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Introduction. In the previous paper [3], the author introduced a theory
of generalized spectral operators based on spectral representations instead
of spectral measures. As Foias [2] first indicated, the spectral representa-
tion corresponding to a generalized spectral or scalar operator is not unique-
ly determined. In fact, if we take a spectral representation U and a nilpotent
operator Q: Q**'=0, commuting with U and if we define ¥ by

U(D*F)Q? DA O*
V(A =U)+UWDHQ+ J‘zflg,, ¢ IJ:')Q
(0= %(‘a@g’ +i§7‘>, f=f(&, MeC?), then U and ¥ are different C;-spectral

representations corresponding to the same scalar operator.

In the present paper, we shall show that, for two commuting spectral re-
presentations U and V corresponding to the same scalar operator, U(f)—V(f)
is quasi-nilpotent and in many cases, there is a relation expressed in the
above form. (See §3 and §6.)

On the due course of our argument, we shall see (§4) that the operators
Sy=U() and SF=UQ) (A=£&+i7 and 1=£—i7) together determine the re-
presentation U. Thus, in connection with our result mentioned above, we see
that S}—S} is nilpotent in a certain sense when Sy=Sy and S} commutes
with S¥ (§5).

We are able to consider the uniquely determined canonical representa-
tion for a scalar opertor S satisfying S=S,; =S} (§7). Such operators can be
regarded as a generalization of Hermitian operators and will be called real
scalar operators.

§ 1. Preliminaries.

1) The space C"(0<_m<co). In the present paper, the basic function
algebra (cf. [3]) is restricted to C7(0<m<co), the space of all complex valued
m-times continuously differentiable (infinitely differentiable, if m=oo) func-
tions with compact supports on the two dimensional real space R>. When we
speak of a point of R? as a variable of functions, we often identify it with a
point in the complex number field C, which is topologically equivalent to R
Thus, f(2) and f(¢, 7) express the same function, where 1=¢+i7 ¢ C and
(&, 1) € R:.. Throughout this paper, 0 always denotes a compact set and ¢ an
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open set in R*=C. For any fe C», Af is the function 1f()=(&+i7)f(¢, 7) and
Af is the function 1f(2)=(¢é—i7)f(§, 7). The support of f is denoted by
supp f.

Given a compact set §, € = {fecC”; supp f<0} (m: finite) is a Banach
space with the norm

! 6m1+m2f

demogrs D |

[1fllms = sup

Smi+tme=m
€5

and Cy is a Freéchet space with the norms {|/f|ss; k=1,2, ..-}. For any m,
we introduce the inductive limit topology in C” defined by {C?};. We know
that if m;<lm,, then C72 is dense in C”* in the topology of C7:.

The following lemma, which is an extension of the Weierstrass approxi-
mation theorem, will be used in several places in this paper.

Lemma 1. (Cf. [5] p. 108, Théorém II.) Let f, € C? be fized. For any
f€C™, there exists a sequence {P,} of polynomials in & and 7 such that P,fo—ffo
m C" (0<m<_oco0).

2) The space E. The space E on which we consider operators is sup-
posed to be a separated locally convex space such that L(E), the space of
all continuous linear operators on E, is quasi-complete with respect to an &-
topology ([1]; & is a family of bounded sets in E). We always consider the
given &-topology in L(E) unless otherwise specified. Then L(E) is quasi-com-
plete with respect to the simple convergence topology and E is also quasi-
complete. The topology of bounded convergence (the case & = all bounded
sets in E) will be denoted by ;. The strong dual of E is denoted by E. For
T € L(E), sp(T) is the spectrum of T (see [6]).

We collect here the fundamental notions and some important results
given in [3].

3) Cm-spectral representations on E (cf. Def. 1.1 of [3]). A mapping U
of C into L(E) is called a C”-spectral representation if it satisfies the follwing
two conditions:

a) f—U(f) is a continuous linear multiplicative mapping of the topolo-
gical algebra C” into the topological algebra L(E);

b) There exists a net {f,} in C? such that U(f,)x— « for all x € E.

If m; <m,, then any C™'-spectral representation is a C™-spectral repre-
sentation.

