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1. Introduction.

In this paper, we are concerned with a real system of » nonlinear differ-
ential equations of the form as follows:

. B )08 =12, ),

where

1° ¢ is a parameter such that |&] <& (5§ >0);
2° the functions fi(x, ¢, &) (=1, 2,..., n) are periodic in z with

period 7" (>0) and are continuous in the domain
D:lx| =3 |m| <L, — oo <t < 4 oo, [6] <3
i=1

ofi(x, 1,6 Ofilx, t, & .
_—"axj T o (l’ ] = 1> 2)"': ”)'

together with

Let us consider the functions
1 (7
(1.2) F;(x) = —T—S fi(x, 1, 0)de (=1, 2,..., n).
0

Then, as is well known, there exists a periodic solution of (1.1) provided
there exists a real solution »; =¢; (i=1, 2,..., n) of the system of equations

1.3) Fix)=0 (¢G=1,2,..,n)

and the Jacobian J of F;(x) with respect to x; does not vanish for x;=¢; (i =1,
2,...,n). In this case, as is well known, the stability of the assured periodic
solution of (1.1) is decided according to the signs of the eigenvalues of J.

But, if the Jacobian J vanishes for x;=c¢; G =1, 2,..., n), the periodic solu-
tion of (1.1) does not necessarily exist even if there exists a real solution of
(1.3).

In the present paper, we investigate some cases where the Jacobian J
vanishes for x;=c; (i=1, 2,..., n) but nevertheless the equation (1.1) has a peri-
odic solution.
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For our discussions, the assumption 2° is not strong enough, because our
investigation needs more minute computation than in the ordinary case, i.e.
the case where the Jacobian J does not vanish for x;=c; (i=1, 2,..., n). Thus,
in the present paper, the condition 2° is replaced by the stronger one as
follows:

2% the functions f;(x, ¢, &) (=1, 2,..., n) are periodic in ¢ with period T
(>0) and are continuous in the domain

D:lx| =3 |m| <L, —oco<t< + oo, |&] <8
i=1

together with their derivatives with respect to (x, &) up to the 3rd order.

2. Preliminary calculations.

Let
2.1 % =@i(u,t, & (G=1,2,.,n)
be the solution of (1.1) such that
(2.2) i, 0,8 =u; (=1,2,.,n),

where |u|= 5”_‘, lu;| <L. From the form of (1.1) and the assumptions on
i=1
filw, t, & (=1, 2,..., n), it is readily seen that, if |&| is sufficiently small, the
functions ¢;(u, ¢, &) (i=1, 2,..., n) are expanded as
2.3) 9y, 1, &)= (pg‘O) (u, ) + &P(il) (u, 2) + 52@52) (u, 1)
+ &P (u, ) + qi(u, 1, &) (=1, 2,..,n)

for any finite value of ¢, where ¢;(u, t, &) = 0(&*) as € 0.
Now, by the initial condition (2.2), it is evident that

?S’O) (u'; O) = Uiy

2.4
@4 {¢’5~D(u, 0) =@ @, 0) =P, 0)=q:w 0,8) =0 (G=1,2,.n)

If we substitute (2.3) into the initial equation (1.1) and compare the coef-
ficients of powers of & we have the system of the linear differential equations
with respect to {?, i, ¥, p® (i=1, 2,..., n). These equations are solved
successively under the initial conditions (2.4) as follows:

I((p(im (u', t) = Ui,

P, 2) — S’ Filu, 11, 0)dlty,
0

(25) / ¢(z‘2) (u’ t) = S; [':zj{ﬁj(us 1, O)S:lfj(Z% L2, O)dtZ +f: (u3 i1, O)]dth
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@ tr.» \ vy
P 0= [ 33 fstas 1, O] 4 a1, 0)
i- =
t2 , 1
X S fk(u'> i3, O)dtii + fj(u') l2, 0)) dtZ
0

+ g 333t 1, 0| fra 0>dz2)(g“ 12, 0,

351G 10| fia t, 0t + £, 1, 0]

where

fislo 6 &= 1,0, i) =T w10,

ft’jk(x9 i, 8) f (x> 12 8)) fz](xa Z 6) aijgs (x> ty 8)7

82ﬁ
| il b, )= e (3 1, ).

