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A convex functional on a convex domain of a topological vector space is
continuous if it is bounded above in an open subset, and then it becomes local-
ly uniformly continuous [17]. W. Orlicz and Z. Ciesielski have shown [ 3] that
any sequence of convex functionals on a convex domain of a Banach space is
equicontinuous if it is bounded at each point of the domain.

In this paper a topological vector space E, locally convex or not, is called
a t-space if it satisfies the following condition:

(to): Any absorbing convexr symmetric closed subset of E is a neighborhood of
0 in E. ‘

Any barrelled space and any topological vector Baire space belong to this
type.

In section 1 we shall first prove that if a family of convex, continuous
functionals on a convex domain of a z-space is bounded above at each point
and is bounded at a point, it is equicontinuous. We then extend the theorem
of W. Orlicz and Z. Ciesielski to a case of z-spaces. In section 2, with the aid
of these results, we shall discuss the conditions sufficient for a separately
continuous functional defined in a convex domain of a product space to be
continuous. They also are extended to a family of functionals.

Throughout this paper a space is understood to be a topological real vec-
tor space and any functional is assumed to be real-ralued.

§1. We shall say that a functional f on a convex domain is convex if for
any x, y € D the inequality f(Ax-+#y)<<Af(x)+ #f(y) holds, where A+#=1, 0
4, #<1. A functional f is bounded in a set S if there exists a constant C such
that » € S implies |f(x)|<<C. f is locally bounded in a domain if there exists
a neighbourhood of each point of the domain on which f is bounded. A family
{fa} wea of functionals is bounded at a point x if there exists a constant C such
that |f,(x)| <<C holds for every a € 4. It is uniformly bounded in a set S if
there exists a constant C such that x € S implies |f,(x)| <C for every a ¢ 4,
where C does not depend on x. {fu}sea is locally uniformly bounded in a do-
main if there exists a neighbourhood of each point of the domain in which
{fa} wea is uniformly bounded. The boundedness above (resp. below) of a func-
tional or a family of functionals may be defined in an obvious manner. {f.}aca
is equicontinuous at a point x if, for any given ¢>0, there exists a neighbour-
hood K(x) of x such that »’ € K(x) implies |f,(x) — fu(s")| <& for every a € 4,
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where K(x) depends on x but not on « € 4. The family is simply called equi-
continuous if it is equicontinuous at each point. {f.}.cs is uniformly equi-
continuous in a set S if, for any given ¢>0, there exists a neighbourhood U
of the origin 0 such that x, ' €S, x—a" € U imply |f.(x)—fu(x")| <e for every
a€ A

If a space E is a fy-space, any convex, symmetric subset of a convex do-
main D with 0 which is closed in D and absorbs every point of D is a neigh-
bourhood of 0 in E.

Let f be a convex functional on a convex domain DCE. We note that if
f is bounded above in an open subset K CD, then it is locally uniformly con-
tinuous in D (1], [38]). In the same manner we can show that if a family of
convex, continuous functionals on a convex domain D C E is bounded in a
neighbourhood of a point, then it is uniformly equicontinuous.

In this section we assume that E is a #-space, and that {f.}.ca is a fami-
ly of convex, continuous functionals on a convex domain D CE. First we
show.

ProposiTioN 1. (1) If {fu}aca is bounded above at each point of a neighbour-
hood U of a point x, € D, then {f,} 1s uniformly bounded above in a neighbour-
hood of xo,

(2) Furthermore, if {fu}aca s bounded at the point xo, then it is uniform-
ly bounded and uniformly equicontinuous in a neighbourhood of x, and bounded
below at each point of D.

(3)  If {fa}aca is bounded at the point x, € D, then {fu}uca S equicontinu-
ous in D if and only if it is bounded at each point of D.

Proor. Without the loss of generality we may assume that x,=0 and U
is symmetric. The proof is carried out under these assumptions.
(1): We may suppose that M=supf.,(0)>0. Let C= {x; fu(x), fu —x)<M+1

for every o € A}. It is easy to verify that C is convex, symmetric and closed
in D. To the end of the proof it is sufficient to show that C absorbs every
point of D. Let x be any point in D. x may be supposed to be contained in U.
Let 2 be a positive number less than 1 such that 2 sup falx), 4 sup fa(—2) <1,

Then we can show _’chat falAx), fo( —Ax)<M+1. In fact, for example,
fm(lx)g(l - l)fw(o) + lfm(x)SM‘f‘ 1.