4) Spaces Ey,s (Def. 2.1 of [3]). We define Ey, .= {U(f)x; f€C™, supp
fCo,x€E} for an open set ¢ and EU,szngU,, for a compact set 0. Ey;isa

closed subspace of E. It is easy to see that EU,,=\/SEU,5. Therefore, Ey,, is

determined by {Ey,s}s. compace Let Ey=Ey c=\JEy s (this is denoted by
§

Ey . in [3]). It is a dense subspace of E. If supp U is compact, then Ey=
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Eys=E for all 6 2supp U.

LemmA 2. (Prop. 2.1 and Prop. 2.2 of [3]) Let ¢ be a compact set and U
be a Cm-spectral representation.

a) x€Ey;ifandonly if U(f)x=0 for all f € C" such that supp fNO=4¢;

b) x€Eys of and only if U(f)x=x for all feC" such that f=1 on a
netghborhood of ¢.

5) Cm-scalar operators (Def. 1.2 and 2.2 of [3]). A linear transforma-
tion S on E with domain Dy is called a C7-scalar operator if there is a C”-
spectral representation U such that Ds 2 Ey and S/Ey,s=U(Afs)/Ey,s for any
compact set 0, where f; is any function in C7 such that f;=1 on a neighbor-
hood of 4.

If m; <m,, then any C™-scalar operator is C*-scalar.

Given a C7-spectral representation U, let Syx=U(Zf;)x for x € Ey,5. Then
Sy with domain Ey is a C”-scalar operator such that U is a corresponding
spectral representation.

Lemma 3. (Cf. Th. 1.1 of [3]) Let U be a C”-spectral representation on E
and let ¢ € C*. Then
a) The representation U, defined by

U, () =U(fov —f(0) + [(O)I for feCr

18 a C7-spectral representation.

b) U(¢) is a C7-scalar operator such that U, is a corresponding spectral
representation. Furthermore, we have sp(U(¢)) < ¢(C).

6) Cm-spectral operators (Def. 3.1 of [3]). A linear transformation 7 on
E with domain Dy is called a C”-spectral operator if there is a C”-spectral re-
presentation U such that Dr 2 Ey, TU(f)=U(f)T on Ey and TU(f) € L(E) for
all fe Cr and sp(T/Ey,s) <0 for any compact set d such that Ey ,+{0}. It is
known that a C”-scalar operator is a C”-spectral operator.

Lemma 4. (Th. 3.1 of [3]) If U and V correspond to the same C™-spectral
operator, then Ey s=Ey ;5 for all compact sets 0.

By this lemma, we sometimes write Er; (resp. Er) instead of Ey; (resp.
Ey) for a spectral operator 7.

Lemma 5. (Th. 4.1 of [3]) If T is a C™-spectral operator and U is a cor-
responding C"-spectral representation, then the transformation Q=T—Sy de-
fined on Ey satisfies lim| <Q"x, ' > |'"=0 for all x€ Ey and x €E'.

In particular, i f Ey=E, then Q is a quasi-nilpotent operator.
§ 2. Auxiliary results on spectral representations.

Prorosition 1. Let U be a C™-spectral representation on E and let U, be
the spectral representation given in Lemma 3 for ¢ € C. Then, for any compact
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set 0, we have

Ey,,s = Ey, o155 if 0&0;
Evys = [\Ey,p-1o) if 0¢€d.

oiopen

Proor: (i) The case 0. In this case, ¢~'(0) is compact. For any open
set ¢ >0 such that 0€ 0, we have

Ey,, .= {U(fo¥)x; supp f C 0} S Ey, 5-1(0).
Since ¢~1(0) is open, it is easy to see that

Ey, =100 = [\Ev, 5= (e
o>8

Hence, we have

Ey,, s = [\Ev,, <[ \Ev, p-1(c) = Ev, o-105)-
[g=l} o8

Suppose now that x € Ey ,-1;y. Let f € C” be equal to 1 on a neighborhood
oof 0 and f(0)=0. Then fo¢=1 on ¢ '(s). Hence, by Lemma 2, b), we see
that U,(f)x= U(fo¢)x=x. Using Lemma 2, b) again, we conclude that x €
Ey,,s. Therefore, Ey, ;= Ey,,-15, so that the equality holds.

