =12z, v({P1})=x1, »({P2})=x2. We have

(p—v, jo—v)=(? + 203 + 2azy02) + (%7 + 25" + 2, )
— 2 (01 h + 2o + @y + axpy) = (1 — 24)° + 2wy — 05)” + 2alwy — 1) (v~ x5)

= {(x1 —x}) + a(wy — x5)} 2+ (2 — ) (x— b

This is always nonnegative if and only if o> <2, and, for any different » and
v, this is positive if and only if «*<2. Namely, @ (P, Q) is of positive type for
a with |a| < 2, and satisfies the energy principle for a with |a| <y 2.

We observe several characteristic points in the above figures.

‘1) In (i) 4, consists of two measures: a point measure at P, and a point
measure at P,. L

2) In (ii) ., consists of the segment joining the above two measures.

3) For q,1< |a| <y2, the kernel satisfies the energy principle but d* ()
/dx* does not everywhere exist.

4) 1In (v) %) is continuous but not increasing.

ExampLe 2. £2=K=3 points P, P, and Ps;, g(P)=1, f(P)=3/2, f(P:)=2,
f(Py)=3, O(P, Q) is given by

1 a as
ay 2 ay
as ag 4 .

For , with total mass x, we set x;=u({P:}), i=1, 2, 3. We have
I(/l:):x% + 296% + 496;% -+ 2(11 X1 %2 + 2&2 X9 %3 + 2&3 X3%1— 3:)61 - 45\’?2 - 6963.

Fixing xs, we substitute x—x; —x; for x, and differentiate I(x) twice partially
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with respect to x;. It follows that

2
aalx(é‘) —6— 4.

If 4,>3/2, this is negative and the minimum is taken when x;=0 or x,=0.
By a similar reasoning we can assert that the minimum is taken when x,=x«
or x,=x OF x3=x. Namely, the graph of I(u,) is equal to the lower envelope
of three parabolas x? —3x, 2x* —4x, 4x* —6x. It is equal to the lower envelope
of 4x*—6x and x*—3x.

The graph of (i) is equal to

4x—3 for 0 <<x<1,
1,0, —3/2 for x=1,
x—3/2 for 1>x.

Thus 7(i:,) has 3 values at x=1. Both curves 4x°—6x and x’—3x have the
same minimum value —9/4.

I(py) ¥ (H)

Y \\oat—4a/ =19
\\ /’ x2—3x
\ /
— 2 Ny~ — o] 4x—3
42— 6x

= —s

In a similar way we can give an example in which 7(x,) is equal to the
lower envelope of any finite number of parabolas passing through the origin.

QuesTioN. Can Y(u,) have an infinite number of points of multivalency,
clustering at a finite point or tending to + oo P30

Exampre 3. We shall solve the variational problem in the following case:
2=K= the ball {P; OP<2} in Es, 0(P, Q)=1/PQ, g(P)=1, f(P)=1 on the ball
Ko={P; OP <1} and =1/0P outside K, on K; if v* is the uniform unit measure
on 2K,, f(P)=U""(P)on K. Our problem is to find v, € #x(g, 1) which gives
I(xv,)=min I(x) for p€&x(g, x).

30) Ogasawara told the author that he has an affirmative answer.
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Since the energy principle is satisfied, v, is unique and hence its distribu-
tion depends only on the radius OP=r. We denote the mass v, ({P; OP<r})
by v.(r). The potential

S Lo

0<r1200=r9=2 PQ

is constant on any spherical surface with center at 0 and harmonic in OP<r,.
Therefore it is constant there and equals

dv,(r) .

Sfléfgrz r

By taking the mean on the spherical surface passing P we see that

Léég;QM@—“@ﬂ;wgw
Therefore
Sz glgx’(i)___s Av:(r) | v(OP)
VPO Jorarm 0
== A R =
Hence

T ] _
(V):, Vx)——2'+ SO dl)x (P) Perss rz dr_.T +

and
* __L Sz . Vx(r)
(Vx, 14 )‘ 2 + L TZ d
We have
1 2
(Vs Vx)‘“%(”x: V*)=S ij'gr—)dr+g wd +T——14
0 1 X

L2 2 (Vx(r)_—'>2 1 1 1
=S — dr+g A dr— ey =+
T 1

24? x 2

0 r?
The first integral attains its minimum when »,(r)=0 on 0 <r<1, and the se-
cond integral does when v, (r)=min (1, 1/x) on 1 <{r<2. Therefore it is con-
cluded that », is the uniform unit measure on 9K, when x<{1 and it is the
sum of the uniform measure on 9K, with total mass 1/x and the one on oK
with total mass 1—1/x when x>1. We find
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2 — 2% on 0 <<x<1,
I(/"’x):{ 2
%—x—*é— on 1<x< o,

This example shows that (2.39) is not always necessary for (2.38) to be
true.

We write K; and K, for 9K, and oK respectively, and take the same
kernel, f(P) and g(P) as above. The extremal measure ., is then the same
for K;UK,. The graph given below has relation to the problem treated in
Theorem 2.16.

Hx(Ka)

1 x /‘1’(K1)

ExampLe 4. We shall show by an example that if f(P) decreases slowly
as P goes away from F, then (2.38) does not hold for any x,>0. We take
everything the same as in Example 3 except for f(P): f(P)=1on K, and =1
— exp (1—0P)™* on K—K,. Let v(r) denote the uniform unit measure on the
surface OP=r, 1<r<2. We have {f,v*)—{f, v())=1—{1— exp (1—r)""}
=exp (1—r)"L. If we set (r—1)"1=y, it is equal to e~*. It follows that

HvO—=<{fpvy et

D ECION ) RS T

r

as r—1 and hence as :—> co. Thus (2.38) is not satisfied with any x,>0.

ExampLE 5. #=E;, K= the unit spherical surface with center at the
origin 0. We shall give a continuous function f(P) on K with the property
that, for any constant ¢, f(P)+c is not equal even a.e. on K to any Newtonian
potential of a measure on K; a.e. here is understood in the 2-dimensional
sense.

Prior to the construction we remark two facts. First, for any bounded
Borel function A(P) given on K we reg}ard the Poisson intégrals as solutions
of the interior and exterior Dirichlet problems. They tend to A(P) as the
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variable approaches any point P of continuity of ~A(P) on K. We shall denote
by I, the function in E; obtained by extending #(P) by the Poisson integrals.
If, in particular, A(P)= const. ¢ on K, then the interior solution is constantly
c and the exterior solution is equal to ¢/OP. Secondly, if 7,(P) tends to A(P)
monotonously with possible exception of a finite number of points on K, then
I, tends to I, monotonously.

We take an arbitrary point P, on K and denote by C, the spherical surface
with center P, and radius 1/n. We shall- dénote the mean value over C, of I,
by M,(h). If the boundary value on K is equal to a positive constant ¢, then

1
Me)=© SC; dory - SC,,ECZU”(Q)

(D” n n

where , is the surface area of C,, do,, is a surface element and C., C’ are the
parts of C, inside and outside K respectively. We see that

c 1 o
noz | L1 O=
T

In particular M,(1/yn)=yn(z+1)"'. By the second remark given above, we
can find a neighborhood N, of P, on K such that, if the boundary value A(P) is
nonnegative continuous and not smaller than 1/y» outside N,, then M,(h) = n
{2(n+1)}"'. We assume that N, is the intersection of K with a ball around
P, and that the radius decreases strictly as n— c. Now we set

1 on K‘Nl,
fP)=3 1
ﬁ on oN,,

and define it entirely on K such that it is continuous and f(P)= 1/yn outside
N,. Then

W
M( f)>72(nL+1).

We shall show that this f(P) is a required one. We assume that there is
a constant ¢ and a measure p on K such that

(2.46) fP)+c=U"(P) a.e.on K;

a.e. is understood here in the 2-dimensional sense. Let B be the part of K
where the equality holds. Since U“(P) is lower semicontinuous,

fP)+e= lim - U*(Q)=U*(P)
QeB,Q-P

at every point P of K. At any point P, of BNS,, it holds that
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fP)+e= Tim  U“(P).
PeK,P-P

It is well known that

lim U“(P):j@ U*(P).
-1

PESM,P—»P1

Therefore

f(P)+c=1lim U*(P).
PPy

On account of the lower semicontinuity of U*(P), it follows that

lim U*(P)=f(P)+e.

This is evident if P, B—S,. Now U“(P) and I;,, have the same boundary
limits a.e. on K and vanish at the point at infinity. Hence they coincide in
the whole space.
We shall compare M,(f+c) with the value of f+4c at P,, namely with f(P,)
+c=c. We see that
c 1

M”(f+c>:Mn(f)+Mn(C)>2—(Z—Z—1)+c— n+1 et n+1 <\/2n —C>'

If n is sufficiently large, then M,(f+c)>c. This shows that the mean value
of U*(P) over C, is greater than its value at the center of C,. This is impos-
sible because U“(P) is superharmonic in the whole space.

Let us see how this example is related to Theorem 2.19. We consider the
Newtonian kernel in Es, take a unit spherical surface for K and f(P) of Ex-
ample 5, and set g(P)=1 on K. Then the support of the equilibrium measure
on K coincides with K. We have seen that

U(P)< f(P)+7 (i)

on a subset of K of positive 2-dimensional measure. Consequently, for some
continuous function f(P), the part of I(u,) corresponding to any interval x,
<|x| <oo does not coincide with any polynomial.

If we allow f(P) to be discontinuous it is rather easy to construct an ex-
ample. We take the same £, K and g(P) as above. We divide K into two
semispheres and set f(P)=1 on one closed semisphere C; and f(P)=0 on the
rest C, of K. Suppose that there are a constant ¢ and a measure x supported
by K such that (2.46) is true. For the same reason as above we conclude that
U*(P) coincides with I;,.. Let P, be any point of the border of C;. By the
lower semicontinuity of U*(P) it holds that U*(P;)<{c. On the other hand we
set f=1—f on K and see that the mean value M,(f+ f)=2M,(f) around P,
tends to 1/2. Therefore M,(f+c)=M,(f)+ M,(c) tends to c¢+1/2>U*(P,). This
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contradicts the superharmonicity of U*(P).

ExampLE 6. K;= two points P;, P,, K,= one point P;, K=K;\UK,; hence
n=2. f(P)=0, g(P)=1, 0(P, Q) is given by

o d e
d b f
e f c

For y=(y1, y2), ¥1==0, y2 =0 such that y{+y3=1 and for pc&x(g, y), we set
p({P1})=yi and u({P,})=y7 and have

I(w)=ayy® +byi* +2dy  y| +cys +2eyiy2 +2 £yl y2

_{(a+b—~2d) (yi—=Y)+byi+cys+2fy1y.—(a+b—2d) Y if a+b=-2d,
—2{b—d)y: +(f—e)yz}y’1+byf+cy§+2fy1yz if a+b=2d,
where

yo =Dy +(f—e)yz

a+b—2d

We see that0<ryr}i£ I(u) is a quadratic form in y; and y, in the following cases:
=r1=N
(1) a=min (g, 5))<d and e<f,
(2) b= min (a, b))<d and [=<le,
8) d< min (e, b) and e=f.
In other cases the graph of I(i,) is not a parabolic quadratic surface but con-
sists of two or three pieces of different parabolic quadratic surfaces.

ExampLe 7. Let K; and K, be the surfaces of mutually disjoint unit balls
in E;, and d be the distance between the centers. Considering the Newtonian
kernel, we shall show that V(" (K;\UK}) is not a quadratic form in y; and y,
at least for large d, where y=(y1, y2) and y +y3=1.

We shall use the following classical result in the electrostatic theory (see
Smythe [1], pp. 118-119, for instance): There is a sequence of point measures
inside K; with the total mass

1 1

2.47 =1+ + o
@40 ™ &1 @1

and a sequence of negative point measures inside K, with the total mass

1 1
2.48 —my———— = .
249 T T @i -2)
such that the potential of the whole measure is equal to 1 on K; and 0 on K.
By sweeping-out processes we can find a positive measure y, supported by K;
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and a negative measure —p, supported by K, which together give the same
effect on and outside K=K;\UK,. The total masses remain unchanged. We
interchange u; and —pu, and denote the resulting measures on K; and K, by
—y; and v, respectively; the total masses of —v; and v, are —m, and m, re-
spectively. It follows that

1 — V1TV — e
2<m1—“m2)

is a unit measure on K whose potential is constantly (2m;—2m,)"" on K. Be-
cause of the uniqueness of measures which give the same potential, it is con-
cluded that the measure is the nonnegative equilibrium measure on K. The

value of V{7 (K) for y=(1/y2, 1/4/2) is equal to
1

m—my
Given y; >0, y,>0, yi+y3=1, let us solve
imy—sm2=y1,
{ —tmz+sm1=Yy2
inzands. The solution is

myyitmey,  mpyitmiye

3

2 2
mi—ms

mf —ms
and the potential of M=1(u; —ps) —s(v1—v2) is equal to: on K; and to s on Ko.
We shall show that, if |y;—y2| is small, » is the extremal nonnegative meas-
ure whose energy is equal to V(" (K), where y=(y1, ¥2).

There is a number a;, 0<ay<1, such that the a,-niveau surface of the
harmonic funection A,(P), equal to 1 on K and to 0 at the point at infinity, con-
sists of two closed surfaces, one F; enclosing K, and the other F, enclosing K.
We recall that 7,(x,) and 7»(x,) are continuous with respect to y. Hence there

exists yo, 0<y,<1/y2, such that, for any y=(y1, v 1 —y?) with y; €[ yo, 1/y2],

=1, 2).

I B 1 \ 1—ap
"71 (/by) J?(ml _ mZ) ‘[ < 2 \/?(Tﬂl ""mZ)

Suppose now that K;NS,,5 &, and consider

1
\/2 zm1 —mz)

l"ao

WE)y=U=E)~ PRETR—

ho(P) —

This is harmonic outside K and takes a negative value at the point at infinity.
Since
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max A(P)<max U"?(P)——— 1 . d-a
X Su, N2 (@m—mg) 242 (my—my)
1 l—ao

_ s 0
v 2 (my—my) 2\/2(m1—m2)§ ’

= max v; —
ma3 Vi (o)

h(P)< 0 outside K by the maximum principle for harmonic function. Hence

1
\/7(7”1 —my)

on Fi\UF,. On S,u,yf\Kl we have

1—660 . 1+a0

U (pP)< _= ==
24 2(mi—mz) 24 2(mi—my)

ho(P)+

1 1-—(10 1+a0

U™ (P)=7, (y) > —— ~_ L 1 .
B =) > o) 292 (s —mn)” 293 G —m0)

Therefore
U™ (P)<71(py)

in the domain bounded by SuyNK; and F,. This contradicts the fact that
U*(P)=v1(sy) p.p.p. on K; which was shown in Theorem 2.7. Consequently
Su,D K. Similarly we see that S, > K;, and hence S, coincides with K.V It
is shown that U"?(P)=v:i(u,) on K; and =v(u,) on K;. By means of the ener-
gy principle we can conclude that 4, is equal to the above M=2(u; — p2)—s(v;
—y3). Its energy is given by

my i +2my y1 ys +m y3
m3 —m? ’

ty1 +Sy2=

If 7 (K) were a quadratic form in y, and y,, then the coefficient of y; would
be equal to V{""P(K,)=1. Therefore

(2.49) my=m?—m?3.

We substitute (2.47) and (2.48) in (2.49), expand it into a series in 1/d and
find that (2.49) is not true in general. It is now proved that V{’(K) is not
a quadratic form in y; and y, at least for large d.

2.8. Unconditional variation.

Let K be a compact set with #x%{0}. We fix an upper semicontinuous
function f(P)< o which does not have the property that f(P)= —cc p.p.p. on
K, and fix an arbitrary positive continuous function g(P) on K. We denote by
I(p,) the conditional minimum of I(u)=(u, w)—2 {f, »> under the condition
{g, py=x as before. If there exsits an extremal measure p* which gives
the finite unconditional minimum of I(x), »* must be one of the conditional

31) This reasoning is due to Leja [2].
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extremal measures, which minimize (1) under the condition (g, p>={g, 1*>,
and I(p*) must be the minimum value of the continuous function I(u,) of .
Conversely, if I(u,) has a finite minimum value at x,, then any conditional ex-
tremal measure y,, is an unconditional extremal measure. Thus the uncondi-
tional problem is reduced to finding a finite minimum value of I(x,). Things
are the same in case n>2. However, finding a minimum point of a curve of
I(u,) in case n=1 is much easier than finding a minimum point of a surface
in case n>2. For this reason we shall restrict ourselves to the case n=1 in
this section.
By Theorem 2.19 we have

Turorem 2.25. There is an extremal measure which gives the finite un-
conditional minimum for I(p) if Vi(B)>0 or if V{B)=0 and {f, v*><0, where
v* mazimaizes {f, v)> among vE€ N3 vEN if v is the vague limit of a net {v“)}
i &x(g, 1) such that (v, v) tends to V(B). There is no finite uncondi-
tional minimum if V;(B)<O0 or if V;(B)=0 and {f, v*>>0.

The case that 7;(B)=0 and <{f, v*>=0 is delicate. In the special case
that I(p.)=bx+c on some xy<x<oo, {f, v,y= —b/2—c/x on x <x <oo and
5>0 or =0 or <0 according as {f, v*><0or =0 or >0. As an example, we
consider

I(,be)zxf + 2.’)6% - 2\/?961 X9 — 2%1 + 26(.762

with the same notations x; and x, as in Example 1 of §2.7. According as
a<y2, =42, >42, we have 6<0, b=0, 5>>0.

Tueorem 2.26.  Assume that (u, u)>0 whenever S, CK, pz=0 and {f, p>
=0. Then there is no x,>0 such that I(ju.,)=min I(x,) if and only if f(P)<0
0sx<

».p.p. on K.

Proor. First we suppose that there is a compact set FCK with &=={0}
such that f(P)>0 on F. By Proposition 1 of Chapter I, there is a compact
subset F; with &7,5={0} of F on which f(P)>a>0. We take A€¢&r (g, 1). By
assumption (\, A)>0 and, for any x>0,

I(x M=%y A) — 2% {f, ) <a*(\, \)—2x (mlzgx Ol

_ _ « : «
=00 (x A max g> ) (n}{ax g)?

2

For x=a {(\, \) max gl I )= —a*{(\ \) (mgx &)’} 1< 0 and hence min

0=x<o0

I(11,)<0. Since I(u,)—> oo with x, there is x,>0 which gives I(u,,) = mi<n I(ps)-

Conversely, if f(P)<0 p.p.p. on K then Sfdug0 for any p€ k. For x>0

we have
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I(Mx):(ﬂx: /'bx) —2 <f’ :u’x> = max {(ll’x: F’x>7 - <f> /J’x>} >0.
Therefore x,=0.

TueoreM 2.27. If x>0 and I(i,) has a local minimum value at x,, then
Y(pzy) =0 and dI(u.)/dx at x, is equal to zero.

Proor. If I(p.,) is a local minimum value, I”(u)| ;-2 <0 and I, (sux) | z=x,
=>0. However, by Theorem 2.14, I}(u,)=27(x)<27(x)=1I1"(u,). Hence, at
X == %0, I;(/"x):I/—(l’J:r)zo and 'y(:u’x)zll(//’x)zo'

Remark. There may be many points at which min I(u,) is attained. In
O=xoo

example 2 of § 2.7 the minimum value —9/4 is attained at x=3/4 and 3/2.
By modifying the same example it is easy to give an example in which a local
minimum value exists and is different from the minimum value.

So far we considered the unconditional problem on a compact set. Now
we consider a general set. We shall not take any g(P) in advance.

Turorem 2.28. Consider A€ W with & 45={0} such that (i, v) 1s well-defined
for any pe &’y and ve &4 Let f(P)be an A-measurable function on A such that
{fy vy is defined for any v€ &4 and '5=0 be a measure of & with the following
properties:

I() is finite,

There is an A-measurable positive function g(P) on A such that {g, u'>
< oo, that {g, v) 1s defined and finite for any v € &4 and that

I(W)= min I\,

re€7,(8,<8: 1)

There 18 ty, 0<to<<1, such that

A+ )y =1() if le] <to.
Then
(2.50) U¥(P)= f(P) p.D.D. on A,
and
(2.51) U*(P)=f(P) -a. e.

If, in addition, f(P) is upper semicontinuous on A, then U*'(P)=< f(P)
everywhere on S, NA and U¥(P) = f(P) p.p.p. on A except on o set which is the
wntersection of an F,-set with A.

If the kernel vs of positive type and there are measures i/ and "’ of &
which satisfy (2.50) and (2.51), then || —p"||=0 and I()=I(w"). If the en-
ergy principle is satisfied, there is at most one measure of & which satisfies
the two inequalities.

Proor. We have
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HA+0u)=Q0+0" (W, w) =2 +0) {f, WD ZI(W).

Hence

Ozw ,=0=2(/"I3 /",)—2<f’ IL/>

and

Y)=AW', w)—=<fs WD} /<g wW>=0.

Therefore by Theorem 2.1 U*(P)=f(P) p.p.p. on 4 and U*(P)=f(P) u'-a.e.
If £(P) is upper semicontinuous on 4, then U*'(P) < f(P) everywhere on S,.N\ 4
and U*'(P)=f(P) on A except a set, which is the intersection of an F,-set with
A. '

If 4’ satisfies (2.561), then (', p)=<{f, x> and

IW)='s ) =2 f, Wo=—', ).

If the kernel is of positive type and (2.50) and (2.51) are true for ' and n” of
&, then

0=l = IP =l [IP + w112 =2, )
P+l 1P =2 f W=l = llu"I".

Therefore [p"|| <|lill.  Similarly ||| <[[#"|, and hence ||’ =[|x"|| and 4’
—u”]|=0. Consequently

I()= =, W)= =", W)=1(").
If the energy principle is satisfied, x'=u"" follows from ||u —p”||=0.

Cororrary. Consider the same A and f(P) as in the theorem. Let /50
be a measure of &’y which gives the unconditional finite minimum to I(n) among
pE &'y for which {f, iy is defined. Then U“(P)=f(P) p.p.p. on A and U*(P)
=f(P) w'-a.e. If f(P)is upper semicontinuous on A, then U~(P) < f(P) on S, N A.

Remark 1. Given a compact set K with &£x=={0}, a positive continuous
function g(P) on K and an upper semicontinuous finite-valued function f(P)on
K, we consider I(u,) as a function of x as before. If x,>0 and I(u,,) is a local
minimum value, then u,, satisfies the three conditions required on ' in Theo-
rem 2.28.

Remark. 2. Let us assume the same as in Theorem 2.26. Then we can
give a different proof to that theorem by means of (2.50) and (2.51).

Remark. 3. If we do not assume the positivity of type of the kernel, two
inequalities can be true for 1., which does not give a local minimum of ().
For instance, if we consider
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I(p) =2x3 + 43 + 20ty %, — 46y — 62,

with a sufficiently large « under the same circumstances as in Example 1 of
§ 2.1,

4% —6x for 0 <<x<1,

I(,de):{
2x° — 4 for 1 <x< co.

The minimum is taken at x=3/4, but at x=1 we have two extremal measures
and the corresponding values of v are equal to 1 and 0. For the latter meas-
ure the above two inequalities are true but I(u)= —2 > I(us,)=—9/4; see
Example 2 of § 2.7 too.
Another example is
I(psr)

%1 %
122 —8x;—,.

2 4 10

I(p)=xi +

—
'S

See the graph. I

Remark 4. If f(P)=0 in Theorem I
2.7, we have I

o_ — .

]

|

|

|

|

|
U*(P) < () g (P) on S,, 1 pebge

&

and e

U(P) = () g (P) p.p.p.on K.  ~16~

We know that I(u.)=*(v., v.) with

v.. giving (v, ”w):»e?}{ifg‘ 1)(u, y), and

that y(u)=x(v., v.). If (v, v.)>0, we Vi)

set N =t/ V(pr) = pr {2 (v.., »..)} 7+ and ob-
tain 4 14 x

UNP)<g(P). on S,=S,,

and

UNP)=g(P) p.p.p. on K.
Thus we can find a measure A which satisfies two inequalities (2.50) and (2.51).

