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In an earlier paper of the author [3], a binary relation “_1” between
elements of a lattice L with 0 was called a semi-orthogonal relation if it satis-
fies the following four axioms:

(L1) ald implies bl a;

(L2) alb ay<a i1mply a; ] b;

(L3) albaublc tmply al b\Uc;

(1L4) ala tmplies a=0; 0La forevery ac€ L.

This relation plays an important role in the dimension theory on lattices,
stated in [5].

In this paper, a relation satisfying the three axioms (1.1), (L 2)and (_3)
is called an independence relation, and firstly we shall show some properties
of independent families.

Let (2, o7, P) be a probability space and L(«) be the lattice formed by
all sub o-fields of .«&#. The main result of this paper is that the stochastic in-
dependence is an independence relation in L(«). From this result, the argu-
ment of stochastically independent families of events or random functions
can be stated by a lattice theoretic treatment.

In the last section, we shall show that the stochastic independence is a
semi-orthogonal relation in some sublattice of L(«), and give some other ex-
amples of semi-orthogonality.

§ 1. Independence relation. Let L be a lattice. A binary relation “_”
between elements of L is called an independence relation in L if it satisfies the
three axioms (1), (1 2)and (_.L3). A setS of elements of L is called an in-
dependent family if \ J(a; a € F1) 1.\ J(a; a € F;) holds for every pair of disjoint
finite subsets F,, F, of S. The following proposition can be easily proved.

Prorosrrion 1.1. (i) S is an independent family if every finite subset of
S is an independent family.

(i) Let S be a countable (finite or infinite) set and put S= {ay, as,---}. S 1s
an independent family if a;\J-.-\Ua; L a;+1 for every i.

(iii) S is an independent family if ao L \J(a; a € F) holds for every finite
subset F of S and every element a, € S—F.

Prorosition 1.2, Let F, be a finite independent family for every « € I.
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The union >, F, is an independent family if and only if the set {\J(a; a € F,);
« € I} 1s an independent family.

Proor. The “only if” part is obvious. It can be proved by Proposition
1.1 (iii) and (L 3) that the “if” part holds in the case I={1, 2}, which implies
that it holds in the case where I is finite. Hence, in the general case, it holds
by Proposition 1.1 (i).

An independence relation in a complete lattice is called to be complete if
it has the following property:
If as51a¢ and a5 L b for all 8§ then o L b.

The following proposition can be easily proved.

ProrosiTion 1.3. Let “_1” be a complete independence relation in a com-
plete lattice L.

(1) If S is an independent family, then \ J(a; a € S;) 1\ J(a; a € Sz) holds
Sfor every pair of disjoint subsets S, Sz of S.

(ii) Let S, (a €1) be sets of elements of L. The set {\ J(a; a €S,); a € I} 18
an independent family if and only if, for arbitrary finite subset F, of each S,,
{\J(a; a € F,); € I} 1s an independent family.

(iii) Let S, be an independent family for every a € I. The union >, S, 18
an independent family if and only if the set {\J(a; a € S,); a € I} is an inde-
pendent family.

We remark that the argument of this section can be applied to the case
where L is a semi-lattice.

§ 2. Stochastic independence. Let (2, &7, P) be a probability space (&
is a o-field of subsets of £ and P is a probability measure on .«#). The defini-
tions of stochastic independence were given by Loéve [ 2; Chap. V] as follows
(the union and the intersection of events are denoted by the symbols + and -
respectively):

(I) Events A, (a € I) are independent if for every set of finite indices
{as, -, an}

P(Awl' 'Aw,,) :P(Aw1>"'P(Am”>;

(I,) Classes €, (€ I) of events are independent if events selected arbitra-
ry one from each class are independent.

The set L(«) of all (non-empty) sub o-fields of « forms a complete lat-
tice, ordered by set-inclusion, since the intersection of sub o-fields is also a
sub o-field. (The zero element of L(«) is {¢, £} and its unity element is «.)
In L(s), we define a relation “_1.” by (I»), that is, for #,, 4. € L(«), we write
B | By if P(Al'A2)=P(A1)P(A2) for every A1 € .@1, Az € Xs.

