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1. Introduction. The extension problem of groups has been investigat-
ed by many authors. Especially S. Eilenberg and S. MacLane studied this
problem by using the cohomology theory in [8 ¥ and [9]. R. H. Bruck studied
the problem of the Moufang loop-extensions of an abelian group by a Mou-
fang loop, the central Moufang extensions, by using the factor set in [67].

In this paper, we shall investigate such a loop extension L of a group G
by a group /" as satisfies the following conditions: i) L is a Bol-Moufang loop
(i.e. a[b(ac)]=[a(ba)]c in L), ii) L has G as a normal subgroup in its nucleus,
iii) L/G=I". Let us call the above extension the BM-extension of G by I". For
this purpose of ours, we shall construct a new cohomology group (named M-
cohomology group). This new M-cohomology group will enable us to discuss
our extension problem in parallel with the ordinary extension problem of
groups, and to make the Bruck’s result clearer, when I” is a group. Moreover,
in the same way as that used in the group extension, we shall be able to treat
the case where the group G is non-abelian.

In §§2 and 3, we shall study: (i) the necessary and sufficient conditions
for the existence of the BM-extension of G by I'; and (ii) the conditions for
two BM-extensions to be equivalent. Two BM-extensions L, and L, are equi-
valent if there exists an isomorphism between them, under which G and each
coset of L,/G and L,/G are invariant. In order to classify the BM-extensions,
§4 will be devoted to the construction of the M-cohomology group H*” which
corresponds to the ordinary cohomology group in the group extensions. By
using our M-cohomology group, we shall classify all BM-extensions of an
abelian group G by a group I in §5. §6 is concerned with the properties of the
element of H*® which is determined by the homomorphism 0:7"— Aut(G)/In(G)
induced by the BM-extension. By using these properties, in §7 we shall study
the necessary and sufficient condition for the existence of the BM-extension
of a non-abelian group G by a group /", and when such BM-extension exists, we
shall show that all non-equivalent BM-extensions correspond one-to-one to the
elements of the second M-cohomology group H*? (I, C), (C is the center of G).
The last §8 will contain some properties of the third M-cohomology group.

2. BM-extensions of groups. In this section, we obtain the necessary
and sufficient conditions for the existence of the BM-extension L of a group

(1) The number in the brackets refers to the references at the end of this paper.
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G by a group I'. Let G and I" be two given groups whose elements are de-
noted by the letters a, b,¢, --- and «, 3, 7, --- respectively. Now, let L be a
BM-extension of G by I" and let us choose the representatives g, of the cosets
of G in L such that the unit element 1 of L is the representative of G. Then
there are the elements f(a, 8) of G such that

(1) gmgﬁzgmﬁf(aa B):

where f(a, ) =e= f(¢, B), (e and ¢ are the unit elements of G and 7" respec-
tively).

On the other hand, the product of two arbitrary elements g,z and ggb of
L is:

©)) (8+a) (88D) = 8asf(t, B) (aT8p)b,

where T, is an inner mapping of L defined by x(yT.)=yx, (x, y € L) and it is
an inner automorphism of G when x and y belong to G.

Since G is contained in the nucleus of L, where the nucleus is the set of
all elements a satisfying the conditions a(xy)=(ax)y, x(ay)=(xa)y and x(ya)=
(%y)a; a, %, y € L, it follows that if 7, is restrieted in G, it is an automorphism
of G. Further, for an arbitrary element « of G we have:

(3) a Tga,.g Tf(d,,ﬁ) =a Tgw Tgﬂ.

Since L is a Bol-Moufang loop, so it holds that g.[ ge(g.gy)]1=[gu(gsg) gy
From this relation, we have:

@ fla, Ban)fB, anfle, 1) = flaBa, 1) (f(a, Ba)Tg,) (f(8, @) Tgy)-

Thus, to a given BM-extension, there ¢orrespond the elements f(a, B) of G and
a system of automorphisms Tg, of G which satisfy the conditions (3), (4) and
fla, e)=e=f(e, B). A system of all elements f(«, B) of G is called an M-factor
set.

Conversely, let us assume that in a group G a system of elements f(«, B);
a, 8 € I' is chosen and that every element « of I" is associated with an auto-
morphism T, of G for which the conditions (3), (4) and f(«, e)=e=f(¢, B) are
satisfied. Then we may show that there exists a BM-extension of G by I" for
which elements f(«a, ) are the M-factor set and the set {7,} is a system of
automorphisms in the above sense.

Now let L be the set of all pairs («, a), ® €', a € G. In L, we define the
equality and the multiplication as follows: (i) («, a)=(g, b) if and only if =4
and a=b; (i) (a, @) (B, b)=(aB, f(a, B) (aTe)b). Then L is a loop with the
unit element (¢, e), and further it is a Bol-Moufang loop by the conditions (3)
and (4).

Next, if we denote the set of elements a=(e, ¢)(z € G) by G, then it holds
that G=G. Further the correspondence carrying the element («, a) of L into
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the element « of I is a homomorphism of L onto /” and its kernel is the sub-
group G. So, G is a normal subgroup of I and it holds that L/G=~I". By the
simple calculation, we can see that G is contained in the nucleus of I. There-
fore I is a BM-extension of G by I".

