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Introduction

A stochastic game is originated by L. S. Shapley [1]. It is a game con-
sisting of a finite collection of positions among which two players 1 and 2
proceed by steps from position to position according to certain prescribed
transition probabilities jointly controlled by them: there is assumed a finite
number of positions 1, 2, , N, and at the position k, a game Γk is played, in
which Player 1 can choose any strategy among the given mk pure strategies
and Player 2 can also choose any strategy among the given nk pure strategies.
We assume that, at the position k, the players 1 and 2 choose their ί-th and j -
th alternatives respectively. We also assume that the game stops with the
probability pV0>0 and the game moves to another position I with the proba-
bility pyt. Thus the game may not be bounded in length. Player 1 takes the
gain g[j from Player 2 whenever the pair ϊ, / of pure strategies is chosen at
the position k. In Shapley's stochastic game, both players use the so-called
stationary strategies, namely at the position k9 whenever and by whatever
route the position may be reached, the probability distributions of choosing
pure strategies are specified. And payments accumulate throughout the course
of the play. Let Γk denote the infinite game begun with Γk. With the aid of
dummy games, Shapley gave a method of finding the value of the stochastic
game which is the collection Γ={fk, &=1, 2, , N}.

As stated above, L. S. Shapley has assumed that at each position there
are only finite numbers of pure strategies from among which each player can
choose one. Generalizations of his theory to infinite sets of alternatives seem
yet to be obtained although he has promised in [1] to discuss them in another
place. It seems interesting to generalize his theory to infinite sets of pure
strategies or to an infinite number of positions.

After giving preliminary remarks in Section 1, we proceed, in Section 2,
to the definition of the stochastic game, at each position of which each play-
er may choose any one out of infinite pure strategies. With suitably imposed
conditions on pay-offs and transition probabilities, we show that the stochastic
games thus defined are strictly determined (Theorem 1 below). Some conside-
rations are given centering around the e -optimal strategies. The proof of
the theorem 1 is carried out with the aid of the dummy games associated with
the original stochastic game (Lemmas 3, 4).

In final Section 3, we concern ourselves with the stochastic games with



124 Masayuki TAKAHASHI

infinite positions. From this, we can generalize Shapley's stochastic game to
the case where non stationary strategies are adopted by both players. How-
ever, it is to be noticed that the value of the game itself is irrelevant whether
the stationary strategies are adopted or not.

§1. Preliminaries

Let A (resp. B) be an abstract set (not necessarily finite) called a strategic
set of Player 1 (resp. Player 2) or merely a strategic set. Any element of A
or B is called a pure strategy. A game is defined to be a quintuplet (A9 B, K,
TO, UΪ), where K is a real valued function, called the pay-off of the game, de-
fined on the product set AxB, and TO, 5JΪ are the mixed strategic sets of the
players 1 and 2 respectively which will be defined later. Player 1 (resp. Play-
er 2) chooses a pure strategy α (resp. 6) from A (resp. 5), each choice being
made independently of the other. Then Player 1 gets K(α, b) and Player 2 —
K(α9 b). Clearly Player 1 wishes to maximize K(α9 b) and Player 2 wishes to
minimize K(α9 b). In this paper, we always assume that K(α9 b) is a bounded
function. Now we define the intrinsic distance of any two points αλ and α2 of
A by

δκ(αl9 α2) = sup I K(αu b) - K(α2, b) | .

Similarly the intrinsic distance of any two elements b\ and b2 of B is defined
by

δ * Q>u b2) =* sup I K(α, 6i) - K(α, b2) I.

The space A (resp. B) with this distance is a pseudo metric space which we
shall denote by a pair (A, 8K) (resp. (£, δ*)) and we shall call it a strategy
space of Player 1 (resp. Player 2). Let SI (resp. S3) be a σ-algebra of subsets
of A (resp. B) such that SI (resp. S3) contains one point set (α) for any α e A
(resp. (b) for any b e B). Let μ (resp. v) be any probability distribution defined
on SI (resp. S3). (A9 31, μ) (resp. (5, S3, v)) stands for a probability space. Let
TO (resp. SSI) be the set of all such μ (resp. v). Any μ, β TO (resp. v e 5JΪ) is called
a mixed strategy of Player 1 (resp. Player 2). Let (£ be the smallest σ -algebra
of subsets of A x B which contains the Cartesian product SI x S3. We assume
that K(α, b) is (^-measurable over A x B. When Player 1 (resp. Player 2) se-
lects μ (resp. v), then the expected value of the pay-off K(α, b) is defined by

K(μ, y)= \\κ(α9 b)dμ(α)dv(b).
BA

It is clear that K(α9 b) = K(μα, vb), where μα (resp. vb) is a probability measure
which assigns the probability measure 1 to the point α (resp. b). We shall al-
so write K(α9 v) instead of K(μα9 v\ and K(μ, b) instead of K(μ9 vb). A. Wald [2]
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has shown that, if one of the reduced strategy spaces, say A, obtained by
identifying any two elements of A whose distance is zero, is precompact, and
if the pay-off K(a, b) is a bounded ©-measurable function as we assumed, then
the reduced B is also precompact, and the game is strictly determined, i.e.