As is readily seen, the necessary and sufficient condition that the solu-
tion x; = @; (u, t, &) (i =1, 2,..., n) is periodic in ; with period 7, is that

(26) 7)1'(16, O> 8) = Qi (ua T, 8) (L = 1: 27‘ T n>~
This condition can be written by (2.3) and (2.5) as follows:
@7 LW, T)+ &p®(u, T) + Ep®w, T)+0(E)=0 (=12, .,n).

Now, we assume that
1° the equation

(2.8) PP, T)=0 (=1,2,.,n)
has a real solution u;=¢; (i=1, 2,-.-, n) such that |c| = }n_‘, le;l <L
i=1

a¢(1>

2° the Jacobian J, = det( (c, T)) (i, j=1, 2,-.., n) vanishes.

In the present paper, we shall investigate the case where the rank % of

(D)
%‘Bi_(c, T)) G, j=1, 2,-.., n) is not zero.
U

Let [ be the rank of the matrix <

I=k>1.
The case where k<! and the case where k=1[ shall be studied separately

in the sequel.

the Jacobian matrix <

2 [¢D) .
%ﬁ."(c, T), ¢S (c, T)), then, evidently
U

3. Existence of a periodic solution: Case I where k<.

By our assumptions, we may assume, without loss of generality, that
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3.1) Jl—det( 9Pe (. 7)#0 (@ B=12,b.

Then there exist numbers &,, (a=1, 2,..., k; v=Fk+1,..., n) such that

3.2) a‘p” (, T) + zgm 8% (€, T)=0 (=1,2 ., n;v=k+1.,n).
Making use of these &,, (a=1,2,...,k;v=k +1,..., n), let us rewrite the
equations (2.7) as follows:

PP (w, T) + pP (u, T) + 0(6) =0,
lp®, )+ 316598, 1)
(3.3) P
FE PP 1)+ S e, D] +0(8) =0,

(a:‘l) 2;"') by v=Fk+ 1> ) "’)'

Since the Jacobian J, does not vanish, for sufficiently small |&|, the first
k equations of (3.3) can be solved with respect to u, (a=1,2,..., k) in the
neighborhood of u;=¢; (i=1, 2,..., n) as follows:

(34) uw:uw(uk+la"" Un,y 8) (d:]., 25"') k),
where
(3.5) U (Chsty -y Cny 0) =¢o (a=1,2,... k).

For brevity, let us write the functions (3.4) as u, = u,(u,, §). Such a notation
is used in the sequel without any comment.

For (u,, &) =(c,, 0), the derivatives of the functions u, =u,(s,, & (¢ =1,
2, ..., k) are obtained readily as follows:

Oue _ 1 253_" Op§

Su, Tﬁ=1 Qusy Dpa
(8.6) |
Oty =~ (2
\oe T Zq’ Dea

(a——l, 2, kyv=k+1,...,n),

(C(, 6:19 2}"') k) in]1~

In order to solve the equations (8.3), let us substitute u, = u,(u,, &) (=1,
2,..., k) into the last n—% equations of (3.3). The resulting equations are writ-
ten as follows:

where Dg, are the cofactors of the elements

3.7 Vo, ©)ZE (uy, €) + P (wy, €) +0(E) =0
(/,(,:k + 1,"'5 n),
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where

(B8) Wy )= 9 talas ), 1y T+ 3 g (s €)1, )
G=1,2.; p=k+1,..,n)
Now, by (8.5) and (8.2), it holds that
(e 0)=0,

1 a\!/'<l>
I N _
(3.9) % ou, (¢, 0)=0,

(psN=k+1,.. n).
Hence the equations (3.7) are of the forms as follows:
82 il)

1 = ”
Viluy, )= o 23 2] N (es5 0) (ue — ¢o) (wrn — )

K=k+1A=k+1

+ il (s, &) + E[YSP (cy, 0) + PP (uy, )+ 0() =0
(/"’:k + 1;"‘a IZ),

where
‘}ﬁl) (wy, &) = ‘!’fp (u,, €) — i ﬁ ﬁ] *azqﬁ—'ﬁi(cv 0) (e —co) (ur —cy)
(3.10) ' 2 «Zv12Z5+1 Oulu, ’

‘p;f-z}(uva 8) = ‘l"/(dtz)(uv> 8) - ‘!’;2) (cw O)
(p=k+1,..,n).
Here, by the assumption that k£ </, at least one of 2 (c,, 0’s (u=k+1,..., n)

does not vanish.
Let us investigate the case where €>0. The case where £€<0 can be re-

duced to the former case by the substitution &€= — &'.
Put
(3.11) u, —c,=&"%, (w=k+1,...,n),

then the functions ¥, (u,, &) =¥ ,(c, + &/%v,, €) (u=k+1,..., n) are of the forms
8.12) ¥,(c,+ &%, &) =¢8,(v,, &)