However, this method is less general than that in Theorem 2.28, because g(P)
must be positive on K in the present case.

2.9. Multiple variational problem.
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For each k, 1<k <n, let 0,(P, Q) be a kernel,’® 4, be an A-measurable set
wth €., +,71{0} in 2 such that (4, v)s, and (v, u)s, are well-defined for any
WEEY, o, and any vE &4, o, fi(P) be an A-measurable function on A4, such that
{fs vy is defined for any v€ &, -, and g,(P) be an A-measurable function on
Ay such that (g, v) is defined and finite for any v€&.4,,0,. So far we have
mostly assumed that kernels are symmetric. Although we shall come back
soon to this assumption, kernels considered here may not be symmetric. Fur-
ther consider for each pair j and k, j %k, a function A;(P, Q) on 4;x 4, with

the property that S hir d(p®y) and S hird(v®p) are always well-defined for

product measures x®v and »@p of pE€E%; »;, and vE€ &, », respectively.
This section concerns itself with the problem to minimize

@52 330, 5+ 33, || 2P Q 4@ auOP)-2 53 <fiy w9
j¥k

among u* €%, 0,(gs %> fr)s k=1,..-, n, for which (2.52) has a meaning. We
give

Tueorem 2.29. With the above notations, suppose that there are extremal
measures {u;} gwing a finite minimum to expression (2.52) among p® € &, o,
(g %> f), k=1, ..., n, for which (2.52) has a meaning. Then we have, if x50,
@53) TPz~

j=1
j¥xk

[{351P, @+ (@ P} dip @+ 72 4P

D-p.p.p. on A, with

wr Vo= (s i )oy + <% i S{ hjn(P, Q) +he;(Q, P) } api(Q) = fur 15

Jj*k

and the equality holds ui-a.e. in (253). If S{hik(P, Q) + 10, P) } Ak (Q),

j=1 k=1L Ek+1, ..., n, and —f, are lower semicontinuous on A and if g s
continuous on A, then the inverse inequality is true on Suz N Ay

Proor. We observe that ;f minimizes
s i< 33 [ 2P, @+ h0sQ, P} dz@ 251 >
Jxk

among u € &%, +,(gs %1 fr). Applying Theorem 2.1 in the case n=1 we obtain
the conclusions.
We can prove the following theorem in the same way as Theorem 2.6.

32) This idea of considering different kernels is due to Ninomiya [11]. When more than one
kernels are considered, they will be specified as subscripts.
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Turorem 2.30. In addition to the properties assumed at the beginning of
the present section, suppose that {A;} are compact sets {K;}, each h;,(P, Q) and
each — fy(P) are > — oo and lower semicontinuous on K; X Ky, j#k, and K, re-
spectively, each gy (P) 18 positive continuous and x,=>0. Then (2.52) is always
equal to oo or there exist {u;} which give finite minimum to (2.52).

We remark that, in the case where each 4, is a compact set K;, and where
each 2;,(P, Q) is > — oo and lower semicontinuous on K; X K, our problem is
equivalent to that of § 2.2. In fact, we regard K=K, + ... +K, as a sum space
and define a kernel on Kx K by '

Oi(P, Q) if P,QeK,,
O(P, Q)Z{

hjk(P, Q) if Pe Kj, QEKk and ]3&]{7
We also define f(P) by fi(P) on K, and g(P) by gi«(P) on K,,(k=1, ..., n). Then
(2.52) is equal to I(x), and a measure on K which is equal to u® € #x,, «,(gs %%
fi) on K, k=1,..., n, belongs to €x, +(g, %, f) With x=(xy,---, x,). We can write
(2.53) in the form

U4 (P) = f(P)+7:(u*) gi(P) p.p.p. on S, NKj,

where p*=pi on K, and

mnG=33 | O —pau, k=1, ., m

This inequality may be identified with (2.11). It follows also from Theorem
2.7 that the equality in (2.53) holds u;-a. e. and that the inverse inequality is
true on Su: if f(P)<<oo is upper semicontinuous and g.(P) is positive and
continuous on K,.

Conversely let Kj, ..., K, be mutually disjoint compact sets, and f(P) and

g(P) be functions on \"JKk. If we take the restrictions of @(P, Q) to K, x K,
k=1

and to K;x K;, j=Fk, for @,(P, Q) and h;(P, Q) respectively, and take the re-
strictions of f(P) and g(P) to K, for f,(P) and g,(P) respectively, then the pro-
blem to minimize I(u) for p€ &x(g, %), x=(x1, ---, x,), is transformed to a pro-
blem in the present section.

Next we are interested in minimizing

(2.54) (s o+ (5 V)v —2(p1, v)o

with symmetric kernels @, ¥ and 6. If ¥=c0 and #=0, (2.564) is the expres-
sion which appeared in the definition of energy principles given near the end
of § 1.2. In the rest of our chapter we shall consider only symmetric kernels
without mentioning the symmetry sometimes. As a corollary of Theorem
2.29 we obtain

Tueorem 2.31. Let @ (P, Q), F(P, Q) and O(P, Q) be symmetric kernels, and
A; and A; be sets of Wwith &.4,,07%{0} and &4, vZ={0} such that (u, v)s ts well-
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defined for any p€ &y, o and any v €&y, o, (1, v)v 18 well-defined for any u
€&, v and any v € & 4, v and (u, v)o 18 well-defined for any p€ &'y, - and any
VE B4y w as well as for any p€ &€ 4y, 0 and any v € Y, v. Let g(P) (go(P) resp.)
be an AU-measurable function on Ay (A resp.) such that {gi, v) ({g2, v) resp.)
18 defined and finite for any vE &4, o (Eayv Tesp.), and let x, and x, be non-
vanishing numbers. If there exist u* and v* which give finite minimum to
(2.54) among 1€ €Y, (g1, 1) and v € &4y, v(g2, x2), then

(2.55) Us (P)=Ug (P)+7: g«(P) 0-p.p.p. on A,
and
(2.56) Uy (P)=Us (P)+7, go(P) T-p.p.p. on Ay
with

w1 V1= (", p*e — (¥, v e and x5 Vo= (%, v ) — (¥, v™)e

and the equalities hold in (2.55) and (2.56) p*-a. e. and v*-a. e. respectively.

If, in addition, the closures A and A3 of A and A, are compact, if 6(P, Q)
18 continuous on Aj x As and Asx A3 and if gi(P) and g.(P) are continuous on
A, and A, respectively, then the inverse inequalities are true in (2.55) and (2.56)
on S.«NA; and S,.N A, respectively.

Turorem 2.32. Let O(P, Q), (P, Q) and B(P, Q) be symmetric kernels and
assume that O(P, Q) is continuous outside the diagonal set. Let K; and K, be
mutually disjoint compact sets with &k, o7{0} and &, v7{0} respectively.
Let g,(P) and g.(P) be positive continuous functions on K, and K, respectively,
and %, and x, be nonnegative. Then there exist p* and v* which give finite
manimum to (2.54) among €k, (g1, x1) and v € Ex,, v(g2, x2).

We can state theorems corresponding to Theorems 2.29 and 2.30 in the
unconditional case. However, we shall be contended with giving the fol-
lowing theorems which will be needed later. We use Corollary of Theorem
2.28 and obtain

Turorem 2.33.  Let 0(P, Q), T (P, Q) and O(P, Q) be symmetric kernels, and
Ay and A, be sets of A with &.4,,6%{0} and €., v7={0} such that (u, v)o s well-
defined for any p€ &y, o and vEE .4, o, (1, v)v 18 well-defined for any € &4, v
and any v € & .4, v and (u, v)o 15 well-defined for any p€ &%, o and any v €& 4, v
as well as for any pE€ &4, and any vE &4, v. Let g(P) be an A-measurable
Sunction on A, such that {g, v) is finite for any v €&, v. If there ewist p*
and v* which give the finite minimum to (2.54) among € &4, o and vE€EY, v
(g, 1), then Us"(P)=Ug"(P) 0-p.p.p. on A, U (P)=U'(P) p*-a.e.,

(2.57) Uy (P) = U (P)+{(*, v — (%, ™o} g(P) T-p.p.p. on Ay

and the equality holds there v*-a. e.
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If, in addition, the closures A3 and A3 of A, and A, are compact, if O(P, Q)
18 continuous on A3 X A3 and A3 x At and if g(P) is continuous on A,, then Uy (P)
< UE(P) on S.«N A, and the inverse inequality is true in (2.57) on S,«NA,.

Turorem 2.34. Let @ (P, Q), F(P, Q) and A(P, Q) be symmetric kernels, K;
and K; be mutually disjoint compact sets with €x,,+7#={0} and &k, v7={0}, and
assume that O(P, Q) ts continuous outside the diagonal set and (u, w)e >0 for
every =0 supported by Ki. Let g(P) be a positive continuous function on K.
Then there exist ™ and v* which give the finite minimum to (2.54) among -
MEéoKl,(p and VEéaKzlxy(g, 1)

2,10 Applications to energy principles.

Ninomiya[1;4;5;6;8;9] considered the variational problem to minimize
the expression

£M> /1') <V> v)
(/La V)2

and applied the results to prove the following theorems in case 0=¥=¢.
We shal‘l use Theorems 2.33 and 2.34 instead in the proof.

Turorem 2.35. Let (P, Q), ¥(P, Q) and (P, Q) be symmetric kernels. If
(2.54) is nonnegative for any p €& and v € &y with compact support, then the
following condition is satisfied:

LA;] Whenever u and v have compact supports and Ug(P) Us(P) on S,

5(P) < Uy(P) s true at at least one point of S,.

TuroreM 2.36. Let 0 (P, Q), Z(P, Q) and O(P, Q) be symmetric kernels. If
(2.54) 1s positive for any different measures p € &4 and v € &y with compact sup-
port, the following condition is satisfied :

[A;] Whenever p€ &4 and v € &y are different and have compact supports
and Us(P) < Us(P) is true p-a. e., Us(P)<Uy(P) 1is true on a set with positive
y-measure.

Proor for both theorems. We write
(2.58) (s o+, Vv —2 (1, V)o= S (U —Uy) dp— S (U4 —U3) dv.

If this is nonnegative and UL(P)< UY(P) on S,, then S (U5—Uy) dv<0 and
Us(P) < U(P) at at least one point of S,. If (2.58) is positive and Ug(P) < U%(P)
p-a. e., then S (U —U¥)dv<0 and Us(P)<Ux(P) on a set with positive v-meas-

ure.
Next we discuss the sufficiency of conditions.
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Tueorem 2.37. Let @(P, Q) T'(P, Q) and AP, Q) be symmetric kernels such
that @ =0 and 7 >60. Assume that O(P, Q) is continuous outside the diagonal
set, that both @ and ¥ are pseudo-positive and that at least one of @ and ¥ is
strictly pseudo-positive. If [A,] is satisfied, (2.54) 1is nonnegative for any
BE Es and v E &y with compact support. '

Proor. First we consider the case that S,N\S,= g. We may assume that
@ is strictly pseudo-positive and v is a unit measure. It is sufficient to prove
under [A;] that (2.54) is nonnegative for p,*eé"swq, and v*€&s,,v(1, 1) ob-
tained in Theorem 2.34 in the case g(P)=1. Since Uy (P)<<Us'(P) on S, by
Theorem 2.33, Us'(P)<<Uv'(P) at at least one point of S,. by [A;]. The in-
verse inequality of (2.57) being true everywhere on S,., it follows that (u*,
v )e < (v*, v*)y. Theorem 2.33 gives (u*, p™)o=(*, v*)o and there follows

(M*’ fb*)q) + (V*, V*)\Y _2(/1'*7 V*)G
= (M*, ”*)@ + (,u*, V*)e - 2(}1,*’ V*)® =0.

Next let 1540 be a measure which vanishes outside a relatively compact Borel
set By, and v be a unit measure which vanishes outside a relatively compact
Borel set B, disjoint from B;,. Let {K!”} be a sequence of compact sets such
that x(K$P) tends to x(B;,) as m— oo and {K$} be a similar sequence taken in
connection with v. We denote by p, and v, the restrictions of x and » to K¢
and K respectively. It follows that

(1 o + (v, Vv —2(p, v)o= lilfg {(ems pm)o +my vi)w —2(imy vm)o} == 0.

Finally let 4 and v be any measures with compact support. We can decom-
pose S,.\US, into mutually disjoint Borel sets B, and B, such that . (B)=v(B)
for any Borel subset BC B, and u(B)<v(B’) for any Borel subset B'CB,. We
denote by p’ the restriction of x—v to B; and by v/ the one to B, of v—pu. It
follows that y—p'=v—y'=X\ is a nonnegative measure. We see that

(2.59) (s o+, v)w —2(p, v)o
=0 +N, N+ N, VN =20 N, Y+ N)e
:(/_1_,/’ /.l/,)qp +(V/, l)l)\y—‘z(/b,, l/)@ + 2 <U§>’ _— U*é' + U\lir, - Uct)/, )\> + O\, 7\)@.._\1/_2@ Z 0,

because @ >0 and ¥ > 6.

Tueorem 2.38. Let @(P, Q), T'(P, Q) and (P, Q) be symmetric kernels such
that O(P, Q) is strictly pseudo-positive and assume that [ A, ] is satisfied and that
(2.54) is nonnegative for any p€ &4 and v € Ey with compact support. Then
(2.54) is positive provided that ps=v.

Proor. We suppose that (2.54) vanishes for different u* € &, and v* €&y
with compact support. We may assume that v* € &y (1,1). Since p* minimizes
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(2.54), Uy (P)=Uy (P) p*-a.e. by Theorem 2.33. This and [A,] give U4 (P)
Uy'(P) on a set of positive v*-measure. We use (2.57) which follows from
the fact that v* minimizes (2.54), and see that (v*, v*)y >(*, p*)e. Therefore

W*, 5o + 0%, v e —2(*, v*)o > (1", v5)e +(1*, v)e —2 (1, v*)e =0.

This is impossible and the theorem is concluded.
We shall apply the above results to c-energy principles.

Turorem 2.39. Consider a nonnegative kernel @(P, Q) which 1is strictly
pseudo-positive and continuous outside the diagonal set, and let ¢=1; in case
c=1, the kernel can be negative. In order that the weak c-energy principle (E),
be true, [ A1 is necessary and sufficient where ¥=c® and 0=0 are taken. In
order that the restricted c-energy principle (E*), be true, [A,] is necessary and
sufficient where ¥=c@ and O=0 are taken.

Proor. It is sufficient to point out that (2.59) is equal to
(2.60) Wy B+, V) =2, v)+(c—1) (2 +x, \).
We shall give a different application of Theorem 2.33.

TuaeoreM 2.40. Consider a kernel which is strictly pseudo-positive and sat-
1sfies the weak c-energy principle, and assume (p*, ™)+ c(W*, v*)—2(1*, v*)=0
for c=1 and for p*, v* € & having compact supports. Then

(2.61) U™ (P)S U (P)<cU""(P) ».p.p. i L,

U~ (P)=U"(P) p*-a. e. and U*"(P)=cU"(P) v*-a. e. If ¢>1 and the kernel is
nonnegative, then £ is divided into mutually disjoint Borel sets B, and B; such
that p*(2—B)=v*(2— B2)=0.

Proor. Since the kernel is strictly pseudo-positive, either p*=,*=0 or

w20, v*==0. We assume that x*s£0, v*5£0. Let K be any compact set con-
taining S,. and set
k l)*

PO o __
o ) N )

A

Then p€ék and € &5,.(1,1). Since g and » minimize (2.54), we have U4(P)
>U"(P) p.p.p. on K by Theorem 2.33. Consequently U*"(P)>U""(P) p.p.p. on
K. Because of the arbitrary character of K, U*"(P)=U""(P) p.p.p. in £. We
can write

(6%, 1)+ e, ) — 2, ;*)zc{ C(VT* ’U;—*>+(v*, ¥ —2 (”7* ¥ )}

Hence U**(P)/c<<U>"(P) p.p.p. on any compact set containing S,.. It now fol-
lows that U*"(P)<cU”*(P) p.p.p. in £. Consequently (2.61) is derived. It fol-
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lows that (u*, p™) = (*, v*) and c(v*, v*) = (u*, v*) and hence
0=(u*, ™)+ (™, v*)—2(u*, v*) = (¥, v*) +(u*, v*)—2(p*, v*)=0.

Therefore (u*, w*)=(u*, v*) and c(v*, v*)=(*, v*) and it is seen that U*"(P)
=U""(P) p*-a. e. and U*"(P)=cU""(P)v*-a. e. Next we assume that ¢>1 and
the kernel is nonnegative. In (2.60) we have (2v' 4+, A\)=0, which concludes
A=0 because the kernel is strictly pseudo-positive. Hence x*=p " and v*=y'.
This completes the proof.

As an immediate application of Theorem 2.39 we state -

Tureorem 2.41. Assume that the kernel is monnegative, symmetric, con-
tinuous outside the diagonal set and strictly pseudo-positive. Lf the restricted
c-dilated domination principle (UY). is true, then the weak c-energy principle
(E"). 1is satisfied for c=1 (in case c=1 the kernel can be negative).

We shall prove another result of Ninomiya [11] in a generalized form.

TueoreMm 2.42. Let @(P, Q) be a nonnegative symmetric kernel which s
continuous outside the diagonal set and strictly pseudo-positive, and c=1; if
c=1, @(P, Q) can be negative. Let F be a class of functions such that, for any
compact set K, we can find fc 7, defined at least on K, with the following pro-
perty: f(P) has a positive lower bound on K, and U(P)=<cf(P) on K whenever
p€Ex and UH(P)<f(P)on S.. Then O(P, Q) satisfies the weak c*-energy princi-
ple.

Proor. It is enough to show that (u*, p*)+c2(*, v*) —2(u*, v*)=0 for
p* €&k, and v* €&k, (1, 1) obtained in Theorem 2.34, where K; and K, are mu-
tually disjoint compact sets whose V;-values are finite. We have by Theorem
2.33

(2.62) AU (P) < U (P) + (™, v*)—(u*, v¥) on S,..

This shows that U**(P) is bounded on S,.. By our assumption there is fe #
such that f(P) is defined on S,.\US,. and have properties described above. We
determine « by

(2.63) sup {U”"(P)—af(P)}=0.

PeSy

Then « is finite positive and it follows by our assumption that U*"(P) <caf(P)
on S,.. According to Theorem 2.33 it holds that U*(P)<<U*(P) on S,. and
hence by our assumption again it follows that U*"(P)<c* af(P) on S,.. By
substituting this inequality into (2.62) we obtain

F U (P af(P)+A(w*, v¥) —(u*, v¥) on S,.
This and (2.63) give
0 <A™, v*)— (™, v¥).
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Sinece (u*, p*)=(u*, v*) is seen on account of Theorem 2.33, we have
(l"*ﬁ /1’*)+CZ(V*3 lJ*)_z(/"’)k’ y*)g(/"*) ”*)'I_(/l‘*: V*)_z(/"*’ "'*)=0°

CoroLLARY. Let @(P, Q) be nonnegative, symmetric, continuous outside
the diagonal set and strictly pseudo-positive. Let & be a non-empty class of
positive functions in £ such that each function of F has a positive lower bound
on every compact set. If the F-relative c-dilated maximum principle (Ug),.,
c¢=>1, is true, then the weak c*-energy principle (E')2 is satisfied; in case c=1
the kernel can be negative.

ReMark 1. There is a kernel which satisfies (U),=(F) but is not pseudo-
positive. Therefore we need at least the pseudo-positivity in the above as-
sumption. An example is given by

-1 —a
( ) with ¢>1.

—a -1

Another example is
Slgl log é-dxdy-f-g g log —— 1 dxdy +2 S S log —— dxdy < 0.
oJo 7 |x—yl Ja—y| lx—y|

Remark 2. From Corollary it follows that (U¥), implies (E).2. However,
Theorem 2.41 gives the better result (U}),— (E')..
In the preceding paper Ohtsuka [7] was proved (E)->(C). We now state

OSE.XEN2 Ee 2 (U, s,
i1
(UH.
where (<) means that this is true if the kernel is nonnegative, symmetric,
continuous outside the diagonal set and strictly pseudo-positive. It is easy to
see that (E), means (E')., for any ¢ >c¢ provided that the kernel is pseudo-
positive; if the kernel is strictly pseudo-positive, then (E'). — (E*)., for any
d >ec.
In order to complement the above schema we give
Example to show (U),z->(E*), and (U,),~> (E*), (c=1). Take two points
P; and P, for £, and define @ (P, Q) by

)
Jye 1/,
Evidently (U),  is satisfied. We can check easily that (U,), is satisfied but

neither (Uy).. nor (E'),, with any ¢/<c. It follows that (E), is true. Let us
take the unit point measure at P, for ; and the point measure with total mass
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1/yJ cat P; for v. Then (i, p)-+c(v, v)—2(i, v)=0 and hence (E*), is not true.

In Theorem 2.41 (the above Corollary resp.) we saw that the weak c(c*
resp.)-energy principle holds. Our example shows that we can not replace
c(c? resp.) by smaller number in general.

2.11. Maximum and domination principles.

We were already concerned with (U), and (U%), in the preceding section.
In the present section we still assume that kernels are symmetric, and con-
tinue to generalize other Ninomiya’s results in [11]. He proved Theorem
2.43 in case ®=46 and Theorems 2.44 and 2.45 in case c=1.

Let us consider the following principles:

(1) (@, 7, O)-domination principle: If UL(P)<<U%(P)on S, for p€ &4 and
v both with compact support, then Uz(P) <UwW(P) in £—S,.

(i) (@, ¥, O)-light domination principle: If Ui(P)<6(P, Q) on S, for
wE &4 and a point Q, then Us(P)<¥(P, Q) in £—S,.

(iii) (@, ¥, O)-sweeping-out principle: For any compact set K with V; o
(K)<oo and v with compact support, there is a measure  supported by K
such that Us(P) = U¢(P) @-p.p.p. on K and U4(P) << Ux(P) in 2—K.

(iv) (@, 7, ©)-light sweeping-out principle: For any compact set K with
V; o(K)<co and any Q, there is a measure . supported by K such that Us(P)
=>6(P, Q) 0-p.p.p. on K and Us (P)<¥ (P, Q) in £—K.

It is evident that (i) — (ii) and (iii) > (iv). In what follows in this section
we shall assume that @ (P, Q) is strictly pseudo-positive and continuous outside
the diagonal set. We shall prove

(iv)—>(i). Assume that x €&, and v have compact supports and Us(P)
<UiP)on S,. For Py&S, there is p supported by S, such that Us(P) = 0(P,
Py) @-p.p.p. on S, and Us(P) <& (P, Py) on S,, by Corollary of Theorem 2.28.
For a point Q, we choose a sequence {0,} of continuous symmetric kernels on
(S.y\UA{Q}) x (S.,\V{Q}) increasing to #. There is a measure 1, supported by
S., such that Ugm(P)=6,(P, Q) 0-p.p.p. on S,, and Usm(P) <0,(P, Q) <6(P, Q)
onS, . By (ii) we have Un(P)<¥(P, Q) in £S5, , and

50(1)):71}}:2 U%%(Q)é(#m, Mo)¢= (,Udo, ll'm)Q) éUg'”(Po)éw(Pm Q)

Hence
U%(Po)g(/m, /b)<1> = (//J, /ﬁo)cp é(”; /ﬁo)@) = (/1-0> V)e é Uli’(Po)-

Likewise we can prove (vi)— (i).
We shall establish the following lemma in order to derive (ii) — (iv).

Lemma 2.8.  Furthermore assume that O(P, Q) is continuous in the extended
sense, T(P, Q) 1is locally bounded outside the diagonal set and O(P, Q) is posi-
tive on the diagonal set. If (ii) is true, @ (P, Q) satisfies the continuity princi-
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ple.