(1) sup inf K(μ, v) = inf sup K(μ, v).

The common value of (1) is called the value of the game.
The following lemmas shall be needed for our later purpose.

LEMMA 1. Let Λ = < A B, K, TO, 31) and Γ 2 = U , £, #, TO, 31) be two games.
If the strategy spaces (A, Sκ) and (A, SH) are precompact, and c is an arbitra-
ry constant, then (A, Sκ+cH) is also precompact.

PROOF. A space is precompact if and only if any sequence of A contains
a Cauchy subsequence. Then the statement of our lemma is obvious from the
inequality:

Sκ+cH(a, ά)^8κ(a, a')+ \c\ 8H(a, a) for any α, a! e A.

Using (1) and Lemma 1, we have

LEMMA 2. Let the strategy spaces (A, Bκ) and (A, SH) be precompact.
Then the game (A, B, K-hcH, TO, 31) is strictly determined.

§2. Stochastic Games with Infinitely Many Pure Strategies

We begin with the definition of the stochastic game. Suppose we are
given N positions 1, 2,..., N. To each position k we consider a game

Γh - (Ak9 B h 9 gk9 TO, 5KΛ),

which we call a component game of the stochastic game which will be defined
below. Let Players 1 and 2 choose a pair (a, b) e Ak x Bk. Then the transition
probabilities pΛ/(α, b) and the stop probability pko(a, b) are given. Here pkι(a, b)
denotes the probability with which the game Γk moves to the next game Γt

when both players choose the pair (α, 6), and pko(a, b) denotes the probability
with which the game stops at this position fe when both players choose the
pair (α, b). We assume that pkι(a, δ), pko(a, b) are bounded and (^-measurable,
so that we can consider the games (Ak, Bk, pkh TO,, 3lk) and (Ah Bk, pk0, TO,, 3lk)
according to the definition given in §1. The stochastic game Γ is defined as
the collection of all Γh pkh and pk0 for k, 1 = 1, 2,. , N. In the following we
assume that

(i) the pay-offs gk(a, b) are bounded and (£,-measurable,
(ii) the transition probabilities pkι(a, b) are K,-measurable for every fe, /,

and mΐpk0(a,b)=-p0>0,
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(iii) both players use stationary strategies,

(iv) payments accumulate throughout the course of the play, and more-

over we assume that

(v) strategy spaces (Ak, 8gk\ (Ah 8Pkι) are precompact for k9 Z=l, 2, , N.

Now we shall define dummy games associated with Γ (note that Luce,

and Raiffa used "truncated games" in [8]). We consider the infinite game fk

begining with Γk. When Player 1 (resp. Player 2) selects mixed strategies μj

(resp. vj) in the component game Γj9 then the expected value Gk(β9 P) of the

gains of Player 1 is given by

(2) Gk(β9 P) = #*06*> vu) + Σ p wO6^ »k)gι(μh y/)

N N

+ Σ Σ Pki(μk, Vk)pih(jJ>h vι)gh(j*h> vh) + ••••
/ = 1 /i = 1

It is our main purpose to prove that the infinite games (ft=l, 2, , N) are
strictly determined, i.e.

sup inf Gk(β, ί) = inf sup Gk(β9 P).
μ V v μ

Now it is clear that Gk(β, P) is a solution of the simultaneous linear equations:

N

(3) i7i =#10*1, yi) + O )

g ^

This consideration leads us to the following
TV-

DEFINITION 1. Let Λjfe(α, 6, v)—gk(a, b)-h Σp^/(α, 6)̂ /, v being any fixed vec-
/ = i

tor Oi, v2y , I JV). The game

is called a dummy game, and denoted by Γd

k(v).
It is to be noticed that the dummy game Γ%(v) is strictly determined by

Lemma 2.