Next, if we use the notation g,=(a, e), it holds g.a=(«, ). If we choose
Z. as the representatives of G in L, then it follows that g.gs=gus/(ct, B), dga
=gaaT,. So,if we identify G with G, the M-factor set of L is f(a, f), and a
system of automorphisms is {7,}. Thus L is a required BM-extension of G by
r.

Let L be the BM-extension whose M-factor set is f(a, 8) and the system
of automorphisms is {7,}. If we construct the above BM-extension L using
this M-factor set f(«, 8) and the system of automorphisms 7,, two BM-exten-
sions L and L are isomorphic by the correspondence which associates g,z with
Z.d. Further, each element of the subgroup G and each coset of L/G and L/G
are invariant under this isomorphism.

Now, we define the equivalence of BM-extensions; that is, two BM-exten-
sions L and L’ are equivalent if there exists an isomorphism between L and L’
that on G coincides with identity automorphism and that maps onto each
other the cosets of G corresponding to one and the same element of /.

Then, we have the following results:

Prorosition 1. For each BM-extension of a group G by a group I, if we
choose the representatives g, such that g.=1 there correspond the elements f(c, 8)
of G and a system of automorphisms T, which satisfy the conditions:

aTos3Tf(a,8 = aTsTs, a€G, a,pBerl,
fla, Ban)f(B, ar) fla, ) = flapa, 7) (fla, Ba)T,) (f(B, @) Ty), @, B, 7€,
f(aae):e:f(eaﬁ)- a, Bel.

Conversely, to every system of elements f(a, B) and of automorphisms T, of G
which satisfy the above conditions, there corresponds a BM-extension of G by I’
which is uniquely determined up to equivalence.

3. The necessary and sufficient conditions for two BM-extensions
to be equivalent. As we have seen in the previous section, if an M-factor
set and a system of automorphisms are given, an equivalent class of BM-ex-
tension is uniquely determined. But, for an equivalent class of BM-extensions,
M-factor set is not unique. So, we inquire the necessary and sufficient condi-
tions for two BM-extensions to be equivalent.

Now, let L and L’ be two equivalent BM-extensions of G by I” which are
given by the M-factor sets f(a, 8) and f'(a, ), and the systems of automor-
phisms T, and 7, for the choice of representatives g,(g.=1) and g.(gi=1)
respectively. If ¢ is the isomorphism which gives the equivalence between L
and L', there exist the elements c,(a € I') such that ¢(g.)=gacalc.:=¢). And it
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holds that ¢(gags) =gausf(a, B) (caTp)cs. On the other hand, ¢(gi.gs)=
?(gasf (@, B)=gapcasf (e, B). So, we have

(5) f(a, B =ciif(a, B) (caTp)cs
Further, it holds that
(6) Ty =¢@Tge)=aTy, gy =aTsTc,.

Conversely, if two extensions L and L’ are given and if we can find their
M-factor sets and systems of automorphisms which satisfy the conditions (5)
and (6), L and L’ are equivalent under the isomorphism g.c.a<>gsa. Thus, we
have the proposition:

Prorposition 2. Two BM-extensions L and L' of a group G by a group I”
which are given by the M-factor sets f(a, B) and f'(a, B) and the automorphisms
T, and T., respectively, are equivalent if and only if every element « of I can
be associated with an element c,(c.=e) of G such that the following conditions
are satisfied:

£, B) = cat f(ct, B) (ca Te)csy
T.=T,Tc,.

4. M-cohomology groups. We proceed to the study of the set of all
BM-extensions. In the extension problem of groups, the second cohomology
group is used in order to classify the set of non-equivalent classes of the ex-
tensions. In order to classify the set of all BM-extensions, we construct a
new cohomology group which corresponds to the ordinary cohomology group.
It is named M-cohomology group.

Now, let G be an abelian group and I” be a group. And suppose that a
function on G x I" into G is given, written ax for ¢ € G, « € I', such that

(e+bd)a=oax+ba, alafB)=(@x)B, ac=ua; a,beG, a,Bel.

Every function f(ai, as, ---, a,) of n elements of /" with values in G is called
an n-dimensional cochain. In particular, the zero-dimensional cochains are
the elements of G. The set of all n-dimensional cochains is a group C*(I", G)
in the ordinary sense. With every n-dimensional cochain f» we associate an
(» + 1)-dimensional cochain 9f called the M-coboundary of the cochain f and
defined as follows®:

((af) (@) =a—aa,
@f) (au, az) = fa) — flay as) + flan) Az,

(2) In the right side of the formula of the case n==2 in this definition, we take the forms
(_l)n—Al f(a‘n ®gy oy Ap_gy Apy @n_q...Cniy)y — (=) flay, @y ...y @n_gy @ny @p_y...@;) @pyy and
—(=Dr71 flay, @y, ..y @n_gy @p_y.. @y .@p_yq, E)anyy respectively when i equals n—1 in the 2nd,
7th and 9th terms.
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@f) (a1, azy -5 As1) = f(Aa, LA, -, AL, Q1) (n=2)
n-1 .
+ %(—1)1f(a1, Oy ooy Qin1y Qinly Qi Qg Oy ooy Ao Q- Oy - - Clyie)
iz

|
|
’! + (— 1)”]‘(“1, a27 ity an—l’ an+l)

n—1 .
+ 2.1(— 1) flan, s, -, oy Q- sy Oy Qizy oy Clpy Clpy1)
=

(7) +(_1)nf(a1, Ay ooy Ay, an"’an+1)
| —f(afz, 1A, -y ALy Q) By

. on-1 .
—zé(" 1)1f(a1, Ay ooy Qi1 Hig1y, O Qg2 Oy -y
iz
Qe Qe+ Wy Q-0 U1

\

!