1 = n PR
—elp 3 3 St (© Qv+ Y2 (e, 0) + o(D)]

K=k+1A=k+1 (25N

as €—0.
Now, let us consider the quadratic equations
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(3.13) 2,0,00=0 (u=k+1,..,n),

and suppose these equations have a real solution v, =d, v =k +1,..., n).
Then, if

& 82 IELI)
(3.14) c—det( 33 S, 00d,)70

(pye=k+1,..., n),

the equations £,(v,, §)=0 (u=k+1,..., n) have certainly a unique real solution
vy 0=k+1,..., n) which tends to d, as &~ 0. Evidently such a solution is con-
tinuously differentiable with respect to &'/%, consequently it is of the form

(3.15) v, =dy +0(E"?) (=k+1,. .., n).

By (3.11), the solution v, of the above form yields the solution u, of the
equations (3.7) which is of the form

(3.16) uy,=c, + &%, +o(€?) (=k+1, -, n)

If we substitute (3.16) into (3.4) and make use of the first of (3.6), we see
that

é n Opg

f=1vire1  Ouy

3.17) Uy = Cy — 81/271:‘ ~(¢, T) Dgod,, + 0(E'?)
(a = ]-a 2)"': k)
The results obtained above are stated as

Theorem 1. [n the case where k<l, 1f the quadratic equations (3.13) have
a real solution v,=d, (v ="k +1,..., n) and the Jacobian J, defined by (3.14) does
not vanish, then there exists a periodic solution of (1.1) corresponding to u; (i =
1, 2,..., n) given by (3.17) and (3.16).

4. Existence of a periodic solution: Case II where i =1.

As in the case I, we may assume (3.1) without loss of generality. In the
present case, due to the assumption that k=1, the equalities

4.1) P (e, T) + 3 Eap® (e, T) =0 (=k+1,.,n)
@=1

hold at the same time as (3.2).
As in the case I, we rewrite the equations (2.7) as follows:

PP (@, T) + &2 @, T) + E98 @y T) + 0(H) =0,

(42) I3 k
0@ 1)+ St D +e{pP 1) + 36w D
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n: { @, T) + 2, £, (1, T)} +o()=0
(“:15 2)"') ka V:k—l_ 1""5 71)
and we substitute the solution
(4.3) Uy = Uy (U1, &) (@=1,2,.., k)

of the first k equations into the last (n —k) equations. Then the resulting equa-
tions are of the same form as (3.7), but, in the present case, due to (4.1),

(4.4) PP (e, 0)=0 (w=k+1,.,n)
in addition to (3.9).
Thus the equations (3.7) are written in the present case as follows:
), ” w

1 & .
w,u (u‘n 8) = >J L au au

K=k+1A=k+1

0) (ux —co) (un —cn)

n o P 2 O 7
+6K=>k_i-1 ﬁéu‘ag (Cv, O) (ux CK) + 5 ¢ og? ( Cys O) + ‘1[’"#6 (uva 8)
. @
v 3 T (0, 0) (ae— ) + € (e 0) + PG, O |
KZh+1 R

+ E P (e, 0) + PP (wy, )] 4 0(E%)
(p=k+1,.,n),

where \b,mw,, &) (i=1, 2, 3; p=k+1,..., n) are respectively the remainders in

D (u,, € from which the terms written explicitly are subtracted.
Let us put

(4.5) u,—c, =&, (W=k+1, .., n).

Then the functions 7, (u,, &) =¥ .(c, + &v,, &) (p=k+1,..., n) can be written as
follows:

(4.6) W,(c, + év,, &) =L, (v,, &)
2 (1)

1 2 2, 9
= 82[ 2 2.! L auKau (CM O)UKU/\

K=k+1A=k+1

" BRI ‘!"/
3. G @0 5@ 0fn
2 19
by T, 0+ P, 0+ 4 (e 00D |

(p=k+1,., n).