(i) The case 0 €0. Letac€Ey,s. For any open set d>d, we can find a
function f € C7 such that f=1 on a neighborhood of & and supp fCo. Then
x=U,(f)» by Lemma 2, b). Since f(0)=1, U,(f)x=U(fo¢—1)x +x. Hence
%= U(fo¢ —1)x+x Now, Let {f.} =C7 is a net such that U(f,)x— x for all
x € E. Then

leim U(fw)x———li:n U(fa) [U(fo® — Dz + x]
—lim WULfa(fe9) — fl o+ U(fo)s)
= lim Ul fu(fo®)]x.

Since supp [ fu(fe¥)] ¢~ '(0), we have U[ fu(fo¢)]x € Ey, ,-1). Hence the
above equality limplies that x € Ey ,-1(,). Therefore, Ey,, s < QaEU—gfl—@

Conversely, suppose x € QsEU’ s-1(s Let f€C™ be equal to 1 on a neigh-
borhood ¢ of 9. Then, we can find a net {x,} SEy,,-1 such that x,—x. Since
fo#—1=0 on ¢7'(0), U(fe¢—1)x,=0 for all a. Therefore, U,(f)x==x. It
follows then that x € Ey,, s by Lemma 2, b).

CoroLLary. If U and V are two C”-spectral representations such that
Eys=Ey,s for all compact sets &, then Ey,s=Ey,s for any ¢ € C7 and for any
compact set §.
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Lemma 6. Let U and V be two C™-spectral representations such that Ey s=
Ey,s for all compact sets 0. If f, fo € C7 and fy=1 on a neighborhood of supp f,
then U(HV(fo)=U(f).

Proor: Let § be any compact set containing supp fo and let f; € C7 be
equal to 1 on a neighborhood of #. Then for any x € Ey s,

LUV (fo) —U()]a=UNV(f)x— UV (fs)x
=U(HV(fo— fo)x.

Since supp (fo—fs)N\ supp f=¢, we have U(f)V(fo—fs)»=0 by Lemma 2, a).
Therefore, U(f)V(fo)x=U(f)x for all x € Ey ;. Since ¢ is arbitrary and since
Ey is dense in E, we have the lemma.

§ 3. Difference of two spectral representations (I).

The previous proposition, together with Lemma 5, yields one of our main
results:

Tueorem 1. If U and V are two commuting C™-spectral representations
such that Ey ;= Ey ; for all compact sets 0, then U(®)—V(®) 1s quasi-nilpotent
for any ¢ € C™.

Proor: We consider the Cm-spectral representations U, and 7V, con-
structed in Lemma 3 from U and V respectively. Let T=U(¢). Then sp(T) is
compact and 7 € L(E), hence Er=E. Since U, is a C7-spectral representation,
we have (see Prop. 2.3 of [3])

sp (U, (Af5)/Ey,,s) =0

for any compact set ¢ such that Ey, ;= {0}, where f; € C” is equal to 1 ona
neighborhood of ¢.
On the other hand, by the definition of U,, we have

U,(Afs)=UQfso®) = UL@(fso@ — f5(O)] + f5(0) U(®)
= U@)[U(fso9 — f5(0)) + £5(0)1 ]
= U@ U,(fs)
Hence, U,(4fs)/Ev,,s=T/Ey,s. From the corollary to Proposition 1, it follows
that U,(Afs)/Ev,, s =T/Ey, . Therefore, we obtain sp (T/Ey,,;)<0. This
implies that T is C7-spectral with respect to the representation ¥,. Since
V(#)=Sy,, Lemma 5 implies that 7—V(¢)=U(¢)—V(¢) is quasi-nilpotent.

CoroLrary. If U and V are two commuting Cm-spectral representations
corresponding to a C-spectral operator T, then U(f) — V(f) 1s quasi-nilpotent
Jor any feCr.

Proor: This is an immediate consequence of Lemma 4 and the above
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theorem.

§ 4. The operator S}.
Given a C7-spectral representation U, we define the operator S by
vx=U(fs)x for x¢€Ey,s,
where f; € C7 is equal to 1 on a neighborhood of 4.
Lemma 7. The operator S with the domain Ey is a C™-scalar operator.

Proor: If we define U*(f)=U(f*) for feC?, where f*(2)=f() (ie.,
(&, m=f(&, —n)), then U* is a C7-spectral representation and SF=S,*.