Proor. Let x be a measure with compact support on which Ui(P) is
bounded. We set

Ve(w)= sup Us(P).
PES'U_

Since @ (P, Q) is bounded from below on Kx K for any compact set K in 2,
there is a finite number v such that V() <v for any restriction v of x to a
subset in £. Let P, be a point of S, which is not isolated in £ and take an
open neighborhood Np, of P, such that a= inf >0 on Np,x Np,. Let N'CNp,
be a compact neighborhood of Py such that Np,—N's~ ¢ and denote the re-
striction of x to V' by /. We have, for any point Q € Np,— NN/,

Uy (P)<< DT o(P, Q) onS,.

By (ii) it follows that U4 (P)<a 'v¥(P, Q) in 2—S,.. We infer that U% (P)
is bounded on N'. Since Us™ (P) is bounded in a neighborhood of Py, U%(P)
is likewise bounded in a neighborhood of P,. Consequently Ué(P) is bounded
on any compact set in 2. It is concluded that @ (P, Q) satisfies the continuity
principle on account of (IV) of § 1.3.
(ii) — (iv) under the assumptions in Lemma 2.3 and the assumption that
@ (P, Q) is nonnegative in £ x 2 and positive on the diagonal set, that 6(P, P)
=co implies always @ (P, P)=co and that (P, Q) is finite outside the diagonal
set. Let K be a compact set with 7; o(K)<co. We choose a sequence {0,,} of
continuous symmetric kernels on (KU {Q}) x (K\U {Q}) increasing to #. There
is a measure u, supported by K such that Ui»(P)>6,(P, Q) @-p.p.p. on K and
§m(P)<60,(P,Q)<0(P,Q)onS, . By (ii) we have Us»(P)<¥(P,Q)in -8, .
Suppose that u,(K) is not uniformly bounded. Then there is a point P,€ K
such that, for any neighborhood V of Py, u,(¥) is not bounded. Let 7, be a
neighborhood such that &(P, P")>=a>0on V,x ¥V, If Q is isolated in £ and
6(Q, Q)=roco, then 0(Q, Q)=co by our assumption and @(Q, Q) x,({Q}) Usm(Q).
This shows that Q& S, for every m, because if Q€ S, then Us=(Q)<6,(Q, Q)
< oo but @(Q, Qun({Q})=oco. Consequently Py==(Q. If Py5=Q in general, we
have

apn(Vo) K< Usm(Po) < max {Z(Po, Q), 6 (P, Q)}.

This is a contradiction and hence u,(K) is uniformy bounded. If Py,=Q is
isolated in 2 and 9(Q, Q)< oo, au.(Vo) <H(Q, Q). If Py=Q is not isolated in 2,
we take any P==P, in ¥, and have au,(Vo)<< max {¥(P, Q), (P, Q)}. In any
case un(¥Vy) is uniformly bounded and a contradiction arises. We can choose
a subnet T={u“; o€ D} of {u,} converging vaguely to a measure u,. By
Theorems 1.15 and 1.16
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50(P)= lim U§“(P)=lim 6,(P, Q)=6(P, Q) @-p.p.p. on K

and

2(P)<lim Us(P)S (P, Q) in -K.

Remark 1. If there is no isolated point Q with @(Q, Q)= or if @(P, Q)
is positive and £ contains at least two points, then we need not assume that
A(P, P)=oco implies @ (P, P)=co. For a proof under the second condition we
refer to the following proof of (i)— (iii).

RemaArk 2. Let £ consist of two points, @ be given by

o )
o o)

Then (ii) is true but not (iv). Thus we can not drop the condition that (P, P)
=oco implies @(P, P)=co in general.

(i) —(iii) under the assumption in Lemma 2.3 and the assumption that £
contains at least two points, that @ (P, Q) is positive in £ x £ and that o(P, Q)
is locally bounded outside the diagonal set. Let K be a compact set with
V; o(K)<co and v be a measure with compact support. We choose a sequence
{0,,} of continuous symmetric kernels on (K\US,)x(K\S,) increasing to 6.
There exists a measure p, supported by K such that Us»(P)=Ug (P) @-p.p.p.
on K and Us»(P)<<Us (P)<<Us(P)on S,,. By (i) we have Us=(P) <Uy(P) in
2-S,,. If p,(K)is uniformly bounded, we can choose a subnet of {,} which
converges vaguely to a measure u, and obtain

and ¥ =6 be given by

s9(P)=Us(P) O-p.p.p. on K
and
U (P) Uy (P) in 2—K.

In case 2~K we take any point P& K and a compact neighborhood Np,
of P, disjoint from K. We denote the restrictions of » to £—Np, and Np, by
v1 and v, respectively. For v; we can find ¥ which satisfies the two inequali-
ties, because the total mass of the measure ., corresponding to v; and 60, is
bounded on account of the inequality

ég}f; O (Po, Q) pum(K) S Uyt (Po)< o0
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and the above discussion applies. By a similar reasoning we find x® satisfy-
ing the two inequalities with v;. The measure p® + u® satisfies the required
condition.

In the case =K, we take two different points P, and Q,. We choose
compact neighborhoods of P, and Q, respectively so that they are disjoint
from each other. We denote their respective interiors by N, and N,. By the
above discussion we know that there is a measure y; supported by K—N,,
which satisfies U1(P)=Ug(P) @-p.p.p. on K—N;, and a similar measure y,
supported by K—N,. Then U§1**2(P) = U(P) @-p.p.p. on (K—N)U(K—N,)=K
and it is concluded that y,; + ., is a desired measure.

We state these results as the following theorem:

Turorem 2.43.  Let O (P, Q) be strictly pseudo-positive and continuous out-
side the diagonal set. Then the (0, 7, 6)-light sweeping-out principle implies
the (0, 7, O)-domination principle and the latter is equivalent to the (@, ¥, 0)-
light domination principle. If, tn addition, @ (P, Q) is nonnegative in £2x 2,
positive on the diagonal set and continuous in the extended sense, 1f T(P, Q) 1s
locally bounded outside the diagonal set, if @(P, Q) is positive on the diagonal
set and finite outside the diagonal set and t1f O(P, P)= oo implies always O(P, P)
=co, then the above three principles are equivalent.

If, furthermore, £ contains at least two points, if O(P, Q) is positive in
2% 2 and if 6P, Q) is locally bounded outside the diagonal set, then the (0,7, 0)-
light sweeping-out principle is equivalent to the (0, ¥, 0)-sweeping-out principle.

Remark. In (iii) and (iv) U4(P) is not dominated by any potential on K.
It is preferable to have additional condition to bound U*(P) from above on K.
Let us say that the modified (iv) is true if, in addition to the properties of
UX(P) in (iv), Us(P)<O@P, Q) on S, and U(P)<¥(P, Q) in £—S,. If we as-
sume, in addition to the above assumptions which guarantee (i) 2 (ii) 2 ({v),
that @(P, Q) is continuous in the extended sense and finite outside the diagonal
set we can prove by means of Lemma 1.10 that the modified (iv) is equivalent
to them. In fact, with the notations used in the proof of (ii)— (iv), we have

0= lim sup {Us"(P)—6(P, Q)} = sup {Us(P)—6(P, Q};

mow GNS,,
m

where G=2 in case #(Q, Q)< o and G=2—{Q} in case A(Q, Q)=co. It follows
that U*(P)<6(P, Q) everywhere on S,. Another inequality holds by (i).
However, it is still open whether or not one can add to (iii) the inequalities
$§(P)=Ugs(P)on S, and Us(P)<Uy(P)in £—S, while preserving the equiva-
lence to other principles.
We can apply Theorem 2.43 to principles (U),, (U¥),, (E,). and (S).. How-
ever some assumptions can be weakened and sometimes independent proofs
will be given. First we obtain by taking ¥ =c0 and #=0

Tureorem 2.44. Let @ (P, Q) be strictly pseudo-positive and continuous out-
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side the diagonal set. In order that vt satisfy (Uy),, the following condition is
necessary and sufficient:

[Q:] Let p be any measure with compact support and P, be any point
outside S,. Lf U(P)<O(P, P,) on S, then U(P)<c® (P, P,) everywhere in 2.

Tueorem 2.45. Let O(P, Q) be strictly pseudo-positive and continuous out-
stide the diagonal set. In order that it satisfy (U), the following condition is
necessary:

[Q:] Let Py be any point and ) be any measure with compact support S,
not containing Py. If

UXP)< O (P, Py) on Sy,

then M2)<c.
If, in addition, @ is nonnegative, [ Q] ts sufficient for (U)..

Proor. We suppose that (U), is satisfied. Let P, be any point and \ be
a measure with ecompact support S, d P, such that

UNP)Z 0 (P, P) on S,.

Let )\ be a unit measure of &5, for which U *(PYy= VS,\) p.p.p. on S, and U"°(P)
< VS, everywhere on S,,. Since the kernel is strictly pseudo-positive, 7;(S,)
=(>\'0> >"0)>0 By (U)c

U (P)<cV;i(Sy) in £.

Therefore

NV, (S < SUAO(P)dX(P):S UNP)dre (P) < S O (Py, P)dno(P)
:UAO(P0)§CV1'(S)\>7

whence M (2)<c.

Conversely, we assume [Q;] and that #>0. We take v with compact
support and any point P,&S,. Since the kernel is strictly pseudo-positive,
there exists an extremal measure p* € &5, satisfying U*(P)=®(P,, P) p.p.p.
on S, and U*(P)<®(P,, P) everywhere on S,.. From the latter inequaltiy
it follows that x*(2)<c by [Q;]. We have

U‘“(Po)gg U"*duzs Udp* < sup U - () <c sup U,

Thus (U), is proved.

We shall see relations between (U), and (Uy).. We showed already in
§ 1.3 that (F)~(U¥), for any c=>1 (see Example for (F)->(D*)) and that (D)
~>(U), for any ¢>1 (see (1.13)). We shall now consider a convolution kernel
in F5. We denote the distance from the origin to x=(xy, ---, x,) in E, by |x].
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Let p(x)=¢(x1, ---, %) be a nonnegative function in E, with the following pro-
perties:
It is symmetric: @(x)=¢(—x),
It is continuous outside the origin and lim ¢ (x) =@ (0)>0,
x-0

S‘ | @(x)dx< oo for some a >0,
x| >a

SS px—y)dp(x)du(y) >0 for any ps~0 with compact support.
We set, for P=x and Q=y,

OP, Q=px—y)

and take it as a kernel in ;. Then, by Theorem 2.45, [Q,] is necessary and
sufficient for (U), to be true. We can prove, in the same way as for Theorem
8 of Ninomiya [8],

TueoreM 2.46. If the above @ (P, Q) satisfies (Ua)., and if

e 7O
m =

o S @ (x)dx

[xl=r-o

<02

Sfor every p>0, then (U).,., s satisfied.

Cororrary 1. If the above @ (P, Q) satisfies (Uq)., and if 0< SE P(x)dx< oo,
then (U, is satisfied. ’

CororLrLarY 2. If the above @ (P, Q) satisfies (Us)., and p(x) is a decreasing
Sunction of |x|, then (U)., is satisfied.

Next we shall be concerned with a-kernels in E,. We consider Kelvin
transformation.®® We fix a point P, and transform P(=4P,) to P/, lying on
the half line which issues from P, and passes through P, such that PP P, P’
=1. Given a measure x with S, D P, and a y-measurable set 4, we set

1

WD = o @)
for the transform A’ of 4. For such measure ;' it holds that
U= | o i @=PP | dn @,
PQ PQ
because
PQ= 'FTP-QPTH :

33) M. Riesz [1] used Kelvin’s transformation to study a-potentials.
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Now suppose that PQ~* satisfies (U).. Then for any P

U+ (P’ PP3U*(P)
2. = o = — .
(2.64) “= sup U* a sup 7P UXT)
T’ES‘“/ TESM

Consequently if U“(P)<PP;® on S,, then U*(P)<cPP;® in E,. This shows
that (U,), is satisfied in virtue of Theorem 2.44. By the identity in (2.64), we
can prove similarly that if PQ~* satisfies (U,), then it does (U)..

We state

Turorem 2.47. For a-kernel in E,, 1f (U), is satisfied then (Uy). is sat-
isfied, and vice versa.

We know that there is an «a-kernel which does not satisfy (FV) (Kunu-
gui’s example stated in § 1.5). It is seen by the identity in (2.64) that kernel
does not satisfy (DV).

Leaving discussions on a-kernels, let us be finally concerned with (E,).
and (§%)..

Tueorem 2.48. Always (U), implies (E,).. If the kernel is strictly pseudo-
positive and continuous outside the diagonal set, then (E,), implies (U), for
c>1.

Proor. Let K be a compact set with V;(K)< o, and p; be a unit extremal
measure which minimizes (u, x) among p<€&x(1,1). We know that U*1(P)
= (p1, 1) p.p.p. on K and U*(P) < (21, 1) on S,;. By (U), it follows that U*1(P)
<c(u1, p) in £. Thus (E,). is satisfied. The latter half of the theorem fol-
lows from Theorem 2.43 if we take ¥ =c and #=1.

Turorem 2.49.  Always (S*). implies (UY)., and if the kernel is nonnega-
tive, (8*), implies (Uy),.

If, furthermore, the kernel is positive on the diagonal set, continuous in the
extended sense and finite outside the diagonal set, then (U¥), implies (S*)..

Proor. We assume (S*), and that U4P)<<U’(P)on S, for ;€ & and v with
compact support. There is for any P& S,, a measure .p, supported by S, such
that U*To(P)=>®@(P, P,) p.p.p. on S, and U"T(P) <cO(P, P,) in £. We have

U(Po) < (g 18)= (s ppg) S (vy popg)=(pspg, v) < U (Py).

This shows that (U}), is true. We can similarly conclude (U,). if the kernel
is nonnegative.

To prove the latter half, take any compact set K with V;(K)< o and any
measure v with compact support. Let vx denote the restriction of v to K. As
in the proof of (i)— (iii) we find a measure p supported by K with the pro-
perty that UXP)=U""".(P) p.p.p. on K and UXP)<cU’"k£(P) in £, although
it is not certain that the total mass of x is finite. To prove this we first ob-
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serve that the continuity principle is true in virtue of Lemma 2.3. By (IV)
of § 1.3 (By) is satisfied; namely the boundedness principle is valid on every
compact set. Let x; be a unit measure on K which gives (u1, p1)=V;(K)>0.
It holds that U"i(P)= (w1, p1) p.p.p. on K and U"1(P) <(u1 p1) on S,;. By (By)
it is bounded on S,, say U*1(P)<M on S,. It follows that

(s o) pp(K) (o, )=ty 1) Zc (v —vie, p1)
= c(m, v—rr) <cMv(2).

This shows that u(K) is finite. Since U***£(P)>U>(P) p.p.p. on K and U*"’¥
(P)<ZcU”(P) in &, (§*), is true.

2.12. Notes and questions.

It is well known that Gauss variation is useful in the sweeping-out pro-
cess. It was used also to prove the potential representation of a superhar-
monic function by Frostman [2]. The first paper which discussed the varia-
tion itself from a general point of view seems to be Kametani [1;3]. Re-
cently Polish mathematicians Gorski, Leja and Siciak use general Gauss var-
iation in their works on transfinite diameters probably without knowing the
results of Kametani. In all these papers space is euclidean and function f is
defined and continuous on a compact set. Leja [1] was the motivation for
the author to investigate the n-dimensional problem (see § 2.2 of our paper).

After our manuscript was completed, Choquet [ 8] was published. It
deals with problems which are partially common to our § 2.10.

Open questions.

2.1. The support S,, of an extremal measure ., on K, defined in § 2.2, does
not coincide with K generally. We ask when K=S, . Every compact set of
finite V;-value contains such compact set; S, itself is such a set. This ques-
tion depends on given f, g and x generally.

2.2. Can we improve the coefficient 2 in the inequality V;(X)—m <<2(¥;
(X)—m) in Corollary 2 of Theorem 2.7? What is the best possible value?

2.3. Question stated at footnote 26).

2.4. Question stated after Theorem 2.15.

25. Let K=U K, be a disjoint union of compact sets. When is V' (K)
k=1

quadratic in yy, ..., y,?

2.6. Are the conditions #>6 and ¥ >¢6 really necessary in Theorem
2.37?

2.7. Let us add to (iii) in § 2.11 the condition that U4 (P)<U(P) on S,
and Uy <Uy(P) in £—S,. Is this modified (iii) equivalent to (i) (2 (i) (i)
2(@iv))?
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Chapter III. Inner and outer problems.

3.1. Inner variational problem.

Let X, ..., X,, be non-empty sets in £. We shall say that they are @-se-
parate if they are mutually disjoint and @ (P, Q) is bounded on each X;x X,
j#k. Assume that they are 0-separate and that V;(X;)< oo for each k. Let

f(P)< oo be an upper semicontinuous function on X :kC/Xk and g(P) be a posi-
=1

tive continuous function on X. Let x>0, ..., x,>0 and x=(xy, ---, x,). We
denoted in the preceding chapter by x, a conditional extremal measure on K
consisting of mutually disjoint compact sets {K;}. In this chapter we shall
denote it by u.(g, x, f) or by u,(x) or simply by x,. As before we set for
any p€ & 4(g, %)

3.1 s = 0 du=|_ i

if x,>0. If x,=0, we do not define v,(1) itself but set x,v,(x)=0. The inner
variational problem is to consider

LES (g, %)
where ¢x(g, x) is equal to {x € &; S, is decomposed into compact sets K, -, K,
such that K, C X, and SK gdp=x, for each k}. We shall call the restriction
k

of u to K, the restriction of u to X, and write SX gdp for SK gdp. 1f there is
k k

a subset Y, C X, with V;(Y,)<co for each k such that f(P) is finite on Y, we
see I{< oo without difficulty. In other cases, including the case that £x(g, x)

=g, we set If=co. For p€é&x(g, x) we define x;, v,(x) by (3.1), where \3 K,
k=1

=S,.
Let us recall that 9 denotes the class of sets which are measurable for
all measures. Since u(4)= sup u(K) for compact K A4 if A€, I} is equal

to inf I(y) for pe i (g, x, [l)={p€&; pn(L—A4)=0, SA gdp==x; for each £ and
k

{f, > is defined}.

Let {1} be a sequence of measures in &x(g, x) such that 7(»™) tends to
Ii. We are interested in finding a limiting measure of {.™} and its pro-
perty. We shall discuss this problem in two manners. One is under the as-
sumption of the continuity principle and the other is, essentially speaking,
under the assumption of the completeness of some subclass of &.

We assume in this section that the kernel & satisfies the continuity
principle. If some of {x,} vanish the problem reduces to a lower dimensional
case and hence hereafter we assume that x,>0, ..., x,>0 except in § 3.8 and
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§3.9. We shall state the conditions precisely. Let X consist of relatively
compact @-separate sets {X;} such that V;(X,)< oo for each k, f(P)< oo be an
upper semicontinuous function on X such that it is finite on some set Y, CX,
with V;(Y,)< o for each k and g(P) be a continuous function with a positive
lower bound on X. Assume that Ij>—co and let I(x™) tend to Ii. We
choose a subsequence {x"?} of {x™} such that each })im v, ("?) exists. Since

SX gdp™ = x4, n(2) é(i;{lf ol i %, and {x™} is bounded in .#. By Proposi-
k k=1

tion 8 in § 1.6 we can find a subnet 7= {u; © € D} of {1™#’} such that the re-
striction x§” of 4™ to X, converges vaguely to some measure for each k; in
this chapter the subscript & of a measure will always mean the restriction of
the measure to the k-th component of a set. This measure p$” is supported

by the closure X; of X, in £ and will be denoted by p%,. We set ui= i‘, Bk,
=1
and write v for the point in E; with coordinates {y,=1im v,(»“)}. This meas-

ure wi will also be denoted by ni(g, %, f) or by ui(x).

An alternative condition to ensure that {x™} is bounded in .# is V;(X)
>0. In fact, on account of the continuity principle, there is a measure v €&y
(g, x) which gives a continuous potential U (P) and finite 7(»). Since (u™ +»)
/2€ &x(g, x),

. (m)
R=T(E )= 2 1) + 5 160 =k s, w )

and hence (u™ —v, ™ —y) is bounded from above. It holds that
(™ —v, pP =) Z V(X {p™ (D=2 sup U + u™(2)+ (v, »)

and it is seen that x™(£) is bounded.
We write

I (M("’))=k_2‘l. G, i) =2 fs 0} + 35 (w5,
h TR
=31 (1262 + 25 (55 ™).
j=xk

We note that the last sum of mutual energies is a bounded quantity. This
shows that each I(nf”) is bounded from below, because if I(u§’) were not so

we should see that I (i’, w9 + p2f2)) is not bounded from below for any fixed w,.
k=1
kxkQ

This contradicts our assumption ;> — 0. Consequently each I(x{) is bound-

ed. Since

(/"gzw): :u';zw)) = an!ier)lraq) (P, Q) (M%m)(g))z,
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(s, i) is bounded from below. It follows that

(3.2) 2o, v () =1 () 42 L (52, ) + (s, 1)
]#k
is bounded from below. Consequently lim i % v () exists and equals Z{
o k=1 k=

Xk V- .
Now by our assumption there is a compact subset K, of X, for each % on
which f(P) is bounded and whose V;-value is finite. We shall use uEé”k(lek

(g, x) which gives a continuous potential U’(P). We have

: 1 » 1
Iél(?f‘”“LT”)

3 n © 1 1 v ©
=4 I(p ))—T 2 Ve (S ))+T<V, V)+~2'*SUdM()—<f» v).

k=1
It follows that

3

Li=—f

A

i 1 . n‘\ ®, 1 1 7Y i
Iy = &= h(fn Zi x5 72 (u) T o, V)"'"“z“’ S Udps—<fs »)-

Therefore
lim ;??‘i %, ’Yk(pf“’)):k}_J1 Xp Vi<l o0,

We have already seen that each v,(x) is bounded from below. Hence each
v4(x?) must be bounded. It follows from (3.2) that each < f, x> and (4§,
pi?) are bounded, say, |{f, p”>| <M and |(ug”, ui”)| <M.
We set

Hy={P€ X;; U"(P)— f(P)< v: g(P)}.

Let us suppose that V;(H,)<co. We can find a compact set K, C H,, with
Vi(Ky)< o and a positive number 5 by Proposition 1 in § 1.1 such that

(3.3) T“5(P)— f(P)< v, g(P)—1 on K.

We observe that f(P) is bounded from below on K,. Letv& &k (g, xz,) be a
measure which gives a continuous potential U’(P) in £. For any ¢, 0 << 1,
it holds that

L ST (ul— t/bk”>+tv)

=T() — 2iogy Vig(n™) + ¢ (pse i)+ 2 S { — 0" } dv+8Q, v) =2t f, v)

and follows that
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Li < Li—2tp, Vi + 2tg {ﬁ“}é—tf/”‘}ko} dv -+, v)—2t {f, v)> + 12 M.
Cancelling I, dividing the rest by z and letting :— 0, we obtain
S Ty — f, v = %0y Vig-
On the other hand (8.3) gives us the following contradicting inequality:
| 0%k =<, > < 2ty tho = ().

It is now proved that

T"%(P)— f(P)= v, g(P) p.p.p. on X,

for each k.
In case f(P) is defined and continuous on X?, the equality

L+, M§>=I§ Xk Ve

follows from

I+ f, p>= PIEY V().
We state these results as

Turorem 3.1. Let X be a relatively compact set consisting of @-separate
sets Xi, ---, X, such that V;(X;)< oo for each k, f(P)<co be an upper semicon-
tinuous fumction on X such that f(P)>—oco on some set Y, C X, with V;(Yy)
< oo for each k, and g(P) be a positive continuous function on X. Assume that
@ satisfies the continuity principle, and that one or both of the following con-
ditions is satisfied :

(a1) g(P) has a positive lower bound on X,

(@2)i  Vi(X)>0.