“ - (_ 1)nf<ala Ay ooy Ayt e)an+l

| n—1 .

L= _}__'i(— 1) fla, @z, -y i1y Qi Qin1- iy Qiszy oy Olny €) Uyas
=

U = (=1 flan, agy oy Qnety Qe Q.

In the above definition (7), the product a;...«;-.-a; (i<j) means the following
product of «j, ---, a;, @;. In order to define this product, we construct the
diagram of «, by the following processes:

(i) We put «; on the left end and «,., on the right end on the same line.

(ii) We put «, at the middle between «; and «,., ;.

(iii) We put a,_; at the middle between «; and «,, and between «, and a,...
(iv) When the diagram of «i, i, @is1, ---, @us1 1S obtained by the above
processes, we put «;_; at the middle between all elements in this diagram.
And, thus we continue those processes until we put «;, (but we do not put o,
between «, and «; on the left end of the diagram). For example, in the case
n=4, the diagram is: a1,z @ Qs 20 A3 Ay s,

The product «;--.«;---«; is the product of the elements «; in the above dia-
gram, which appear in the part spread from «;, (which is the nearest to «;
on the left side of «;), to «;, (which is the nearest to «; on the right side of
a;). But when j=n+1, the product ;.- -a,.; is the left half part of the above
product. Moreover, the last arguments «;...«; and «,---a; in the 7th and 10th
terms of (7) (n=>2) are the products which are obtained by putting away the
last a,.1 from the products «;.. 0,1 and «, . a,+1, respectively.

It is easy to verify that the mapping f—0f is a homomorphism of C*(I", G)
into C"*X(I', G). In the following, we shall prove that:

Tueorem 1. If fis any cochain, then 0(0f)=0.

Proor. When =0 and 1, we can prove this relation by a simple calcu-
lation. So we assume n=2: If fis an n-dimensional cochain, then 9(9/) is an
(n+2)-dimensional cochain, that is, a function of ay, as, -, a,.2. If we calcu-
late it by using (7), we have the following:



156 Noboru NisHIGORI
a(af) (aly Ay ooy Ay, Qfm-z)
= (af) (at, 13y, -+ A1y, alan+2>

+ é(_ 1)i(af) (ary Ay -y A1y Qis1y Qg -Qiga- -y -y
Qi Olpy1- Uy ai...am.z)
+ (— 1)n+1(af) (ala A2y -y Uy, aﬂ+2)
+ ii(_ l)t(af) (al) Uy ooy oy Q- Qg1+ Oy g2y -o vy an+2)
_1n+10 /a’a)"‘>an’an+“‘an+
@8) - + (=" 0f) (e, az 1 2)

— (0f) (@2, 13, -+, Q14115 A1) s

n .
—2.1(— 1)‘(0f) (a1, A2y -y Ais1y A1y Qe Qg Oy -y
iz
Qi Apy1--- Ay ai"'al)an+2
- (~ 1)n+l(af) (ab A2y -y Apy S)a”.,.z

n .
—>(= 1)'(af) (a1, Qay -y i1y Qg Qi1 iy Uiy o5 Analy €) Anaz
i=1

— (= 1)1 0f) (a1, sy -y Ay A1+ -C1) Apya.

In the first term of the right side of (8), if we denote the arguments «,,
Q13y, -y Q01O Qilnse DY the letters By, Bo, -, Bri1, the diagram of g,
B2, -+, Bus1 is obtained in the diagram of «y, ay, ---, a2 by taking away the
letter a; on the left end. The diagram of the arguments of the second term
in (8) is obtained in the diagram of a, ay, ---, a,.2 by taking away the letters
a, ---, a; which appear in the part from «; on the left end to the nearest «;
of the right side of this «;. Further, the diagram of the arguments of the
third term is obtained in the diagram of «, v, ---, @,.1 by exchanging the
last a,.; for a,.s, and the diagrams of the arguments of the 4th and 5th terms
coincide with the diagram of «;, a, ---, Apes.

