
J. Sci. HIROSHIMA UNIV. SER. A-I
27 (1963), 1-5

A Lattice Theoretic Treatment of Stochastic Independence
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In an earlier paper of the author [3], a binary relation " j _ " between
elements of a lattice L with 0 was called a semi-orthogonal relation if it satis-
fies the following four axioms:

(J_ 1) a ± b implies b ±a;

(±2) a±b, aι<La imply a>i±b;

(J_3) a±b, a\Jb ±c imply a±b\Jc;

( JL 4) a ± a implies a — 0 0 ± a for every a e L.

This relation plays an important role in the dimension theory on lattices,
stated in [5].

In this paper, a relation satisfying the three axioms (J_l), (±2) and (J_3)
is called an independence relation, and firstly we shall show some properties
of independent families.

Let (Ω> sf, P) be a probability space and L(J&) be the lattice formed by
all sub σ -fields of $/. The main result of this paper is that the stochastic in-
dependence is an independence relation in L(J/). From this result, the argu-
ment of stochastically independent families of events or random functions
can be stated by a lattice theoretic treatment.

In the last section, we shall show that the stochastic independence is a
semi-orthogonal relation in some sublattice of L(s/\ and give some other ex-
amples of semi-orthogonality.

§ 1. Independence relation. Let L be a lattice. A binary relation " j _ "
between elements of L is called an independence relation in L if it satisfies the
three axioms (±1), (±2) and (±3). A set S of elements of L is called an in-
dependent family if \J(a; a e F{)±\J(a; a e F2) holds for every pair of disjoint
finite subsets Fu F2 of S. The following proposition can be easily proved.

PROPOSITION 1.1. (i) S is an independent family if every finite subset of
S is an independent family.

(ii) Let S be a countable (finite or infinite) set and put S= {au a2y •}. S is
an independent family if aχ\J \Jaj±ai+i for every i.

(iii) 5 is an independent family if ao±\J(a; ae F) holds for every finite
subset F of S and every element a0 e S—F.

PROPOSITION 1.2. Let Fa be a finite independent family for every a e I.
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The union Σ * FΛ is an independent family if and only if the set {\J(a; a e Fa);
ae 1} is an independent family.

PROOF. The "only if" part is obvious. It can be proved by Proposition
1.1 (iii) and (±3) that the "if" part holds in the case /^{l, 2}, which implies
that it holds in the case where / is finite. Hence, in the general case, it holds
by Proposition 1.1 (i).

An independence relation in a complete lattice is called to be complete if
it has the following property:

If a8\ a and αδ _l_ b for all δ then a ± b.

The following proposition can be easily proved.

PROPOSITION 1.3. Let "J_" be a complete independence relation in a com-
plete lattice L.

(i) If S is an independent family, then \J(a; a e Sx) ± \J(a; ae S2) holds
for every pair of disjoint subsets Si, S2 of S.

(ii) Let Sa (a e I) be sets of elements of L. The set {\J(a; ae SΛ); ae 1} is
an independent family if and only if for arbitrary finite subset FΛ of each SΛ,
{\J(a; aeFΛ); ae 1} is an independent family.

(iii) Let Sa be an independent family for every ae I. The union Σ<* S* is
an independent family if and only if the set {\J(a; ae SΛ); a e 1} is an inde-
pendent family.

We remark that the argument of this section can be applied to the case
where L is a semi-lattice.

§ 2. Stochastic independence. Let (Ω, stf, P) be a probability space (^
is a σ-field of subsets of Ω and P is a probability measure on jtf). The defini-
tions of stochastic independence were given by Loeve [2 Chap. V] as follows
(the union and the intersection of events are denoted by the symbols + and
respectively):

(/i) Events AΛ (a e I) are independent if for every set of finite indices
{αi,. , an}

(/2) Classes <£Λ (α e I) of events are independent if events selected arbitra-
ry one from each class are independent.

The set L(j*r) of all (non-empty) sub σ-fields of stf forms a complete lat-
tice, ordered by set-inclusion, since the intersection of sub σ-fields is also a
sub σ-field. (The zero element of L(J^) is {φ, Ω} and its unity element is jaΛ)
In L(jaO, w e define a relation " ± " by (/2), that is, for au &2 £ L(s/), we write
^i_L^2 if P(Aι A2)^P(Aι)P(A2) for every Ax e au A2 e @2.

