Convex Functionals in a Topological Vector Space

Kyosuke Kitajima

(Received September 20, 1963)

A convex functional on a convex domain of a topological vector space is continuous if it is bounded above in an open subset, and then it becomes locally uniformly continuous [1]. W. Orlicz and Z. Ciesielski have shown [3] that any sequence of convex functionals on a convex domain of a Banach space is equicontinuous if it is bounded at each point of the domain.

In this paper a topological vector space E, locally convex or not, is called a t_0 -space if it satisfies the following condition:

(t₀): Any absorbing convex symmetric closed subset of E is a neighborhood of 0 in E.

Any barrelled space and any topological vector Baire space belong to this type.

In section 1 we shall first prove that if a family of convex, continuous functionals on a convex domain of a t_0 -space is bounded above at each point and is bounded at a point, it is equicontinuous. We then extend the theorem of W. Orlicz and Z. Ciesielski to a case of t_0 -spaces. In section 2, with the aid of these results, we shall discuss the conditions sufficient for a separately continuous functional defined in a convex domain of a product space to be continuous. They also are extended to a family of functionals.

Throughout this paper a space is understood to be a topological real vector space and any functional is assumed to be real-ralued.

§1. We shall say that a functional f on a convex domain is convex if for any $x, y \in D$ the inequality $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y)$ holds, where $\lambda + \mu = 1, 0 \leq \lambda, \mu \leq 1$. A functional f is bounded in a set f if there exists a constant f such that f is included in a domain if there exists a neighbourhood of each point of the domain on which f is bounded. A family $f_{f} = a_{f} = a_{f}$

where K(x) depends on x but not on $\alpha \in A$. The family is simply called equicontinuous if it is equicontinuous at each point. $\{f_{\alpha}\}_{\alpha \in A}$ is uniformly equicontinuous in a set S if, for any given $\varepsilon > 0$, there exists a neighbourhood U of the origin 0 such that $x, x' \in S$, $x-x' \in U$ imply $|f_{\alpha}(x)-f_{\alpha}(x')| < \varepsilon$ for every $\alpha \in A$.

If a space E is a t_0 -space, any convex, symmetric subset of a convex domain D with 0 which is closed in D and absorbs every point of D is a neighbourhood of 0 in E.

Let f be a convex functional on a convex domain $D \subset E$. We note that if f is bounded above in an open subset $K \subset D$, then it is locally uniformly continuous in D ([1], [3]). In the same manner we can show that if a family of convex, continuous functionals on a convex domain $D \subset E$ is bounded in a neighbourhood of a point, then it is uniformly equicontinuous.

In this section we assume that E is a t_0 -space, and that $\{f_a\}_{a\in A}$ is a family of convex, continuous functionals on a convex domain $D\subset E$. First we show.

PROPOSITION 1. (1) If $\{f_{\alpha}\}_{\alpha\in A}$ is bounded above at each point of a neighbourhood U of a point $x_0 \in D$, then $\{f_{\alpha}\}$ is uniformly bounded above in a neighbourhood of x_0 ,

- (2) Furthermore, if $\{f_{\alpha}\}_{\alpha\in A}$ is bounded at the point x_0 , then it is uniformly bounded and uniformly equicontinuous in a neighbourhood of x_0 and bounded below at each point of D.
- (3) If $\{f_{\alpha}\}_{\alpha \in A}$ is bounded at the point $x_0 \in D$, then $\{f_{\alpha}\}_{\alpha \in A}$ is equicontinuous in D if and only if it is bounded at each point of D.

PROOF. Without the loss of generality we may assume that $x_0 = 0$ and U is symmetric. The proof is carried out under these assumptions.

(1): We may suppose that $M = \sup_{\alpha} f_{\alpha}(0) \geq 0$. Let $C = \{x; f_{\alpha}(x), f_{\alpha}(-x) \leq M+1 \}$ for every $\alpha \in A\}$. It is easy to verify that C is convex, symmetric and closed in D. To the end of the proof it is sufficient to show that C absorbs every point of D. Let x be any point in D. x may be supposed to be contained in U. Let λ be a positive number less than 1 such that $\lambda \sup_{\alpha} f_{\alpha}(x)$, $\lambda \sup_{\alpha} f_{\alpha}(-x) \leq 1$.

Then we can show that $f_{\alpha}(\lambda x)$, $f_{\alpha}(-\lambda x) \leq M+1$. In fact, for example,

$$f_{\alpha}(\lambda x) \leq (1-\lambda)f_{\alpha}(0) + \lambda f_{\alpha}(x) \leq M+1.$$

Thus C absorbs the point x.