Now, we develop the right side of (8) by applying @ which is cointained
in it. First, we consider the sum of the terms involving no operators. To
calculate this sum, we assign a number to each term of (8), that is, [1] to the
first term; [2], ..., [n] to the terms contained in the second term; [»+17] to
the third term; [17, [ 27, ---, [»] to the terms contained in the 4th term; and
[n+17] to the:5th term. Further we assign the numbers [i ], [i s -5 [ils;
Uil Lidasy -+, [i]er to the terms obtained by developing the [i] term of (8).
By the same method, we assign the numbers to the terms obtained by de-
veloping the [ ] term of (8). Then the number of all terms involving no
operators is equal to 4n(n+1). The number of the terms such that ;<\j among
these terms [i];, [i];,, [i]}, [i]}- is equal to 2rn(n+1) and also the number of
the terms such that i>j is equal to 2z(n+1), and these terms of two kinds
cancel each other as shown in the following table:
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Type of Term Number Sign
1 +1
f(a1a3a1, (2270512 212 410 ZYRRNEPN 2 T2 ST PR [ 241241 a2a1aﬂ+2) \ {%2%1, (__1)3
flay, azy -y @iy, Qs -, Fiv1 - Aivg Qigl, {D]z -1 zl 1
ai+1"'an+1"'ai+1a ai+1"'afn+2) (2él§n_1) [7'+1:|i’ ( 1) "
—n _1 2n
f(ah Qzy oy Cp_iy Q- Clpyz) {:n:_'{_z 17, (—1)2+t
f(“z, A3, -y A, Xy 2, alaj+1"'aj+3""aj+lal9 {[1]1 (“1)]: L
A jay Ay A1, alaj+1“'an+2) (zé]én_l) []+1:|1 (_1)]+
(atz, s Jo Yo o 20o 20 Y 1], -
f 23 1603081y - o0y 1001, 18242 n_|_1]1 (_l)n-l-l
f(al, Aoy ooy i1y Wjyly O Qg &y ooy O Aje - Uy ‘ _i:l- (__1)i+j
Qi Qjyg Wiy Qe U1 Cjyg- - jyi- iy -y | {:]_fl_lj (_1)i+j+1
Oi Qi Q1 Qjar- Wy - Qg1+ -ny) - '
@<j, 2=, j<n—1)
fla, Ay oy Qiigy Qsty Qg Qe iy oy Qi Qg iy [ ] (—1yi+»
Qi Cyez) @<i<n—1)| [n+1]; | (=1)+t

(1] (=1)
(211 (=1
Lidir (=1)*
[l+1]/ (_1)21+1

{
{
{

f(ah Qzy -y Qpo1y Qpgr- - Unyz) {Bﬁﬁfljzn E___BZH
{
{
i
{

flazanasan s, s, -y A1y, C1lysz)

f(al, Aoy ooy A1y Wiyl Qg Wiy, & g3 Wy -0y
Qo Clpy1- - Qiy Qi -Clyyes) 2<i<n—1)

[17; (—1Y
[j+17: | (—=1)*!
(1], (—=1y
[(n+171 | (=1
(il (=1)*
[j+17: | (=1t

flas, cnasa, -, i, Qg -0,
Q1O 300, -y A1llys1Cl1y C1llny2) (zéjén-‘l)

f(az, QA3 -y Apll, Qa1 Clna2)

f(al, oy ooy Qi_1y Cigyy Qi Cligne - Qiy -y O Qje iy
Qe Qa1 Qjyge - Qjpr iy O Cljaz iy e

Qi Oy Uiy ai“'an+2) (Z<], 2§1, ]é’z_l)
flan, asy -y @ity Qinty Qi Qligge Uiy oy Qe -y iy Li ] (=1
Qi Clysr--Clysz) @<i<n—1)| [n+17; | (—1y*m
flas, ciasaiauananan, -y 0010000, ] (171 (=1)
Q10000 2) 1023

(LT (—1)¥

fla, gy -y Aoty Qigzy Qi Qligy- - Qigse Qi1 iy -y -
[i+17; (—1)%+

at'"ai+1"'an+1"'ai+1"'aia Q- g1 an+2) [
2<i<n— l)i

f(ah A2y ooy Ay, an+2) n_l_ 1:]71 (_1)2n+1

1]/ (__1)]+1
+10 | (1Y
[1]/ (_1)n+l
[(n+10 | (1)

\
flanaas, as, -y @y Qjany Qjar--Qgaze--Ajnty oo ‘
Qa1 Olya1- - Qjaly Ajsyr-Ayed) 2 <j<n—1 )’

{

\

f(aflaza}, A3y Ayy -y Ay, an+2)

{
{ [n]n (=1
t
{
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Type of Term , ' Number Sign
f(al, Aoy ooy A1y A Kja1 Ay Kjr2y -y aja Kj+2, {[L]/l (_1 ,+] 1
Qja1- Wjaze sty vy Ojute Opal Uiy Xju1- - Cyas) []+ 17 (—1)i+7+
(<), 2=, j<n—1)
f(alg Aoy ooy Uiy Ao Ajg- - Ay Hjagy - ooy Ay, an+2) ([L] n (_I)H.”
@<i=n—1) [n+1], | (—1)*m!
17 —1)2
flawazonasonaaan, ay, as, -y Ayez) {Egi‘/i, 2—1%3
f(al, ceny W1y Qe Wiy1e Wi Wjy1 -y g3y -y Ops2) { L:I i (—1)2’:
@C<i<n—1) [i+17: | (=1
—1)\2»
flan, agy -y Quoty Ane - Oy Qnaz) ‘I%Z;L"i]/nl E_Bmu
flanaaa, @, -y Qjy Qjar - Qjane Cjaty Ajazy o5 Cnsa) { (17 (—1y+t
@<j<n—1)| 10j¥1Tv| (1Y
(1] (=1y+
f(alazala A3y -y Any C¥n+l"'a5n+2) {[n+ 1]/1, (___1)”
f(aly Aoy ooy Oj1y Qe Uiyl Ay Kjg2y -ooy & { l]/." (_1)1+]
Qjy1Oljyn g1y Ojsdy oy a,,+1,an+2)(z<],2<z ]<n 1 u]—}—l:] i (—1)'*”1
f(al, Aoy ooy A1y g g1 Oy Ujy2y -0y Ay an+l{;"an+2) ‘I[i]/n’ (_1)1+”
@C=i<n—1) [n+1]s| (—1)*

