On Spectral Representations of Generalized Spectral Operators

Fumi-Yuki Maeda

(Received September. 19, 1963)

Introduction. In the previous paper [3], the author introduced a theory of generalized spectral operators based on spectral representations instead of spectral measures. As Foias [2] first indicated, the spectral representation corresponding to a generalized spectral or scalar operator is not uniquely determined. In fact, if we take a spectral representation U and a nilpotent operator $Q: Q^{k+1} = 0$, commuting with U and if we define V by

$$V(f) = U(f) + U(Df)Q + \frac{U(D^2f)Q^2}{2} + \dots + \frac{U(D^kf)Q^k}{k!}$$

 $(D = \frac{1}{2} \left(\frac{\partial}{\partial \xi} + i \frac{\partial}{\partial \eta} \right), f = f(\xi, \eta) \in C_c^{\circ}), \text{ then } U \text{ and } V \text{ are different } C_c^{\circ} \text{-spectral representations corresponding to the same scalar operator.}$

In the present paper, we shall show that, for two commuting spectral representations U and V corresponding to the same scalar operator, U(f) - V(f) is quasi-nilpotent and in many cases, there is a relation expressed in the above form. (See §3 and §6.)

On the due course of our argument, we shall see (§4) that the operators $S_U = U(\lambda)$ and $S_U^* = U(\bar{\lambda})$ ($\lambda = \xi + i\eta$ and $\bar{\lambda} = \xi - i\eta$) together determine the representation U. Thus, in connection with our result mentioned above, we see that $S_U^* - S_V^*$ is nilpotent in a certain sense when $S_U = S_V$ and S_U^* commutes with S_V^* (§5).

We are able to consider the uniquely determined canonical representation for a scalar opertor S satisfying $S=S_U=S_U^*$ (§7). Such operators can be regarded as a generalization of Hermitian operators and will be called *real* scalar operators.

§ 1. Preliminaries.

1) The space $C_c^m(0 \le m \le \infty)$. In the present paper, the basic function algebra (cf. [3]) is restricted to $C_c^m(0 \le m \le \infty)$, the space of all complex valued *m*-times continuously differentiable (infinitely differentiable, if $m = \infty$) functions with compact supports on the two dimensional real space R^2 . When we speak of a point of R^2 as a variable of functions, we often identify it with a point in the complex number field *C*, which is topologically equivalent to R^2 . Thus, $f(\lambda)$ and $f(\xi, \eta)$ express the same function, where $\lambda = \xi + i\eta \in C$ and $(\xi, \eta) \in R^2$. Throughout this paper, δ always denotes a compact set and σ an

open set in $R^2 = C$. For any $f \in C_c^m$, λf is the function $\lambda f(\lambda) \equiv (\xi + i\eta) f(\xi, \eta)$ and $\overline{\lambda} f$ is the function $\overline{\lambda} f(\lambda) = (\xi - i\eta) f(\xi, \eta)$. The support of f is denoted by supp f.

Given a compact set δ , $C_{\delta}^{m} = \{f \in C^{m}; supp f \subseteq \delta\}$ (m: finite) is a Banach space with the norm

$$\|f\|_{m,\delta} = \sup_{\substack{0 \le m_1 + m_2 \le m \\ \lambda \in \delta}} \left| \frac{\partial^{m_1 + m_2} f}{\partial \xi^{m_1} \partial \eta^{m_2}}(\lambda) \right|$$

and C_{δ}° is a Frèchet space with the norms $\{\|f\|_{k,\delta}; k=1, 2, ...\}$. For any m, we introduce the inductive limit topology in C_c^m defined by $\{C_{\delta}^m\}_{\delta}$. We know that if $m_1 \leq m_2$, then $C_c^{m_2}$ is dense in $C_c^{m_1}$ in the topology of $C_c^{m_1}$.

The following lemma, which is an extension of the Weierstrass approximation theorem, will be used in several places in this paper.

LEMMA 1. (Cf. [5] p. 108, Théorèm III.) Let $f_0 \in C_c^m$ be fixed. For any $f \in C^m$, there exists a sequence $\{P_n\}$ of polynomials in ξ and η such that $P_n f_0 \rightarrow f f_0$ in C_c^m $(0 \le m \le \infty)$.

2) The space E. The space E on which we consider operators is supposed to be a separated locally convex space such that L(E), the space of all continuous linear operators on E, is quasi-complete with respect to an \mathfrak{S} -topology ([1]; \mathfrak{S} is a family of bounded sets in E). We always consider the given \mathfrak{S} -topology in L(E) unless otherwise specified. Then L(E) is quasi-complete with respect to the simple convergence topology and E is also quasi-complete. The topology of bounded convergence (the case $\mathfrak{S} =$ all bounded sets in E) will be denoted by τ_b . The strong dual of E is denoted by E'. For $T \in L(E)$, sp(T) is the spectrum of T (see $\lceil 6 \rceil$).

We collect here the fundamental notions and some important results given in [3].

3) C_c^m -spectral representations on E (cf. Def. 1.1 of [3]). A mapping U of C_c^m into L(E) is called a C_c^m -spectral representation if it satisfies the following two conditions:

a) $f \rightarrow U(f)$ is a continuous linear multiplicative mapping of the topological algebra C_c^m into the topological algebra L(E);

b) There exists a net $\{f_{\alpha}\}$ in C_{c}^{m} such that $U(f_{\alpha})x \rightarrow x$ for all $x \in E$.