Assume also for x= (w1, ---, %,), 21 >0, ..., 2,>0, that
Ii= inf I(/'b)>_°°>

peEE (g, %)
and let {u™} be a sequence of measures in Ex(g, x) which gives

lim I(u™)=I}.
Then there is o subnet {u“; w <€D} of {u™} such that the restriction u§” of
p) to X converges vaguely to a measure i, lim v,(u®) exists and is finite for

each k. Setting >) pk,=pk ond lim v,(u)="y,, we have
k=1 ®
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(3.4) 0“5(P)—f(P) = ; g(P) p.p.p. on X
If f(P) is defined and continuous on X,

Li+{f, ;@‘}>———k§=]1xk Yo

In the above definition of ;% we started from {.™} in &x(g, ») for which
lim I(u™)=I{. It follows that

and hence
im 1(us, ony) = L

Thus there is always an increasing sequence {K™} of compact subsets of X
such that I(uzm)) tends to I;. If we restrict ourselves to vague limits of
subnets of {u;m}, we have

Taeorem 3.2. Let X, ..., X, be any mutually disjoint sets with finite V;-
value, f(P)<oco be an upper semicontinuous function on some set Z>DX=3>] X,
k=1

such that f(P)> —oco on some set Y, C X, with V;(Y,)< oo for each k and g(P) be
a positive continuous function on Z. If there is a net {K} of compact subsets
of X such that px converges vaguely to ju, and vi(pyw) tends to a finite number

v, for each k, then
(3.5) 04(P)— f(P) <, g(P) on Su,NZ,
where ,L:é,: b
Proor. We recall that
0“5 (P)— f(P) < 7i(ug ) g (P) on SupyNXp=Sug(

if I is finite, according to Theorem 2.7. By Lemma 1.10 it follows that

0=lim sup {U"€“ —f—v,(ue()g}= sup {U*—f—v g}
o S Sy, 12

Thus
04(P)—f(P) <7 g(P) on S,,NZ.
In the special case f=0, we have

Cororrary. Let us consider the special case where f(P)=0,x=1and n=1.
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Under the same conditions on X, @ and g(P) as in Theorem 3.1, let {K™} be
a sequence of compact subsets of X which gives

lim (ugmyy prm) =V # (X).*

Then, for the limit uk of any vaguely converging subnet of {u,wm}, it holds that

(3.6) T“«(P)=V®(X)g(P) p.p.p. on X
and that
3.7 T“«(P) < V®(X)g(P) on S, NZ

1f g(P) 1s defined and positive continuous on some set Z > X.

For g(P) defined on the closure X¢, we shall call a measure satisfying
(3.6) and (3.7) a weak inner g-equilibrium measure and, in case g(P)=1, a weak
wnner equilibrium measure. Its potential will have the corresponding nom-
inations.

We shall give criteria for a relatively closed subset of an open set to be
an F,-set.

LemMma 3.1. Let G be an open set in £ and B be a relatively closed subset of
G with V;(B)=oo. If one or both of the following conditions is satisfied, then
B is an F,-set.

(by) G is an F,-set,

(b2) The kernel @ (P, Q) has the following two properties: For every point
Pe G and every meighborhood Np of P, the kernel is bounded from above on {P}
x (G—Np), and, at each point P& oG with @ (P, P)< oo, there is a neighborhood
Np of Pin £ such that @(Q, Q)< oo for every Q& NpNG.

Proor. If G=yU F™ B=\(BNF™)is an F,-set. Next assuming (b,),

we set
JP={PeG; 06(P, Q)<p for all Q€3G}.

This is a relatively closed subset of G and U J®=G. Suppose that BNJ® is
»

not a closed set. Let P, <€ 9G be a point of accumulation of BNAJ®. If 0(P,,
Py)=-oco, O(P,Q)—>c as P, Q— P, by the lower semicontinuity of #. This
is impossible, because if so there would exist PeJ® for which @(P, Py)>p.
Therefore @ (P, P,)< o=. By our assumption there is a point P’€ BNJ® for
which @ (P, P")<co. However, such a point P’ has a finite V;-value, contradic-
ting the fact that V;(B)=co. Thus each BNJ® is a closed set and B=\;

(BNJ?®) is an F,-set.

34) We recall that ¥ (X)=inf (4, p) for n€ & x(g, 1).
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Remark. (b,)is satisfied if the kernel is continuous in the extended sense
and bounded from above outside the diagonal set.
In case a component of X is an open set, we prove

Turorem 3.3. Assume that a measure p and constants {v.} satisfy (3.4)
and that X,,=Gy, 1s an open set. Assume one or both of (b,) and (b,) of Lemma
3.1 for Gy,. Then

TH(P)— f(P) =4, 8(P) @.p. in Gy,
and the exceptional set H in Gy, is a K,-set.*

Proor. We set
HO = 1Pe Gy 04P) — fPY < gP)— L},

Certainly H=\ H™. Since the function on the left is lower semicontinuous,

H™ is a relatively closed subset of G, with V;(H"™)=co. By Lemma 3.1 it
is a K,-set; we write H™=\yu K™#_ Certainly V;(K™ #)=co for each m and

b

p. We see that V;(K™ )=V, (K™ ?) in virtue of Theorem 1.4 and that V,(H)

=oco on account of Proposition 2 in § 1.1. Thus the theorem is concluded.
We write v; for lim v,(u™) so far as n™ € &x(g, x) and I(u™) tends to

I% provided the limit, finite or infinite, exists for each k; it is not required
that ™ converges vaguely. Finally in this section we shall study the set of
points y=(v1, ---, v») in E,. The set will be denoted by I"i(x) or simply by I'%.
We shall prove

TureoreMm 3.4. The set 'k is compact in E, under the assumptions in Theo-
rem 3.1.

Proor. Let {y™} be a sequence of points in "% such that each sequence
{v$™} of components converges to a finite number or diverges to + oo or to

—oo. For each m we choose a measure ™ € £x(g, x) such thatW’&@T”Wa/m
and I(x™) <Ii+1/m. Hence I(x™) tends to I% and {.™} is a sequence in
which we were interested in Theorem 3.1. For each , v,(»™) tends to a finite
number or diverges to + oo or to —oo. We showed in the proof of Theorem
3.1 that the last two cases do not happen. The point with coordinates {lim

m— oo

(™)} belongs to 'y and {y™} converges to it. Thus '} must be compact
in E,.

3.2. Inner problem for kernels of positive type.

Throughout this section we consider a kernel of positive type, mostly

35) A K,-set is a countable union of compact sets.
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without mentioning it. We prove first

TueoreMm 3.5. Let X consist of @-separate sets Xy, ..., X, in £ such that
Vi(Xp)<oo for each k. Let f(P)<oo be an upper semicontinuous function
on X such that f(P)> —oco on some subset Y, C X, with V;(Y,)<co for each k,
and g(P) be a positive continuous function on X. Asswme that Ix>—oco and
that, for a sequence {u™} of measures in &x(g, %),

3.8) lim I(u"™)=1I%

m~—>co

and ™ converges strongly to some measure ui€&. Unless the kernel is non-
negative on eack X; x Xy, j=ck, we assume also one or both of the following con-
ditions:

(a1) g(P) has a positive lower bound on X,

(@) Vi(X)>0.
Then, any sequence of measures in &x(g, x) on which I tends to Iy converges
strongly to pk and v, (u™) tends to a finite value for each k. If it is denoted by
Vi, then

3.9 L4 (pk, pi)=2 Z.l Xk Ve
and each v, does not depend on the choice of {x™}. It holds also that

(3.10) U"s(P)—f(P) = 7 g(P) p.p.p. on Xp.

If a measure €& and finite constants {c;} satisfy (3.9) and (3.10) re-
placing ik and {v:}, then c,=v, for each k and u™ converges strongly to u. If
(i, k) 18 defined, ||p—pkl|=0 and if, furthermore, the energy principle is sat-

isfied, p=p.
Before the proof we give

Lemma 3.2. Let X, f(P), g(P), It and {u™} be as above, and assume lim
Yl ™) =1, for each k and (3.9). Assume also that

(3.11) UHP)—f(P) =1 g(P) D.p.p. on X,

for a measure u€ & and finite constants {c;}. Then
J(p)=2 kl:i xp ¢ —(py ) Ik

If, in addition, (u, pk) ts defined, we have
[l — ll® <L — T ().

Proof. We integrate (3.11) with respect to ™ and obtain
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(s p™) =< fy p) = é 26 Ce
It follows that
0| = pll” S ™ 1)+ (s ) =2 X3 e s =2 f, 1)
=1(p™) =J (W)
Therefore J () <lim I(u™)=1Ik. If (u, pk) is defined, we have
i = pell? = T [[® — | STim () =T () =T =J (o).

Proor of Theorem 3.5. Let {+} be a similar sequence in &x(g, x) for
which I(v™) tends to Iy as m— co. Since

W M) Bx(g, ),
; /,u('”) 4y 1 m 1 m 1 m m
nglk—z )“7 I(N( ))’l“? I(V( ))“T”M( )yt )“2-

It follows that
lim || —u™(2<lim {2 (x™)+2 I(,™)—4 I}} =0.

m—co

Consequently »™ converges strongly to k.
Now we choose a subsequence {m,} such that lim (") exists for each
Pproo

k. We shall denote this limit by v,. Suppose that there is a set 4 CX,, with
Vi(A4)< oo on which

U“X(P)— f(P) <z, &(P).
We take v <€ &a(g, xx,) and have

(312 (e, V)= fy v) <rg Tho-

We proceed under the assumption that there is a finite constant M such that
[lug™]| < M for every m and k. For any ¢, 0<¢t<_1, it holds that

Le ST =t pfly +10) ST (u) = 2ty oy (™) + 26 (™, v)
=2ty vy 4o (kg |+ 1D
Since ™ converges weakly to u%, we have
Iy I — 2ty Vig + 2t (e, v)— 28 {fy v) +85(M + |[v]))%
Cancelling I, dividing the rest by ¢ and letting :— 0, we obtain

0 ="(pk, v)—<fy v) — %0 Vo
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This contradicts (3.12), and (3.10) is concluded. To see that v, is finite, we
take » € &y, (g, 1) such that f(P) is bounded from below on S,. We have by
(3.10) that (uk, ) —<{f; \>)=v;. This shows that each v,<co. The finiteness
is seen from

230 mvs=2 lim >3 x, v = lim {7 (™) + (™, N} =L+ (ks 12%).
This gives (3.9) too.

Now we shall show the existence of above M. If the kernel is nonnega-
tive on each X;x Xy, j=#k, [[pi”|| <[] and this is bounded. In case the
kernel is not always nonnegative on each X x X,, j %, we assume (a,). Then
the total mass of 4™ is bounded. It is so too if we assume (a,); because (™
(@)Y < ||p™|*V;{(X). From the identity

n

S PP =12 = 35 (™, pe
k=1 ]}}j:kl

we see that each [[.{™] is bounded.
Suppose that . and {c;} satisfy (3.9) and (3.10) replacing pk and {v:}. It
holds that J(u)=1I% Since | ||| — Il |2 )™ — ]2 ZI(u™)— I as is seen

in the proof of Lemma 3.2, we have ||u|=|x%| and hence i} X Cp = Si] Xp Ve
k=1 P=1

We observe also that ™ converges strongly to . We integrate the ine-
quality U“(P)—f(P)=c, g(P) with respect to 1.{"#> and obtain

o cp (s 11"0) = fy 070 =ty pf"?) = ("2, ")+ 21 73 ().

Since |17 < M,
lim |G )= a2, )| Tl i) |

<lim M{lu—uP] =0.
P

Hence x,(c; —7:,) <0. It is concluded that ¢,=1, because i‘, X ck=i % Ve In
k=1 k=1

particular, it follows that lim v,(»™) exists regardless of the choice of {1.™}.

m— oo

Then I'%, defined in § 8.1, consists of a single point. If (u, k) is defined,
llp— k]| =0 by Lemma 3.2, and if, furthermore, the energy principle is true
then, p=_pu.

As is seen in the proof we may replace the condition that @ is bounded
on each X; x X,, jk, by the weaker condition that @ is bounded from below
on each X;x X}, j%k. The same remark applies to some of subsequent theo-
rems.

We shall denote v, by v%, for each %; this notation will be used only if v,
is uniquely determined.
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For later use we give

Lemma 8.8. Bestdes the conditions in Lemma 3.2 assume one or both of
(a1) and (a,); stated in Theorem 3.5, unless the kernel is nonnegative in each
X;x Xy, j=k. Then we have

(ce—Yky) % Zallp— pkll

with
ill2 x 2 . .
‘/ ekl +n(n—1)c< o ) if (ap) 18 true,
nt g
YR e iF (e i tru
||l if ©=0 on each X;x Xy, jFk,
where

c= max sup (—0(P, Q).

1=j.k=n  X;xXp
Ity 7

Proor. Like in the proof of the above theorem we have

(e =iz < lim [[pg™]] - [ — pkll.

m->c0

If we examine the reasoning in the above proof to show [|u{™|| <M< oo, it is
easily seen that lim ||x{™| <a.

Mmoo

In the special case f=0, we have

CoroLrary. Let X be any set with V;(X)< oo in £, and g(P) be a positive
continuous function on X. Assume that, for a sequence {K™} of compact sub-
sets of X, VE(K™) tends to VE(X) and pym converges strongly to a measure
pk. Then VE(X)=||uk|?* and

U*k(P) = V©(X)g(P) p.p.p. on X.

If g(P) is defined and positive continuous on Z DX, and if pi is the vague
limit of some subnet of {uxwm}, then

UH(P) < V0 (X)g(P) on S, NZ.

If u satisfies ||u|*=VE(X) and U(P) =V ¥ (X)g(P) p.p.p. on X and (u, pk)
s defined, then ||p—ukl[=0. Lf the energy principle is satisfied, p= k.

In the proof we need Theorem 3.2. We shall call , which satisfis ||x//®
=V¥(X) and U"(P) =V ¥(X)g(P) p.p.p. on X, an tnner g-equilibrium measure
for X. In case g(P)=1, we simply call it an inner equilibrium measure. Its
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potential Will have the corresponding nominations.
We prove next

Tueorem 3.6. If Ii is finite and every strong Cauchy met in &x(g.x) is
strongly convergent, then any sequence {1™} of measures in &x( g> %) for which
lim I(u™)=1%, converges strongly to some measure.

m-—>oco

Proor. Since (u™ +p?)/2€ &x(g, x), we have
. m 4 () 1 . 1 1 o
IX§I<“_——M 2 £ )zT I(M( ))"‘T I(M(P))‘T IW( )“M(p)Hz

and observe that {»™} is a Cauchy sequence. It converges strongly to some
measure by assumption.

The next question is as to the strong convergence of a Cauchy net. We
defined in Chapter I the following notion of Fuglede [1]: A kernel is called
consistent if it is of positive type and any strong Cauchy net converging
vaguely to a measure converges strongly to the same measure. He called a
kernel of positive type K-consistent if any strong Cauchy net, whose elements
are supported by a fixed compact set and which converges vaguely to a meas-
ure, converges strongly to the same measure.

In terms of these notions we shall give several sufficient conditions for
any strong Cauchy net in &x(g, x) to be strongly convergent.

(i) The kernel 1s consistent and g(P) has a positive lower bound on every
relatively compact subset of X.

(ii) The kernel is consistent and V;(X)>0.

(iii) The kernel is nonnegative consistent and V;(KNX)>0 for every com-
pact set K in 2.

(vi) X s relatively compact, the kernel is K-consistent and g(P) has a posi-
tive lower bound on X.

(v) X 1s relatively compact, the kernel is K-consistent and V,(X)>0.

To prove that (i) is sufficient, let K be any compact set in £ and {u.} be a
strong Cauchy net in £x(g, x). Since

n‘ - . .
Siwz | sduzinf g,

1o(K) is bounded from above by a constant which may depend on K. By Pro-
position 3 of § 1.6 there is a subnet of {,} which converges vaguely to some
measure zy. By our assumption that the kernel is consistent, the subnet con-
verges strongly to p% and {u,} does too.

In case (ii) is satisfied, let {u,} be a strong Cauchy net. As is well known
(ftos 1) is bounded for w == w,, Where w, is some element. We have

and hence 1, (£), ®=wo, is bounded. The rest is the same as in the first
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case. Likewise we can see that each of (iii), (iv) and (v) is a sufficient con-
dition.
In general {g, pi,> <lim (g, /AK;"‘)>:xk as px(m converges vaguely to uk,.

In a special case we can show the equality. In fact we prove

Taeorem 3.7.  Let X, Xy, .-, X, be as in Theorem 3.5, f(P) be a continuous
Sfunction with compact support defined on the closure X° of X, and g(P) be a
positive continuous function on X°. Assume that the kernel is consistent and
nonnegative on each X; x Xy, j=k, and that 0<Ix,(g, xs, f)+VE*» (X;)< oo for
each k. Then I(p)=Ix(g, x, f) and {g, pk,>=x for each k. If, in addition,
the kernel is momnegative in £x 2 or X 1s relatively compact in 2, then x v%,
=1k, pi) —<f; pk,> for each k.

Proor. Let {K™} be an increasing sequence of compact subsets of X
such that I(x, ) tends to It =Ii(g, x, f), and set Ki” =K N X,. We see by
Lemma 3.2 that {4, } is a Cauchy sequence. It converges strongly to ni by
(i). Furthermore we observe that there is a subnet {.{”} of {pr¢m} converg-

ing vaguely to a measure i, for each % and py=>] u,. Since f(P) is con-
k=1

tinuous on X and has a compact support, {f, x> tends to {f, ut,> for each
k. Using the relation lim ||z, ! =1p%]| we observe that

Le=lim Gugm)=lim (G, u@) =2, g} =1Gak).
Hence by (3.9)
2 35w =Lt Gk p)=TGe)+ Gk, )
=2 (b, )= 2 <[, -

On account of Theorem 3.2, (3.5) holds everywhere on S.i . We integrate it
k
with respect to 1%, and obtain

by 1) =<, 1> < 336 <o k-
Therefore we derive
S} xems 31 g wh) M
Since
2k 72 i) =2 (g, o) =2, e

=I(ug ) + Qg m, pog(m) 42 ,g (MK§m)’ Prgm) = I (g, % [)+VEP(X,) >0

ixk
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by our assumption, v,=1lim v;(ugm) >0 for each k. Taking into considera-

tion

{8 1k, <lim (g, ,le;'">>:xk,

m->o0

we now conclude that {g, u%,>=x; for each k.
If the kernel is nonnegative in £ x £ or X is relatively compact in £2, then
we have

Xk 75{k2(l‘s{; ,u'.;(k)—‘<fa Huzk‘k>

by Proposition 4 of § 1.6. Since we obtain an equality by summing up both
sides for k=1, ..., n, each must be an equality. Thus our proof is completed.

Fuglede (1] proved a special case in Lemma 4.2.1. In his case n=1, x=1
and f=0; then Ii(g, %, f)+V¥E(X)=2V¥(X).

We remark that, although S,; CX*“ and {g, px,>==; for each k, we can
not always write uk € £xa(g, x) because S,: may not be compact; see the de-
finition of &xa(g, %) in § 2.1.

For later use we shall prove the following well known

Lemma 84. Take X 2 and v, M€ & for which (v, \) is defined. If
U(P)=UNP)+t
Sfor t=0 on X, then
Vi) =z [y =22

Proor. We may assume that V;(X)<e. We take a compact set KC X

with V;(K)< oo, and denote by 1, a unit extremal measure satisfying |/u,|*
=V;(K). Then

t’é(u, NK)—(X, /,LK>é“IJ—>\;” ”/LK”
Hence

ViQO=inE (gl =2 =]

Levmma 8.5.39  Let G, be an open set in 2 on whose product the kernel is
bounded from below and A be a set of the form U (F™NG™) where each F™ is

a closed set and G™ is an open subset of G,. Assume that there is an inner
equilibrium measure ply for A in case V;(A)<oo; in case V;(A)=oco we have no
.such requirement. Assume also one or both of the following conditions:

(by)*  Every open subset of G, is a K,-set,

(b2)* Gy is a countable union of relatively compact open sets, the set




On Potentials in Locally Compact Spaces 299

4.=1{P€ Q; O(P, P)=oco}

18 closed and, for every point P< G, and every neighborhood Np of P, the kernel
18 bounded from above on {P} x (Gy— Np).
Then

Vi(A)=V.(4).

Proor. First we consider the case where V;(4)< . Since the kernel is
of positive type, V;(4)=V,(4)=>0 and hence we may also assume that V;(4)
>0. By our assumption there is a measure ;% such that ||u%l/*="V;(4) and

U“Q(P)g V:(4) p.p.p. on A.

The exceptional set H is equal to

v [fperms viim =i —Llnem]
m>(Vi(A) =1 m .

The set inside [ ] is a relatively closed subset of G™ whose V;-value is in-

finite. By Lemma 3.1 it is an F,-set; hence H is so too. It follows that H is

a K,-set on account of (b))* or (b;)*. We know by Theorem 1.14 that, for

every compact set K, V;(K)=V,(K). By Proposition 2 of Chapter I it follows

that V,(H)=oo. The set 4—H is contained in the open set

Com = {Pe Co; UPA(PY> Vi (4)— i}.
m
By the above lemma we have

1

V=) 2 VG = (Vi) — 1Y il = =i - LYy

It follows that V,(A—H)>V;(A4). Since V,(H)=co, we have
Ve(A): Ve(A—H>

by Proposition 2 of Chapter I. Consequently V;(4)="V,(A4).

Next we consider the case where V;(4)=oco. Evidently V;(F™NG™)=oo0
for each m. By Lemma 3.1 we observe as in the first case that each F™N\G™
is and hence A=\ (F™NG™) is a K,-set. Therefore V,(4)=co by Proposi-
tion 2. "

Condition (by)* or condition (b,)* is imposed in Lemma 3.5 in order to
reduce open or closed sets to K,-sets. If we consider a consistent kernel we
can replace (b)* and (by)* by (b)) and (b;). It will be proved as Lemma 3.8
at the end of the next section.

3.3. Outer variational problem.

Let X consist of mutually disjoint non-empty sets X, ..., X,, We shall
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say that open sets G, ..., G, separate X, .-, X, if {G,} are mutually disjoint
and G, D X, for each k. We shall say then that X;, ..., X, are separate by open
sets. If, in addition, @(P, Q) is bounded on each G;x G, j+Fk, X1, ---, X, are
separable by @-separate open sets. In this section we are concerned with the
outer variational problem to discuss

sup I:(g, %, /)=I1%(g, %, [)=Ix(x)=1I5%,
k

where X= C/ X;, G= U G, and {G,} separate {X,}.
k=1 k=1
In the special case that X is a compact set we can prove

Tueorem 3.8. Let K consist of mutually disjoint compact sets K, ---, K,
m 2 and G, be an open set containing K. Let f(P)<oco be defined and upper
semicontinuous m G, and g(P) be defined and positive continuous tn G,. Then

Ik(g, x, /)=Ii(g, %, ).
Proor. The function

7P, 0)=0(P, Q)— S PIEQ +f(@Dg(P)
> x
k=1

is lower semicontinuous and does not take —oo in Gy x G,. Therefore it may
be taken for a kernel in G,. It holds that

({7, @dp@an®y=G ~24f, > =100

for p€ &c,(g, ). Therefore our theorem follows from Theorem 1.14 applied
to the kernel @(P, Q).

Like in § 3.1 and § 3.2 we shall investigate extremal measures in two
cases.