ProrosiTioN 2. Let U and V be two spectral representations. Then U=V
if and only if Sy=Sy and SE=>S7F.

Proor: The “only if” part is trivial. Suppose now that Sy=S, and S} =
Sg. It follows that Ey=E,. For any fe€ C7 and for any x € Ey=Ey, there
exists a compact sed 0 such that 02supp f and x € EysN\Ey,s. Let f; € C7 be
equal to 1 on a neighborhood of 6. By Lemma 1, we can find a sequence {P,}
of polynomials such that P,f;— ffs=f in C?. Now, each P, can be written in
the form >1b,,472%, so that

U(Pnfs)x = ijkSUjS?;kx,
V(P,,fs)x = ijkSVjS§kx.

Hence, U(P,fs)x=V(P,fs)x by assumption. Hence, by the continuity of U and
V, we have U(f)=V(f) on Ey, hence on E.

CoroLLARY. Let U and V be two Cm-spectral representations correspond-
g to a scalar operator S. Then, U=V if and only if Si=Sk.

Prorosirion 8. Let U (resp. V) be a C*~(resp. C™'-) spectral representation
and suppose that Ey=FEy. Then U and V are commuting if and only if Sy, Sy,
% and S¥ commute each other.

Proor: Given feC”, g€ C? and x € Ey = Ey, there is a compact set ¢
such that 0 2 (supp f)\J (supp g) and x € Ey,sNEy,s. Again by Lemma 1, we
can find sequences {P,} and {Q,} of polynomials in ¢ and 7 such that P,f;—f
in C» and Q,f;—>g in C™, where f; € C7 is equal to 1 on a neighborhood of §.

Then, as in the proof of the previous proposition, we obtain U(f)¥V(g)=
V(g U(f).

CoroLrAry. Let U (resp. V) be a C”- (resp. C™'-) spectral representation
corresponding to a given scalar operator S. Then U and V are commuting if
and only if S} and S§ commute.
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5. Difference of two spectral representations (II).

In the case the spectral representations U and V7 correspond to the same
scalar operator, we are able to discuss in more details using the operators S
and S}.

Prorosition 4. Let U and V be two C7-spectral representations correspon-
ding to a scalar operator S. Suppose that S§; and S;; commute and let Q=SF —S§.

a) If m1s finite, then Q°"+*'x=0 for all x € Ey;

b) If m=co and if the given topology of L(E) is v, then for any bounded
set B in Ey s (0 is a fixed compact set) and for any equi-continuous part A in
E' there exists a positive integer ky=ko(B, A') such that {Q*x, x> =0 for all
k>ko, x € Band x' € A'.

Proor: Let ¢ be any compact set and let x € Ey ;. We consider the funec-
tions

fo(& M) =L (8, 1) = T £3.(D),

fHE m) =L f(&, M)y =R (D),
where 1=¢+i7 and z=u+ v are complex numbers and f; € C7 is equal to 1 on
a neighborhood of ¢. Then, obviously f., f;' € C7. By considering the power

series expansions of the exponential functions and the convergence of the
series in the space C”, we can see that"

U(fo)x = exp[zU(Afs) —2U(Afs)]x = exp(aSf — 2Su) x,
V(f:Dx=exp[zV(Afs) — 2V (Afs)]x = exp(zSy — z5F) .
Since Sy=Sy and V(f;') € Ey,5, we have
U(f)V(f: = exp[2(S§ — S§)]x = exp(zQ) .

Let do=supp fs and let || fllz=]fl|zs, for fe Cz (cf. §1,1). Then it is easy to
see that for any z with |z]>>1,

[ felle=<Milz|", 1If7e<M|z]%,

where M, and M, are positive numbers independent of z.

a) Now, let m be finite. Then U is a continuous mapping of the Banach
space C# into L(E). Therefore, {U(f); f€Cg, |Ifll»<<1} is a bounded set in
L(E). Since E is quasi-complete, it follows that the set {U(f)x; f € CZ, [|fl»<
1, x € B} is bounded in F for any bounded set B in E. (See [1], Corollary 1 in
p. 22.) Hence there is a positive number M3 ..(x" € E) such that