If $m_1 \leq m_2$, then any $C_c^{m_1}$ -spectral representation is a $C_c^{m_2}$ -spectral representation.

4) Spaces $E_{U,\delta}$ (Def. 2.1 of [3]). We define $E_{U,\sigma} = \{U(f)x; f \in C_c^m, supp f \in \sigma, x \in E\}$ for an open set σ and $E_{U,\delta} = \bigcap_{\delta \subset \sigma} E_{U,\sigma}$ for a compact set δ . $E_{U,\delta}$ is a closed subspace of E. It is easy to see that $E_{U,\sigma} = \bigcup_{\sigma \supset \delta} E_{U,\delta}$. Therefore, $E_{U,\sigma}$ is determined by $\{E_{U,\delta}\}_{\delta: \text{ compact}}$. Let $E_U = E_{U,C} = \bigcup_{\delta} E_{U,\delta}$ (this is denoted by $E_{U,\infty}$ in [3]). It is a dense subspace of E. If supp U is compact, then $E_U = E_U = E_U + C = U$.

 $E_{U,\delta} = E$ for all $\delta \supseteq supp U$.

LEMMA 2. (Prop. 2.1 and Prop. 2.2 of [3]) Let δ be a compact set and U be a C_c^m -spectral representation.

a) $x \in E_{U,\delta}$ if and only if U(f)x=0 for all $f \in C^m_{\epsilon}$ such that $supp f \cap \delta = \phi$;

b) $x \in E_{U,\delta}$ if and only if U(f)x = x for all $f \in C_c^m$ such that f=1 on a neighborhood of δ .

5) C_c^m -scalar operators (Def. 1.2 and 2.2 of [3]). A linear transformation S on E with domain D_S is called a C_c^m -scalar operator if there is a C_c^m spectral representation U such that $D_S \supseteq E_U$ and $S/E_{U,\delta} = U(\lambda f_{\delta})/E_{U,\delta}$ for any compact set δ , where f_{δ} is any function in C_c^m such that $f_{\delta} = 1$ on a neighborhood of δ .

If $m_1 \leq m_2$, then any $C_c^{m_1}$ -scalar operator is $C_c^{m_2}$ -scalar.

Given a C_c^m -spectral representation U, let $S_U x = U(\lambda f_{\delta}) x$ for $x \in E_{U,\delta}$. Then S_U with domain E_U is a C_c^m -scalar operator such that U is a corresponding spectral representation.

LEMMA 3. (Cf. Th. 1.1 of [3]) Let U be a C_c^m -spectral representation on E and let $\varphi \in C_c^m$. Then

a) The representation U_{φ} defined by

$$U_{\varphi}(f) = U(f \circ \varphi - f(0)) + f(0)I \quad for \quad f \in C_c^m$$

is a C_c^m -spectral representation.

b) $U(\varphi)$ is a C_c^m -scalar operator such that U_{φ} is a corresponding spectral representation. Furthermore, we have $\operatorname{sp}(U(\varphi)) \subseteq \varphi(C)$.

6) C_c^m -spectral operators (Def. 3.1 of [3]). A linear transformation T on E with domain D_T is called a C_c^m -spectral operator if there is a C_c^m -spectral representation U such that $D_T \supseteq E_U$, TU(f) = U(f)T on E_U and $TU(f) \in L(E)$ for all $f \in C_c^m$ and $sp(T/E_{U,\delta}) \subseteq \delta$ for any compact set δ such that $E_{U,\delta} \neq \{0\}$. It is known that a C_c^m -scalar operator is a C_c^m -spectral operator.

LEMMA 4. (Th. 3.1 of [3]) If U and V correspond to the same C_c^m -spectral operator, then $E_{U,\delta} = E_{V,\delta}$ for all compact sets δ .

By this lemma, we sometimes write $E_{T,\delta}$ (resp. E_T) instead of $E_{U,\delta}$ (resp. E_U) for a spectral operator T.

LEMMA 5. (Th. 4.1 of [3]) If T is a C_c^m -spectral operator and U is a corresponding C_c^m -spectral representation, then the transformation $Q=T-S_U$ defined on E_U satisfies $\lim |\langle Q^n x, x' \rangle|^{1/n} = 0$ for all $x \in E_U$ and $x' \in E'$.

In particular, if $E_U = E$, then Q is a quasi-nilpotent operator.

§ 2. Auxiliary results on spectral representations.