DEFINITION 2. A vector υ* = (v*9 «;*,•••, i? )̂ is called a principal value vec-
tor of the dummy game if its components v* satisfy the following conditions:

vl = sup inf \ \ hk (a9 b9 v*)dμk (a) dvk (b) = inf sup \ \ ,
t*k Vλ J J VΛ μk J J

B A Ak Bk Ak
N

where hk(a, b, υ*)=gk(a9 b)+ ΣpA/(α, &M for every fc.
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Now we shall show the existence of the principal value vector of the
dummy games. Consider the map T\vQ~^υι (called a value transformation) de-
fined by

= sup inf \ \ h*(α, 6, v°)dμk(a)dvkQ>)
M& V/c J J

Bk Ak

for k = 1, 2, , TV. Define the norm of ί) by

k

Then we have

(4) \\Tw -Tυ\\=* max | value of Γd

k(w) - value of Γd

k(υ) \

^ max [ sup | hk (α, 6, w5) — A* (α, 6, υ) \ ]

— sup I ̂ ]p^/(α, ό) (wι—vι)I
Jfe α . δ Z = l

5] p*/ (α, 6) I max \wι —vι\

Then, by the principle of contraction (cf. e.g. [3]), there exists a unique £*
which satisfies Tt;*=ί;*, which implies that the dummy game Γd

k has a unique
principal value vector.

REMARK. From the inequality:

we see that the error estimates of approximate value vectors T"v° decrease
with increasing n.

Next we shall introduce the notion of e -optimal strategies (cf. e.g. [4])
of the dummy games, where e is a non-negative number.

DEFINITION 3. Let v* be the principal value vector of the dummy games.
For each fc, any pair (μf, vf) e yjlk x %lk is said to be e-optimal strategies of
Players 1 and 2 of the dummy games at the position k, when

hk (μf, vh £*) ̂  vt - 6 for any vk e
 sJc\,

and

hk(μh vf, z;*) ̂  vt + 6 for any ^ 6 2JiΛ.

In case where 6—0, the ε-optimal strategy is called merely the optimal
strategy.

Then we have
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LEMMA 3. Any complete set of e-optimal strategies of Players 1 and 2 of
dummy games are c/po-optimal strategies of the original infinite games.

PROOF. Denote the expectation of gains of Player 1 of Γk by G&(/2, P) as
(2). Then we have

N

Gk(fiy P) - vt = hk(μh vh υ*) - vf
1 = 1

TV N

Σ Σ
/ = 1 /i = 1

As λ*(μ*, yf, t)*)—t;*^ e , we have

6 + 6 Σ P w + e | ] Σ
/ = 1 / = 1 /i =

Namely

G*Ca,

Similarly we can show that

G*C2e,P)^t;i-6/p0,

and our lemma is proved.

LEMMA 4. For any given positive 6 , there exist e -optimal strategies of
the dummy games.

PROOF. Let e be any given positive number. We put 6'=i6
We divide ^ (resp. Bk) into non-empty measurable subsets Ak,u ^*,2, , -4*fwΛ

(resp. Bk>u Bk,2, , Bk>nk), where Ak,i (resp. 5Λfy) are smaller than e ' in dia-
meter in the metric δΛ*<β'*'»*>. Let α* = (αΛ>i,αΛf2, , α*f»ιΛ) (resp. βk — QtkΛ* **,2, >
6*,ΛΛ)) denote the finite subset of ^ (resp. Bk) where ak>i (resp. 6Λfy) is any point
chosen from Ak)i (resp. Bkj). Let 9Jl^(resp. Wk) be the set of probability meas-
ures concentrated on <xk (resp. βk). For any μeTlk (resp. ^ e 9ΪΛ) we define μ e
mf

k (resp. p 6 5Rί) as follows:

A(α* fί) = A&(^4Λ,, ) ( r e s p . i>(bk,j) = v(BkJ)).

T h e n

(5) IΛΛ (/L6? v, v*) - Λ* (/?, v, t;*) I < : Σ \ I I A* (α, 6, D*) - AΛ (akh bkh S*
»»y J J

-Aft/ 5Ay

< e' .

If we denote by 7" the value transformation of
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Γ'k
d = (Ak,Bk,hk(a,b,v),Wk,Wk),

then it follows from (5) that

(6) \\v*-T'ΰ*\\< e'.

Let v'* be t h e principal value vector of Γ'k
d, fc=l, 2, ••, N. Then by (4), and

(6) we have

llΓ'/ ? * _ ri+lv*\\ ^ ( i -Poy }\ΰ* - Tv*\\

<f'(i-p oy.

Consequently

\\v* -v'*\\ =\im\\v* - T'nv*\\

< e ' + e ' ( l - p o ) + e ' ( l - p o ) 2 + •••

= c 7PO

According to von Neumann's theorem [5] for finite spaces, ak and βk are

finite, there exist optimal strategies μe, Φ of the game (Ak, Bk, hk(a, b, ?'*), Wk,

Wk), i e

(7) hk(fi&, p, v'*)^»ί*2;»f - e 7po, and

(8) hk(β, ve, 5'*)<υΓ <vt + e '/p0.