(1) Turorem 3.9. Let X consist of relatively compact sets X, -, X,, which
are separable by @-separate open sets and G, DX be an open set in 2. Let f(P)
< oo be defined and upper semicontinuous in G, and g(P) be defined and positive
continuous in Gy. Assume that @ (P, Q) satisfies the continuity principle, that
I 1s finite and that one or both of the following conditions is satisfied :

(a1) g(P) has a positive lower bound on Go,*”

(@2).  Vo(X)>0, and f(P) (1+g(P))" is bounded from above on G,.*®
Then, for any sequence {G™}, X CG™ CG,, of relatively compact sets such that
G™ can be divided into @-separate open sets G, ..., G separating Xi, ---, X,
and Iim) tends to I, there is a subnet {u“); ® € D} of {u&m} such that pi” con-

37) This condition is not completely the same as (a,) of Theorem 3.5 but we use the same letter.
38) The question as to whether we can replace (a,)¢ by (ay)e Ve(X)>0 is open.
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verges vaguely to some measure py, for each k and each lim i ewists, where
w

Y=, ., v$) is suitably chosen in [ i, m being determined by the
equality W =pém). This limit is mot equal to — oo, and if we set 2:. W, = 1
k=

and denote the above limit by v,, then we have
U"%(P)— f(P)=v: g(P) p.p.p. 0N X,

If, furthermore, f(P) is defined and continuous on Gg, then
(3.13) Ig+{f, M§k>=k§_:i X Vi
Proor. By Theorem 3.1 it holds that

U e (p) — f(P)=7g(P) p.p.p. on G¢™

with some ¥y =(y{™, ..., ¥¥) € ['iwm). It is easy to see that uim(£2) is bounded
if (a,) is assumed. Let us assume (a;),. There is a finite number M’ such
that

FP) <M (1+g(P) on G,

We conclude that xi(2) is bounded in this case too because
1) = Vi) i (@)~ 2M {p( Q)+ )

for any u€é&cm (g, x). Consequently there is a subnet 7= {u“; 0 €D} of
{p&wm} such that ui” converges vaguely to some measure p%, and v;” tends
to a limit which will be denoted by v,, where v{” is equal to v{™ with m de-
termined by p“=puém. According to Theorem 1.16 it holds that

lim 0" (P)=0"%(P) p.p.p. in £.
Therefore

U*(P)— f(P) =7, g(P) p.p.p. on X

It will be shown near the end of § 3.4 that each v,> —<o. Equality (3.13) fol-
lows from the similar equality in Theorem 3.1.

If g(P) is defined and positive continuous on G§ and each pém is the vague
limit of some subnet of a sequence {uy(n, 5}, K™? CG™, then we have in-
equality (3.5) for us.

The measure p% will be also denoted by n5(g, %, f) or by u%(x). It is not
sure that the support of u% is contained in X*. See Problem 3.4 in § 3.11 in
this connection.

If we use Theorems 3.3 and 1.17 we can prove
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TureoreM 3.10. In addition to the conditions required in the first part of
Theorem 3.9, we assume that @ (P, Q) is continuous outside the diagonal set and
that @(P, P)=oo at each point P of O, which is defined with respect to &. As-
sume also one of the following conditions:

(b)* Ewvery open subset of G, is a K,-set,

(b)* The set 4,.,={P; ®(P, P)=oco} 1s closed.

Then each v, is finite and for each k

(3.14) O¥(P) — f(P) = v, g(P) ¢.p. on X;.

The finiteness of each v, will be proved at the end of § 3.4.

In case a positive continuous function g(P) is defined on an open set
Gy D X, we write V¥®(X) for inf V¥ (G), where G is an open set such that
XCGCGy,. We have

CoroLrary. We consider the special case n=1,x=1 and f =0 in the theo-
rem. Then

(3.15) U%(P)=V¥®(X)g(P) q.p. on X.
If g(P) 1s defined and continuous on G§, then
(3.16) U“(P)<V®(X)g(P) on S,e.

For g(P) defined on G§ we shall call a measure satisfying (3.15) and (3.16)
a weak outer g-equilibrium measure and, in case g(P)=1, a weak outer equili-
brium measure. Its potential will have the corresponding nominations.

We define ['%(x)=1"% as the set of y=(vi, .--, 7,) appeared in Theorem 3.10
and can prove as before

TuroreMm 3.11. The set I'; is compact in E, under the assumption of Theo-
rem 3.10.

(2) In the following Theorems 3.12, 3.13 and 3.15, we consider X con-
sisting of sets X, ..., X,, which are separable by &-separate open sets Gy, ..., G,
in £, an upper semicontinuous function f(P)< o in an open set G,D> X and a
positive continuous function g(P) in G,. We assume also that the kernel is of
positive type and that I5=15(g, %, f) is finite.

We shall denote by &% (g, x) the closure of &¢ (g, x) with respect to the
strong topology and prove

Tueorem 3.12.  Assume that every strong Cauchy met in &¢,(g, %) is
strongly convergent and that (ué, ué.) 1s defined for any open subsets G and G’
of G, both including X. Unless the kernel is nonnegative on each G;x Gy, j+k,
assume also one or both of the following conditions:

(a1) g(P) has a positive lower bound on G,

(az). V.(X)>0.
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Then, for any sequence {G™}, X CG™ C Gy, of open sets such that each G™ is
decomposed into open sets separating Xi, ..., X, and Iim tends to Igm), p&m
converges strongly to some measure us=p3(g, x, ) and fy;';ém tends to a finite
constant v, for each k. This measure uy is a strong limit for any sequence of

open sets of the above character, and each v, does not depend on the choice of
{G™}.  We have also

(3.17) I+ (us, ) =2 1; Ve
and
(3.18) U*s(P)—f(P) = g(P) p.p.p. on X;.

We may require furthermore that the support of p% is contained in X°.
Proor. By Therem 3.5 we have
(3.19) U*6™(P) — f(P) = Ve g(P) p.p.p. in G§™.
For G=G"NG? it holds that
0 < [|pé — péom||? < I — Tsomy < T — Ti(m
in virtue of Lemma 3.2. Similarly
|pe —pew || < Ig — Tk

and hence

|pém) — peo|| SN Ig — Lo +yIg — s o).

Thus {uém} form a strong Cauchy sequence and this converges strongly to
some measure p3 by our assumption. The fact that u% is a strong limit for
any sequence like {G"™} follows if we mix two such sequences.

We set GPN...NG™=D™_ Since

U“s™(P) — f(P) Z ¥ (i) g(P) p.p.p. on G§™,
by Lemma 3.3 it follows that
{72 (pém) = Va(uhme )} 20 Lt || pbom) — pphpma )],

where a is a nonnegative constant not depending on the choice of {¢™}. It
follows that

lim 7, (pém) <lim v, (pém) <lim 7, (uho) (> —eo)

m—>oo m—oo m—oo

for each k. We infer by (3.9) that
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I+ (g, ps)=lim {T&m) + (pém, pem)} <2 5;; x; lim v, (uéom) + 200, 1im 7, (uéom)
m—>o0 J m—o

m— oo

<2 >, lim v, (pém) <2 >3 x; lim o, (ppen) <1im {Im) + (ubm), ppm)}
j=1 m—oo Jj= M— oo m— o0

=L+ ek 150)-

It results that lim v,(uim) exists and is finite for each k and that, if v, de-

m-—>c0

notes this limit, (3.17) holds. The independence of v, of the choice of {G™}
is concluded by mixing two such sequences.

Let H™ C G™ be the set where (8.19) does not hold. By Proposition 1 of
Chapter I, V;(\WH™)=co and, for P X,— \VH™), it follows naturally that

lim U*¢(P)— f(P) =7 g(P).

m—>

In view of Theorem 1.18 we have

U“s(P)—f(P) =7 g(P) p.p.p. on X

Finally we shall show that we can choose % so that S,e CX°. We de-

note by D the directed set consisting of all open sets G such that XCGCG,
and G is decomposed into open sets separating Xj, ..., X,,; the direction in D
is defined by the inclusion, namely G <G’ if and only if GDG'. We see that
{n&; Ge D} form a Cauchy net in &5 (g, x). It converges strongly to a meas-

ure p by our assumption. Since GQDG“:X ¢ S,CX? There is a sequence {G™}

of open sets in D such that i converges strongly to 4 and i tends to I%.
As observed already . is a strong limit of the original sequence {u&}, and
hence we may take x for us.

In case v, is uniquely determined like in this theorem, it will be denoted
by 7%,

If g(P) is defined and positive continuous on G§, if each pué 'is the vague
limit of some subnet of a sequence {uy(n, 5}, K™ CG and if {uém} contains
a subnet converging vaguely to u%, then we have inequality (3.5) for p%.

By Lemma 3.2 we obtain immediately

Tueorem 3.18. If I and I are finite under the assumptions of Theorem
3.12 and if (uk, u%) is defined, we have
e — sl < I — I
In the special case that X is a compact set K we have seen that It =1I% in

Theorem 3.8. We shall prove

Tueorem 3.14. Let K consist of mutually disjoint compact sets Ky, ---, K,
and Gy C £ be an open set containing K. Let f(P)<co be defined and upper
semicontinuous in G, such that f(P)> —oco on some set Y, CK;, with V;(Y;)< oo
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Sfor each k, and g(P) be defined and positive continuous in G,. Consider a kernel
of positive type, and assume that every strong Cauchy net in &,(g, %) is strongly
convergent. Then

lug—pkl =0 and (=%, for each .

Proor. By Theorem 3.13 the first equality follows immediately. The
second equality follows from the equality I} =1I%, (8.18) and the last paragraph
of Therem 3.5.

Corresponding to Theorem 3.7 we state

Tueorem 3.15.  Consider a consistent kernel. Let G, be an open set, f(P)
be a continuous function with compact support on Gi, and g(P) be a positive
continuous function on G§. Assume that (u, pi.) is defined for any open subsets
G and G of G, both including a fixed set X, that G, consists of mutually disjoint
open sets Gy, --., G, such that the kernel is nonnegative and finite on each G;x Gy,
jFk, and that 0<I%, (g, 2, f) +VER(X)<oo for sach k where X,=XNG,.
Under these conditions I(p%)=I(g, x, f) and {g, p%,>=x, for each k. If, in
addition, the kernel is nonnegative in 2 x 2 or X is relatively compact in L2, then
Vi'k:(/‘:‘}) /’”gfk)—<fa l"jfk> f0'r each k.

Cororrary. If, in paricular, each X, 1s a closed set Fy,
(3.20) Ii(g, x, ))=1I3(g, %, ),

where F=\U F,.
k=1

Proor. As proved in Therem 3.12 we may assume that S“;k C F,. Since

g, pip>=2%n Ir(g, %, ) <I(ui)=1I(g, % f). The inverse inequality I;(g, =, f)
=>1I;(g, x, ) being evident, we conclude the equality.

Fuglede [1] proved V;(F,)=V,(F,) for F, with V,(F,)>0 under the ad-
ditional assumption that the space is normal; see his Lemma 4.2.2. He show-
ed also that we can not replace V,(F,)>0 by V,(F,)=0. See his Example 10
in § 8.3.

In order to show that the inequality (3.9) is true q.p. on X, we shall prove
two lemmas.

Lemma 3.6. Let G, be an open set in 2 such that the kernel @(P, Q) is
bounded from below on Gy x Gy, and X C G, be any set. Suppose that the kernel is
of positive type and that, for any sequence {F™} of closed sets and any sequence
of {G™} of open subsets of G,, each having a positive Vi-value, we have

V:(U(F™NGC™N)=V,(\UF™NGC™),
Let 1, v be measures of & such that (u, v) is defined. If :>0 and UXP)=U"(P)
+t q.p. on X, then
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ViX) = p—v]

Proor.?¥ In view of Proposition 2 of Chapter I we may assume that
U“P)=U"(P)+t everywhere on X. For any number s, 0 < s <z, X is contained
in the set

H={P€cGy; U*(P)>U"(P)+s}.
We set, for every rational number r,
F,={P; U'(P)<r}
and
G,={P€Go; U(P)>r+s},

and have H=\U (F,N\G,). By Lemma 3.4 we have V;(G,)=>(+5)*||u]2>0.

Consequently V;(H)=V,(H) by our assumption. Hence from Lemma 3.4 fol-
lows V,(H)=s*||u—v|~%. Since s may be taken arbitrarily close to z, the re-
quired inequality follows.

Lemma 3.7. Consider the same G, and @ (P, Q) as in Lemma 3.6. Then,
Jor any sequence {u,} converging strongly to w,, we have

lim U*(P)<U*(P) q.p. in G,.

n—oco

Proof. We set
H={P€EG,; U"(P)< lim U**(P)},

n->oco

H""‘={P €Go; U'(P)<inf U"”(P)_%}
p<n

and
By ={PEGo; UD(P)SU(P)——-|.
Then
H=\UH,, and H, ,=NB,,.
b.a p<n
By Lemma 3.6
Ve(Hp, ) = Ve(Bn,q)qu—z [l — o] = for each n>p.

The right side tends to « as n—>oo and V,(H,, ,)=co. Consequently V,(H)=oo

39) cf. Fuglede [17], Lemma 3.2.3.
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by Proposition 2 in § 1.1.
If we use Lemma 3.7 instead of Theorem 1.18, we can improve Theorem
3.12 under some additional condition.

Tueorem 3.16. Let Gy be an open set in 2 on whose product the kernel is
bounded from below, and X be any subset of Go. Let f(P)<co be defined and
upper semicontinuous in Go, and g(P) be defined and positive continuous in G,.
Constider a kernel of positive type, and assume that I is finite, that every strong
Cauchy net in & (g, x) 18 strongly convergent, that (ué, ut.) is defined for any
open subsets G and G’ of G, both including X, and that one or both of (b,)* and
(b2)* of Lemma 3.5 is true. Unless the kernel is nonnegative in each G; X G,
jFk, assume also one or both of (a,) and (az). of Theorem 3.12. Then with {:},
defined in Theorem 3.12, it holds that

U*%(P)~f(P)=v: g(P) q.p. on Xy

Cororrary. We consider the special case that n=1, x=1 and f(P)=0 in
the theorem. Then ||ug|*=V¥&(X) and

UX(P)=V¥® (X)g(P) q.p. on X.

We shall call a measure satisfying these relations an outer g-equilibrium
measure and, in case g(P)=1, an outer equilibrium measure. Its potential will
have the corresponding nominations.

Remark. If we consider a consistent kernel, the following conditions may
replace (by)* and (b,)* required in Theorem 3.16:

(b;) Every open subset of G, is an F_-set,

(by) 4. is closed and, for every point P G, and for every neighborhood
Np of P, the kernel is bounded from above on {P} x (Gy— Np).
To justify the assertion it will be sufficient, in view of Lemma 3.6, to prove

Lemma 3.8. Constder a consistent kernel. Let G, be an open set in £ on
whose product the kernel is bounded from below, {G™} be a sequence of open
subsets of G, each having a positive Vi-value and {F™} be a sequence of closed
sets. Assume one or both of (by) and (b;). Then

Vi(U(F™ A G™)=P,(U (F™ N G™)),

Proor. Set A= U (F™ N G™) and consider the case 0 <V;(4)< oo first.

There exists an inner equilibrium measure p; for 4. With the same nota-
tions as in the proof of Lemma 3.5 it holds that

H= U HPeF@‘);Uf‘i(P)gV,-(A)—%T}nc;(m)]_

m>(Vi(4)-1

The set inside ( ] is an F,-set by Lemma 3.1 and hence H is so too. Since
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V;(G™)>0, H can be written as U E® with closed sets {E®}, each having a
»

positive V,-value. Now by (3.20) we see that V;(E®)=V,(E®) for each p. By
Proposition 2 of Chapter I it follows that V,(H)=oco. The rest of the proof
is similar to that of Lemma 3.5.

3.4. Sets with I%(g, x, f)=oc or with I%(g, x, f)=oo.

We shall give conditions for Ii(g, %, f)=cc and for I3(g, x, f)=oco. Even
if the kernel is not of positive type, we may use the notation ||u| for v (u, )
provided that (u, ©)=0. We are still under the condition that x,>0,..., x,>0.

In § 3.1 we set I¥=oo unless each X, contains Y, with V;(Y,)<co on which
f(P) is finite. This is justified by

Tueorem 3.17. Let X consist of O-separate sets Xi, -.-, X, in £, f(P)< oo
be an upper semicontinuous function defined on X and g(P) be a positive con-
tinuous function on X. Then I(w)=(u, p)—2 {f, pp=-o0 for any p such that

S, is decomposed into compact sets K, ---, K,, each K, CX;, and thatSK gdp=2x
k

Sfor each k, 1f and only if f(P)= —oco p.p.p. on some X,.
The proof is easy.
By Proposition 1 in Chapter I we have

CoroLLaRY. Let {4} be a sequence of sets of U such that each A™ is
decomposed into A-measurable sets Ay, ..., A with the property that each A™
increases with m and {\J A{} are @-separate. Set A='\U A™. Let X be a set

such that A" "X = & for each k, f(P)< co be an upper semicontinuous function
on ANX and g(P) be a positive continuous function on ANX. If Limnx(g, %,
f)=rco for each m, then Iinx(g, %, f)=rco.

The proof of the corresponding result in the case where I5(g, x, f) is in
question is not as simple as the preceding one. We shall prove several lem-
mas first.

Lemma 3.9. Let B be a Borel set in 2. Then, for any p such that u(£—B)
=0 and (, ) is defined, we have

Vi(B) p*(B) < (u, ).

Proor. First we take u with compact S,CB. The inequality evidently
holds if x=0. Otherwise x/u(B) is a unit measure and

(s~ y.(p).
#4(B)

In case S, B but u(2—B)=0 and (u, x) is defined, we approximate x by the
restrictions of » to compact subsets of B and obtain the inequality.
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Lemma 3.10. Let G, be an open set in £ with V;(Gy) >0 such that the kernel
1s bounded from below on Gy x Gy, and BC G, be a. Borel set.  Then, for any u
with p(L—Go)=0 and for the restriction p, of n to B, we have

sl <y 14 sl

where m™=max (0, —inf 0).
GoxGy

Proor. We have p%(2)<|pl|* Vi*(G,) by Lemma 8.9. Therefore
NP = lpl? = (o= pogy ot ) <l * +m™ p*(2)

Sl e i = (145 ) P

If we assume that the kernel is of positive type, we shall obtain an in-
equality which is sharper in a sense than the above one. In fact we can prove
the following:

Consider a kernel of positive type. Let G, be an open set in 2 with V;(G,)
>0 such that the kernel is bounded from below on Gy x G,, and BCG be a Borel
set such that

: (m™)?
(3.21) K(B)zc V.Co)

with a positive constant c. Then, for any p with p(2—Go)=0 and for the re-
striction py of p to B, we have

gl <A +20)] 2]

Proor. Since the kernel is of positive type, |[x—p;]|=0. Therefore,
by Lemma 3.9,

ol = Nlpll* +2 Cagy = 1) = Ml )* —2m ™1 (€)1 (2)

> [lugll? _ 2m7 g sl

JV:B)V:(Go)
By (3.12) it follows that
ll? = e 1P —2¢ | gl 1l = Ulpgll = ll])? =2l o]
Hence
lppl SWL+E+0) [l < (A +20)]| -

Lemma 3.11.  Let G, be an open set in 2 on whose product the kernel s
bounded from below. Let X be a set in G, with V,(X)=oo, and h(P) be a nonne-
gative finite-valued upper semicontinuous function defined in G,. Then, given
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e, 0<e<1, we can find an open set G, such that X CG. C G, and
<y > Ze|psl]
for every p with S, CG..

Proor. In this proof we shall use subscript p to indicate a term of a
sequence. We choose an open set G; such that XC G, Gy and V;(Gy)>m™.
We set

Dp:{PE G,o; h(P)<p} and Xp=Xf\Dp.

Certainly X=vu X,. Since V,(X,)=c for each p, we can find an open set
b
G, D, such that X, CG, and

[ p+1
ACHER S

Let x be any measure with S, contained in U G,. If b,u,p denotes the restric-
»

tion of 4 to Gy,

: Pl < <l
O S e

where we make use of Lemma 3.9. Lemma 3.10 is applied to obtain

I EEAE
This inequality yields

> e 3 gL el

2P+1 ==

Hence we may take v G, for G..
»

We begin with the case n=1.

Turorem 3.18. Consider the case n=1. Let G, be an open set in 2 on
whose product the kernel is bounded from below, X be any subset of G, f(P)< oo
be an upper semicontinuous function on G, and g(P) be a positive continuous
Sfunction Gy,. Assume also at least one of the following conditions: (a,) g(P) has
a positive lower bound on Gy, (az). VA,X)>0; if the kernel is monnegative in
Go X Gy, we do not need any of these assumptions. If f(P)= —oco q.p. on X, then
I(g, x, f)=o00. Conversely if I3(g, =, f)=cc and the V;-value and the V. -value
coincide for the intersection of every open subset of G, with every closed set,*®
then f(P)= —oco q.p. on X; an the converse we need neither (a,) nor (as)..

Proor. First we assume that V,(X)=oc. We may suppose V;(Gy)>1.

40) This is so if the kernel is of positive type and (b,)* or (b,)* of Lemma 3.5 is true.
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We set

D= (Peo; L) <p  and  gP)<ppt
g(P)

and X,=XND,. Each D, is open and U D,=G,. Since V,(X,)=co for each
b

p, we can find for given ¢, 0<<e<(1, an open set G, such that
D2 \2
X,C6,CD,  and  FiG)=(2P") max {1, ),
where m~=max (0, —inf @) as before.
GoxGy
We shall show
> (1?8 ]| [?

-1
for any u€ &y ¢, (g, x), where p, denotes the restriction of ;1 to D,=G,— U G,.
? k=1
We set

b
o= 23 e
k=1

We observe that

(s 15) = (ppr1s prpe1) + 1y pype1) +2(pet, pper)

and
, - , - Mlperllllppeall
+1y 1) =— +1(L2 (@) =—m LA
s )= = iy () i () VViGpn) Vi(Go)
—ellpparll lpperll <. —e 2 I
= 2"+f(p+1§2 22“2(}74-1)2 lspeall® + llipeall®)-
Hence

1112 (1= g ) Ussea P Dt
It follows that
s+ o P {1 =g} < o S el

Let us evaluate [|u}/. Since [|ppi] =0,

41) Since the case n=1 is concerned in this theorem, we may use lower subscripts to denote sets
without indicating any components.
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Iiporl {1+ gy s < (g = (155 ) (14 g ) bl
<17 (1+ ) Iull* <4l

Therefore

g+ sl S D+ g WP I+ el

for p=1. We have also
sl N [P <l
Adding these inequalities for p=1, ..., ¢, we obtain
S sl < P {235 g} <3l
It follows that

5 s l* <3

Secondly we shall show that x<ey > [[u,]% Since pu,(2—D})=0, uyD})
b

€
<p

o llwpll. Hence

| s s D)< 55 L

33p | gy <o 33 Ul <o y S /305

Naturally
=33 [ gty < VSTl

Making use of ; llsl|2 <8 || u]|?>, we have

1=l =2 | fanz 5 Sl 233 (L gy
-1
=1 HMHZ—zgp Sgd/bpz 5 Sl ~2e (STl
=3 VSTl =307 —32> 1 (£ —3c) —32
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By the arbitrariness of n€&,(g, %), it follows that
?»

2
IegXp(g) X, f)ZI'lng(ga %X, f)Z ?_23’6
By letting ¢— 0, we obtain
Ig{(g) Xy f):le%Xp(ga Xy f):oo

Next we assume that V,(X)<co but f(P)=—co q.p. on X. If the kernel
is not always nonnegative we assume furthermore at least one of (a;) and (a,)..
We set

By={P€Gy; f(P)< —pg(P)}.

This is an open set and V,(X—B,)=co. Making use of Lemma 3.11, we take
an open set B} such that

X—B,CB,CG, and  {f*+pg, p=|pl
for every p with u(2—B},)=0. If V,(X)>0, we may assume V;(G,)>0 and,

for any \ with S, CG, and its restriction A, to B}, we have

by Lemma 3.10. If g(P) has a positive lower bound on G,, the total mass of
any measure \ € &¢,(g, ) is bounded: A (£2)<{a <co. Hence

%12 = IMI2 = v Xpy A=)
S IMPAm AR KNP +mod.