PROPOSITION 1. Let U be a C_c^m -spectral representation on E and let U_{φ} be the spectral representation given in Lemma 3 for $\varphi \in C_c^m$. Then, for any compact set δ , we have

$$egin{aligned} &E_{U_{\mathcal{G}},\delta} = E_{U,\mathcal{G}^{-1}(\delta)} & if \quad 0 \oplus \delta\,; \ &E_{U_{\mathcal{G}},\delta} = & \displaystyle igcap_{\sigma \supset \delta} \overline{E_{U,\mathcal{G}^{-1}(\sigma)}} & if \quad 0 \, \epsilon \, \, \delta. \ & \sigma^{\mathrm{i} \, \mathrm{copen}} \end{aligned}$$

PROOF: (i) The case $0 \notin \delta$. In this case, $\varphi^{-1}(\delta)$ is compact. For any open set $\sigma > \delta$ such that $0 \notin \sigma$, we have

$$E_{U_{\varphi},\sigma} = \{ U(f \circ \varphi) x; supp f \subset \sigma \} \subseteq E_{U,\varphi^{-1}(\sigma)}.$$

Since $\varphi^{-1}(\sigma)$ is open, it is easy to see that

$$E_{U,\varphi^{-1}(\delta)} = \bigcap_{\sigma \supset \delta} E_{U,\varphi^{-1}(c)}.$$

Hence, we have

$$E_{U_{\varphi},\delta} = \bigcap_{\sigma \supset \delta} E_{U_{\varphi},\sigma} \subseteq \bigcap_{\sigma \supset \delta} E_{U,\varphi^{-1}(\sigma)} = E_{U,\varphi^{-1}(\delta)}.$$

Suppose now that $x \in E_{U,\varphi^{-1}(\delta)}$. Let $f \in C_c^m$ be equal to 1 on a neighborhood σ of δ and f(0) = 0. Then $f \circ \varphi = 1$ on $\varphi^{-1}(\sigma)$. Hence, by Lemma 2, b), we see that $U_{\varphi}(f)x = U(f \circ \varphi)x = x$. Using Lemma 2, b) again, we conclude that $x \in E_{U_{\varphi},\delta}$. Therefore, $E_{U,\varphi^{-1}(\delta)} = E_{U,\varphi^{-1}(\delta)}$, so that the equality holds.

(ii) The case $0 \in \delta$. Let $x \in E_{U_{\varphi},\delta}$. For any open set $\sigma \supset \delta$, we can find a function $f \in C_c^m$ such that f=1 on a neighborhood of δ and $supp f \subset \sigma$. Then $x = U_{\varphi}(f)x$ by Lemma 2, b). Since f(0) = 1, $U_{\varphi}(f)x = U(f \circ \varphi - 1)x + x$. Hence $x = U(f \circ \varphi - 1)x + x$. Now, Let $\{f_{\alpha}\} \subseteq C_c^m$ is a net such that $U(f_{\alpha})x \to x$ for all $x \in E$. Then

$$\begin{aligned} x &= \lim_{\alpha} U(f_{\alpha})x = \lim_{\alpha} U(f_{\alpha}) \left[U(f \circ \varphi - 1)x + x \right] \\ &= \lim_{\alpha} \left\{ U \left[f_{\alpha}(f \circ \varphi) - f_{\alpha} \right] x + U(f_{\alpha})x \right\} \\ &= \lim_{\alpha} U \left[f_{\alpha}(f \circ \varphi) \right] x. \end{aligned}$$

Since $supp [f_{\alpha}(f \circ \varphi)] \subseteq \varphi^{-1}(\sigma)$, we have $U[f_{\alpha}(f \circ \varphi)] x \in E_{U, \varphi^{-1}(\sigma)}$. Hence the above equality limplies that $x \in \overline{E_{U, \varphi^{-1}(\sigma)}}$. Therefore, $E_{U_{\varphi}, \delta} \subseteq \bigwedge_{\sigma \supset \delta} \overline{E_{U, \varphi^{-1}(\sigma)}}$. Conversely, suppose $x \in \bigwedge_{\sigma \supset \delta} \overline{E_{U, \varphi^{-1}(\sigma)}}$. Let $f \in C_c^m$ be equal to 1 on a neighbor.

Conversely, suppose $x \in \bigcap_{\sigma \supset \delta} E_{U, \varphi^{-1}(\sigma)}$. Let $f \in C_c^m$ be equal to 1 on a neighborhood σ of δ . Then, we can find a net $\{x_{\alpha}\} \subseteq E_{U, \varphi^{-1}(\sigma)}$ such that $x_{\alpha} \rightarrow x$. Since $f \circ \varphi - 1 = 0$ on $\varphi^{-1}(\sigma)$, $U(f \circ \varphi - 1) x_{\alpha} = 0$ for all α . Therefore, $U_{\varphi}(f) x = x$. It follows then that $x \in E_{U,\varphi,\delta}$ by Lemma 2, b).

COROLLARY. If U and V are two C_c^m -spectral representations such that $E_{U,\delta} = E_{V,\delta}$ for all compact sets δ , then $E_{U_{\mathcal{P}},\delta} = E_{V_{\mathcal{P}},\delta}$ for any $\varphi \in C_c^m$ and for any compact set δ .

LEMMA 6. Let U and V be two C_c^m -spectral representations such that $E_{U,\delta} = E_{V,\delta}$ for all compact sets δ . If $f, f_0 \in C_c^m$ and $f_0 = 1$ on a neighborhood of supp f, then $U(f)V(f_0) = U(f)$.

PROOF: Let δ be any compact set containing supp f_0 and let $f_{\delta} \in C_c^m$ be equal to 1 on a neighborhood of δ . Then for any $x \in E_{U,\delta}$,

$$[U(f)V(f_0) - U(f)]x = U(f)V(f_0)x - U(f)V(f_{\delta})x = U(f)V(f_0 - f_{\delta})x.$$

Since $supp (f_0-f_{\delta}) \cap supp f = \phi$, we have $U(f)V(f_0-f_{\delta})x=0$ by Lemma 2, a). Therefore, $U(f)V(f_0)x=U(f)x$ for all $x \in E_{U,\delta}$. Since δ is arbitrary and since E_U is dense in E, we have the lemma.