[KU(f)m, 87| <Mp,o|2|™

: = I . . .
1) For an operator T, exp Tx is defined by the series exp Tx= 3, —n,—x Since E is quasi-complete,

all the series of exponentials appearing here converge in E.
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for all xéB and |z|>1. Similarly, there exists a positive number N, ..(x € Ey s,
x’ € E') such that

[V (fDm &) <Ny |z|”

for all |z|>>1. Therefore, the set B,={V(f;")x/|z|"; [z|>1} is bounded in E,
so that we have

UV (D%, 80| <Mp, 0 |2]*"
for all |z|>1, or
| {exp(zQ)x, x> | < Mp, .| z|*"

for all |z|>>1. Since <{exp(zQ)x, "> is an entire function of z, it follows then
that it is a polynomial of degree at most 2m. Therefore, Q*"+'=0.

b) Next, suppose that m=c and the given topology of L(E) is z;,. Let
B be a bounded set in Ey ;. Since V is a continuous mapping of C;. into L(E),
there is a positive integer k, =k (B, »") («’ € E") such that

[<V(f)x, 50| <Npwlfle,
for all » € B and f € C5;. Therefore,
[<V(fDm, 2] <N'pw|z|™

for all x € B and |z|>>1. Hence the set B;={V(f;")x/|z|*; x€B, |z|>1} is
bounded in E. Similarly there is another integer %k, = k,(B;, 4") for an equi-
continuous part A" in E’ such that

[<U(f)z, | < Mg, arl| flIs,
for all » € By, " € 4" and f € C35,. Hence
[<U(fDV(fDm, &> <M'par|z]*r+5e

for all x € B, s’ € A" and |z|>1. Therefore, by taking k,=k, +k;+1, we have
{Q*x, x’»>=0 for all x € B, ' € A’ and k>>Fk, by a similar argument as in a).

CororrArY 1. If E is a Banach space, then we can choose k, independent
of B and A in the statement b) of the above proposition.

Proor: If E is a Banach space, then the space L(E) with the topology z,
is also a Banach space. Since U (resp. V) is continuous on C;, there exists a
positive integer &, (resp. k;) such that [[U(A)||<<M||fllx, (resp. [[V(OI<M|flls,)
for fe C5;. Hence, we have

NUDV (D] M7 | z|Fre,

Therefore, we conclude that Q*1**:+'x=0 for all x € Ey s and ko=Fk,+k>,+1 de-
pends only on d.
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CoroLLARY 2. Let S be a C"-scalar operator with compact spectrum and
let U and V be two C™-spectral representations corresponding to S such that S¥
and S commute and let Q=S —SF.

a) If m1s finite, then Q*"+'=0.

b) If m= co and if the given topology of L(E) is t;, then Q is a quasi-
nilpotent operator such that for any bounded set B in E and any equi-continu-
ous part A" in E, there exists a positive integer ko=ko(B, A') such that {Q*x, x">
=0 for all x € B, ' € A" and k=>ko. If, in particular, E is a Banach space, then
Q is a nilpotent operator.

Proor: It is enough to take 0 =sp(S) in the above proposition and corol-
lary.

Remark. In general, the condition that S} and S} commute cannot be
removed to obtain the nilpotency of Q. In fact, there is an example of C”-
spectral representations U and V corresponding to the same scalar operator
such that Q is not even quasi-nilpotent:

Let E be the two dimensional complex linear space and let

U(H)(a, B)=(fMDa+ DDA, fD)B),
V() (e B =(fDa, fB+Df) (Da)

for feC! and («, B) € E, where széf'<»—a%~ +i'£j’>- Then U and V are C!-

spectral representations on E corresponding to the identity I. Since Q(«, 8)=
LU — VW) (a, B)=(B, —), Q is not quasi-nilpotent.
§ 6. Difference of two spectral representations (III).