If the kernel is nonnegative in G, x Gy, obviously |»,|<|r||]. We take any
vEE,y Bé(g, x). Then we have, with the restriction v, of v to B},

IG)=p?=2fy = =2{fy vpp—2{fy v—vp)
= |plE+2p g, v—rpp—2<{fs vpp = |0]*+ 2px—2 {f*+pg, vy

Z [+ 2pr—2 sl 2= [ [ +2px ~2 ) 14 2 o]

(it S m S L RSy SV . O
=(Ill =y 1+ gy ) 2ot gy o1 =i

or

IG) = {p|F+2px—2 4 [p][P+m = [y]|*+m a®—1)*+2px —m~a®—1
>2px—m-a*—1.
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Consequently
5,05, (8 % f)=2px —1 —T/%)— or 2px—md®—1

and hence
Ig{(ga Xy f)=°°

To discuss the converse we assume that there is YCX on which f(P)
> —oo and which has V,(Y)<e. We may agsume then that Y=X. The set

E,,={Pe Go: g(P)>%}

is an open set and U E,=G,. If V,(XNE,;)=co for each p, then V,(X)=oco,

4
contradicting our assumption. Therefore V. (XNE,;)< oo for some p,. It will
be sufficient to show Iz, (g, %, f)<<oo. Hence we assume from the begin-
0

ning that g(P)>a>0 on G,.
The set

H,={P€G,; f(P)= —q}

is closed relatively to G, and Gy=\UH,\U{PEGy; f(P)=—oo}. We see simi-
q

larly that V,(XNH,,)< oo for some q.. We take a decreasing sequence {G,}

of open sets such that

XanOCGpCGO and lpizn Iz;p(g, %, f)=[§nyqo(g, %, f)

Let 4 € €c,n e (g, ) satisfy (u, p) XV E2(GyNHy)+1. Then VE(G,NH,,)
<" a2 V;(G,NH,,) and

Ie (g, % )T ynna0 (8 % [ISI()=(py p)—2 < fy )
2
<VED (GyNHy)+ 1 +2g0 p(D) < % Vi(GpnHyg)+ 14290 -

2 2
= 2 ViGN Hy )+ 142 - < Vu(XNHy) +1+2¢, -,

because V;(G,N\H,,)=V.(G,N\H,,) by our assumption. Consequently
2
I;z(ga Xy f)él)e( n qu(ga %, f)‘_“})lm Itﬂ,(g: X, f)é% Ve(Xano)+ 1+ 2?0 -2’ < oo,

Our theorem is completly proved.

Next we consider the ecase n>2. Let X, ..., X,, be subsets of an open set
G, and assume that they are separable by @-separate open sets. The condi-
tion that each I, > — oo and I, =co are not sufficient to have If=co. As an
example we take the point P;=(0, 0, 2) in E; for X;, the ball OP<1 for X,=G,,
and the ball PP,<1/2 for G;. We set (P, Q)=1/PQ on G, xG,, O(P, Q)=—1
on G; x Xz and on X; x Gy, (P, Q)=0 on X, x X;, f(P)=0, g(P)=1 on G, and =1
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—OPon X,. Then It =co and I%,=0. We shall show that I%, ,x,= —oco. Let
G be any open subset of G, containing P, and take any u€&syx,(g,%). De-
noting the restrictions of x to G and X, by u; and u, respectively, we have

I(p)=1(p1) +I(u2) + 2 (ua, p2) =1 (1) — 21 (2) 122(2).

It holds that x1=g gy = (2) and xzzs gdm:S (1—00) dp(Q). If we take

ws arbitrarily close to OP=1, then p.(£2) becomes arbitrarily large. This shows
that Iéqu: — o0,

In order to avoid this situation we assume at least one of (a;) and (a,). in
Theorem 8.9; we may replace V,(X)>0 in (a,). by V,(X3) >0 (k=1, ...,n). Take
d-separate open subsets G{*, ..., G of G, separating X, ..., X, We may as-

sume that GO:\HJ G?. In case I%,(g, %, f)<oo, we consider, for each %, the
=1

subclass &, of & (g, x:) such that I(u) <(I%,(g, %, f))* +1 for any s € &y,
where (I5,)*=max (I%,, 0). We see by (a;) or (a,), that each 1,(£) is bounded
on &;. Let G be any open subset of G, containing X such that &,N\&s+~ & for

each k. We set ,uzi wr for pp € &xNEg, k=1, ..., n, and observe that
r=1

168, % =160 =33 10+ 35 | 0y s < 33 Ui, 0, £)* +0CD).
j¥k

Therefore I%(g, x, f) is not equal to o. We see also that I%(g, %, )= —co if
any one of I%,(g, xi, f) is —oo.

Conversely assume that I%(g, x, f) is finite and that one or both of (a;)
and (a;), in Theorem 3.9 is true. We may assume V;(G,)>0 and that G, con-
sists of @-separable open sets G{, ..., G separating X, ..., X,, We denote
by &, the subclass of &;,(g, x) such that I(u) <Ii(g, x, /)+1on &, We have
seen that each I%,(g, %, f)> —co. There is Gy, X CG}, CGy, such that It (g, x,
f) is bounded from below for each % and every G, XCGC Gy, where G,=G
NGY. By our assumption x(2) is bounded on &, and hence

20 (s p)=0(1),
Jok=1
r

where . is the restriction of 4 to G{”. For an open set G such that XCG
CGo, we take any p€és(g, x)NE,. We have

MEACENOES (DS (DR N
j*k
<Iig, %, f)+0().

Since each I%,(g, %, f) is bounded from below, each I%,(g, %, f) is bounded.
Hence each I%,(g, x, f) is finite. It is also seen that if Ii(g, », /)= —oo, at
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least one of I%,(g, xx, f) is —oo.
We consider a kernel of positive type. Assume, for each %, that every
strong Cauchy net in é’ég»(g, %) is strongly convergent and that (ué, pé) is

defined for any open subsets G and G’ of G5 both including X, such that It(g,
%, ) and Ig.(g, xi, f) are finite. Then we may assume V,(X,)>0 (k=1, ..., n)
instead of (a,) or (a;);. If the kernel is nonnegative in each G;x G, j 7k, we
do not need such condition. In fact, we assume that each I%,(g, x, f) is finite
and take 0-separate open subsets G{*, ..., GP of G, separating Xj, ..., X, such
that || ué, || < || u%,ll+1/2 holds for any open subset G, of G§° containing X,
(k=1, ..., n); see Theorem 3.12. For each G, we find v¢, € £¢,(g, x) such that

: 1
I66)<Ty(g % N+1 and | <l +5--

We write G* for \n/ G, and have
k=1

Ié*(g, X, f)éf(z Vck)=2 I(VGk)+ 2 (’)Gja VGk)
k=1 k=1 jerk=1

j¥xk

S33Ge)+ 3 (sl + D Uty + D= 3158 2 ) +0(D).
j¥*k

Consequently I5(g, », f)<co. Next assume that each I%,(g, %, f)<<co but some
of them are —co. We consider I%,(g, x:, —f~) for each k& where f~=max (0,
—f). It is naturally nonnegative, and finite on account of Theorem 3.18 under
the assumption that the kernel is bounded from below on G, x G, and that 7;
(GNF)=V,(GNF) for every open subset GG, and every closed set . Con-
sequently

°°>I§((g, Xy —"f—)glg((g) Xy f)

Conversely assume that JI5(g, «, f) is finite. We suppose that G, consists
of @-separate open sets G, ..., G. We consider still a kernel of positive
type, and suppose (a,). V.(X)>0, that every strong Cauchy net in &¢ (g, ) is
strongly convergent and that (u¢, pé.) is defined for any open subsets G and
G’ of G, both including X. If the kernel is nonnegative in each G, x G;, j#F,
we need not condition (a;).. We choose an open subset G’ of G, containing X
with the property that |I5—1I;| <1 and ||u%—pwé|| <1 for any open set G such
that XCGCG'. We shall denote by &’ the class of measures u ir}(céjccé’c(g, x)

such that [I%—I(x)| <2 and [|us—ul<2. If (ap). is true, we may assume
Vi(G')>0. 1t follows that 4(£2) is bounded on &’. Hence ||/ is bounded be-
cause

Sl =1l = 3% G ).
Jj*k

It is evidently so if the kernel is nonnegative in each G;xG;, j<k. Let M
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be an upper bound for |||, k=1, ...,n. Suppose that there is {x™} in &’ such
that I(i5;) tends to —co as m—co. We have

1S I0 SHp+ ) ) SIS+ 3 1) +n(— 1M
0 0

This is impossible and it is shown that I(u;) is bounded from below on &'.
From the inequality

S 1) =1G) — > () I+ 2 +n(a—1) M*

k=1 J}'}i\::kl
valid for any € &, it follows that I(u) is bounded on ¢’. Since &¢(g, x)7 &
for any G, XCGC G, I, Gi‘))(g’ %, f) (ZI()) is bounded from above by a con-

stant not depending on G, XCGCG'. Consequently I%,(g, xx, f)<co for each
k.
So we state

Turorem 3.19. Let G, be an open set in £, Xy, ..., X,, be subsets of G, which
are separable by O-separate open sets, f(P)<co be an upper semicontinuous

fumction on G, and g(P) be a positive continuous function on G,. Set X=\U X,
k=1

and assume at least one of conditions (a,) and (a,), of Theorem 3.9; we may
replace V. (X)>01n (az), by V.(Xx)>0 (k=1, ...,n). If I3, (g, %, )< oo for each
k, then I(g, %, f)<eoo, and if any one of I%,(g, %, [) 18 —oo then I5(g, x, f)
= —oco. Conversely Ii(g, %, f)<co implies I%,(g, xi, )< oo for each k and I
(8> %, f)=—o0 vmplies I,(gr %1, [)= — oo for some k under the assumption of
one or both of (a) and (a,), in Theorem 3.9.

Next consider a kernel of positive type. Lf, for each k, every strong Cauchy
net in é";’;ng»( g %) 18 strongly convergent and (u¢, pé-) 1s defined for any open

subsets G and G’ of G, such that I:(g, xi, f) and I:(g, xi, ) are finite, and if
VeX)>0 (k=1, ..., n), then — oo <I%,(g, xi, f)< oo (k=1, ..., n) imply I(g, x, f)
< ooy some I%, (g, %, f) may be —oo if the kernel is bounded from below on
© Gox Gy and if Vi(GNF)=V,(GNF) for every open GG, and every closed F.
Conversely — oo <Ix(g, x, [)<oo vmplies I%,(g, xi, f)<<oo for each k if every
strong Cauchy net in &5 (g, %) is strongly convergent and (1¢, pe) is defined for
any open subsets G and G’ of G, both including X and +f V,(X)>0.
In view of Proposion 2 in Chapter I we have

CoroLLARY. Let G, be an open set in £ such that the kernel is bounded
Jrom below on Gy x Gy, {X™} be an increasing sequence of subsets of G, such
that each X™ 1s decomposed into X{™, ..., X{™ which are separable by O@-se-
parate open sets, f(P)< oo be an upper semicontinuous function on G, and g(P)
be a positive continuous function on G,. Set U X™=X and v X{ =X, and

assume one of conditions (a;) and (a.); of Theorem 3.9. Assume also that the
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Vi-value and the V,-value coincide for the intersection of every open subset of G,
with every closed set. Then I3(g, x, f)=o0 if Iz (g, %, f)=co for each m.

QuEesTION. Let Gy, {X™} be as above. Consider a kernel of positive type,
and assume that every strong Cauchy net in &¢,(g, x) is strongly convergent and
that (ué, pe.) is defined for every open subsets G and G' of G, both including X
such that I and I:. are finite. Assume (a). V.(X)>0 and that V;(GNF)=V,
(GN\F) for every open G CG, and every closed F. Is it true that Ix(g, x, f)=oo
if each I3 (g, %, f)=o0?

If this is true we can replace (a,), by (az). in Theorems 3.20 and 3.22. Let -
us see why this question remains open. If I$w (g, %, f)=co for each m, there
is ko such that L{_i%o(g, %y, f)=co for each m. Hence by Theorem 3.18 I;ko(g,

%rgy f)=co. But we can not assure that I%,(g, x:, f) is finite for other . Under
these circumstances it is not certain that I¥(g, », f)=cc as Example 1 will
tell.

Coming back to Theorem 3.19 we observe that we did not assert there
that I (g, %, f)<co implies I%,(g, %5, f)<<oo in the case of kernel of positive
type. In fact this is not always true as Example 1 will show. We shall give
several examples to supplement the theorem.

Exampre 1.  In E; take P,=(0, 0, 2) for X;, the ball 0P<1 for X,=G, and
the ball P;P<1/2 for G;. We consider the Newtonian kernel and set f(P)=0
in Gy and =(1—0P)™' in G,, g(P) =1in G; and =1—0P in G,. Then Ig (g, 1,
H=00,1,(g, 1, f)=c0 and I3, , x,(g, (1,1), /)= —co. Consequently I3(g, =, )
= —co does not always mean that each Iz,(g, xz, )< oo.

Exampre 2. Take X, X,=G, as above and regard X;\UG, as space £; X;
is then taken for G;. We define @, f and g as in Example 1, the space being
restricted to X;UG,. We see easily that I¢,(g, 1, f)=o0, I3,(g, 1, /)= —o0
and If ,x,(g, (1,1), f)=co. Consequently the fact that some I%,(g, %, f)
= —oo does not always mean that I3(g, x, f)<oo.

ExampLe 3. Let £ consist of two sequences of points on the x-axis: X;
={1/2,1/3, ...} and X,={1-1/3,1—1/4, ...}. We regard 2 as a subspace of
the x-axis and set @(P, Q)=1 in £x 2. This is naturally of positive type and
every strong Cauchy net in & is convergent. Also V;(£)>0. We set 2f(P)
=k+1 and g(P)=1/k both at P=1/k and P=1—1/k. Let us see that, for K{"
={1/2,...,1/m}, min I(p) is attained by the point measure at 1/m with

HES g (m)(g:1)

mass m. We set u({1/k})=k&; for p€&xm(g, 1) and have

(s, W) —2<f, M>=<§ ksm—g k(b +1)E,

This takes its extremal values at some of (1,0, -, 0), (0,1,0,...,0), ..., (0, ...,
0, 1) in the (&, ..., &,) space under the condition i &=1,£2=>0. The value
=2
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at the k-th point is £*—k(k+1)= —k.  Hence the minimum value is —m.
Consequently Iz (g, 1, f)= —oco. Likewise I%,(g, 1, f)=—oco. To show that
Ii(g, (L,1), f) is finite, take any 1 € €x,(g, 1) and pp € £x,(g, 1) and set u({1/k})
=k&; and p({1—1/j})=jn,. It holds with some m and p that

G ) =S R0 = 53 ko DEw+ (3 = 33 o D+ 2 (3 B, 237,
= (ke =33 BB+ D =88 E+(3 jn =33 G+ D=2)

m ?
because p(D)=> k&, =2 and p(2)=> jn ;=3. We see that the last side
k=2 j=3

takes its minimum when one of £, and one of 7, are equal to 1 and other &,’s
and »;’s vanish. The minimum value is equal to 4+3="7. Actually I(u; + p2)
=Twhen&,=1,&=...=0,and 3=1,79,=...=0. ThusIg(g, (1,1), /)=7. Hence
it is shown that —co <Ii(g, x, f)<co does not always mean that at least one
of I%,(g, xx, f) is finite.

ExampLe 4. We take the same £=X,UX, and g(P) as above. We set @
(P,Q)=1 on X;xX; and X, x X, and=—1/2 on X; x X; and X, x X;, and set
2f(P)=k at P=1/k and P=1—1/k. The kernel is of positive type, every
strong Cauchy net in & is convergent and 7;(2)>0. We see as above that
If, (g, 1, H=Iz,(g, 1, /)=0. Next take u, €8x,(g, 1) and ;€ &x,(g, 1) arbi-
trarily and set 4, ({1/k})=Fk&; and py({1—1/j})=jn,. It holds with some m and
p that

m m b
Hn )= CI R — 33 6 (330, =337, ~(33h60 (33 jn,)

and follows that I&(g, (1,1), /)= —oco. Thus I¥(g, x, f)= — oo does not always
mean that one of I7,(g, 1, f) is —oo.

Now we shall prove that each v,> —oo in Theorem 3.9. We shall use
the notations used to show Theorem 3.19. Let G be an open set such that
XCGCG;. We have, for any u€&c(g, ©)NE,, 1é,(g, xi, f)=I(m) for each k

- and

z I(u) <I5(g, %, f)+0(1)

as in the proof of Theorem 3.19. Since we may suppose that each 1£,(g, xx, f)
is bounded from below, each I(jz) is bounded. Accordingly

2o0p Vap) = 1 )+ Cuons ) +2 23 Qg pin)
i5h
is bounded from below for each k. Since we can approximate each v, by v.(),
pE U &c(g, x)N&, for each k, it is concluded that each v, > —co.

Xc6cGy
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Next we shall prove that v, in Theorem 3.10 is finite for each k. We
have already seen that it is> —co. From our assumption that I$(g, %, f) is
finite and from Theorem 3.19 it follows that f(P)> —oo on some set Y, C X,

with V,(Y,)<eco. In view of Theorem 1.10, U“x(P) is finite q.p. in £. Hence
there is a set Z, C Y, with V,(Z,)<eo such that

U"(P)— f(P)< oo on Z.
If y,=o0, it follows from (3.14) that
U“x(P)— f(P)= oo q.p. on X;.

Namely, the V,-value of the subset of X, on which the left side is < oo, is in-
finite. This is a contradiction and it is concluded that v, is finite.

3.5. Change of sets.

In this section we are interested in the behavior, as X varies, of I3(g, x, f),
Ii(g, x, f), px(g, x, f) and p3(g, x, f). We shall assume in this and the next
sections the positivity of the kernel without mentioning it explicitly; only
exception is in Theorem 3.21. Simpler notations Iy, i, pk and p% will be used.

Lemma 3.12. Let @(P, Q) be a kernel in £ x 2. Let G, be an open set in £
on whose product inf d=m> —oo, X consist of X, ..., X, which are separable
by @-separate open subsets G, ..., G, of Gy, f(P)< co be an upper semicontinuous
Sunction defined in G, and g(P) be a positive continuous function in G,. As-
sume that I is finite, that every strong Cauchy net in &£¢(g, x) is strongly con-
vergent and that (u&, pé) is defined for any open subsets G and G’ of G, both
including X. If the kernel is not always nonnegative in each G;xG,, j7k,
assume also at least one of the following conditions: (a;) g(P) has a positive
lower bound on G, (a,). V.(X)>0. Let p% and v%,, ---, 7%, be the measure and
the constants obtained tn Theorem 3.12. If, for a measure p €& and for con-
stants {c;}, it holds that

UH(P)—~f(P)= cs g(P) ¢.p. on X, (k=1, -, m),

then

TG0=2 3 e~ ) S L.

If, furthermore, (i, u%) ts defined,

(3.22) = psl)® < I8 —J ()

and

(3.23) (cr—Y%,) 2 =al p—pkl),
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where
l;/ [|pglf? + (1nf g)z if (ay) s assumed,
_} 2|l ]//1+ v, (X) if (a2). is assumed,
Ul if ©=0 on each G;x Gy, j+k.

Proor. Let 0<e<V,(X) and set

D ={P€ G,; U“(P)— f(P)>(cr —<)g(P)}.

This is an open set and V. (X, —D{*)=co. We take f*+ |c;|g for 4 in Lemma

3.11 and choose an open set G D X, — D having the property required there.

First we assume (a;). Then, the total mass of measure of & ; ¢,(g, x) is bound-
k=1

ed by aO:(igf ) 'x. We require that G* satisfies G¥» C G, and
0

Vi(G#)>max {( % ;n— )2, <m_“<‘9) >2}

€

Naturally
G, OGP\ UDP DX,
We take an open set G’ such that
X=UX,CECUEPUDP),  |Li—Io|<e,  |pg—pill<e
k=1 k=1
and
[ve—ve, | <e for each £,
and take a compact set K G’ such that
Ilé’_IKI<Ea Hl"é’_/"K”<5
and

|76, =7 (ug) | <e for each k.

We denote the restrictions of . to G, and G respectively by »$¥ and n{* and
set p$ =p® —pui®. By the definition of D we have

(ce—2) g m)> < (p, o b ).

If (u, ui¥)< 0, then by Lemma 3.9 it follows that
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, u® —m~ w(0) Q) > —m” u(D)|pf” ” > —el[u®
(w i) = (L) pi(€) = 7GR [l521].

This is evidently true if (u, x{*)==0. Hence in any case
(s ) = fy 1= 002 (s 1) =y 1> —cn gy 5= 2y
= ="+ el g piD — e —e|pi®l].
By Lemma 3.11
{fr+ el g pf?) el |l
and hence
(8.24) (s ) =< fy pif> —mp = —2¢|pfP || — ey
We have

gl = 18212 + (g + pfs e = ) Z lndP [ —m™ i (2)
= [ —m~ af

and

(18 (| = A gl +m™ a5 <A (&l +26)* +m” ag.

We shall denote the last quantity by «. From (3.24) and from

= fs BE>=me e (ug) — (ugs 1),

we obtain
{7e(ug) —cr} e — (e —py p$) = — 2 —ex,
and
(s ) =2 fy gy — E xp cp == —2nea—e Z .
We have

Oé”/"_l"xllzé(/ﬁ, lv")""(/"’]{a ILK) -2 <f5 MK> —‘2}§1xk cr+ 2neat+e kglxk
=Ix—J(w)+2neca+e¢ }Elxk<l§—](,u,)+2€+ 2nea+¢ ixk
k= k=1

and

{er =7 (et e < (—pg, pf) + 26+ exy.
It follows that J(u) <I:. If (u, ug) is defined,

o= pgll Zllp—pgll + llpg — péll + e — pgll
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<}/I)%“‘J(/l/) +2e+ 2nea+¢ i:xk+2s
k=

and
{en— 1)} 20 <o — pogl] [ | + 2200 + ey
Since |12 g | +m” 0 <,
(=%, —28) 200 ([ o — pk || +2¢) a4 2ea + ey
By letting ¢ >0 we conclude (8.22) and (3.23).
Next we assume (a;).. We require that Vi(\ZGk)> V,(X)—e and that G
satisfies G C G, and -

2

We use the same 11, and 1$” as above and see that both || and ||| are
dominated by

/ T+ gl
)G

Denoting y1+m~(V,(X)—e)™! (||p%]| +2¢) by « this time, we have

(Ck—')’ik—zs) xk_é_(H,w—/w&H +2€) a+2ea+ EXp.

By letting ¢ —0 we have (3.23) with a=|u%| V1+m (V. (X))"'. We obtain
(3.22) in the same way as above.

If the kernel is nonnegative in each G, x Gy, j =k, then || i || <SP || <[ o |l
and (3.22) and (3.23) are concluded similarly.

CoroLrary. If
;=2 ?__‘,lxk ce— (2, ),

then c,=v%, for each k and p&o converges strongly to u, where X CG™ C G,
and Iim tends to If.  Lf, furthermore, (u, 1%) s defined, then ||u— p%|=0.

Proor. We can conclude the strong convergence of i) to p in view of
the inequality

= pg < & @+ Znct+ éxk)

in the above proof. The equality c,=v%, follows from the identity kélxk Ch
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=21 m vi, =L+ %l if cx<<v%, This is seen by
k=

(e — 7%, —28) 200 < || o — pe || 2] +- €(2a+xk)§'/2e +2nea+ Eké,; xp A+ €2+ ).

If (u, us) is defined, ||u— p%|| =0 because 1 and n5 are strong limits of the same
sequence {u&m}.
Next we prove

Tueorem 3.20. Let {4™} be a sequence of sets of U such that each A™ is
decomposed into A-measurable sets A{™, ..., A" with the property that each
AS™ imereases to a set A, as m— oo and A, .-, A, are O-separate. Let X be an
arbitrary set, f(P)< oo be an upper semicontinuous function on ANX and g(P)
be a positive continuous function on ANX, where A=\JA™. Asswme that every

strong Cauchy net in & 4nx(g, %) is strongly convergent and that (uitmnx, pa®nx)
is defined for any m and p provided both Litmnx and Lin.x are finite. If lim

Lim)nx < o0, then Limnx tends to Iinx. If Linx 18 finite and if (uhmnx, pinx) 18
defined for each m, piymnx converges strongly to pinx and each vimnx tends to
')’izan .