§ 3. Difference of two spectral representations (I).

The previous proposition, together with Lemma 5, yields one of our main results:

THEOREM 1. If U and V are two commuting C_c^m -spectral representations such that $E_{U,\delta} = E_{V,\delta}$ for all compact sets δ , then $U(\varphi) - V(\varphi)$ is quasi-nilpotent for any $\varphi \in C_c^m$.

PROOF: We consider the C_c^m -spectral representations U_{φ} and V_{φ} constructed in Lemma 3 from U and V respectively. Let $T = U(\varphi)$. Then sp(T) is compact and $T \in L(E)$, hence $E_T = E$. Since U_{φ} is a C_c^m -spectral representation, we have (see Prop. 2.3 of [3])

$$sp\left(U_{\varphi}(\lambda f_{\delta})/E_{U_{\varphi},\delta}\right) \subseteq \delta$$

for any compact set δ such that $E_{U_{\mathcal{P}},\delta} \neq \{0\}$, where $f_{\delta} \in C_c^m$ is equal to 1 on a neighborhood of δ .

On the other hand, by the definition of U_{φ} , we have

$$\begin{split} U_{\varphi}(\lambda f_{\delta}) &= U(\lambda f_{\delta} \circ \varphi) = U[\varphi(f_{\delta} \circ \varphi - f_{\delta}(0))] + f_{\delta}(0)U(\varphi) \\ &= U(\varphi)[U(f_{\delta} \circ \varphi - f_{\delta}(0)) + f_{\delta}(0)I] \\ &= U(\varphi)U_{\varphi}(f_{\delta}). \end{split}$$

Hence, $U_{\varphi}(\lambda f_{\delta})/E_{U_{\varphi},\delta} = T/E_{U_{\varphi},\delta}$. From the corollary to Proposition 1, it follows that $U_{\varphi}(\lambda f_{\delta})/E_{U_{\varphi},\delta} = T/E_{V_{\varphi},\delta}$. Therefore, we obtain $sp(T/E_{V_{\varphi},\delta}) \subseteq \delta$. This implies that T is C_c^m -spectral with respect to the representation V_{φ} . Since $V(\varphi) = S_{V_{\varphi}}$, Lemma 5 implies that $T - V(\varphi) = U(\varphi) - V(\varphi)$ is quasi-nilpotent.

COROLLARY. If U and V are two commuting C_c^m -spectral representations corresponding to a C_c^m -spectral operator T, then U(f) - V(f) is quasi-nilpotent for any $f \in C_c^m$.

P_{ROOF}: This is an immediate consequence of Lemma 4 and the above

theorem.

§ 4. The operator S_U^* .

Given a C_c^m -spectral representation U, we define the operator S_U^* by

 $S_U^* x = U(\bar{\lambda} f_{\delta}) x$ for $x \in E_{U,\delta}$,

where $f_{\delta} \in C_c^m$ is equal to 1 on a neighborhood of δ .

LEMMA 7. The operator S_U^* with the domain E_U is a C_c^m -scalar operator.

PROOF: If we define $U^*(f) = U(f^*)$ for $f \in C_c^m$, where $f^*(\lambda) = f(\overline{\lambda})$ (i.e., $f^*(\xi, \eta) = f(\xi, -\eta)$), then U^* is a C_c^m -spectral representation and $S_U^* = S_U^*$.

PROPOSITION 2. Let U and V be two spectral representations. Then U=V if and only if $S_U=S_V$ and $S_U^*=S_V^*$.

PROOF: The "only if" part is trivial. Suppose now that $S_U = S_V$ and $S_U^* = S_V^*$. It follows that $E_U = E_V$. For any $f \in C_c^m$ and for any $x \in E_U = E_V$, there exists a compact sed δ such that $\delta \supseteq supp f$ and $x \in E_{U,\delta} \cap E_{V,\delta}$. Let $f_{\delta} \in C_c^m$ be equal to 1 on a neighborhood of δ . By Lemma 1, we can find a sequence $\{P_n\}$ of polynomials such that $P_n f_{\delta} \rightarrow f f_{\delta} = f$ in C_c^m . Now, each P_n can be written in the form $\sum b_{jk} \lambda^j \bar{\lambda}^k$, so that

$$U(P_n f_{\delta}) x = \sum b_{jk} S_U^j S_U^{*k} x,$$

$$V(P_n f_{\delta}) x = \sum b_{jk} S_V^j S_V^{*k} x.$$

Hence, $U(P_n f_{\delta})x = V(P_n f_{\delta})x$ by assumption. Hence, by the continuity of U and V, we have U(f) = V(f) on E_U , hence on E.

COROLLARY. Let U and V be two C_c^m -spectral representations corresponding to a scalar operator S. Then, U = V if and only if $S_U^* = S_V^*$.

PROPOSITION 3. Let U (resp. V) be a C_c^m -(resp. C_c^m -) spectral representation and suppose that $E_U = E_V$. Then U and V are commuting if and only if S_U , S_V , S_U^* and S_V^* commute each other.