Then for any v e yik, we have

(9) h (A 6 , v, »*) = Λ* (/?e, P, £'*) + A* (Ae, v - v, v*)

+ 1] (υf - v',*)Pkι(β-, ϊ>\ where
1-1

(10) I A* Off, v - p , v*)\ < €', and

(11) ! Σ (»Γ -»ί*)p«(A, v)| < e '.

On account of (7), (9), (10), and (11), we have

Similarly we can show that

and our lemma is proved.

THEOREM 1. The stochastic game Γ—{Γk, fc=l, 2, , Â } is strictly deter-

mined. The value of Γk is equal to v*, the A:-th component of the principal value
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vector of the associated dummy games.

PROOF. By Lemmas 3 and 4, we see that there exist e -optimal strate-

gies fie, ίG of Γk for any positive e , that is,

(^ )^t>ί - e and G*(A ϊe

Then

inf Gk(jue, ϊ>)^vt - 6.

As € is any positive number, so we have

(12)

Similarly we have

(13) inf sup G* CM)

V μ

On the other hand it is easy to see that

(14) sup inf Gk (& p) ̂  inf sup Gk (β, p).
μ V V μ

Therefore the inequalities (12), (13), together with the inequality (14) imply

v% = sup inf Gk(u, p) = inf sup Gk(β, p),
μ V v /Λ

which completes the proof of our theorem.
J. von Neumann has called a game to be fair if its value is zero [5]. Ac-

cording to this nomenclature, we shall say that a stochastic game is fair if
its value is zero. As an immediate consequence of Theorem 1, we have

COROLLARY 1. If the games Γk — (Ak, Bk, gk, 9%, SftjO are fair for &=1, 2,
.. , N, then the stochastic game Γ is also fair however the transition proba-
bilities pkι may be chosen.

PROOF. Since the value of every Γk is zero, it is easy to see that the zero
vector is the principal value vector of the associated dummy games. There-
fore it follows from Theorem 1 that the value of fk is zero. This completes
the proof.

Let ak (resp. βk) be any finite subset of Ak (resp. Bk), &=1, 2, .., N. We
denote by K\a\ b) (resp. K"(a, bf\ and resp. K"(a', bf)) the restriction of K on
ak x Bk (resp. on Ak x βk, and resp. on ak x βk). Similar notations shall be ap-
plied to pkι and pko and so on. Then we have the stochastic game

r = ( Γ ί = ( α Λ , Bh gk, 2Kί, % ) , Pki, Pίo, fc=l, 2,..., N\

and so forth. Now we show
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COROLLARY 2. For any positive e , we can choose a finite subset ak (resp.
βk) of Ak (resp. Bk) such that the value of the stochastic game Γ differs at
most by e from the values of Γ\ Γ ' , and Γ ".

PROOF. It is sufficient by Theorem 1 to show the statements for the
principal value vector of the associated dummy games. It was shown in the
proof of Lemma 4 that we can choose <xk and βk to satisfy the requisites of
the statement. The proofs of the other cases may be carried out in a similar
way.

COROLLARY 3. Suppose every Bk is finite, then for any positive e we can
choose a finite subset ak of Ak such that the number of pure strategies con-
tained in ak does not exceed the number of pure strategies contained in Bk for
every /b, and that the values of both stochastic games Γ and Γ' differ at most
by 6 .

PROOF. By Corollary 2, we can choose a finite subset ak of Ak for every h
such that the values of both stochastic games Γ and

Γ ( = ( Γ ί - a Λ , Bk, g'k9 Wt'k9 3G*),/ώ, Pίo, fc = l, 2,.. , ΛO)

differ at most by 6 . Denote the value vector of Γ and the value transfor-
mation associated with Γr by ψ and T respectively, and denote a dummy
game associated with the stochastic game Γ' by Γ'k

d. Suppose ak contain more
points than Bk for & = 1, 2, ,p (p<LN) but not for &=p + l, , N, then since
the strategic sets of both players are finite, we see that ak can be replaced by
a subset ak such that the values of Γ'k

d and Γ'k
d coincide, and ak, Bk contain

the same number of pure strategies for & = 1, 2, , p (cf. Theorem 7 of [7]).
Put ak = ak for &=p + l,.. , TV. Then by denoting the value transformation as-
sociated Γ by T, we have

Namely the values of Γf and Γr are equal. Since the values of Γ and Γ differ
at most by e , so do the values of Γ and Γ'.