Therefore, if the quadratic equations

4.7 2.(,,00=0 (u=k+1,.,n)
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have a real solution v,=d, (v=Fk+1,..., n), the equations £2,(v,, 8) 0 (p=k+1,
.,n) have a unique real solution such that v,=d,+0(&) v=k+1,...,n) as E-0,

prov1ded the Jacobian

2.1,(1) 2 (1)
Pt 2

48 Jo=det( 33 SV (e, 0+

¢ (0 0+ 25 (e, 0))0
(s N=Fk -+ 1,-‘-, n).

The solution v, =d,+0(&) v =k+ 1, .., n) of £,(v,, &) =0(u=k+1,...,n)
yields the solution of (4.2) of the forms as follows:

I S 3 a?a )
(u,,——c,, o %DW( P ey O+ 9 0))+0(e)

=k+1
(49) / (a:l, 2:"'> k))
\uy =c, + &, + 0(&)
=k+1,.,n).
The results obtained above are stated as

Theorem 2. In the case II where k=1, 1f the quadratic equations (4.7)
have a real solution v, =d, (v =k+1,..., n) and the Jacobian J, defined by (4.8)
does not vanish, then there exists a periodic solution of (1.1) corresponding to
u; =1, 2,..., n) given by (4.9).

5. Stability of the periodic solution.
Let us consider the real transformation
5.1) ri=eia+r,T,8—u G=1,2,.. n),

where #; is a real solution of (2.7). Then, as is well known, the stability of
the periodic solution x; = @;(&@, ¢, &) is decided according to the convergency of
iteration of the transformation (5.1).

In order to simplify the calculation, let us transform r to s by the linear
transformation

5.2) s=Pr.
Here P= (Ek 0 ), where E, and E,_, are the unit matrices of order % and
k

E E,._
n—k respectively and Z=(§,,). By (5.2), the transformation (5.1) is rewritten
in terms of s as follows:
Se = @0,(17/ + P_IS, T, 8) — Ty (a = 1, 2,"'3 k)’
(5.3)

k N B
=@,@+ P, T, &+ g_.‘lfwﬂ)g(ﬁ + P, T,68) — i, — %Ewuﬁ;
w=k+1,.,n).
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Here it is evident that P~'= ( E, 0 ) Since #; (i =1, 2,..., n) is a solution

—= n—k

of (2.7), the transformation (5.3) can be rewritten as follows: .

k n D w
-3 { a5 T, &) — 3 Ew 2P @ T, e)} 5
B= + “w

+ >’3 9P (@, T, s, +o(|s])  (@=1,2, ., k),
Oy,

v=k+1

5.4) /4 :BZ{ [( a(P" @, T, & + L va Py (u T, 8))

- i Jea(Fran o+ e, Pra o)l

ug+1

P, T, O .+ of5])

IS {f;"” @ T, &) + zéw

p=k+1
(u=k+1,~~~, n),
n
where |s|=>)|s].
i=1

In the sequel, the case I where k<l and the case 1l where k = are investi-
gated separately.

Case I. In this case, by (3.16) and (38.17), the partial derivatives
% @, T, &) (i, j,=1, 2,---, n) can be written as follows:
1

(1)

(5.5) a¢, @, T, g)_s,,+59  T)

o1 282, P 99k
Ta=1ﬁ=1v=k+1 au’jaum 791% B“d"

(Zs]: 17 2,"" IZ).

Let 4 be the matrix of the coefficients of the linear parts in the right
members of (5.4). Then, by (5.5), 4 is of the form as follows:

(5.6) A=E + €Ay + 4y + 0(¥%)
=E4 &[4  AD\ + 2 /AL AR\ + o(e¥?),
( AR A)

(o)) [¢D)
A21 A22

where 459 and 4§y (i=1, 2) are respectively kxk—and (n—k) X (n—k)—matri-
ces. As is seen from (5.4) and (5.5), the elements of Ay, AY,...are as follows:
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[A<1>]wﬂ—~—a¢’“ 1= 3 62 a(p“ e T),

[A<D:| ap = ;?@w (C: T)a

[4 (1)]143 =0,
[A<212>:]w =0;

1 * n 82 (1) aq)(l) n 82 (1)
(2 —_ _ _— \" Al Al _ Al ____
[Ag]_ vB Jl w%i % Wi aU3auw al&M D'Yo& dﬂ. + fl.;k-lpl 81&,3811},;, d/\L

k 1 & & n 82 (1) ) D ” 82 (1)
UL RSP IP DS L5 Dyady + 50 A

=1 J1 a5 8u,38uw Oun [Pty auﬁ,auﬂ
Sl BA S A5 R 3,50 )
B IR R
£ 3, 3‘%—4 !
agle= -5 55 8 S B a3 e,
+B§1§w{ J1 éé/\%l glj 9(11; agm Dyacdy + ,\%1%%‘}'

Since 4 is of the form (56.6), 4 can be written in the exponential form
A =exp(&B),

where B is of the form as follows:

(5.7 B=A; + &%4, + o(&?)
= (A} +o(1) AL +0(1) )
(s“zA(zz; +0(e"%)  EPAZ + o(e'?)