In order to prove that “_L” is an independence relation, we shall prepare
the following lemma, due to Dynkin ([1; Chap. I'], Lemma 1.1).
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LemmA. A class 2 of events is called a =-system if A;, A; € P imply A;-A,
€ 2. Aclass % 1s called a \-system if (1) 2 € %, (2) Ay, Az € €, A1+ A= imply
A1 +A4,€4,8) A1, A€ €, A, DAy tmply A1 — A2 €%, (4) A, €%, A, + A imply A €
€. If a \-system contains a w-system 2P then it contains the o-field generated
by 2.

Prorosttion 2.1.  The relation “ 1L in L(Z) 18 a complete independence
relation.

Proor. It is obvious that the axioms (1) and (.L2) hold. We shall
prove that (L 3) holds. Let #, | #, and #,\ V%, | %, and put ¥={B € &« ; P(B-
A)=P(B)P(A,) for all A, € #,} and #={A4,-A3; A, € B, A3 € B3}. Then, it is
easy to show that # is a a-system (see [2; p. 2247]) and that £ is a =-system.
Moreover, € contains 2, because, for 4; € #; (i=1, 2, 3), it follows from %, L
By, By FBs and B1\JH, | HB; that P(A4,-As)= P(A4,)P(A4;), P(As-As) = P(A;) P(A3)
and P(A;-Ay-A3)=P(A;-A)P(A43), which imply P(A;-Ay-As)=P(A,)P(42-43), and
hence 4,-4; € ¢. Since £ contains %, and %;, the o-field generated by £ con-
tains #,\U%:;. Hence, ¥ contains #,\U4%; by Dynkin’s lemma, and consequent-
ly #,1 %, %;. Finally we shall prove the completeness. Let #; 1 4 and %;_L
#', and put ¥={B € «; P(B-A)=P(B)P(A') for all 4’ € #'} and #=the union
of all #;. Then it is obvious that ¥ is a A-system, £ is a =-system and that
% contains 2. Hence, ¥ contains \ /;%#s; =% by Dynkin’s lemma, and con-
sequently # | #'.

Prorosition 2.2. Sub o-fields %, (« € I) are independent in the sense of (1)
1f and only if they form an independent family in L(2Z) in the sense of §1.

Proor. Let %, be independent in the sense of (I;). To prove that {#,}
is an independent family, it suffices to show that @, 1\ /7.4, for every set
of finite indices {a,---, a,} (Proposition 1.1 (iii)). Putting = {B € «; P(B-A,)
=P(B)P(4,) for all 4, € #,,} and 2= {A4;-...-A,; A; € B,,}, € contains 2 by the
assumption. Hence, by Dynkin’s lemma, % contains \ /7.,%.;, which implies
Boy L\ Ji-1%B4,. Conversely, let {#,} be an independent family. For every set
of finite indices {a,-.-, a,} and for every 4, € #,, (1 <i<n), we have P(4,,-
oAy J=P (g A) P(As,;, ) A<i<n—1) since A, -Ay; € Bo,\J -\ B, |
Boiv, Hence P(Ay---+Ay,)=P(As,)---P(44,). This completes the proof.

From this proposition and the extension theorem of Loeéve ([2; p. 225)),
the concept of independent classes of events is reduced to that of the inde-
pendent family in L(«). Hence, Propositions 1.1 and 1.3 can be applied for
independent classes of events. For example, Proposition 1.8 (ii) implies the
compounds theorem of Loeve ([2; p. 225]), since the compound o-field of o-
fields 4, is equal to the join \ /, Z,.

The definition of independence of random functions was given by Loéve
as follows:



4 Shtichiré6 MAEDA

(I;)) Random functions X, (a € I) are independent 1f they induce independ-
ent o-fields #(X,). (Any random function X taking values from a measurable
space (S, «7(S)) induces a sub o-field X !(=(S)) of o, which we denote by
#(X).) It follows from Proposition 2.2 that random functions X, are inde-
pendent if and only if {#(X,)} is an independent family in L(s). The follow-
ing lemma is useful for the lattice theoretic treatment of independent families
of random functions.

Lemma. (i) Let X be an S-valued random function and F be a measurable
mapping of S into another measurable space (T, o (T)). Then, F(X) is a T-
valued random function and #(F(X)) <2 (X) in L().