PROOF: Given $f \in C_c^m$, $g \in C_c^{m'}$ and $x \in E_U = E_V$, there is a compact set δ such that $\delta \supseteq (supp f) \cup (supp g)$ and $x \in E_{U,\delta} \cap E_{V,\delta}$. Again by Lemma 1, we can find sequences $\{P_n\}$ and $\{Q_n\}$ of polynomials in ξ and η such that $P_n f_\delta \rightarrow f$ in C_c^m and $Q_n f_\delta \rightarrow g$ in $C_c^{m'}$, where $f_\delta \in C_c^\infty$ is equal to 1 on a neighborhood of δ . Then, as in the proof of the previous proposition, we obtain U(f)V(g) = V(g)U(f).

COROLLARY. Let U(resp. V) be a C_c^m - (resp. C_c^m -) spectral representation corresponding to a given scalar operator S. Then U and V are commuting if and only if S_U^* and S_V^* commute.

5. Difference of two spectral representations (II).

In the case the spectral representations U and V correspond to the same *scalar* operator, we are able to discuss in more details using the operators S_U^* and S_V^* .

PROPOSITION 4. Let U and V be two C_c^m -spectral representations corresponding to a scalar operator S. Suppose that S_U^* and S_V^* commute and let $Q = S_U^* - S_V^*$.

a) If m is finite, then $Q^{2m+1}x=0$ for all $x \in E_U$;

b) If $m = \infty$ and if the given topology of L(E) is τ_b , then for any bounded set B in $E_{U,\delta}$ (δ is a fixed compact set) and for any equi-continuous part A' in E' there exists a positive integer $k_0 = k_0(B, A')$ such that $\langle Q^k x, x' \rangle = 0$ for all $k \geq k_0, x \in B$ and $x' \in A'$.

PROOF: Let δ be any compact set and let $x \in E_{U,\delta}$. We consider the functions

$$f_{z}(\xi, \eta) = e^{2i(v\xi - u_{\eta})} \cdot f_{\delta}(\xi, \eta) \equiv e^{\bar{\lambda}z - \bar{z}\lambda} \cdot f_{\delta}(\lambda),$$

$$f_{z}^{-1}(\xi, \eta) = e^{2i(u_{\eta} - v\xi)} \cdot f_{\delta}(\xi, \eta) \equiv e^{\bar{z}\lambda - z\bar{\lambda}} \cdot f_{\delta}(\lambda),$$

where $\lambda = \xi + i\eta$ and z = u + iv are complex numbers and $f_{\delta} \in C_c^m$ is equal to 1 on a neighborhood of δ . Then, obviously $f_z, f_z^{-1} \in C_c^m$. By considering the power series expansions of the exponential functions and the convergence of the series in the space C_c^m , we can see that¹

$$U(f_z)x = exp[zU(\bar{\lambda}f_{\delta}) - \bar{z}U(\lambda f_{\delta})]x = exp(zS_U^* - \bar{z}S_U)x,$$

$$V(f_z^{-1})x = exp[\bar{z}V(\lambda f_{\delta}) - zV(\bar{\lambda}f_{\delta})]x = exp(\bar{z}S_V - zS_V^*)x.$$

Since $S_U = S_V$ and $V(f_z^{-1}) \in E_{U,\delta}$, we have

$$U(f_z)V(f_z^{-1})x = exp[z(S_U^* - S_V^*)]x = exp(zQ)x.$$

Let $\delta_0 = supp f_{\delta}$ and let $||f||_k \equiv ||f||_{k,\delta_0}$ for $f \in C^m_{\delta_0}$ (cf. §1,1). Then it is easy to see that for any z with $|z| \ge 1$,

$$||f_z||_k \leq M_k |z|^k, ||f_z^{-1}||_k \leq M'_k |z|^k,$$

where M_k and M'_k are positive numbers independent of z.

a) Now, let *m* be finite. Then *U* is a continuous mapping of the Banach space $C_{\delta_0}^m$ into L(E). Therefore, $\{U(f); f \in C_{\delta_0}^m, \|f\|_m \leq 1\}$ is a bounded set in L(E). Since *E* is quasi-complete, it follows that the set $\{U(f)x; f \in C_{\delta_0}^m, \|f\|_m \leq 1, x \in B\}$ is bounded in *E* for any bounded set *B* in *E*. (See [1], Corollary 1 in p. 22.) Hence there is a positive number $M_{B,x'}(x' \in E')$ such that

$$|\langle U(f_z)x, x'\rangle| \leq M_{B,x'}|z|^m$$

¹⁾ For an operator *T*, exp *Tx* is defined by the series exp $Tx = \sum_{n=0}^{\infty} \frac{T^n x}{n!}$. Since *E* is quasi-complete, all the series of exponentials appearing here converge in *E*.

for all $x \in B$ and $|z| \ge 1$. Similarly, there exists a positive number $N_{x,x'}(x \in E_{U,\delta}, x' \in E')$ such that

$$|\langle V(f_z^{-1})x, x' \rangle| \leq N_{x,x'}|z|^m$$

for all $|z| \ge 1$. Therefore, the set $B_x = \{V(f_z^{-1})x/|z|^m; |z| \ge 1\}$ is bounded in E, so that we have

$$|\langle U(f_z)V(f_z^{-1})x, x' \rangle| \leq M_{B_x,x'}|z|^{2m}$$

for all $|z| \ge 1$, or

$$|\langle exp(zQ)x, x' \rangle| \leq M_{B_x,x'}|z|^{2n}$$

for all $|z| \ge 1$. Since $\langle exp(zQ)x, x' \rangle$ is an entire function of z, it follows then that it is a polynomial of degree at most 2m. Therefore, $Q^{2m+1}=0$.