In order to prove that "_L" is an independence relation, we shall prepare
the following lemma, due to Dynkin ([1; Chap. I], Lemma 1.1).
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LEMMA. A class &> of events is called a rt-system if Au A2 € 0> imply Ax-A2

e 0>. A class Ή is called a \-system if (1) Ω e <€, (2) Au A2 e #, Aλ-A2^φ imply
Aχ-hA2 e tf, (3)AU A2 e <€, Aλ^A2 imply A1—A2 e V, (4)Λ e^,An\ A imply A e
<%. If a X-system contains a 7t-system 0> then it contains the σ-field generated
by &>.

PROPOSITION 2.1. The relation " ± " in L(s#) is a complete independence
relation.

PROOF. It is obvious that the axioms (_Ll) and (±2) hold. We shall
prove that (±3) holds. Let @ι±@2 and ^ υ ^ l ^ , and put &=?{B e &?; P(S
i i ) - P ( 5 ) P ( i i ) for all Aλ e @x) and 0>=*{A2Άz\ A2 e @2, A3 e &3}. Then, it is
easy to show that ^ is a λ-system (see [2; p. 224]) and that & is a τr-system.
Moreover, ^ contains «̂ , because, for A{ e @{ (i=*l, 2, 3), it follows from ^ Ί ±
^2, ^ 2 ± ^ 3 and J i U ^ l ^ s that P(AvA2)^PUι)P(A2\ P(A2-A3)^P(A2)P(A3)
and P{AvA2 A3)^P(AvA2)P{A3\ which imply P(J.vA2-Ad=*P{Aλ)P(A2-A*\ and
hence A2Ά3 e ^. Since 0> contains &2 and ^ 3 , the σ-field generated by 0> con-
tains @2\J@3. Hence, <β contains @2\J@3 by Dynkin's lemma, and consequent-
ly &ι±&2\J&3. Finally we shall prove the completeness. Let «̂ δ | βS and ^ δ ±
39\ and put ^=> {B 6 s/\ P(B Af)=-P(B)P(Af) for all A e &'} and «^=the union
of all &s Then it is obvious that ^ is a λ-system, & is a τr-system and that
^ contains ^ . Hence, ^ contains V7s^δ — ̂  by Dynkin's lemma, and con-
sequently

PROPOSITION 2.2. S^δ σ-fields &«, (a 6 /) are independent in the sense of (/2)
i/ a^d onϊ?/ i/ they form an independent family in L(&f) in the sense of §1.

PROOF. Let ^ a be independent in the sense of (/2). To prove that {@Λ}
is an independent family, it suffices to show that ^*0-L V/ = i ^ for every set
of finite indices {αo, , an) (Proposition 1.1 (iii)). Putting <&~ {B e s#\ P(BΆ0)
=*P(B)P(Ao) for all Ao 6 ^Λ o} and 0>=>{Ai •-.•!„; A{ e &Λ.}, <e contains &> by the

assumption. Hence, by Dynkin's lemma, Ή contains \Jn

i = 1&Λp which implies
@ΛQ±\J'i = ι@ai. Conversely, let {&*} be an independent family. For every set
of finite indices {au ^ <xn} and for every AΛ. e ύSΛi (l^i^ri), we have P(AΛl-
-••Άai+1)^P(Aΰύl'.. ΆΛi)P(AΛi+ί)(l^ί<n-Ί) since A^.- A^ e aΛl\J ..\j&Λ.±
&Λi+1. Hence P(AΛl . .-AΛn)=*P(AΛl) .P(AΛn). This completes the proof.

From this proposition and the extension theorem of Loeve ([2; p. 225]),
the concept of independent classes of events is reduced to that of the inde-
pendent family in L(ja/). Hence, Propositions 1.1 and 1.3 can be applied for
independent classes of events. For example, Proposition 1.3 (ii) implies the
compounds theorem of Loeve ([2; p. 225]), since the compound σ-field of σ-
fields 38Λ is equal to the join \jΛ @Λ.

The definition of independence of random functions was given by Loeve
as follows:
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(73) Random functions Xa {a e I) are independent if they induce independ-
ent σ-fields &(XΛ). (Any random function X taking values from a measurable
space (5, s/(S)) induces a sub σ--field X'1^^)) of J/ , which we denote by
8(X) .) It follows from Proposition 2.2 that random functions XΛ are inde-
pendent if and only if {&(XΛ)} is an independent family in L{s/). The follow-
ing lemma is useful for the lattice theoretic treatment of independent families
of random functions.

LEMMA, (i) Let X be an S-valued random function and F be a measurable
mapping of S into another measurable space (Γ, s/(T)). Then, F(X) is a T-
valued random function and &(F(X))<L&(X) in L(s/).