Up till now, in considering the strategy spaces, they have been given
originally as abstract sets, in which the topologies were introduced by using
functions gk, pkh k, Z = l, 2, , N. Now, however, we shall assume that the sets
Ak, Bh k = l, 2, , N are from the outset compact topological spaces in the ter-
minology of N. Bourbaki [6], and that gk, pui are continuous functions on Ak

x Bk. It is easy to see that the reduced strategy spaces obtained from (Ak,
8gk), (Bκ, δgk) etc. are compact. Thus the results obtained in the preceding
discussions can be applied to our case. Here Wik (resp. 33*) stands for the σ-
algebra of Borel subsets of Ak (resp. Bk) for ft = l, 2, , N. Then we have

THEOREM 2. The stochastic game just mentioned is strictly determined,
and has optimal strategies.
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PROOF. By Theorem 1 the stochastic game is strictly determined. For
any given positive number e , we can choose e -optimal strategies μe, ve of
the associated dummy games Γd

k=(Ak, Bk, hk (a, 6, £*), 3Ji*, 9iΛ). Consider a U-
net associated with {μe}. Then it is known that it converges vaguely to a
probability measure μ°. Then the inequality

hk(μe

9 v9 υ*)^vt—e for any v e%lk

implies

hk(μ°9 v9 υ*)^> v* for any v e yik.

Similar considerations for {ve} lead us to conclude that there exists a v° e 3lk

such that

hk(μ, v°9 v*)<Lv% for any μ e Wlk.

The proof is completed.

COROLLARY 4. If every Bk consists of nk pure strategies (nk < °°) for k =
1, 2, , iV. Then there exist finite strategic subsets ak of A containing at
most nk pure strategies such that the value of the stochastic game Γ remains
unchanged when Ak are replaced by ak.

PROOF. Using Corollary 3 and Theorem 1, the proof can be carried out
along a similar line as in the proof of Theorem 2.

§3. Stochastic Games with Infinite Positions

In the preceding discussions, as L. S. Shapley assumed, only the stationary
strategies were considered in the stochastic games. Now we shall relax these
restrictions on the mixed strategies which both players select. Then we shall
see that the problem may be reduced to the stochastic games with countably
infinite positions in which both players select stationary strategies as before.
Suppose both players begin with the game Γu without any loss of generality,
with mixed strategies μ[Ό, v[Ό respectively, then according to the transition
probability pu(a9 b)9 depending on a choice of pure strategies (a, b) e Aλ x Bu

the game moves to Γt in the second trial. Both players then select mixed
strategies μf\ vψ respectively and so on. The expected value Gι(ju, P) of the
gains of Player 1 is given by

(15) dCδ, P)

+ Σ Σ
/ = 1 j = 1

The value of the game may be defined as
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sup inf Gi(/i, v) = inf sup Gλ(ju, ϊ>)
μ V V μ

provided this equation holds. The equation leads us to consider the sequence
of games

( 1 6 ) / " Ί , Γ<iy , ΓN> / " Ί 5 ^ 2 j ? /^7V, ,

where Γ, stands at the (zziV+1 + O-th position (0<Ll<LN) for every non-nega-
tive integer n. Taking (15), (16) into account, it is clear that we arrive at a
special case of the stochastic games now defined below:

Suppose we are given countably infinite positions 1, 2,••-. To each posi-
tion k there correspond the game

transition probabilities pkh and stop probabilities pko Here we assume that

(i) the pay-offs gk are uniformly bounded and K^-measurable,
(ii) the transition probabilities pkt are ©^-measurable for every &, Z, and

vanish identically except a finite number of Z's depending on k, and further-
more

inf pko(a, b)=po> 0,
k*a.b

(iii) payments accumulate throughout the course of the play,
(iv) s trategy spaces (Ak, δ8k), (Ak, SPkl) are precompact for k, Z, = l, 2,•••.

If the game begins with the A -th position, then the expected value of the gains
of Player 1 is given by

/ = 1 j = 1

Now it is clear that Gk(β, ί) is a solution of the simultaneous linear equations
of infinite number:

As in Section 2 we considered the dummy games, we can define the dummy
game
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where

N

hk(a9 b, v)=gk(β, b) 4- Σp*/(α> b)vh

v being any fixed vector (vu v2y).

And £* 6 (Γ) is called a principal value vector. As in Section 2, we can show
that there exists a unique principal value vector. As to the e -optimal strate-
gies we can go along the same line, and reach the same conclusion as Theorem
1.

Turning to the original problem, it is easy to see that the value of the
stochastic game is irrelevant whether both players select stationary mixed
strategies or not.
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