(2): Let C be the same as above and $M' = \sup_{x \in C, \ \alpha \in A} f_{\alpha}(x)$. Then, for any $x \in C$, we have

$$f_{\alpha}(x) \ge 2f_{\alpha}(0) - f_{\alpha}(-x) \ge 2 \inf_{\alpha} f_{\alpha}(0) - M'$$

which shows that $\{f_{\alpha}\}$ is uniformly bounded below in C. By the remark pre-

ceding Proposition 1, we can conclude that $\{f_{\alpha}\}$ is locally uniformly equicontinuous in C.

Now we show that $\{f_a\}$ is bounded below at each point of D. Let x be an arbitrary point in D and let λ be such that $a = \lambda x \in C$, $0 < \lambda < 1$. We have

$$f_{\alpha}(x) \ge \frac{1}{\lambda} \int_{\alpha} (a) - \frac{1-\lambda}{\lambda} f_{\alpha}(0) \ge \frac{1}{\lambda} \inf_{\alpha} f_{\alpha}(a) - M,$$

consequently $\{f_{\alpha}\}$ is bounded below at x.

(3): Necessity. We may assume that $f_{\alpha}(0) = 0$ for every $\alpha \in A$. Since $\{f_{\alpha}\}$ is equicontinuous at 0, it is uniformly bounded in a neighbourhood of 0. (2) shows that $\{f_{\alpha}\}$ is bounded below at each point of D. We put $h_{\alpha}(x) = f_{\alpha}(x) - f_{\alpha}(x_1)$ for an $x_1 \in D$. In the same manner as above $\{h_{\alpha}\}$ will be equicontinuous, so that it is bounded below at each point of D. Since $h_{\alpha}(0) = -f_{\alpha}(x_1)$, we can conclude that $\{f_{\alpha}(x_1)\}_{\alpha \in A}$ is bounded above. Since $x_1 \in D$ may be arbitrarily chosen, we see that $\{f_{\alpha}\}$ is bounded at each point of D.

Sufficiency. It is an immediate consequence of (2).

Thus the proof is completed.

As an immediate consequence we have

Proposition 2. If $\{f_{\alpha}\}_{\alpha\in A}$ is bounded above at each point of D, then it is locally uniformly bounded above in D and $f(x) = \sup_{\alpha} f_{\alpha}(x)$ is convex and locally uniformly continuous in D. Furthermore, if $\{f_{\alpha}\}$ is bounded at a point in D, then it is locally uniformly bounded and locally uniformly equicontinuous in D.

PROOF. It remains only to show that f is locally uniformly continuous in D. Clearly f is convex in D. Now $\{f_{\alpha}\}$ becomes locally uniformly bounded above in D by Proposition 1, so that f is locally bounded above in D, whence f is locally uniformly continuous in D.

The next theorem is an extension of a theorem of W. Orlicz and Z. Ciesielski ([3], Prop. 3) to a family of convex continuous functionals on a convex domain of a t_0 -space.

THEOREM 1. If $\{f_{\alpha}\}_{{\alpha}\in A}$ is bounded above at each point of a dense subset H which contains a non-void open subset, and if it is bounded below at a point, then we have,

- (1) $\{f_{\alpha}\}\$ is locally uniformly bounded and locally uniformly equicontinuous;
- (2) if $\{f_{\alpha}\}$ is a net converging on H, then it converges on the whole D and the limit functional $f(x) = \lim_{\alpha} f_{\alpha}(x)$ is convex and continuous in D.

Proof. (1): Owing to Proposition 2 it is sufficient to show that $\{f_a\}$ is bounded above at each point of D. H may be assumed to contain 0 as an interior point. For any point $x \in D$ we can take such a positive number λ that

 $x'=(1+\lambda)x \in D$. Let $\{x'_{\beta}\}_{\beta \in B}$ be a net converging on H to x' and put $x''_{\beta}=\frac{1+\lambda}{\lambda}x-\frac{1}{\lambda}x'_{\beta}$. Then we see that there exists an $x''_{\beta_0} \in H$ since x''_{β} converges to 0. $x=\frac{1}{1+\lambda}x'_{\beta_0}+\frac{\lambda}{1+\lambda}x''_{\beta_0}$. Since $\{f_x\}$ is bounded above at x'_{β_0} and x''_{β_0} , it is also bounded above at x.