(ii) Let X — (Xa) be a family of SΛ-valued random functions XΛ(a e /).
Then X may be a random function taking values in the product space of Sa and
a(X)=*\JΛ a(XΛ) in L(sf).

(iii) Let (XΊ, , Xn) be a family of Si-valued random functions Xi and F
be a measurable mapping of the product space of S, into T. Then F(Xu-> , Xn)
is a T-valued random function and

PROOF, (i) holds since s/(S) contains F~ι(jtf(T)). (ii) holds since @(X) is
generated by all finite intersections of events Aa e ^(XΛ)? tf € /. (iii) is a con-
sequence of (i) and (ii).

The Borel functions theorem of Loeve ([2; p. 224]) follows from (iii) of
this lemma, and the families theorem ([2; p. 225]) follows from (ii) of this
lemma and Proposition 1.1 (i). Some other properties of independent random
functions can be proved as consequences of Propositions 1.1 and 1.3. For ex-
ample,

PROPOSITION 2.3. (i) Countable random functions Xu X*25 are indepen-
dent if the family (Xi, , Xi) and Xi+ί are independent for every ί.

(ii) Let XΛ—(X*; β β/Λ) is a family of independent random functions for
each a e I. Families {XΛ a e 1} are independent if and only if all component
random functions {Xl β 6 /Λ, a e /} are independent.

§ 3 Semi-orthogonal relation. Let (J2, j*r, P) be a probability space
and L(s/) be the complete lattice formed by all sub σ-fields of sέ. It is obvi-
ous that s/0=* {A e J / ; P(A)=ίO or 1} is an element of L(s/).

PROPOSITION 3.1. (i) // ^ ± ^ in L(A?) then @<,*/o\ (ii) s/QA-@ for all
31 6 L(jaO. Hence, the stochastic independence is a semi-orthogonal relation in
the sublattice {&} 6

PROOF. If ^ ± ^ then P(A)2 — P(J) for every i 6 ^ 5 which implies
(ii) is obvious.
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A lattice L with 0 is called a semi-orthogonal lattice if L has a semi-
orthogonal relation. The above proposition gives an example of the semi-
orthogonal lattice. Next, we shall gives some other examples.

EXAMPLE 1. Let L be a symmetric lattice defined by Wilcox [6], that is,
(a, b)M and aίλb^O imply (6, d)M ((α, b)M means that (c wά)r\b~c\J(aίλb)
when c<Lb). We write a±b when (a, b)M and aΓ\b=0. Then, it is obvious
that (±1) and (±4) hold. And, it follows from [6], Theorem 1.1 and Lemma
1.3 that (±2) and (±3) hold. Hence, any symmetric lattice (especially any
semi-modular lattice of finite length or any modular lattice with 0) is a semi-
orthogonal lattice.

EXAMPLE 2. In an orthocomplemented lattice, the orthogonal relation is
a semi-orthogonal relation having the following special property: a±b, a±c
imply a±b\Jc (see [3; §1]).

EXAMPLE 3. Let SI be a Rickart ring defined by [4], and L be the lattice
formed by all principal right ideals generated by idempotents of SI. Then, it
is proved in [4; §1] that a semi-orthogonal relation in L can be defined by
the ring structure of SI. (Moreover, L is relatively semi-orthocomplemented.)

EXAMPLE 4. Let j / b e a field of subsets of a space Ω, and let P be a non-
negative, finitely additive set function on s/ such that P(J2)=*1. The set L(ja/)
of all (non-empty) subfields of srf forms a complete lattice, ordered by set-in-
clusion. We write &1±&2(&u ^2 e L(s/)) if P(A1Ά2) = P(A1)P(A2) for every
A\ e ̂ x, A2 β ̂ 2 . Then, we can prove in the same way as Proposition 2.1 that
" ± " in L(s/) is a complete independence relation. (Dynkin's lemma can be
modified as follows: If a class <& satisfies the conditions (1), (2), (3) in the
definition of λ-system and if ^ contains a τr-system ^, then it contains the
field generated by 0>.) It is obvious that J^ 0 — {A e s/; P(A) — 0 or 1} is an ele-
ment of L(s/), and we can prove in the same way as Proposition 3.1 that the
sublattice {& 6 L(s/); &^>s#o} is a semi-orthogonal lattice. (In the case where
j / is a σ -field, we remark that the lattice of sub σ-fields of J/ is not always a
sublattice of the lattice of subfields of s/.)
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