If det A4{+0, the characteristic roots of B are given by Urabe’s lemma
[1] as follws:

pe+0(1) (a=1,2,...,k) and &\, +0(1)] (=Ek-+1,..., n),
where 4, and )\, are respectively the characteristic roots of the matrices

(5.8) AL and AR — AL AL AW,
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But, as is well known, if Ry, <0, R\, <0 (ax=1,2,.,k; v=Ek+1,..., n), the
periodic solution assured in Theorem 1 is stable since & > 0 (§3).
Thus we have

Theorem 3. The periodic solution whose existence is guaranteed by Theo-
rem 1 is stable if the real parts of the characteristic roots of the matrices (5.8)
are all negative.

Case II. In this case, by (4.9), the partial derivatives O @ T, & (j

8u,~
=1, 2,..., n) can be written as follows:
opi_ .~ _ OpiP
(59) 81//]' (u> T, 8) - 81']' + & au] (C9 T)
k 82 <1> 1 ” 8<p<”
2] N\ _ \ B 2>
Té { %‘l aujaum e %‘DB"( 2 oy, bt )
n, iV 09§

2
+ 3 d+ i} 0 G j=12 ).

Vi aujau,

Then, substituting these into the right members of (5.4), we see that the
matrix 4 of the coefficients of their linear parts can be written as follows:

(5.10) A=EFE + &4, + &4, + 0(6?)
__. E + & 4(1) A(l) 82 A<121) A(Z)) + 0(8 )’
\A<211> A(l)) A21 A )/

where

(@D 1

IPg z, OPa
(4% e ="F (& T) = 3} £ Jm (e, T),
=k+1 i

(AR = a‘p" @ T),

[457 1.6 =0,
[A<212>]w =0;

k‘ (1) 1 n a@y) o
L4 = = 3120 1310, ( 55 T 1)

v=1 f=k+1

Al I e s A
+.2 ouon, W

k. k. 82 (1) 1 k, ” a (1
+ 241 évy { Zn . Jl L D«Sa( Z ¢5
y=

~du+ o
@=1 all'sall/.z §=1 M=kl P
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v 3 S

-3 el 3 S;é'; TEn(S T )

v 3 28 0

-5 Sea (-5 00 LA (8 g )
£ 3 3233;1 a2,

@1 (1) 1 ”n ) a¢3 (2
EAZZ v = :EJ auﬂauw ]1 EL Ba < :i: dun dA4‘¢M )

B=1 A=k+1

+ n iV . 29
el au,jauA A u,

B Db z az(pg'm @
+ Léw{ S e I LDW( R )

Y A=k+1
n‘ 82 (1) a¢(2)
+ )\'—%:'l-l 8uM8uA d)\ + 8u,,,, } '

Since A is of the form (5.10), 4 can be written in the exponential form
A = exp(&B),

where B is of the form as follows:

(5.11) B=A1+€<Az-—%A%>+o(8)
( AP +0(1) AL +o(1) .
EAP + 0(8) EAPZ + 0(&) )

If det 40, the characteristic roots of the matrix B are given by Urabe’s
lemma [1] as follows:

e +01) (@=1,2,..,k and &[N, +0(Q)] (=k+1, . ,n),
where p, and ), are respectively the characteristic roots of the matrices
(56.12) AP and AR — AP AL AR,

But, as is well known, if Ru,<0, R\, <0 (=1, 2,..., k; v=k+1,..., n), the peri-
odic solution assured in Theorem 2, is stable since £>0 (§3).
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Thus we have

Theorem 4. The periodic solution whose existence is guaranteed by Theo-
rem 2 1s stable, if the real parts of the characteristic roots of the matrices (5.12)
are all negative.

In conclusion, the author whishes to express his hearty gratitude to Prof.
Urabe for his kind guidance and constant advice.
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