Tureorem 2. Let U and V be two C”-spectral representations corresponding
to a scalar operator S such that S} commutes with S§. Let Q=S —S; and

D= —%—(% +i%>.

a) If m is finite, then
U= 3 MQWMﬁ
for feC3¥™.

b) If m=oo, if E is a Banach space and if the given topology of L(E) is
Ty, then

U(p)=3 41 ¢V

for f€C;, where ky is a positive integer depending on f. If, in addition, sp(S)
18 compact, then ko can be chosen independent of f.
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Proor: a) Let f€ C¥", let 0 be a compact neighborhood of supp f and let
fs € C% be equal to 1 on a neighborhood of . By Lemma 1, we can find a
sequence {P,} of polynomials in ¢ and 7 such that

(D*P) fi—> (D) fs = D'  (n—> o)

in C7 for all k=0, 1, ..., 2m, since feC3".
If P is a polynomial in ¢ and %, then it can be written in the form
>b.,4"2". Hence, for x € Ey s,

UPfo)x=>1bu [UGRS)] [UGf)] %
=20 [VAf) ] [V(Afs) + Q)x

=353} )b @ V@R
- %le QV(D*P)f;]x.

By Proposition 4, we know that Q?”+'=0. Hence,
2m 1
UBufo)a= > 1 QVID*Pfs ]

for «x € Ey 5. Letting n—co, we have

2m
U(f)x= g—;—!Q"V(Dkf)x
for x € Ey,s. Let f, € C™ be equal to 1 on a neighborhood of supp f and supp fo
<9. Then U(fy)x¢€ Ey,s for any x€ E and U(ffo)=U(f). Also we have
V(D*HU( fo)= V(D*f) by Lemma 6. Hence we have the required formula.

b) In this case, there is ky="Fko(0) (0 =supp f) such that Q**'=0 by Corol-
lary 1 to Proposition 4. Hence we obtain the expression of U(f) by an argu-
ment similar to a). Here, we should remark that, given f € C;, we can find a
sequence {P,} of polynomials such that (D*P,)fs—D*f (n— o) in C; for all
kE=0,1, ..., k.

CororrARY. Let U and V be two C7-spectral representations corresponding
to a scalar operator S and suppose SF commutes with Sy.

a) If mis finite, then [U(f)—V()1*"*'=0 for any f € Cn.

b) If m=co and if E is a Banach space with the given topology 7, in I(E),
then U(f)—V(f) 1s a nilpotent operator for any f € C;.

Proor: a)If fe C3”, then Theorem 2, a) implies that [U(f)—V(f)]*"+'=
0. Since C3" is dense in C7, this is ture for any f e C™.
b) This follows from Theorem 2, b).

Remark. In the case where m= o and E is not a Banach space, it is pos-
sible to obtain results of the above type for certain C>-functions. For ex-
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ample, if fe C; is a function such that D*f=0 for some k on a compact set 9,
then we have the convergence of the series in Theorem 2 on Ey ; and we can
see that U(f)—V(f) is a quasi-nilpotent operator on Ey,s such that {[U(f)—
V(f)1¥x, &> =0 for some k=k(x, x') (x € Ey,5, s’ € E)). We omit the detailed
discussion of this type in this paper, since we already know that U(f)—V(f)
is quasi-nilpotent (Corollary to Theorem 1) and it seems, at present, to be of
little value to investigate further in this direction.

§ 7. Real scalar operators.

Prorosition 5. Let T be a Cr-spectral operator with compact spectrum
Sp(T). Then sp(T) lies on the real axis 1f and only if there exists a C7-spectral
representation U corresponding to T such that Sy==S}.

Proor: Suppose sp(T) lies on the real axis. Let ¢, be a C"-function on
R such that ¢.=1 on a neighborhood of 0 and supp ¢. <[ —¢,¢]. For any
fecr, let

f:(& = f(&, 0)¢.(1) € C7.

Given a C7-spectral representation ¥ corresponding to 7, we define U by U(f)
=V(f.). Since supp V is contained in the real axis (in C)(Prop. 3.1.of [3]),
we see that U(f) does not depend on the choice of ¢.. It is easy to see that U
is a C7-spectral representation commuting with 7 and supp U is contained in
the real axis.

Let ¢ be a compact set such that Ey ;7{0}. For any open set ¢ contain-
ing 0, we can find /€ C» and ¢>0 such that f=1 on a neighborhood of ¢ and
supp f. Co. Then, x € Ey; implies x=U(f)x=V(f.)x € Ev,,. Hence Ey<Ev ,,
which follows that Ey ;= E, ;. Therefore, Ey,;{0} and sp(T/Ey,;)<sp(T/Ey,s)
<0, so that U is a Cm-spectral representation corresponding to 7. It is ob-
vious that Sy=S}.