(2): $\{f_{\alpha}\}\$ becomes equicontinuous by (1). Since $\{f_{\alpha}\}\$ converges on a dense subset H, it follows that $\{f_{\alpha}\}\$ converges on D to a continuous functional, which becomes convex.

REMARK. In the case (2) of the preceding theorem, if we assume that $\{f_{\alpha}\}$ is a sequence, the conditions of boundedness above at each point of H and of boundedness at a point are superfluous.

§2. This section is devoted to the study of the sufficient conditions under which a separately continuous functional on a product space turns out to be continuous.

Let E, F be spaces. Let D stand for a convex domain of $E \times F$ such that $D = D_1 \times D_2$, where D_1 and D_2 are the convex domains of E and F respectively. Let f be a functional on D. We shall use the notation $f_x(\text{resp. } f_y)$ to indicate a functional $f_x(x, y)$ (resp. $f_x(x, y)$).

Proposition 3. If f is convex, then f is continuous if and only if it is separately continuous.

PROOF. It is sufficient to show that if f is separately continuous, then it becomes continuous at any $(x, y) \in D$ which may be assumed to be (0, 0). f(x, 0) and f(0, y) are bounded in 0-neighbourhoods U and V respectively since f is separately continuous. Here we may assume that U and V are convex. Let W be the convex envelope of $U \times \{0\}$ and $\{0\} \times V$. It is clear that W is an 0-neighbourhood of $E \times F$. Any element of W is of the form

$$\lambda(x, 0) + \mu(0, y), \quad x \in U, \quad y \in V, \quad \lambda + \mu = 1, \quad \lambda, \mu \ge 0.$$

$$f(\lambda x, \mu y) \le \lambda f(x, 0) + \mu f(0, y),$$

which shows that f is bounded above on W, and therefore continuous. Next we show the following

Theorem 2. Suppose that E is a t_0 -space and f is separately continuous. Then f is continuous if any of the following conditions is satisfied:

- (1) f_x , f_y are convex for every $x \in D_1$ and $y \in D_2$. $\{f_y\}_{y \in V(b)}$, V(b) being a neighbourhood of b in D_2 , is bounded above at each point of a neighbourhood U(a) of $a \in D_1$.
 - (2) F is finite-dimensional and f_y is convex for every $y \in D_2$:
 - (3) E, F are metrisable and f_{γ} is convex for every $\gamma \in D_2$.

PROOF. (1): Since f is separately continuous, we may assume that $\{f(a, y)\}_{y \in V(b)}$ is bounded. Then it follows from Proposition 1 that the family $\{f_y\}_{y \in V(b)}$ is equicontinuous in a neighbourhood of a. This implies that f becomes continuous at (a, b).

Let (x_0, y_0) be any point of D. We shall show that (x_0, y_0) also shares the property stipulated for (a, b), which enables us to conclude that f is continuous at (x_0, y_0) . Put $y_0 = \lambda b + (1-\lambda)y_0'$ for a λ , $0 < \lambda < 1$, $y_0' \in D$. Consider the set $C_2 = \{y; f_x(y) \leq \max \sup_{y \in V(b)} f_x(y), f_y(y_0')\}$ for every $x \in U(a)\}$. Clearly C_2 is convex and contains V(b) and y_0' so that y_0 is an interior point of C_2 . This shows that $\{f_y\}_{y \in V(y_0)}$ is bounded above at each point of U(a), where $V(y_0)$ is a suitable neighbourhood of y_0 . Similarly we choose a μ , $0 < \mu < 1$ in such a way that $x_0 = \mu a + (1 - \mu)x_0'$, $x_0' \in D_1$. Since $f_{x_0'}$ is continuous at y_0 , we may assume that $\{f_y\}_{y \in V(y_0)}$ is bounded at x_0' . If we consider the set $C_1 = \{x; \{f_y(x)\}_{y \in V(y_0)}\}_{y \in V(y_0)}$ is bounded above}, then C_1 is convex and contains U(a) and x_0' . This shows that x_0 is an interior point of C_1 , that is, $\{f_y\}_{y \in V(y_0)}$ is bounded above at each point of a neighbourhood of x_0 .

- (2): F is locally compact. Let (x_0, y_0) be any point of D. If we consider a compact neighbourhood $V(y_0)$, every f_x is bounded on $V(y_0)$. Then $\{f_y\}_{y \in V(y_0)}$ becomes bounded at each point of D_1 , and in turn equicontinuous in D_1 by Proposition 2. This together with the separate continuity of f implies that f is continuous at (x_0, y_0) .
- (3): Let (x_0, y_0) be any point of D. Let $\{(x_n, y_n)\}$ be any sequence of D which converges to (x_0, y_0) . It suffices to show that $f(x_n, y_n) \rightarrow f(x_0, y_0)$ as $n \rightarrow \infty$.