Therefore, the sum of the terms involving no operators is equal to zero.®®

Next, we consider the sum of the terms involving the operators.
the definition of 9f, we have (0f) (a1, s, -,

From

Ay, €)=0, so the 8th and 9th terms

of (8) vanish. And we easily see that the sum of the terms which involve
r(=2) operators is equal to zero, so it is sufficient to consider the sum of the
terms involving only one operator «,... If we take away the operator a,.,
in each term of this sum, we obtain the sum which is obtained by exchanging
.o Tor ¢ in the above sum of the terms which involve no operators. There-
fore, in the same way as the above, we can prove that the sum of the terms
which involve only one operator is equal to zero. So, the sum of all terms in-
volving the operators also equals zero. Thus we have 9(0/)=0.

Now, we call an n-dimensional cochain f an n-dimensional M-cocycle if
0f=0. All n-dimensional M-cocycles form a subgroup of C*(I", G), which we
denote by Z**(I", G). On the other hand, for »>>0 the n-dimensional cochains
that are M-coboundaries of some (»—1)-dimensional cochains form also a sub-
group of C"(I', G), which we denote by B**(/", G). Since 9(9f)=0, every M-
coboundary is an M-cocycle. So, we have B*'(I", G)CZ**(I", G). For n=0, if
we put B*°(I", G)=0, this relation remains valid.

The factor group H*"(I', G)= Z*"(I', G)/B*"(I", G) is called the n-th M-

(3) The forms of the following terms are obtained by the slight modifications of the types in this table:
I:i](i+1)a Ei](i+l)’s Ei:l,(i+1)$ Ei],(i+1)/ (1‘= l, 2’ EERPR (2 1)5 [i](n—1)7 Ei](n—-l)’> [ij,(n—l) (1‘= 1, 2) (EES) n_3, n— 1)'
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cohomology group of I" over G.
In the following sections, we assume that C'(I", ¢) and C*(I", G) are the
groups of the normalized cochains f, that is, f(e)=0 and f(a, &)=0=f(c, 8).

5. BM-extensions and M-cohomology groups (the case where G is
abelian). We consider the set of all BM-extensions of a group G by a group
I'. Let L be a BM-extension of G by I". Then, by (3) in §2, a homomorphism
0 of I' into Aut(G)/In(G) is determined, where Aut(G) is a group of automor-
phisms of G and In(G) is the group of all inner automorphisms of G. This
homomorphism is called the homomorphism associated with this BM-exten-
sion. Further, by (6) in §3, with all equivalent BM-extensions the same ho-
momorphism 6 is associated. In the following, we give a survey of all BM-
extensions of G by I" associated with given homomorphism 6.

In this section, we consider the case where G is an abelian group. In this
case, the homomorphism 6 becomes a homomorphism of 7" into Aut(G), so the
group /" is an operator group of G. Since the 2-dimensional cochains are
normalized, we have the following result comparing (4) with (7) (the case n=
2); and (5) with (7) (the case n=1):

ProrosiTion 3. All non-equivalent BM-extensions of an abelian group G
by a group I' associated with given homomorphism 0: I'— Aut(G) correspond
one-to-one to the elements of the second M-cohomology group H**(I', G).

6. Abstract kernels and 3-dimensional M-cocycles. In this section,
we make the preparations for the consideration of all BM-extensions in the case
where G is non-abelian. To a BM-extension L of G by I', there corresponds a
homomorphism of L onto I, and its kernel is G. Further, as we see in the pre-
vious section, with this BM-extension L, a homomorphism 6: I'—Aut(G)/In(G)
is associated. After S. MacLane, we call a pair of groups /', G together
with a homomorphism 6: I'—>Aut(G)/In(G) an abstract kernel, and denote it
by (I, G, 8). Then the extension problem is that of constructing all BM-ex-
tensions to given abstract kernel.

Now, we note that since every automorphism of G induces an automor-
phism of the center C of G and, since automorphisms in the same automor-
phism class of Aut(G)/In(G) in"duce the samé automorphism of C, the homo-
morphism 6: I'->Aut(G)/In(G) induces a homomorphism 6,: I'>Aut(C). So,
we can regard I as an operator group of the center C of G. Therefore, we
can construct the M-cohomology group H*"(I", C).

Let (I, G, 6) be a given abstract kernel. In every coset 6(a) of In(G) in
Aut(G), we choose a representative ¢,, where ¢, is the identity automorphism,
then there correspond the elements i(«, 3) of G such that

(9) Pu¥Pp= Pas Th(w,ﬂ))

where A(a, e)=e=h(e, 8). On the other hand, for « € G, ¢ € Aut(G) it holds
that
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(10) (ﬂ_l Ta¢ = T(ag;).