(ii) Let X=(X,) be a family of S,-valued random functions X,(« € I).
Then X may be a random function taking values in the product space of S, and
B(X)=\Ju B(X,) in L(L).

(iii) Let (Xi,---, X,) be a family of S;-valued random functions X; and F
be a measurable mapping of the product space of S; into T. Then F(Xy, -, X,)
18 a T-valued random function and

BEXy - X)) ZBXD V- U B(X,).

Proor. (i) holds since 7 (S) contains F~' (=« (7)). (ii) holds since #(X) is
generated by all finite intersections of events 4, € #(X,), « € I. (iii) is a con-
sequence of (i) and (ii).

The Borel functions theorem of Loéve ([2; p. 224]) follows from (iii) of
this lemma, and the families theorem ([2; p. 2257) follows from (ii) of this
lemma and Proposition 1.1 (i). Some other properties of independent random
functions can be proved as consequences of Propositions 1.1 and 1.3. For ex-
ample,

ProrosiTion 2.3. (i) Countable random functions X, X,,..- are indepen-
dent if the family (Xi,---, X;) and X;., are independent for every i.

(ii) Let X,=(X}; B €J].,) is a family of independent random functions for
each aw € I. Families {X,; a € I} are independent tf and only vf all component
random functions {X3; B €J,, o € I} are independent.

§ 3. Semi-orthogonal relation. Let (£, &, P) be a probability space
and L(«) be the complete lattice formed by all sub o-fields of .oz. It is obvi-
ous that o/y={4 € &; P(4)=0 or 1} is an element of L(«).

Prorosition 3.1. (i) If B1L B in L(L) then B<4,; (il) Lo L B for all
% € L(«Z). Hence, the stochastic independence is a semi-orthogonal relation in
the sublattice {# € L(/); B = ,}.

Proor. If #_1 # then P(4)?=P(A) for every A € #, which implies 2 <
&,. (ii) is obvious.
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A lattice L with 0 is called a semi-orthogonal lattice if L has a semi-
orthogonal relation. The above proposition gives an example of the semi-
orthogonal lattice. Next, we shall gives some other examples.

ExamprrLe 1. Let L be a symmetric lattice defined by Wilcox [6], that is,
(a, )M and anb=0 imply (b, a) M ((a, b)) M means that (c Ua)N\b=c\U(anb)
when ¢<<b). We write ¢_Lb when (a, ) M and anb=0. Then, it is obvious
that (1.1) and (L 4) hold. And, it follows from [ 6], Theorem 1.1 and Lemma
1.3 that (_L2) and (_L3) hold. Hence, any symmetric lattice (especially any
semi-modular lattice of finite length or any modular lattice with 0) is a semi-
orthogonal lattice.

ExampLE 2. In an orthocomplemented lattice, the orthogonal relation is
a semi-orthogonal relation having the following special property: ¢ L b, a_lc
imply a_Lb\Uc (see [3; §17).

ExampLe 3. Let 2 be a Rickart ring defined by [4], and L be the lattice
formed by all principal right ideals generated by idempotents of 2[. Then, it
is proved in [4; §17] that a semi-orthogonal relation in L can be defined by
the ring structure of 2[. (Moreover, L is relatively semi-orthocomplemented.)

ExampLe 4. Let .o be a field of subsets of a space 2, and let P be a non-
negative, finitely additive set function on .« such that P(2)=1. The set L(«)
of all (non-empty) subfields of « forms a complete lattice, ordered by set-in-
clusion. We write %, #,(%#:, %, € L(«)) if P(4,-A;) = P(4,)P(4,) for every
A, € B,, Ay € B,. Then, we can prove in the same way as Proposition 2.1 that
“1”in L(«) is a complete independence relation. (Dynkin’s lemma can be
modified as follows: If a class ¥ satisfies the conditions (1), (2), (3) in the
definition of A-system and if ¥ contains a =-system £, then it contains the
field generated by £.) It is obvious that .o/y={4 € &; P(4)=0 or 1} is an ele-
ment of (o), and we can prove in the same way as Proposition 3.1 that the
sublattice {# € L(«); #=x/,} is a semi-orthogonal lattice. (In the case where
& is a o-field, we remark that the lattice of sub o-fields of .« is not always a
sublattice of the lattice of subfields of .«.)
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