b) Next, suppose that $m = \infty$ and the given topology of L(E) is τ_b . Let *B* be a bounded set in $E_{U,\delta}$. Since *V* is a continuous mapping of $C_{\delta_0}^{\infty}$ into L(E), there is a positive integer $k_1 = k_1(B, x')$ ($x' \in E'$) such that

$$|\langle V(f)x, x' \rangle| \leq N_{B,x'} ||f||_{k_1}$$

for all $x \in B$ and $f \in C_{\delta_0}^{\infty}$. Therefore,

$$|\langle V(f_z^{-1})x, x' \rangle| \leq N'_{B,x'} |z|^{k_1}$$

for all $x \in B$ and $|z| \ge 1$. Hence the set $B_1 = \{V(f_z^{-1})x/|z|^{k_1}; x \in B, |z| \ge 1\}$ is bounded in *E*. Similarly there is another integer $k_2 = k_2(B_1, A')$ for an equicontinuous part A' in E' such that

$$|\langle U(f)x, x' \rangle| \leq M_{B_1, A'} ||f||_{k_2}$$

for all $x \in B_1$, $x' \in A'$ and $f \in C_{\delta_0}^{\infty}$. Hence

$$\left|\left\langle U(f_z)V(f_z^{-1})x,x'\right\rangle\right|\leq M'_{B,A'}|z|^{k_1+k_2}$$

for all $x \in B$, $x' \in A'$ and $|z| \ge 1$. Therefore, by taking $k_0 = k_1 + k_2 + 1$, we have $\langle Q^k x, x' \rangle = 0$ for all $x \in B$, $x' \in A'$ and $k \ge k_0$ by a similar argument as in a).

COROLLARY 1. If E is a Banach space, then we can choose k_0 independent of B and A' in the statement b) of the above proposition.

PROOF: If E is a Banach space, then the space L(E) with the topology τ_b is also a Banach space. Since U (resp. V) is continuous on $C^{\infty}_{\delta_0}$, there exists a positive integer k_1 (resp. k_2) such that $||U(f)|| \leq M ||f||_{k_1}$ (resp. $||V(f)|| \leq M' ||f||_{k_2}$) for $f \in C^{\infty}_{\delta_0}$. Hence, we have

$$||U(f_z)V(f_z^{-1})|| \leq M'' |z|^{k_1+k_2}.$$

Therefore, we conclude that $Q^{k_1+k_2+1}x=0$ for all $x \in E_{U,\delta}$ and $k_0=k_1+k_2+1$ depends only on δ .

COROLLARY 2. Let S be a C_c^m -scalar operator with compact spectrum and let U and V be two C_c^m -spectral representations corresponding to S such that S_U^* and S_V^* commute and let $Q = S_U^* - S_V^*$.

a) If m is finite, then $Q^{2m+1}=0$.

b) If $m = \infty$ and if the given topology of L(E) is τ_b , then Q is a quasinilpotent operator such that for any bounded set B in E and any equi-continuous part A' in E', there exists a positive integer $k_0 = k_0(B, A')$ such that $\langle Q^k x, x' \rangle$ = 0 for all $x \in B, x' \in A'$ and $k \ge k_0$. If, in particular, E is a Banach space, then Q is a nilpotent operator.

PROOF: It is enough to take $\delta = sp(S)$ in the above proposition and corollary.

REMARK. In general, the condition that S_U^* and S_V^* commute cannot be removed to obtain the nilpotency of Q. In fact, there is an example of C_c^m spectral representations U and V corresponding to the same scalar operator such that Q is not even quasi-nilpotent:

Let E be the two dimensional complex linear space and let

$$U(f)(\alpha, \beta) = (f(1)\alpha + (Df)(1)\beta, f(1)\beta),$$

$$V(f)(\alpha, \beta) = (f(1)\alpha, f(1)\beta + (Df)(1)\alpha)$$

for $f \in C_c^1$ and $(\alpha, \beta) \in E$, where $D = \frac{1}{2} \left(\frac{\partial}{\partial \xi} + i \frac{\partial}{\partial \eta} \right)$. Then U and V are C_c^1 -spectral representations on E corresponding to the identity I. Since $Q(\alpha, \beta) = [U(\lambda) - V(\lambda)](\alpha, \beta) = (\beta, -\alpha)$, Q is not quasi-nilpotent.

§ 6. Difference of two spectral representations (III).

THEOREM 2. Let U and V be two C_c^m -spectral representations corresponding to a scalar operator S such that S_U^* commutes with S_V^* . Let $Q = S_U^* - S_V^*$ and $D = \frac{1}{2} \left(\frac{\partial}{\partial \xi} + i \frac{\partial}{\partial \eta} \right).$

a) If m is finite, then

$$U(f) = \sum_{k=0}^{2m} \frac{1}{k!} Q^k V(D^k f)$$

for $f \in C_c^{3m}$.

b) If $m = \infty$, if E is a Banach space and if the given topology of L(E) is τ_b , then

$$U(f) = \sum_{k=0}^{k_0} \frac{1}{k!} Q^k V(D^k f)$$

for $f \in C_c^{\infty}$, where k_0 is a positive integer depending on f. If, in addition, sp(S) is compact, then k_0 can be chosen independent of f.