Calculating ¢.[¢s(¢a?,)]=[¢(¥s%.)]%,, using (9) and (10) we have the
relation:

Thia,payy h@ayy h(wy) = Th(asa, v) (Ch (@, By h(8, @) gy)-

So, there exists an element z*(«, B, 7) in the center C of G such that
(1) (e, Bar)h(B, an)h(a, 1) = z*(a, B, T)h(aba, ) ([h(a, Ba)h(B, a)]¢y).

We have obtained a 3-dimensional cochain z*(e«, B8, 7) of I' in C, associated
with the abstract kernel (I, G, 8). This cochain z*(«, 3, 7) is called an obstruc-
tion of the abstrat kernel (I, G, 6).

Lemma 1. Any obstruction of an abstract kernel (I, G, 6) is a 3-dimen-
stonal M-cocycle of I" in C, where C is the center of G.

Proor. We calculate the expression:
J =h(a, BaraBad)h(B, araBad)h(c, raBad)h(r, afad)h(a, fad)h(B, ad)h(a, J)

in two ways. In the first way, we begin with the calculations of the first three
factors and the last three factors by using (11)." Then we have:

J=2%(a, B, Tapad)z*(a, B, 0)h(aBa, yaBad)h(r, apad)h(aBu, 0)-
’([h(a, Ba)h(B, @) 1Pyazas Thy, wsws) h (@sa, 5)) ([h(% Ba)h(B, a)] ‘/’s)
=z*(a, B, Tapad)z*(a, B, 0)z*(aBa, 7, O)h(aparaBa, 0) ([h(aBa, Tafa)-
(1, aBa)]9s) ([h(e, Ba)h(B, )19y Pusa?s) ([h(et, Ba)R(B, a)]¥s)
=*(a, B, rabad)* (a, B, 0)z* (aBa, 1, O)h(aBaraBa, 0) (h(aBa, TaBa)ys)-
[{([h(a, BB, @)]¥yasa) (T, Ba)} ¢5] ([h(et, B)R(B, @)]¥s).

In the second way, we begin with the calculation of the middle three fac-
tors by applying (11). Then we have:

J=z%(a, 7, Bad)h(a, BarafBad) h(B, araBad)h(ara, fad)h(B, ad):

-(Ch(a, ra)h(r, @) 19s%us) ke, 0)

=*(a, 1, Bad)z* (B, ara, ad)h(a, BaraBad)h(BaraB, ad)h(w, 0)-
-(CA(B, araB)h(ara, B)1¢.es) ([h(a, Ta)h(r, ) ]9s0.¢s)

=z*(a, T, Pad)z*(B, aBa, ad)*(a, Barap, O)h(apBarafa, 6) (h(a, BaraBa)¢s):
-(Ch(BaraB, ) {h(B, araB)h(ara, B)} ¢u1¢s) (Lh(ct, Te)R(T, @) 19ePaf’s)

=z2*(a, 7, Bad)*(B, ara, ad)z¥(«, Barap, 0) (z*(B, ara, a)¢s)aparaba, 8)-
- ([, BaraBa)h(B, araBa)]es) ([h(ara, Ba) ({h(a, Ta)h(T, A)} Pes) 1¥s)"
-(h(B, @)¥s)

=z*(a, 1, Bad)z* (B, ara, ad)z* (a, BaraB, 0) (%1 (8, ara, a)¥s)-
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(U, 1, Ba)vs) haBaraBa, 6) ([h(a, BaraBa)h(B, araBa)h(a, Taba)-
-k (T, aBa)h(a, Ba)h(B, a)]¢s)
= (e, 1, Bad)z* (B, arer, ad)z* (e, Bara, 0) (*7 (8, arc, ) ¢s)-
(N, 1, BR)@s) (% (a, B, TaBa)¥s) h(aBaraBa, 0):
({h(aBa, Tapa) (Ch(a, BB, )] Pyusa) AT, aBa)}@s) ([h(et, Bah(B, a)]¢s).

Comparing the above two calculations, we have 0z*(«, 8, 7, 6)=0.

The cochain z*(«, B, v) depends on the choice of the representatives ¢,
and on the elements A(a, 8). In the following we investigate the change of
z¥(a, B, 7) for the choice of A(a, ) and ¢,.

Lemma 2. If the choice of h(a, B) in (11) is changed, then the obstruction
X, B, 7) 1s changed to a cohomologous M-cocycle. By switably changing the
choice of h(a, B), z*(«a, B, T) may be changed to any M-cohomologous cocycle.

Proor. Suppose that the elements 2(a, 8) in (11) are replaced by the ele-
ments 7'(a, 8). Then there exist the elements g(«, 3) such that 2'(«, 8) =
e, B) gla, B), gla, B) € C, where g(a, e)=e=g(e, ). 1f we calculate by (11) the
3-dimensional cocycle z*(«, 5, 7) corresponding to the elements 4'(«, 8) we ob-
tain:

M, B,7)=2"a, B, 7) (glat, Ban)g(B, an)g(e, {g(aBe, 1) ([ glex, Ba)g(B, ) e,)} ™)
=z%(a, B, 7) + 0g(a, B, 7).