Thus C absorbs the point x.
(2): Let C be the same as above and M’ =sup f,(x). Then, for any x € C, we

x€C, ®€A
have

Ja@)=2fa(0) — fa(— %) =2 inf fo(0) — M’

which shows that {f,} is uniformly bounded below in C. By the remark pre-
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ceding Proposition 1, we can conclude that {f,} is locally uniformly equicon-
tinuous in C.

Now we show that {f,} is bounded below at each point of D. Let x be an
arbitrary point in D and let 1 be such that a=1x € C, 0<i1<1. We have

fo@ =5 ful@) =L 0= inf ) — M,

consequently {f,} is bounded below at x.
(8): Necessity. We may assume that £,(0)=0 for every a € 4. Since {/,} is
equicontinuous at 0, it is uniformly bounded in a neighbourhood of 0. (2)
shows that {/,} is bounded below at each point of D. We put %,(x) = f.(x) —
fao(%) for an x; € D. In the same manner as above {%,} will be equicontinuous,
so that it is bounded below at each point of D. Since £,(0)= —f,(x1), we can
conclude that {f.(x1)}aca is bounded above. Since x, € D may be arbitrarily
chosen, we see that {f,} is bounded at each point of D.

Sufficiency. It is an immediate consequence of (2).

Thus the proof is completed.

As an immediate consequence we have

ProposiTioN 2. If {fu}aea 18 bounded above at each point of D, then it 1s
locally uniformly bounded above in D and f(x)=sup f.(x) is convex and locally

uniformly continuous tn D. Furthermore, if {f.} 1s bounded at a point in D,
then it is locally uniformly bounded and locally uniformly equicontinuous in
D.

Proor. It remains only to show that 7 is locally uniformly continuous
in D. Clearly fis convex in D. Now {f,} becomes locally uniformly bounded
above in D by Proposition 1, so that f is locally bounded above in D, whence
£ is locally uniformly continuous in D.

The next theorem is an extension of a theorem of W. Orlicz and Z.
Ciesielski ([ 3], Prop. 8) to a family of convex continuous functionals on a
convex domain of a z-space.

TueoreM 1. If {fu}aea ts bounded above at each point of a dense subset H
which contains a non-void open subset, and if it is bounded below at a point,
then we have,

@) {fa+ s locally uniformly bounded and locally uniformly equicontinu-
ous;

(2) if {fa} s a net converging on H, then it converges on the whole D and
the limit functional f (x):lim fux) s convex and continuous in D.

Proor. (1): Owing to Proposition 2 it is sufficient to show that {f.} is
bounded above at each point of D. H may be assumed to contain 0 as an in-
terior point. For any point x € D we can take such a positive number 1 that
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=01+ 2)xeD. Let {x'g}pep be a net converging on H to x’ and put x"pg=

1—1_1—95 — f}v x's. Then we see that there exists an x5, € H since x'’s converges
1 7/ l r7 M s / s
t0 0. x= i1 %8 + T e Since {f.} is bounded above at x’;, and x5,

it is also bounded above at x.

(2):  {fa} becomes equicontinuous by (1). Since {f,} converges on a dense
subset H, it follows that {f.,} converges on D to a continuous functional,
which becomes convex.

Remark. In the case (2) of the preceding theorem, if we assume that
{f.} is a sequence, the conditions of boundedness above at each point of H
and of boundedness at a point are superfluous.

§2. This section is devoted to the study of the sufficient conditions under
which a separately continuous functional on a product space turns out to be
continuous. ’

Let E, F be spaces. Let D stand for a convex domain of Ex F such that
D=D, x D,, where D; and D, are the convex domains of E and F respectively.
Let f be a functional on D. We shall use the notation f.(resp. f,) to indicate a
functional y € F—f(x, y) (resp. x € E—>f(x, y)).

ProrosiTion 3. If f is convex, then f is continuous if and only if it is
separately continuous.

Proor. It is sufficient to show that if f is separately continuous, then it
becomes continuous at any (x, y) € D which may be assumed to be (0, 0). f(x,
0) and f(0, y) are bounded in 0-neighbourhoods U and V respectively since f
is separately continuous. Here we may assume that U and 7 are convex. Let
W be the convex envelope of Ux {0} and {0} x V. It is clear that W is an 0-
neighbourhood of Ex F. Any element of W is of the form

A, 0)+20,y), x€U, yeV, A+u=1, 2, 1>0.
[ Qx, tty) <Af(x, 0) + ££(0, y),

which shows that f is bounded-above on ¥, and therefore continuous.
Next we show the following

TueorEM 2. Suppose that E is a s-space and f is separately continuous.
Then f is continuous if any of the following conditions is satisfied:

) fx f5 are convex for every x € Dy and y € Dy, {f,} evr), V(D) being a
neighbourhood of b in D,, is bounded above at each point of a meighbourhood
U(a) of a € D;.