Next let G, be an open set in 2 such that the kernel is bounded from below on
Go % Go, assume that the above f(P) and g(P) are defined in Go, and let {X™} be
a sequence of subsets of Gy increasing to X which consists of X1, ---, X, separable
by O-separate open subsets Gy, -.., G, of Gyo. Assume that every strong Cauchy net
m &ty (g, x) 1s strongly convergent, that (u¢, i16-) is defined for any open subsets
G and G’ of G, such that I} and I, are finite and that (ugxm, ps®) s defined for
any m and p provided Iim) and I3 are finite. Assume one or both of

(b)*  Ewvery open subset of G, is a K,-set,

(bo)* Gy is a countable union of relatively compact open sets, A= {P; ®
(P, P)=o0} 1s closed and, for every point PE€ G, and every neighborhood Np of
P, the kernel is bounded from above on {P} x (Gy—Np),
and, unless the kernel is nonnegative on each G;x G, j5k, assume also one or
both of

(a1) g(P) has a positive lower bound on G,,

(@), V.(X)>0 and f(1+g)" is bounded from above on G,.
Then Iim tends to Is. If I3 is finite and if (uiwm, pg) is defined for each m,
pim) converges strongly to u% and each VEGm tends to v%,.

Proor. First we assume that lim Iim,x is finite. We may assume that

m=—>c0

all Iitm,x are finite. For m<p we have Lim,x > Li»,x and
|pimnx — plidax||? < Limnx — Lio)ax

by Lemma 3.2. As m, p—> oo, Iitmnx—Lit)nx tends to 0 because of the as-
sumption that lim I, x is finite. Consequently {u%m,x} form a Cauchy se-

m->co
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quence and the existence of its strong limit 4, is concluded. We choose a
subsequence {m,} such that lim ’Yifb’"qh x exists for each k. Denoting this by
g-

71, we have by (3.10) and Theorem 1.16
U“(P)—f(P)=: g(P) p.p.p. on A,NX.

From this we see as in the proof of Theorem 3.5 that each v, is finite. It fol-
lows that

2 Z:;xk ')'Q(Izm)nX=I,§(m)nX + (ulmnx, phmnx)— 2 kzlxk ve=lim Iimnx + (o, po)-

m—oo

By Lemm 3.2 we have

Linx = 2}2% % — (o, f20) = lim Iienx.

m->

On the other hand, Iimnx = Iinx and hence Ii x=1im Iitmnx. On account of

m->o0

Theorem 3.5 it follows that v;=v%,,x for each k and that, if 4 converges
strongly to pinx and S.om CANX, then ™ converges strongly to u. Since
plamnx converges strongly to uo, it is derived that ukm,x converges strongly
to pinx. We conclude also that fy,‘;;mn x tends to vj,nx for each k.

If lim iy = — o0, Limpx =ILinx= —o0 and lim Limnx=1ILinx.

m—>o0 m—>

The latter half of the theorem is inferred if we use Lemma 3.7, Theo-
rem 3.16, Lemma 3.12 and its corollary, and Corollary of Theorem 3.19.

Remark 1. If Iitm)nx tends to oo then I x=oo in a special case where
Corollary of Theorem 3.17 applies.

Remark 2. If the kernel is consistent, we may replace respectively (b,)*
and (by)* by

(b;) Every open subset of G, is an F,-set,

(b,) A, is closed and, for every point PG, and for every neighborhood
Np of P, the kernel is bounded from above on {P} x (Go— Np).

See the remark given to Theorem 3.16.

We might propose next to prove the corresponding results in case X ™
decreases to X. However, it is not true in general. For instance, we con-
sider the decreasing sequence {G™}: G™ = {1<0OP<1+1/m} in the euclidean
3-space. The Newtonian capacity of G™ is equal to 1/V;(G™)=1+1/m. But
N G™ is an empty set and its capacity is 0. Thus lim (14+1/m)=1-0 and a

mseo
counter-example is given.
We can prove only

Tueorem 3.21. Consider a kernel which may not be of positive type. Let
Ky, .-, K, be mutually disjoint compact sets and, for each k, {K{™} be a sequence
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of compact sets decreasing to K,. Set K= U K, and K™= \31K§;"). Let f(P)< oo
k=1 k=

be an upper semicontinuous function on K and g(P) be a positive continuous
fumction on K®O. Then Igm) tends to Ix. Assume next that the kernel is of
positive type and that every strong Cauchy met in &x1)(g, x) is strongly con-
vergent. Then if Ix is finite, uxm) converges strongly to u, and v,(uxm) tends
to vi(uy) for each k.

Proor. Since pgm(2) < x/min g, there is a subnet 7= {u“’; 0 €D} of
K@D

{#gxm} which converges vaguely to some measure o€ &x(g, x). Hence Ix
<I(uw). It is easily seen that lim Ix(m) >1I(u). On the other hand we have

m->c0

Ixmy <Ix and obtain

lim Ixm)y= I(/Lo) =Ig.

m->0

Consequently we may write u, for u,. If the kernel is of positive type and
every strong Cauchy net in £xm(g, ») is strongly convergent, then

| prm — g ||* < Iy — (o)

for m<p by Lemma 3.2. If lim Ixwm) is finite, {uxm} form a Cauchy sequence

m->

and hence it converges strongly to some measure u). By Lemma 3.2 again
we have

H//JK—/A,HzélK —lim Ix@m=0.
Therefore pux(m converges strongly to .,. We shall denote the restrictions
of x and p, to K§ and to K; by u§” and ug, respectively; u is equal to
some ugm) and K’ means K¢ for this m. We have

Um weye (@) =1im (), pf”) —1im {f, 4> = (ur, ) =< > =207 (o).
Since
zksz,: X, ')’k(l‘bx) ZI(//JK) + (//JK, pJK) =2 lim kg{ X 'Yk(/b(m)),

the equality lim v,(u“)=7vi(uy) follows for each k. The equality lim v; (uxwm)

m->o0

=9u(ug) is concluded by the arbitrariness in choosing a subnet and the uni-
queness of v,(uy).
Finally if lim Ix(m)y= oo, Ixm) <Ig=co.

oo
Under stronger conditions we can prove a similar theorem for closed
sets.

TaeoreM 3.22. Let F™ consist of @-separate closed sets F{™, ..., F™ such
that F™ decreases to F, as m—co for each k, f(P) be a continuous function with
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compact support on FV, and g(P) be a positive continuous function on FO. As-
sume that the kernel is consistent and nonnegative on each F$V x FiP, j=<k, that
(uim), pi») s defined for any m and p provided Iim) and Iiw are finite, and
that 0<I[i‘§e1>(g, %py )+ VER(FL) for each k. Then Iim tends to Iy as m—>oo,

where F=\/ Fr. IfIi<oco and if (uh, ppm) is defined for each m, upm com-
k=1
verges strongly to py and ')’;‘;”O tends to v, for each k.
Proor. If lim Iim) is finite, {u;m)} form a Cauchy sequence by Lemma

m-—>o0

3.2. A subnet {4} of {u}t»} converges vaguely to a measure x, supported
by F and ppm converges strongly to po by (i) in p. 296. Since f(P) is con-
tinuous on its compact support, {f, > tends to {f, uoy. We recall that
Liemy=1I(pjmy) and fyF<m>—fyk (upey) for each k on account of Theorem 3.7. We
observe

lim Iy <M>‘11m (peim)y pp(m)) —2 hm {fy = (o, o) =< fy o =1(u0)

and conclude
x 1im Ve () = (o p@)—<fo 1§

as in the proof of Theorem 3.2 for each k, where 1§ is the restriction of u, to
F,.  We can infer U"(P)—f(P) <lim v; () g(P) on S. for each k by Theo-

rem 3.2 and Lemma 1.10, and derive (g, x> =x; like in Theorem 3.7. We

can find a sequence {,'”} of restrictions of x, to compact sets such that (g,
v tends to x for each k& and I(»?) tends to (i), where »$? is the restriction

of v to F,. It follows easily that I; <{I(u,). Since Ijm <I}, we infer I}
=1I(uo)=lim Iiwm. We observe also that ., may be taken for xj and obtain

m—>oo

by Theorem 3.5
Xk 'YFkﬁ(PJF, MF;) <, MFk> (pros p”) —<fy p> =11 lim Va().

By the arbitrariness in choosing {x} we conclude fypk—hrn Ve (i) =lim

m—>eco

"YF("L)

3.6. Coincidence of Ii(g, x, f) and I¥(g, x, f).

We shall apply Choquet’s method [1; 7] concerning capacitability. Let ©
be a class of sets in £ which is closed under any formations of finite union
and countable intersection. Let S be the set of all finite sequences of integers
=1:S={s=(n, -, np)}, and > be the set of all infinite sequences of integers
=>1:3 ={o=(n, ny, ---)}. We write s<<o (or s<s") when s is some first sec-
tion of o (or of s’). A determining system on 9 is defined by an application &
of S into ©: s— H, such that s<s" implies H;D H,. We extend & to > by set-
ting H,= f\H for ¢ €3>  An $-Souslinian set is equal to H(8)= U H,. One

can show tha.t the class of all ©-Souslinian sets is closed under any forma-
tions of countable union and countable intersection. Any element of the
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smallest class of sets with this closed character, containing 9, is called an
O-Borelian set. Hence every 9-Borelian set is D-Souslinian. For further
properties of H-Souslinian sets we refer to Choquet [6] and Sion [1; 2; 3].
Let ¢ be a real-valued increasing set function defined on the class of all
subsets of £. Choquet [ 7] called it an abstract capacity on (2, ) if it satisfies
1) (N H,)=lim @(H,) whenever H, < D decreases, and 2) p(\UX,)=lim ¢(X,)

n-—>o0

whenever X, increases. A set X is (¢, )-capacitable by definition if ¢(X)
=sup p(H) where He$ and HC X. He proved that all $-Souslinian sets are
(p, D)-capacitable.

We take I3(g, =, f) for »(X) and the class & of all compact sets K for 9.
Let us write simply I¥, pk, v&, ete. for Li(g, x, ), uk(g, %, f), vi(g, %, f), ete.
respectively. Since Ii=7¢ by Theorem 3.8,

sup @(H)=sup Ii=I}
HcX KcX

and the (¢, R)-capacitability is equivalent to Ii=1I%. The above requirements
1) and 2) are satisfied on account of Theorems 3.21 and 3.20 respectively. Con-
sequently we can apply Choquet’s result. Making use also of Theorem 3.13
and Corollary to Lemma 3.12 we obtain

Tueorem 3.23. Consider a kernel of positive type. Let G, be an open set
an £ such that the kernel is bounded from below on G, x G, f(P)< oo be an upper
semicontinuous function in G, and g(P) be a positive continuous function in G.
Assume that every strong Cauchy net in ¢ (g, x) is strongly convergent, and
that (u%, w%) 1s defined for any subsets X and X’ of G, such that I3 and I3, are
finite. As to conditions (a,), (as)., (b))%, (by)* assume the same as in Theorem
3.20. Then, for any K-Souslinian set A in G,, 1i:=1I;. If this value is finite
and (pi, p5) 18 defined, ||nl—pall =0 and vi,=v4, for each k.

If we take Remark 2 given to Theorem 3.20 into consideration, we have

Tareorem 3.24. Consider a consistent kernel and let Go, f(P) and g(P) be
as in the preceding theorem. Assume that (u%, p%) ts defined for any subsets
X and X' of Gy such that I¢ and I are finite, and assume one or both of

(b)) Ewery open set is an F,-set,

(by) A, s closed and, for every point P and for every meighborhood Np of
P, the kernel ts bounded from above on {P} x(2—Np).

Then we obtain the same conclusions as in the preceding theorem.

Another possibility of $ is the class $, of all closed sets F= v, F, with
k=1

positive Iy, ..., I7,. It seems that one can show I;=1I; for every Fo-Souslinian
subset 4 of G, by the aid of Corollary of Theorem 3.15, Theorem 3.22 and
Remark 2 given to Theorem 3.20. However, we have no handy condition under
which F,, F, €%, implies F;UF,€%,. It is assured if we limit ourselves to
the case where the kernel is nonnegative and of positive type, n=1 and f<0;
it will be seen in Theorem 3.27. We can now state
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Turorem 3.25. Consider a nonnegative consistent kernel in 2x 2 and let
Go be an open set in £. Let f(P)<0 be a continuous function with compact
support in G; and g(P) be a positive continuous function in Gi. Assume one
or both of (b1) and (by). Then, for every Fo-Souslinian subset A of G, Ii=1I:.
If this value is finite, ||;ni—pal|=0 and vi,=v5, for each k.

In Theorem 4.5 of Fuglede [1] it is stated that every o-finite Borel set is
capacitable. A o-finite set means a set covered by a countable number of sets
each of which is of finite outer capacity. In his paper, our (b;) and the nor-
malcy of the space are assumed; under (b;) the F-Borel class, the §-Borelian
class, the G-Borel class and the G-Borelian class all coincide with each other,
where § (S resp.) is the class of all closed (open resp.) sets and the F-Borel
(&-Borel) class is the smallest class which contains & (® resp.) and is closed
under any formations of difference and countable union. Fuglede [1] gave
an example (Example 10, § 8.3) which shows the necessity of o-finiteness in
his theorem.

The following result is due to Fuglede:*® A set 4 is F,-Souslinian if and
only if 4 is $-Souslinian and covered by U F,, F,€%,. This shows that our

theorem is an extension of his Theorem 4.5.
Finally in this section we prove

Taeorem 8.26. There are a K,-set K, and a G;-set Gs such that K, C X CGs
and

Ii=Ii and  Ij,=If

Proor. We shall prove only the first equality; the second can be proved
in a similar fashion. There is a sequence {K™} of compact sets such that
K™ X and

lim Iimy=I%.

m->oo

If we set U K™ =K,, then K, CX, Iim =1} =1y and the equality I _—=Ii fol-

lows.

However, even for the Newtonian capacity, above G;— K, may not be of
capacity zero. For instance, if X is a ball, if K, is the inside of the ball and
if Gs is the closed ball, then the capacity of G;—K, is equal to the capacity of
the ball. The question then arises for any X with Ii=1I¢ whether we can find
K, and G; such that K,CXCGs and I§,_x, =oo. The author does not know
the answer even for the Newtonian capacity.

3.7. Inequalities for I(g, x, f) and I{(g, x, f).
Let f(P)<co be upper semicontinuous on X%, g(P) be positive con-

42) This with a proof was informed to the author in a letter dated May 15, 1961. According to
a later letter, Fuglede [2] will contain the proof.
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tinuous on X and x be a positive number. If X is an open set,

oP,Q  fP)  fQ@
gP)g@ g g

can be taken for a kernel in X. In the general case it does not belong to the
range of kernels which we are concerned with.

We still assume that @ (P, Q) is symmetric and shall prove inequalities
similar to (1.1) and (1.2).

TaeoreM 3.27. Let {A®} be A-measurable sets in £, X be any set in £,
f(P)< oo be an upper semicontinuous function defined on Y=\ APNX, g(P)
4

¥(P,Q) ==

be a positive continuous function defined on Y and x>0. If (P, Q)=m on
Yx Y, then

1
I} (g, =, f)—am

here we do mot talk about components of Y and AP NX, namely 1-dimensional
problems are considered.

1

3.2 ] .
(3.25) Linax(g, %, ) —am ’

A

2]
»

Proor. We shall write simply I3 and so on. We may assume that &.5)nx
(g, x)7= {0} for each p. Let n€¢&y(g, x). For each p we choose a compact set

K®CAPNX such that SA@) oo 8IS ¢/2? and denote the restriction of .
n -
to K by x®. Tt follows that

U“(P)—f(P
» gup —(—g%},)f—“ ~<fs i —am=gup Sg(@{w, Q)—m} du(Q)

zswp | 6QEP, Q-ndu©@

T PeS ()

_ xUFP(P)— g, p> f(P) _ B _ ®
ngﬁp) pTS {fy BP0 —m g, pP.

If u®=£0, 5u? (g, P> € Eamrnx(g, x) and

; U+ — g, @ )
Lipynx <x sup » - <l(‘9;)/” >f . {f; M(p)>
S#(i’) \g, W >g <g, w >

by Corollary 1 of Theorem 2.7. Hence

w(®) (»)
» sup xU' (g p?>f
S,u(8) g

This is true even if ;#=0. Therefore

v={g, py=< > g, WD +e

—x {fy p> =g, p*> Lionx.
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On account of Corollary 1 of Theorem 2.7 again, we can choose . so that the
right side is arbitrarily close to

1

x Iy —xm) D) ——————+e.
b IA(P)(‘]X —Xm
Therefore
1 1 €
< -
Ii— ==§f Litynx —am  x(If—am)’

whence (3.25) is derived.
By making use of (3.25), or by regarding ¥ (P, Q) as a kernel in G,x G,
and applying (1.2) we can establish easily

TaeoreM 3.28. Let G, be an open set in 2, {X®} be a sequence of sets in
Go, f(P)< oo be an upper semicontinuous function defined in Go, g(P) be a posi-
tive continuous function in Gy and x>0. If T(P, Q)=m on G, %X G,, then

1 =< 1
IgXu:)(g, % f)—am = 5 Liw(g, x, f) —am

3.8. Change of conditions.

We studied how Ix and v(x,) change as f(P) or g(P) or both change in
Chapter II. In this section we shall see how I} and I change; we shall con-
sider symmetric kernels.

First we prove

Tureorem 3.29. Let @(P, Q) be a symmetric kernel, X be a set in 2 on whose
product @ is bounded from below, Xi, ..., X,, be a decomposition of X into @-
separate sets such that V;(X;)<oo for each k, f(P) be a finite-valued upper se-
micontinuous function on X and g(P) be a positive continuous function on X.
Let {f,(P)} be a sequence of upper semicontinuous functions on X which tends
uniformly to f(P) and {g,(P)} be a sequence of positive continuous functions
on X which tends uniformly to g(P). Assume one or both of

(@i Vi;(X)>0, and f(1+g)7" is bounded from above,

(a;) 1/g and f(14+g)7" are bounded from above.*®
If Ii(g, x, f) 1s finite for x=(x1, ---, %), 10, ..., %, =0, then Ii(g,, =, f5) tends
to Ii(g, x, f) as p— co.

Proor. We may assume that x, >0, ..., x,>0. Let KCX be a compact
set for which . (g, %, f) exists. According to Theorem 2.11

43) It amounts to assume that 1/g and f/g are bounded from above.
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})Hn I;{(gpa E) fb):II;(g, Xy f)

Since
Izii(gp, Xy fp)éllé(gpa %y fp)
for each p, we have

‘Consequently we may suppose that {Ix(g;, x, f»)} are bounded from above, say

I)é(gl’, %y fp)éM

By (a){ and the uniform convergence of {f;} and {g,} there is a finite number
M’ such that f,(P) < M'(1+g,(P)) for large p. We have

@) V:(X)—2M (D) +x) =<M+1

for any u€ &x(gy, x) giving Ir, ()= (p, 1) =2 {f, w<M+1. Therefore u(2)
is bounded and hence Ii(gy, %, fr)= —2M'(x(£)+x) is bounded from below
uniformly with respect to p. It also follows that (4, 1) is bounded from above
because

(py W) M A+1+2M (u(2) +x).

It is seen also that (4, »,) is bounded for any j and k, where 1, means the re-
striction of i to X;. The same facts are true under the assumption of (as).
We choose p® € £x(g;, %) such that

i 1
I (W) = Li (g s %, f5)+ s

and set

(D) Xk (€2)
By = o Mk
<& i

The measure p®”=3] a{ belongs to £x(g, x) and hence
k=1

I)tf(g, Xy f)élf(ﬂ(p)):(ﬁ(p)a ﬁ(p>)—2 <f3 /7’(1))>'

We shall compute the difference of I,(az?’) and I, (?). We have

T(a®y—T (0)) — ( Xj Xk _1> [C20e))
f(/l‘ ) fp(/" ) J,Zk <g, /1’_(1'?)> <g, M;p) (:u’j s Mg

23 s ffn )
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Since {(u¥, u?)} are bounded and (g, u?’)> tends to lim {g;, p¥>=nx, the
proo

first sum of the right side tends to zero. The second sum can be written in
the form

< X, o N Xk _
(3.27) %n @*ﬁ; {f=fp wid?) + % (m 1) oy witD.

It is evident that {{f,, ">} are bounded from above. They are bounded
from below too because

233 fyy 1252 oy P> =(u®, uP) =11, ()

are bounded. Therefore each term in (3.27) tends to 0 as p—co. It is now
verified that
Ii(g, % H=lim I(ap®)=lim I; (u®)=lim (g % f5).
b P P

Combined with (3.26), this proves the theorem.
If we assume the continuity principle, we can prove

Traeorem 8.30. If X is relatively compact in 2 and the continuity principle
18 satisfied, we can replace (as) tn Theorem 3.29 by
(a1) g(P) has a positive lower bound on X.

Proor. As in Theorem 3. 29 we take ,® € &x(g, x, f;) such that I (u®)
<max (—p, Ii(gs % f»)+1/p). By condition (a;) {u”’ (L)} are bounded, be-
cause g,(P) has a common positive lower bound for large p. It will be suf-
ficient to show that {(x$, x”)} and {{f;, p§”>} are bounded.

For each k there is a measure v,€¢&x,(g, 1) which gives a continuous
potential in £ and for which {f, v,> is finite. Since {g, x$?’) tends to x; as
p— o, we may suppose that {g, ui”> <2x,. With suitable numbers {:P’},

,uf")/2+i t{v, belongs to £x(g, x) and
k=1

. ®» 1 1
— oo < Ii(g, % [)<Iy (Lz_ +k§{ tP yk>:,§, I (u®) — e (u®, u2)
UL CLNNESD S L ONARS D s RS

We choose a vaguely convergent subnet {4’; » € D} of {4”} such that lim

I () =1im I(u®). Since ¢ converges to a limit for each k, the last three

p—>oo
terms tend to finite limits as x»’ varies along the subnet. We take into con-
sideration the fact that (u®, u®) is bounded from below and see that I,(x?’)
is bounded from below. We have assumed that f, converges uniformly to f.

Therefore
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—co<lim [u®)=lim I;,(P)=lim L(gp % )
Boe s b

On account of (3.26) it follows that I;(x®) is bounded.
We shall use the similar reasoning in order to show that lim 7:(u$’)> — o

paao

for each k. We have
. 2] n
—oo<lIx(g, %, )= <%+t§m v1+ ki_lzxk Vi )

:_2_ If(/L(P)) _ % (M(lﬁ)’ M(ﬁ)) + (M(iD t(1p) v+ kz—l % Vk)

n n n
P o1+ xpvp, £8P 01+ D) wpvn) —2 {f, £ v1+22xk V).
k=2 k=2 k=

From this relation we can infer that lim I, (u{®)> —co. Similarly we see
p—voe
that lim I;(u?)> —co for each k, 2<k <n. It follows that {I;(n")} are
pooo
bounded because {I;(»?’)} are bounded and

LP)=33 L)+ 5 (s ).
k= TR,
Observing that
I (i) =T () =< f—= for 105

we conclude that {I;, (i)} are bounded.

We now set v =u; v; (gp, ve,)”" and VP —=31,6. This belongs to &x(gp> %)
r=1
and it holds that

(17) (6]
IX(gD: x,fﬂ)<lfp( ;"V )

=% p(/,d@))_% (P, 1) _,_L (u®, L) + 7{‘_ G W ON
1 2

<5 Tgnn f——g P i)+ ®),

=7 X(gp x fp) (w ) Z <g1: L)k> (', ve)
1 " 2 X

+ D) i , TR .
B gy Sans T Gy B

We choose a vaguely convergent subnet {.“”; o' €D’} of {pf"’} such that lim

poo
»w?) is a finite number. Since {(/ﬂ’ ) 1)} are bounded from below, these are

bounded. We have already seen that {I; (u)} are bounded. Hence {<f,,
wiP>} are bounded too.

(@, p@N=1lim (u®, u®»). We see from the above inequality that lim (u®,
oo
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Next we shall be concerned with the outer problem.

TueoreMm 38.31. Let @(P, Q) be a symmetric kernel, G, be an open set on
whose product @ is bounded from below, X1, ..., X, be sets separable by @-separate
open subsets G, ..., G of Gy, f(P) be a finite-valued upper semicontinuous
Sunction on Gy and g(P) be a positive continuous function on G,. Let {f,(P)}
be a sequence of upper semicontinuous functions on G, which tends uniformly
to f(P) and {g,(P)} be a sequence of positive continuous functions on G, which
tends uniformly to g(P). Assume one or both of

(@), V.(X)>0, and f(1+g)~" is bounded from above,

(as) 1/g and f(1+g)~" are bounded from above.