Conversely, suppose that T=Sy+Q and Sy=S}. Since Q is quasi-nilpotent
and 7T, Sy are regular elements of L(E), we have sp(T)=sp(Sy)+ sp(Q)=sp(Sy)
(see [6]). From the condition Sy=S}, it follows that Sy=U(£). Hence sp(Sy)=
sp(T) lies on the real axis by Lemma 3, b). '

ProrosiTion 6. Suppose m is finite (resp. m=co and E is a Banach space
with the topology ¢, in L(E)). If S is a C7-scalar operator whose spectrum is
compact and contained in the real axis, then there exists a unique Cm-spectral
representation U such that S=Sy==SE.

Proor: Let V be a Cm-spectral representation corresponding to S, i.e.,
S=Sy. We can construct a function /. € C7 for each ¢, 0<e <1, such that f,=1
on a neighborhood of sp(S), f:(§, 7)=0 if [7|>>e and ||, <Me™' for all ¢,
where M >0 is independent of c. Let g.(§, 7= (2in)"f.(§, 7). Then we have
llgs. el <Me*~* for all k=0, 1, ... and ¢, where M, >0 is independent of ¢. Since
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V is continuous from C” into L(E),
[<V(gre)m o)) < Ax, 2/)e*™

for x€ E and x € E', where A(x, x)>0 is independent of ¢ and k. (resp.
V(g || << Ae*~™ for some mo, where 4>0 is independent of ¢ and k.)

Since sp(S) lies on the real axis, supp V is contained in the real axis.
Therefore, we have V(g.) = (Sy—S§)* for all ¢ and £=0, 1, ... Hence, if we
let Q=S,—S3, then

[<Q*x, x> < A(x, x)e*™ (resp. [|QF] < Agk~™).

Since ¢ is arbitrary (0<e<1), it follows that Q*=0 for all &>m(resp. k> my).
Now it is easy to see that

upH=3 % Y0'HQ (resp.= 33 % V(D' )Q')

satisfies the proposition, where DZ%(‘@% —i—iaa—ﬂ). The uniqueness follows

from Proposition 2.

DerintTion. A linear transformation S is called a real C”-scalar operator
if there exists a C7-spectral representation U such that S/Ey;=Sy=S}. The
Cm-spectral representation U satisfying this relation is uniquely determined
by Proposition 2 and is called the canonical representation of S.

The above two propositions imply that, in the case where m is finite or
m=oo and F is a Banach space with the topology ¢, in L(E), a C”-scalar opera-
tor S with compact spectrum is real if and only if sp(S) lies on the real axis.

Remark. If E is a Hilbert space, then any Hermitian operator on E is a
real C%scalar operator and vice versa. Therefore, the notion of real scalar
operators is a generalization of that of Hermitian operators.

Prorosirion 7. i) If S is a real C”-scalar operator, then any Cm-spectral
representation corresponding to S is commuting with the canonical representa-
tion of S.

i) If S, and S, are commuting real Cr-scalar operators, then their can-
onical representations are commuting.

iii) If U is a Cm-spectral representation and ¢ € C? is real valued, then
U(®) is a real Cm-scalar operator and its canonical representation is given by
U, in Lemma 3.

iv) Let S: and S; be commuting real C7-scalar operators and suppose
sp(8S1) and sp(S:) are both compact. Then P(S:, S:) is a real C:-scalar operator
for any polynomial P in two variables with real coefficients. In particular,
S1+4S: and S1S; are real C7-scalar operators.

Proor: i) and ii) are immediate consequences of Proposition 3 and its
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corollary. iii) follows from Lemma 3. iv) is a consequence of the corollary
to Proposition 3.1 in [4] and ii) above.

ExampLE. Let E= & (R") = the space of rapidly decreasing C~-functions
on R*. (Or, we may let E=(#(R").) Then any differential operator of the
form

D=P<i~g— 0 )

R R
0x1 > 2" O,

where P is a polynomial in n variables with real coefficients, is a real C;-
scalar operator on E. (Cf. Example 2.5 of [3])

An indication of further development: It may be possible to consider
similar canonical representations for other type of generalized scalar opera-
tors, e.g., for C”-scalar operators whose spectra lie in a C”-curve in C.
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