Put $f_n(x) = f(x, y_n)$. Since f is separately continuous, $\{f_n(x)\}$ converges to $f(x, y_0)$ for each $x \in D_1$. Applying Theorem 1 to the sequence $\{f_n\}$, we see that $\{f_n\}$ converges uniformly on the compact set $\{x_n\}_{n\geq 0}$, whence we can conclude that $f(x_n, y_n) \rightarrow f(x_0, y_0)$ as $n \rightarrow \infty$.

Proposition 4. Let E be a Baire space and F a metrisable space. If f is separately continuous and f_y is a convex for every $y \in D_2$, then f is continuous.

PROOF. Let $(a, b) \in D$. We consider the sets $C_n = \left\{x; f(x, y) \leq n \text{ for every } y \in S\left(b, \frac{1}{n}\right)\right\}$, where $S\left(b, \frac{1}{n}\right)$ stands for a closed ball with center b and radius $\frac{1}{n}$. C_n is a convex closed subset of D_1 and $D_1 = \bigcup_n C_n$. Since D_1 is a Baire space, $D_1 = \bigcup_n C_n^0$, so that there exists an n such that $a \in C_n^0$, and in turn f is bounded above on $C_n^0 \times S\left(b, \frac{1}{n}\right)$. It follows from this and Theorem 2 that f is continuous. The proof is completed.

Finally we show

Theorem 3. Suppose that E is a metrisable t_0 -space and F is metrisable.

If a family $\{f_{\alpha}\}_{\alpha\in A}$ of functionals on D is bounded at each point of D, $\{(f_{\alpha})_x\}_{\alpha\in A}$ is equicontinuous in D_2 for every $x\in D_1$, and $(f_{\alpha})_y$ is convex and continuous in D_1 for every $y\in D_2$, then $\{f_{\alpha}\}$ is equicontinuous in D. In particular, if $\{f_{\alpha}\}$ is a convergent net, then $f=\lim_{\alpha} f_{\alpha}$ is continuous in D.

PROOF. Let (x_0, y_0) be any point of D. Consider a sequence $\{(x_n, y_n)\}$ converging in D to (x_0, y_0) . Put $f_{\alpha}^{(n)}(x) = f_{\alpha}(x, y_n)$. The family $\{f_{\alpha}^{(n)}\}$ is bounded at each point of D_1 . In fact, for any x_0' we can take a neighbourhood $V(y_0)$ on which $|f_{\alpha}(x_0', y) - f_{\alpha}(x_0', y_0)| < 1$ for every $\alpha \in A$. Then it follows from Theorem 1 that $\{f_{\alpha}^{(n)}\}$ is equicontinuous, so that we can infer that $f_{\alpha}(x_n, y_n) \to f(x_0, y_0)$ uniformly with respect to α as $n \to \infty$. It follows from a lemma of Bourbaki ([2], p. 29) that $\{f_{\alpha}\}$ is equicontinuous. In particular, if $\{f_{\alpha}\}$ is a convergent net, $f = \lim_{\alpha} f_{\alpha}$ is continuous since $\{f_{\alpha}\}$ is equicontinuous. The proof is completed.

REMARK. In the preceding Theorem, if $\{(f_{\alpha})_x\}_{\alpha\in A}$ and $\{(f_{\alpha})_y\}_{\alpha\in A}$ are respectively families of equicontinuous convex functionals for every x and every y, then the same conclusions will also hold. The proof will be carried out by applying Theorem 3 and (3) of Proposition 1 to the family of functionals $h_{\alpha}(x, y) = f_{\alpha}(x, y) - f_{\alpha}(x_0, y_0)$.

Most of the results established in this section may be extended with necessary modifications to the case of a functional or a family of functionals on a convex domain in a product space of more than two spaces.

References

- [1] N. Bourbaki, Espaces vectoriels topologiques, Chap. I, II. Paris Hermann (1953).
- [2] ——, Espaces vectoriels topologiques, Chap. III, IV. Paris Hermann (1955).
- [3] W. Orlicz and Z. Ciesielski, Some remarks on the convergence of functionals on bases, Studia Math., 16 (1958), 335-352.

Department of Mathematics, Saga University.