If Ii(g, =, f) 18 finite for x=(x1, ---, %), 61220, ..., 5, == 0, then I3(g;, %, f5) tends
to I¥(g, %, f) as p—> oo,

Proor. We may assume that x;>0, ..., ,>0 and that V;(G,)>0. By
Theorem 38.29 we know that, for any G such that X CGCGo, lim Ii(gy, %, f)
p-oo

=Ii(g, %, f). Therefore
(3‘28) I)?(g, X, f)zgug Ié(g: Xy f)é@ I)?(gﬁa X, fp)
o) pooo

For G, XCGC Gy, we denote by & the class of measures ; of £s(g,x) such

that I,(u) <Ii(g, x, f)+1. It follows that u(2), every (u; 1) and {f, u,> are

bounded on U #© for the same reason as in Theorem 3.29, where ., means the
G

restriction of 1 to G;. Take any p€ & and set

(p)=i Xk bk

# k=1 <gb, /’(’k> ’

This belongs to (g, x) and it holds that

x (1)) — Xj Xp .
(g ’ff’)<[fp(”p) 1 8 13> {&p> 12 b 1)
—ot § i}

kli <g1> > <f F’k>+2 <g M> <f fD,M>

We denote the difference of the last side and I;(x) by ay(). We see that
there is a number ¢, tending to 0 as p— o and satisfying |a,(x)| <¢, for any
p€\UEY. Consequently

G

]Ci(g,ba %X, fﬁ)élé(ga Xy f)+69§1§(g> Xy f)+6.b

and hence

Ig(gbs Xy fp)él(é@ X, f)+et>-

This gives
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yﬁ I)‘é(gba Xy fp)éfi(g, Xy f)

On account of (3.28) our theorem is now proved.

Remark. In Theorems 3.29, 3.30 and 3.31 we may allow —co to f(P) if
all f,(P) are identical.

3.9. Graphs of Ix(g, x, f) and I(g, x, f).

The continuity of Ii(x)=Ii(g, x, f) and Li(x)=I(g, %, f) in >0, ..., x,>0
follows from Theorems 3.29, 3.30 and 3.31. We shall show that they are con-
tinuous on x, >0, ..., x,=>0 under a less general condition. We shall assume
that @ (P, Q) is symmetric.

Tueorem 3.32. Let O(P, Q), X, Xy, ---, X, and g(P) be the same as in Theo-
rem 3.29. Let f(P)<co be an upper semicontinuous function on X such that
f(P)> —oco on some set Y, C X, with V;(Y,)< oo for each k. Assume

(as) 1/g(P) and f(1+g)~" are bounded from above.

Then Ij;(x) 1s continuous as a function of x in x>0, ..., x,=>0.

Proor. As the lower envelope of a family of continuous functions {Ii(x);
KC X}, Ii(x) is upper semicontinuous. Let K, be any compact subset of X
such that Ix (x) is continuous. By (a;) we see that u(2), each (i), ) and each
{f, my are bounded for p=p,(x) where K, CKCX and |x|<r, u, being the re-
striction of x to K; bounds may depend on K, and r. Consequently Ii(x) is
finite at each x. Let {x?} be a sequence of points in |x|<r, tending to x,
=, ..., ). We assume that x>0, ..., 20 >0, s, = ... =x=0. We
take Ko CKPCK®C ... such that

g () gl,é(x(”)—i—%

We denote p,»(+?) simply by »® and define »? € £x(g, x0) by setting it equal
to % ()"t 1w on K, k=1, ..., m, and to zero elsewhere, where .} is the
restriction of x® to X,NK®. We have

Liao) SIGP) =P, v0) ~2{f, v,
It holds that

(0)

TP —I(u®)= é 7@7(_” — )(M@) wP)—2 Z < » _1) fy i

jik=1

— Z {2 Z (Msm, Iw%b))_*_ 2‘ (M(ﬁz Iw([l)) 2 <f, Iuép)>}

k=m41

The first and second sums tend to zero as p — oo because (u”, ) and {f, >
are bounded. By our assumption that g(P) has a positive lower bound, p
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tends to zero as p—co for each k, m+1<k<{n. Since there is M< o such

that f<<M(1+g) on X, it follows that lim {f, u®> <M lim (4’ (2)+x%) =0
pes poo

for k, m+1<k<n. We have also

lim (4, pP)=lim inf 0+ uP(Q) P =0  if m+1=<k=n.
P P Xx

Hence lim (I(v‘?)—1(1*?)) <0 and
poeo

I <lim 1G®) <lim 1) <lim Ti).
P P P

The continuity is now concluded.

Remark. The continuity in x, >0, ..., »,=>0 is not guaranteed in general
by (az)!. We shall give an example in the one-dimensional case. Consider
the Newtonian kernel in £— Es, and take the unit open ball OP<1 for X, f(P)
=1 and g(P)=min (OP™'—1,1). Given x<1, we denote by \, the unit uni-
form measure on the sphere OP=(1+x)"". Since ), € &x(g, x), we have

L) <Ta) =0 M) —2 {fy e =1+ %) —2=x—1.

Therefore lim Ii(x)<<—1. It is easy to ‘modify this example to higher di-

x-0

mensional case.

Tueorem 3.33. Let O(P, Q), Xy, ---, X, Go, G, .-, G and g(P) be the
same as in Theorem 3.31. Let f(P)<oco be an upper semicontinuous function
m G, and assume that I3,(1) 18 finite for each k. Assume also

(a;) 1/g and f(1+g)~" are bounded from above.

Then I(x) is continuous as a function of x in x>0, ..., x,=>0.

Proor. By the preceding theorem I/(x) is continuous in x>0, ..., x,=>0
for each G, XCGCG,. As the upper envelope of Ii(x), XCGC Gy, Ii(x) is
> —co and lower semicontinuous. We see that x(£) is bounded and hence
{f, p> is bounded from above by (as) on nxn\i ré’co( g, x) for any fixed r>0; (i, p)

is bounded from below too. By assumption I£,(1) is bounded with respect
to open set G,, X, CG,CGy”, for each k. For an arbitrary u, € £6,(g, 1) with
I(u) <Ié, (D) +1, (uey pe)=I(ue)+2 {f, p) is bounded from above and hence is

bounded. We note that the measure ,,/:i %, e belongs to & ¢, (g, ). On
k=1 k=1

account of the fact that {G{’} are @-separate, (i, /) and hence I(x") have

bounds which may depend on r but not on the choice of {G;} and {x;}. Con-

sequently I(x) is bounded on |x| <r for any r>0.
We set

¢ ={uec (g, x); W <Ii(x)+1}
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for G such that XCGCG,. We see that (u;, ux) and {f, ux) are bounded for
p€ U &L with any r >0, where u; is the restriction of xto G;. Let x®

G,(x)=r
tend to xo=(x{, ..., ). Assume that x{>>0, ..., x>0, x%),=... = =0.
For any p€ &5y we define u? by (%) 'p; on G], 1<j<m, and by x” v
on G, m+1<k<n, where G,=GNG;” and v, is any measure of &¢,(g, 1) such
that I(vy) <I¢,(1)+1. It follows that vu(2), (v, &) and {f, v are bounded.
We have

. n D 5
L) <I(w?P)= >} (O> (0) (l% pr) — 22 (0) <f, oy

Jrk=m+1 %

(P

+2 37 > x’T(ﬁm i) + Z A5 v =2 35 2 (f, Vi)

j=1 k=m41 x Jrk=m+

Since G{”; ..., G are @-separate and u(2) and v,(£2) are bounded,

. m n xﬁ
lim > (0) (/Jm ve)=0.

pooo j=1 p=masl

We see that II( 2, %P vy)| is bounded by a number @, which is independent

k=m+1

of Gyy1, -+, G, and tends to 0 as p—>co. We observe also that
13 2 ) =1

is bounded by a similar number 5,. Therefore

L) < I(w) + e,
with ¢, tending to 0. It follows that

L) < Té(0) +cp ST (x0) + 5

and that

Li(x) < I5(%0) + ¢
Consequently

lim I3(x®) < Is(xo)
po X

which gives us

lim Ii(x®)=I(x0)
[)v)uu
on account of the lower semicontinuity of I§(x;). Thus the proof is completed.
Under the same assumptions as in Theorem 3.32, let 1 be any measure of
&x(g, ), where x=(xy, .., x,) and x; >0, ..., x,>0. The reasoning in the proof
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of Theorem 2.14 does not apply here and so we have to take a different way.
With &' =(«%, ---, x3) in %1 >0, ..., x,>0 and Ax,=x),—x;, we have

Ié(x’)§l< > i—: ,wk)

=

" " Ax; A
=I(p)+2 > va(p) Axy+ SELETR (g, )
k=1 jok=1 Xj Xk
For any #=(y,, ---, ,) we set
(%, )= inf
IX( ) "7) . ,,-y,,)el’)if(x) k;' R

and define 7(«, ») in a similar fashion. We choose 1 so that I(u) is arbitrarily

close to Ii(x) and i‘, v:(w) vi is close to r%(x, y), where y, is defined by Ax,
k=1

=|Ax|ys=+ Axi+... +Ax}y, Since (i, ) is uniformly bounded, say |(u;, )|

<a, we have

n 2
(3.29) L) < Tiw) + 274 G, )| Awl +a >y 1A%

jrk=1 X; X

and, by interchanging x and «’,

n 2
(3.30) Li(x") = Li() + 275, y) | Ax | —a > ",m, .
Jjik=1 x]- Xk
Consequently
7i(', ) Z1k(x, y)+ 0 (| Ax).
Therefore
(3.31) lfn 7i@, ) 1k, ¥).

To prove the inverse inequality we take a sequence {x”} of points in
x>0, ..., x,>0 tending to x such that 7i(x®, y) € 'k(x?) tends to a finite or
infinite number. We choose a sequence {u”} of measures respectively in &x
(g, x?) such that

lim {k:ﬁ‘l. V(s ®) yp— 7 (&P, y)} =0

Do

and I(x?) tends to Ii(x); this is possible because Ii(x) is a continuous function
of x by Theorem 3.31. It is easy to see that

lim kz‘i ’Yk(}]lxj(x}m)—l Miﬁ))ykziim I?ivk(/ﬁ(p)) Ve
= j= o0 f=

p—ooo

Therefore lim é ve(u?) v, belongs to I'i(w, y). Consequently
pooo =1
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lim 7i@, )= i, ).

x/-x

Combining this with (3.31) we obtain
(3.32) lim 74(e', y)=lim 75, ) =1k 7).
From (3.29) and (3.30) we have

(333) lim RO oyt .

This result is less general than that expected from Theorem 2.14. We
-do not know whether the result corresponding to Theorem 2.14 is true or not.
Above reasoning does not apply in the case of the outer problem and the ques-
tion is open in this respect too. We omit discussions corresponding to some
other theorems in Chapter II.

3.10. Unconditional inner and outer problems.

We shall study the unconditional problem in the case n=1. The inner
problem is to discuss

w=inf I(w).
7=t 4 be
TuaroreMm 3.34. Let X be a relatively compact set with V;(X)< oo in £, and
f(P)< oo be an upper semicontinuous function on X. Assume that the kernel
0 satisfies the continuity principle and that I > —oco. Let {u,} be a vaguely

convergent net of measures in &x for which I(u,) tends to I:, and uk be the vague
limit*®  Then

(8.34) ﬁ”}if(P)gf(P) p.0.p. on X.
If, in addition, f(P) is defined and continuous on X°, then
(3.35) Li=—{f, .

If f(P)< oo 1is defined and upper semicontinuous on some set Z>X and if
pk 18 the vague limit of a vaguely convergent subnet of a sequence of measures
{px,} "> K, C X, such that I(ug,) tends to I%, then

(3.36) Tx(P)< f(P) on S,iNZ.

44) So far pf( has been used to write ,uf,}(g, %, f). In this section it represents an unconditional
extremal measure. Similar remarks are given to I%, IS and pS.

45) We may use the notation {K} to represent a sequence because K is not divided into subsets.
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In case X is an open set and one or both of conditions (by) and (b;) stated
wn Lemma 3.1 1is true, then the exceptional set in (3.34) is a K,-set and hence
(3.34) holds. q. p. in X.

Proor. If f(P)=—co p.p.p. on X, (3.34) is evidently true. Excluding this
case we set

H={Pe X; U"x(P)< f(P)}

and assume that there is a compact set KCH with V;(K)< e and a constant
7 >0 such that

(8.37) T“%(P)< f(P)—n on K.

On account of the continuity principle there exists a unit measure » € &, such
that U (P) is continuous in £ and {f, v)> is finite. For any :>0 and » we have

I8 <TG, +19)=1(u) +2¢ g O dpu, + (o, v)— 2 {f, .
It follows that
Li<Ii+2 S O dui+ 2 (v, ) — 2 {f, v,
Cancelling I, dividing the rest by z and letting :— 0, we obtain
logz S Udui—2<f, v
or
< S f]”dp};=g 0*%dy.
On the other hand follows from (3.37)
S 0"dv<{f, v>—n.

These two relations are not compatible and (3.34) is established.
We can derive (3.35) from the relation

L<I(1+t)w,) | <1.
The rest of our theorem is proved like in the conditional case.
Remark 1. I:<1(0)=0.

Remark 2. If 7;(X)>0 and I(u,) tends to Ix> —oco, then {4} contains a
vaguely convergent subnet. In fact,
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O o SRR

and hence
Vi(X)ui(2) < — AL+ 21 (),

which shows that .,.(£2) is bounded.
We can prove in the same way as in the conditional case

Tueorem 3.35. Let X be a set in £ with V;(X)<co and f(P)<c<o be an
upper semicontinuous function on X. Consider a kernel of positive type, and
assume that Ii> — oo and that every strong Cauchy net in &x is strongly con-
vergent. Then, for any sequence {u,} of measures in &x for which I(u,) tends
to I, u, converges strongly to some measure pk, and we have

(8.38) Li=—(uk, pd)
and
(8.39) U*x(P)= f(P) p.p.p. on X.40

Conversely if a measure u€ & satisfies (3.38) and (3.39) replacing pk in
them, then u, converges strongly to w. Lf (u, pk) is defined, then ||p— pk||=0.

Tueorem 3.36. Consider a consistent kernel. Let X be a set such that
0<Vi(X)< oo, and f(P) be a continuous function with compact support defined
on X° Then I(uk)=1I%.

The unconditional outer problem is concerning

sup Ii=I5,
G
where G is an open set containing X. Naturally I§<0. We shall state se-

veral results corresponding to the conditional case, without proof except for
Theorem 3.37.

Traeorem 3.37. Let K be a compact set with V;(K)>0 in 2, and f(P)<oo
be defined and upper semicontinuous in an open set Gy DOK. Then

Ii=I%.

Proor. By Theorem 1.14 we know that V;(K)=V,(K). Hence there is
a relatively compact open set Gj such that KC Gy C Gy and V;(Go)>0. We set

46) If f(P)< oo is defined and upper semicontinuous on Z > X, if I(uk, ), K,C X, tends to Ix and
if {uk, } contains a net vaguely convergent to u, then

Urk(P) < f(P) on S ; NX.
*x
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§={PE€Gy; f(P)<max f+1}.

This is an open set containing K. Let F, be a closed subset of G; which con-
tains K in its inside. We direct by inclusion the class of all closed subsets of
F,, each containing K in its inside, and denote the resulting directed set by D.
Since

I = V(G pi(2)—2 (ml?x F+1) pr(2) for FeD,

pp(L2) is bounded for FeED. We extract a vaguely convergent subnet {x_ ;
w€D'} of {u,; F€D} and see for the vague limit y, that

IGag) =gy 1) =2 fs o> MM (o5 p2,) =2 Tim (fy o> STim TG ) <.

Since S, (Ff\ F=K, I(n,) =1If and hence I3 <I{. The inverse inequality being
eD
evident, we obtain the equality.

Remark. Without the condition V;(K)>0 the conclusion is not always
true. For instance, let 2=E;, 0 (P, Q)=0, K={0OP <1} and f(P)=0 on K and
=0P —1 outside K. Then I}i=0 but I[¢= — co.

TueoreMm 3.38. Let X be a relatively compact set with V,(X)>0 in £, G,
DX be an open set in 2 and f(P)<co be an upper semicontinuous function in
Go. Assume that @ satisfies the continuity principle and that 13> —oco. Let
{G,}, X G,C Gy, be a sequence of open sets such that I¢, tends to It. Then, for
the vague limit u% of any vaguely convergent subnet of {uc,},"”

U*x(P) = f(P) p.p.p. on X.
If f(P)< oo s defined and upper semicontinuous on Gg, then

U“x(P)< f(P) on S,e.
If, in addition, f(P) is continuous on G§, then

It = —{f, px)-

Turorem 3.39. In addition to the conditions required in the first part of
the preceding theorem, suppose that @ (P, Q) is continuous outside the diagonal
set and that @ (P, P)=co at each point P of O., which is defined with respect to
B. Assume also one or both of (0,)* and (b,)* stated in Theorem 3.10. Then

U*%(P) = f(P) q.p. on X.

We shall denote the closure of &, with respect to the strong topology

47) The existence is ensured by Remark 2 to Theoem 3.34.
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by &&,.

TueoreM 3.40. Let X be any set in £ and Gy D X be an open set in £. Let
F(P)< oo be defined and upper semicontinuous in G,. Assume that the kernel is
of positive type, that Is> — oo, that every strong Cauchy net in &%, is strongly
convergent and that (ué, pe.) is defined for any open subsets G and G’ of G, con-
taining X. Then, for any sequence {G,}, X CG,C G,, of open sets such that I¢,
tends to Iz, ue, converges strongly to some measure py. It is a strong limit for
any sequence of open sets of the above character. It holds that

Iz = —(u%, p%)
and that
U“%(P) = f(P) p.p.p. on X.*®
We can choose % so that its support is contained in X°.
Turorem 3.41. Under the same assumptions as above, 1f (u%, pk) is defined,
[l — pse]|* S Ik — Iz

Turorem 3.42. Let K be a compact set in £ such that 0<V;(K)< oo and
Go DK be an open set in 2. Let f(P)<co be defined and upper semicontinuous
m Go. Consider a kernel of positive type and assume that every strong Cauchy
net in &g, is strongly convergent. Then

g —will=0.

Turorem 3.43. Consider a consistent kernel. Let G, be an open set such
that 0<V;(Gy)< oo and f(P) be a continuous function with compact support
defined on G3. Assume that (ué, pi.) s defined for any open subsets G and G’ of
G, both including a fixed set X. Then I(ug)=1I%.

TuroreM 3.44. Let G, be an open set in 2 on whose product the kernel is
bounded from below, and X be any subset of Go. Let f(P)<co be defined and
upper semicontinuous in G,. Assume that the kernel is of positive type, that
13> — oo, that every strong Cauchy net in &%, is strongly convergent, that (pé,
wer) 18 defined for every open subsets G and G’ of G, containing X and that one
or both of (b))* and (b,)* stated in Lemma 3.5 is true. Then

U*%(P)= f(P) q.p. on X.

Tueorem 3.45. Consider a kernel of positive type. Let {A,} be a sequence

48) If f(P)< oo is defined and upper semicontinuous on G} and if {,ué } contains a subnet vaguely
convergent to p%, then

Urk(P)<(P) on S,c.
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of sets of A increasing to A, X be an arbitrary set, f(P)< oo be an upper semi-
continuous function on ANX. Assume that every strong Cauchy net in €4 x
is strongly comvergent and that (ul,nx, pi,nx) is defined for any n and m
provided both I'i, o x and L4, x are finite. Then 1, x tends to I} x, and pi, o x
converges strongly to p'nx of Iinx is finite.

Next let G, be an open set in £ such that the kernel is bounded from below
on Gy x Go, assume that the above f(P) is defined in G, and let {X,} be a sequence
of subsets of G, increasing to X. Assume that every Cauchy met in &¢, is
strongly convergent, that (ué, pt.) is defined for any open subsets G and G of G,
containing X provided I; and I} are finite, and that one or both of (b))* and
(bo)* stated im Lemma 3.5 is true. Then If tends to I%, and u%, converges
strongly to px 1f If is finite.

Turorem 3.46. Consider a kernel of positive type, let {K,} be a sequence
of compact sets decreasing to K with V;(K)>0 and let f(P)< oo be an upper
semicontinuous function on K. Assume that every strong Cauchy met in &g,
18 strongly convergent. Then Ix 1s finite, I, tends to Ix, and px, converges
strongly to g9

Tueorem 3.47. Consider a consistent kernel. Let {F,} be a sequence of
closed subsets decreasing to F such that 0<V;(F.), and assume that (uy,, ph,)
18 defined for any n and m. Let f(P) be a continuous function with compact
support defined on Fi. Then I;, tends to I and, if (up, pp,) is defined for
every n, uy, converges strongly to .

Turorem 3.48. Consider a kernel of positive type. Let G, be an open set
in £ such that the kernel is bounded from below on G, X Gy, and f(P)<co be an
upper semicontinuous function in G,. Assume that every strong Cauchy net
m &, is strongly convergent and that (u%, pg) is defined for any subsets X and
X' of G, provided I: and I% are finite. Assume also one or both of (b))™ and
(b2)* of Theorem 3.20 (=(by)* and (b,)* of Lemma 3.5); if the kernel is con-
sistent, (b))* and (by)* may be replaced respectively by (b,) and (b,) stated after
Theorem 3.20. Then, for any K-Souslinian set A in Gy, 1:=1I. If this value
18 finite, || pi— p4l =0.

3.11. Notes and questions.

We assumed no additional condition when we discussed the Gauss varia-
tional problem on compact sets in Chapter II. In Chapter III, however, we
have some limiting process and so we need to assume something more. For
kernels of positive type we assumed the continuity principle too in the first
manuscript; we recall that if a kernel of positive type satisfies the continuity

49) We first observe that V;(K,)>0 for large n by Theorem 3.21 and then that ,uKn(.Q) is bounded
for large n.
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principle, then it is K-consistent and &z for any compact set KC 2 is strongly
complete according to Corollary of Theorem 1.7. We changed it to the pre-
sent form under the influence of Fuglede [1]. One reason why we have not
started from a consistent kernel may be seen in the fact that the kernel #=1
is not consistent in any non-compact space.

In the outer problem one might think that & may be replaced in the
product of an open set, where f and g are defined, by

w(P, 0)=0 (P, 0)— S ) 8@ +[(Q) gP)
I

because of the identity

1=\ 7, @ 4Py (@

However, often we state conditions on 0, f and g separately (although one
condition requires that f(1+g)~' is bounded from above) and can not phrase
these conditions in terms of ¥ and g only.

Open questions.

3.1. Is the inequality in Theorem 3.2 true for % and u%, obtained in
Theorem 3.1 ? And similar questions in other cases.

3.2. Can we replace (a,), by (a). V,(X)>0 in Theorem 3.10 ?

3.3. Does it happen that some v, =oco in the same theorem ?

3.4. Can we require in Theorem 3.9 moreover that u% is supported by
xXer

3.5. Is it sufficient to have f(P) and g(P) defined only in G, in Theorem
3157

3.6. Can we prove the converse part of Theorem 3.18 without the as-
sumption concerning the coincidence of V;-value and V,-value ?

3.7. Question stated after Corollary of Theorem 3.19.

3.8. In case the kernel satisfies the continuity principle, is the identity
L(g, x, f)=1ig, x, ) true for every ®-Souslinian set 4? See the discussion
on capacitability in Kishi [3; 4; 7] in this connection.

3.9. Is the condition f(P)< 0 necessary in Theorem 3.25 ?

3.10. Can we find, for any X, a K,-set K, and a G;-set G; such that K,
CXCGs and I,k (g, x, f)=oo? See the end of § 3.6.

3.11. Is the result corresponding to Theorem 2. 14 true in the inner pro-
blem ?

3.12. Do we have the equalities corresponding to (3.32) and (3.33) in the
outer problem ?
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