PROOF: a) Let $f \in C_c^{3m}$, let δ be a compact neighborhood of supp f and let $f_{\delta} \in C_c^{m}$ be equal to 1 on a neighborhood of δ . By Lemma 1, we can find a sequence $\{P_n\}$ of polynomials in ξ and η such that

$$(D^k P_n) f_{\delta} \rightarrow (D^k f) f_{\delta} = D^k f \quad (n \rightarrow \infty)$$

in C_c^m for all k=0, 1, ..., 2m, since $f \in C_c^{3m}$.

If P is a polynomial in ξ and η , then it can be written in the form $\sum b_{\mu\nu}\lambda^{\mu}\bar{\lambda}^{\nu}$. Hence, for $x \in E_{U,\delta}$,

$$\begin{split} U(P_{f_{\delta}})x &= \sum b_{\mu\nu} \left[U(\lambda f_{\delta}) \right]^{\mu} \left[U(\bar{\lambda} f_{\delta}) \right]^{\nu} x \\ &= \sum b_{\mu\nu} \left[V(\lambda f_{\delta}) \right]^{\mu} \left[V(\bar{\lambda} f_{\delta}) + Q \right]^{\nu} x \\ &= \sum_{\mu,\nu} \sum_{k} \binom{\nu}{k} b_{\mu\nu} Q^{k} V(\lambda^{\mu} \bar{\lambda}^{\nu-k} f_{\delta}) x \\ &= \sum_{k} -\frac{1}{k!} Q^{k} V \left[(D^{k} P) f_{\delta} \right] x. \end{split}$$

By Proposition 4, we know that $Q^{2m+1}=0$. Hence,

$$U(P_n f_{\delta}) x = \sum_{k=0}^{2m} \frac{1}{k!} Q^k V[(D^k P_n) f_{\delta}] x$$

for $x \in E_{U,\delta}$. Letting $n \rightarrow \infty$, we have

$$U(f)x = \sum_{k=0}^{2m} \frac{1}{k!} Q^k V(D^k f) x$$

for $x \in E_{U,\delta}$. Let $f_0 \in C_c^m$ be equal to 1 on a neighborhood of supp f and supp $f_0 \subseteq \delta$. Then $U(f_0) x \in E_{U,\delta}$ for any $x \in E$ and $U(ff_0) = U(f)$. Also we have $V(D^k f) U(f_0) = V(D^k f)$ by Lemma 6. Hence we have the required formula.

b) In this case, there is $k_0 = k_0(\delta)$ $(\delta = supp f)$ such that $Q^{k_0+1} = 0$ by Corollary 1 to Proposition 4. Hence we obtain the expression of U(f) by an argument similar to a). Here, we should remark that, given $f \in C_c^{\infty}$, we can find a sequence $\{P_n\}$ of polynomials such that $(D^k P_n) f_{\delta} \rightarrow D^k f$ $(n \rightarrow \infty)$ in C_c^{∞} for all $k=0, 1, \dots, k_0$.

COROLLARY. Let U and V be two C_c^m -spectral representations corresponding to a scalar operator S and suppose S_U^* commutes with S_V^* .

a) If m is finite, then $[U(f) - V(f)]^{2m+1} = 0$ for any $f \in C_c^m$.

b) If $m = \infty$ and if E is a Banach space with the given topology τ_b in L(E), then U(f) - V(f) is a nilpotent operator for any $f \in C_c^{\infty}$.

PROOF: a) If $f \in C_c^{3m}$, then Theorem 2, a) implies that $[U(f) - V(f)]^{2m+1} = 0$. Since C_c^{3m} is dense in C_c^m , this is ture for any $f \in C_c^m$.

b) This follows from Theorem 2, b).

REMARK. In the case where $m = \infty$ and E is not a Banach space, it is possible to obtain results of the above type for certain C_c^{∞} -functions. For ex-

ample, if $f \in C_c^{\infty}$ is a function such that $D^k f = 0$ for some k on a compact set δ , then we have the convergence of the series in Theorem 2 on $E_{U,\delta}$ and we can see that U(f) - V(f) is a quasi-nilpotent operator on $E_{U,\delta}$ such that $\langle [U(f) - V(f)]^k x, x' \rangle = 0$ for some k = k(x, x') ($x \in E_{U,\delta}, x' \in E'$). We omit the detailed discussion of this type in this paper, since we already know that U(f) - V(f)is quasi-nilpotent (Corollary to Theorem 1) and it seems, at present, to be of little value to investigate further in this direction.

§ 7. Real scalar operators.

PROPOSITION 5. Let T be a C_c^m -spectral operator with compact spectrum sp(T). Then sp(T) lies on the real axis if and only if there exists a C_c^m -spectral representation U corresponding to T such that $S_U = S_U^*$.