And, since g(a, ) is an arbitrary normalized 2-dimensional cochain of /" in
C, so we can obtain as z¥(«, B, 7) every M-cohomologous cocycle to z*(a, 8, 7).

Lemma 3. If the automorphism ¢, is changed, then with a suitable new
choice of h(c, 8) the 3-dimensional M-cocycle z*(a, 8, 7) remains unchanged.

Proor. Suppose that the automorphisms ¢, are replaced by automor-
phisms ¢, lying in the same automorphism classes 6(«). Then there exist the
elements c(«) in G such that ¢;=¢,T.,, and ¢(e)=e. By (9) and (10),

P95 = Pa¥ T )y Tew) = Pap Tewas)=1 (@, B) (c @) 9 )¢ (3

Now, we choose new normalized cochain »'(«, B) as follows:

(12) K (a, B) = c(aB) " h(a, B) (c(a@)¥s)c(B).
Then we have
(13) c(@B)h' (a, B) = h(at, B)c(B) (c(a)¥}).

Using (12) and (13), we can show that the 3-dimensional M-cocycle correspond-
ing to #'(a, B) is z*(«, B, 7) which corresponds to #(«, 8). In order to show the
above, we consider the expression:
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M= c(aBar)z*(a, B, ") (aBa, ) ([K (&, Ba)' (B, a)]93).

Using (18), if we change %'(«a, B) into A(a, B) one by one from the left in the
expression M, and using the definition (11) of z*(«, 8, ) we have

M= z%a, B, V)h(aBa, 1) (Ch(a, Ba)h(B, @)1¢y) ([((@)¥¥a) (c(B)#a)c(a)]0y)c(r)
= h(a, Ban)h(B, ar)h(e, 1) ([(c(@)9s%a) (c(B)Pa)c(c)]¥y) (D).

Further, if we change A(a, 8) into %' («, B) one by one from the right in the
above last expression by (13) and the definition of ¢, we have

M = c(aBan)k’ (a, Bar)k' (B, ar)h (a, 7).
Comparing the first and the last expressions, we have
W (e, Bar)k' (B, an)k' (a, 1) = 2*(a, B, K (aBe, 7) ([ (&, Ba)H (8, @)]¥3).

Therefore, the 3-dimensional M-cocycle corresponding to A'(a, B) is also
z*(a, B, 7).

Thus, we have proved that only one element {z*(«, £, 7)} of H*3(I", C) cor-
responds to a given abstract kernel (I, G, 6), and we denote it by the notation
Obs (I, G, 6).

7. BM-extensions and M-cohomology groups (the case G is non-
abelian). In this section, we proceed to the study of the set of all BM-exten-
sions of a non-abelian group G by a group I".

First, we seek for the necessary and sufficient condition for the existence
of the BM-extension corresponding to a given abstract kernel (I", G, 6). From
the result in the previous section, we have:

Tueorem 2. The abstract kernel (I', G, 0) has a BM-extension if and only
of Obs (I, G, 6)=0.

Proor. Let L be a BM-extension corresponding to the kernel (I, G, 0).
For a definite choice of the coset representatives of G, this extension L is de-
fined by a factor set and a system of automorphisms such that:

fla, e)=e= f(s, B),
(14) a Tw T,g —a Ta,.g Tf(w’ 3)s
15)  fle, Ban)f(B, an)f(e, 1) = flaBa, 1) (fla;, Ba)T,) (f(8, &) T,).

So, we can take automorphism 7, for the automorphism ¢, and M-factor set
f(a, B) for the elements A(a, 8). From (14), it follows that (9) holds, and (15)
shows that we must put z*(a, 8, 7)=0.

Conversely, assume that Obs (I, G, 6)=0. By the lemma 2, for suitable
selection of a normalized cochain h(a, 8) we may obtain the obstruction
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Z*(a, B,7)=0. In this case, for these ¢, and A(«, 8), the conditions (14) and (15)
hold. So, from the result in §2, there exists a BM-extension of G by I" cor-
responding to the abstract kernel (I, G, 0).

Now, we classify all BM-extensions of G by I". In this case, in the same
way as used in the case of group extension, we have the following result (cf.
e.g. [117] pp. 142-145):

Turorem 3. If the abstract kernel (I', G, 6) has a BM-extension, then all
non-equivalent BM-extensions of a non-abelian group G by a group I are in
one-to-one correspondence with the elements of the second M-cohomology group
H*¥I", C), where C is the center of G.

Proor. We give only an outline of the proof. Let L be a BM-extension
of the abstract kernel (I, G, 0) and S be a BM-extension of the abstract kernel
I, C, 6,). We consider all the possible pairs (I, m) I € L, m € S, subject to the
condition that the cosets /G and mC correspond to one and the same element
of I'. By the multiplication (I, m) (I', m") = (Il', mm/), the set of all such pairs
becomes a Bol-Moufang loop which we denote I. The set of all pairs of the
form (z, z%) z € C, is a normal subgroup N of L and the set of all pairs of the
form (a, z), a € G, z € C, also forms a normal subgroup G of L. The loop '=L/N
has a normal subgroup G'=G/N which is isomorphic to G, and L’ is a BM-ex-
tension of the kernel (I°, G, 8). We call L’ the product of L and S and denote
by LS. Further, if the extension L of G is given by an M-factor set f(«, B)
and S is given by («a, ), then we may take f(«, 8) i(«, B) as an M-factor set
of LS.