(2) F 1s finite-dimensional and f, is convex for every y € Ds:

(3) E, F are metrisable and f, is convex for every y € D,.
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Proor. (1): Since f is separately continuous, we may assume that
{f(a, ¥)} yevsy is bounded. Then it follows from Proposition 1 that the family
{fy}yev(ry 1S equicontinuous in a neighbourhood of a. This implies that f be-
comes continuous at (a, b).

Let (o, o) be any point of D. We shall show that (xo, yo) also shares the
property stipulated for (a, b), which enables us to conclude that f is continu-
ous at (xo, y0). Put yo=2b+(1—2)y; for a 2, 0<2<1, y; € D. Consider the set
Co={y; f( y)gmaxgg%)) f(¥), fx(y0)] for every x € U(a)}. Clearly C; is convex

and contains V(b) and y{ so that y, is an interior point of C,. This shows that
{fy}yev(s,) s bounded above at each point of U(a), where V(y,) is a suitable
neighbourhood of y,. Similarly we choose a #, 0<#<1 in such a way that
wo=HMa+(1—/)xg, x5 € D;. Sinee f,; is continuous at y,, we may assume that
{fs} yev(y, 18 bounded at x;. If we consider the set C, = {x; {f,(®)},ev(y,) 1S
bounded above}, then C; is convex and contains U(c) and ;. This shows that
% is an interior point of Ci, that is, {/}},er(;,) is bounded above at each point
of a neighbourhood of «x,.

(2): Fis locally compact. Let (%, y0) be any point of D. If we consider
a compact neighbourhood V(yo), every [, is bounded on ¥(y,). Then {/}}ev(y,
becomes bounded at each point of D, and in turn equicontinuous in D; by
Proposition 2. This together with the separate continuity of f implies that f
is continuous at (x, yo).

(3): Let (o, o) be any point of D. Let {(x,, y.)} be any sequence of D
which converges to (xo, o). It suffices to show that f(x., y,)— f(=x0, yo) as n—

Put f(x)=/(x, y.). Since f is separately continuous, {/,(x)} converges to
f(=, yo) for each x € D,. Applying Theorem 1 to the sequence {f,}, we see that
{f»} converges uniformly on the compact set {x,},-0,, whence we can conclude

that ((x,, y.)—f(%0, ¥0) as n—>o0.

Proposition 4. Let E be a Baire space and F' a metrisable space. If f is
separately continuous and f, is a convex for every y € Dy, then f 1s continuous.

Proor. Let (¢, b) € D. We consider the sets C, = {x; f(x, 7)<n for every
yES(b, %)}, where S(b, —Ill-> stands for a closed ball with center .5 and

radius % C, is a convex closed subset of D, and D,=\,C,. Since D, is a
Baire space, D, =\ ,C), so that there exists an » such that « € C, and in turn
/ is bounded above on C2x8<b, %) It follows from this and Theorem 2
that f is continuous. The proof is completed.

Finally we show

Turorem 3. Suppose that E is a metrisable i»-space and F 1is metrisable.
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If a family {fa}sea of functionals on D is bounded at each point of D, {(fa),} xea
18 equicontinuous in D, for every x € Dy, and (f.), is convex and continuous in
D, for every y € D,, then {f.} is equicontinuous in D. In particular, if {f.} s
a convergent net, then f =1iwm fa 18 continuous in D.

Proor. Let (x0, y0) be any point of D. Consider a sequence {(x., y.)} con-
verging in D to (%o, y0). Put f&'(x)=fu(x, y»). The family {f%'} is bounded at
each point of D;. In fact, for any x; we can take a neighbourhood 7 (y,) on
which | f(x5, ¥)—fulg, v0)| <1 for every a € A. Then it follows from Theorem
1 that {f} is equicontinuous, so that we can infer that f£,(x,, y.)— f(%0, ¥0)
uniformly with respect to « as n—>co. It follows from a lemma of Bourbaki
(2], p. 29) that {f.} is equicontinuous. In particular, if {f,} is a convergent
net, f=1lim £, is continuous since {f,} is equicontinuous. The proof is com-

pleted.

Remark. In the preceding Theorem, if {(f.):}sea and {(f.),}aca are re-
spectively families of equicontinuous convex functionals for every x and every
¥, then the same conclusions will also hold. The proof will be carried out by
applying Theorem 3 and (3) of Proposition 1 to the family of functionals
ha(x, y)=fw(x, }’) _fa(xOs yo) .

Most of the results established in this section may be extended with
necessary modifications to the case of a functional or a family of functionals
on a convex domain in a product space of more than two spaces.
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