Taking L as fixed, we now show that every BM-extension L’ of the kernel
(I', G, 0) is equivalent to a BM-extension L&S for suitable choice of the BM-
extension S of (I, C, 6,). We choose the representatives g, of G in L’ such
that the automorphisms 7}, are the same automorphisms-induced by the re-
presentatives g, of G in L. Assume that for this choice of the representatives
g« the M-factor set of L is f'(«, B). Since Ty, = T/as there exist the ele-
ments ¢(«, ) of the center C of G such that f'(a, 3)=f(«a, 8)'(«, B). Both the
M-factor sets f'(a, 8) and f(«, B) satisfy the condition (15) and are normalized,
so ¢(«, B) also satisfies (15) and is normalized. Therefore, there exists a BM-
extension S’ of the abstract kernel (I, C, ;). Then we can show that L’ is
equivalent to the product L&S’. Further, we can show that if S, and S, are
two BM-extensions of (I, C, g,) then the BM-extensions L, =L&®S; and L, =
LXS; are equivalent if and only if S; and S, are equivalent. Thus, we have
proved the theorem.

8. Some properties of H*. In this section, we make clear the rela-
tion between the abstract kernel (I, G, 6) and its obstruction, and we obtain
some properties of the third M-cohomology group H*2.

Now, let (I, G, 6) be an abstract kernel. Then, as we see in §6, there
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exists an element {z*(a, B3, 1)} of H*¥I", C) corresponding to (I, G, 6). On the
other hand, it is known that in the theory of the group extension, to 2-dimen-
sional normalized cochain A(«, 8) which is defined by (9), there exists an ele-
ment z(«, 8, 7) of Z3(I", C) such that

(16) h(et, BNRB, 1) = z(a, B, Nh(aB, 1) (k(a, B)¥,).
From (11) and (16), we have
am = (a, B, 1) = z(a, B, 1)+ 2(B, , 7).

That is, with an obstruction z*(«, 3, 7), there corresponds an element z(«, 3, 7)
of Z3(I", C) which satisfies (17).

Conversely, we consider a mapping 0 of Z3(I", C) into C*(I", C) carrying
fla, B, 7) into f*(a, B, N=f(a, B, T)+f(B, a, 7). Then, by the simple calcu-
lation, we can show that f*(a, 8, 7) € Z**(I", C) and 0 is a homomorphism of
Z* into Z*3,

Further, we show the following:

Prorosition 4. For any element f* of 0(Z°), there exists an abstract kernel
(I', G, 0) with center C and with the obstruction f*.

Proor. It is known that for any element f of Z*(I", C), there exists an
abstract kernel (I, G, 6) with center C and with 3-dimensional cocycle f (cf.
[9] p. 334; [12] p. 129). Let f*(a, 8, 7) be an arbitrary element of 0(Z3).
Then there exists an element f(a, 8, 7) of Z3(I", C) such that f*(a, B, )=
(e, Ba, N+ f(B, a, 7). If we construct an abstract kernel (7, G,0) with certer
C and with f(a, 8, 7) as its obstruction of the group extension, it is easily seen
that (I, G, 0) is the required kernel.

It is clear that HI", C) is imbedded isomorphically into H**(I", C). Con-
cerning the relation between H® and H*3, it holds as follows:

Prorosition 5. 0(H*)=0(Z%)/0(B*)=~ subgroup of H*3.

Proor. It is sufficient to show that 0 is a homomorphism of B3(I", C) onto
B*(I", C). In fact, to any element f(a, 8, 1) of B*(I’, C) there exists 2-dimen-
sional normalized cochain f’ in C such that f(a, 8, 1)=0f"(«, B, 7), where § is
the group-coboundary operation. Then, it holds for f*(a, 8, N=0(f(a, B, 7))
that f*(a, B, 1)=0f"(«, B, 7), that is, f* € B¥(I", C). Conversely, for any ele-
ment f*(a, B, 1) of B*(I', C), there exists a 2-dimensional normalized cochain
f'(a, B) in C such that f*(«, 8, 7)=0f(a, B, 7). Using this cochain f'(«, B), we
define an element of B[, C) as follows:

fla, B, 1)=f B, 1) —f'(aB, 1)+ f'(a, BT) — f'(a, B)T.

Then we have 0(f)=f*, that is, any element of B*}7", C) has its inverse image
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in Z3(I", C). So 0 is a homomorphism of B® onto B**. Thus, we have proved
the proposition.

CoroLrary. Let N be the kernel of the homomorphism 0. If N is contain-
ed in B2, then it holds that

H?~ subgroup of H*.

Rrmark. We can easily see that if N is contained in B*(I", C) each ele-
ment of N is the group-coboundary of an element of Z**(I", C).

In conclusion, I wish to express my hearty thanks to Prof. K. Morinaga for
his encouragement and kind guidance.
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