PROOF: Suppose sp(T) lies on the real axis. Let φ_{ε} be a C^m -function on R such that $\varphi_{\varepsilon} = 1$ on a neighborhood of 0 and $supp \ \varphi_{\varepsilon} \subseteq [-\varepsilon, \varepsilon]$. For any $f \in C_{\varepsilon}^m$, let

$$f_{\varepsilon}(\xi, \eta) = f(\xi, 0) \varphi_{\varepsilon}(\eta) \in C_{c}^{m}.$$

Given a C_c^m -spectral representation V corresponding to T, we define U by $U(f) = V(f_c)$. Since supp V is contained in the real axis (in C)(Prop. 3.1 of [3]), we see that U(f) does not depend on the choice of φ_c . It is easy to see that U is a C_c^m -spectral representation commuting with T and supp U is contained in the real axis.

Let δ be a compact set such that $E_{U,\delta} \neq \{0\}$. For any open set σ containing δ , we can find $f \in C_c^m$ and $\varepsilon > 0$ such that f=1 on a neighborhood of δ and $supp f_{\varepsilon} \subset \sigma$. Then, $x \in E_{U,\delta}$ implies $x = U(f)x = V(f_{\varepsilon})x \in E_{V,\sigma}$. Hence $E_{U,\delta} \subseteq E_{V,\sigma}$, which follows that $E_{U,\delta} \subseteq E_{V,\delta}$. Therefore, $E_{V,\delta} \neq \{0\}$ and $sp(T/E_{U,\delta}) \subseteq sp(T/E_{V,\delta}) \subseteq \delta$, so that U is a C_c^m -spectral representation corresponding to T. It is obvious that $S_U = S_U^*$.

Conversely, suppose that $T=S_U+Q$ and $S_U=S_U^*$. Since Q is quasi-nilpotent and T, S_U are regular elements of L(E), we have $sp(T)=sp(S_U)+sp(Q)=sp(S_U)$ (see [6]). From the condition $S_U=S_U^*$, it follows that $S_U=U(\xi)$. Hence $sp(S_U)=sp(T)$ lies on the real axis by Lemma 3, b).

PROPOSITION 6. Suppose *m* is finite (resp. $m = \infty$ and *E* is a Banach space with the topology τ_b in L(E)). If *S* is a C_c^m -scalar operator whose spectrum is compact and contained in the real axis, then there exists a unique C_c^m -spectral representation *U* such that $S = S_U = S_U^m$.

PROOF: Let V be a C_c^m -spectral representation corresponding to S, i.e., $S=S_V$. We can construct a function $f_{\varepsilon} \in C_c^m$ for each ε , $0 < \varepsilon < 1$, such that $f_{\varepsilon}=1$ on a neighborhood of sp(S), $f_{\varepsilon}(\xi, \eta) = 0$ if $|\eta| \ge \varepsilon$ and $||f_{\varepsilon}||_l \le M\varepsilon^{-l}$ for all ε , where M>0 is independent of ε . Let $g_{k,\varepsilon}(\xi, \eta) = (2i\eta)^k f_{\varepsilon}(\xi, \eta)$. Then we have $||g_{k,\varepsilon}||_l \le M_k \varepsilon^{k-l}$ for all $k=0, 1, \dots$ and ε , where $M_k>0$ is independent of ε . Since V is continuous from C_c^m into L(E),

$$|\langle V(g_{k,\varepsilon})x, x' \rangle| \leq A(x, x')\varepsilon^{k-m}$$

for $x \in E$ and $x' \in E'$, where A(x, x') > 0 is independent of ε and k. (resp. $\|V(g_{k,\varepsilon})\| \leq A \varepsilon^{k-m_0}$ for some m_0 , where A > 0 is independent of ε and k.)

Since sp(S) lies on the real axis, supp V is contained in the real axis. Therefore, we have $V(g_{k,\varepsilon}) = (S_V - S_V^*)^k$ for all ε and $k=0, 1, \dots$ Hence, if we let $Q=S_V-S_V^*$, then

$$|\langle Q^k x, x'
angle| \leq A(x, x') arepsilon^{k-m} \quad (ext{resp. } \|Q^k\| \leq A arepsilon^{k-m_0}).$$

Since ε is arbitrary $(0 < \varepsilon < 1)$, it follows that $Q^k = 0$ for all $k > m(\text{resp. } k > m_0)$. Now it is easy to see that

$$U(f) = \sum_{k=0}^{m} \frac{1}{k!} V(D^{k}f) Q^{k} \quad \left(\text{resp.} = \sum_{k=0}^{m_{0}} \frac{1}{k!} V(D^{k}f) Q^{k} \right)$$

satisfies the proposition, where $D = \frac{1}{2} \left(\frac{\partial}{\partial \xi} + i \frac{\partial}{\partial \eta} \right)$. The uniqueness follows from Proposition 2.

DEFINITION. A linear transformation S is called a real C_c^m -scalar operator if there exists a C_c^m -spectral representation U such that $S/E_U = S_U = S_U^*$. The C_c^m -spectral representation U satisfying this relation is uniquely determined by Proposition 2 and is called the canonical representation of S.

The above two propositions imply that, in the case where m is finite or $m = \infty$ and E is a Banach space with the topology τ_b in L(E), a C_c^m -scalar operator S with compact spectrum is real if and only if sp(S) lies on the real axis.

REMARK. If E is a Hilbert space, then any Hermitian operator on E is a real C_c^0 -scalar operator and vice versa. Therefore, the notion of real scalar operators is a generalization of that of Hermitian operators.

PROPOSITION 7. i) If S is a real C_c^m -scalar operator, then any C_c^m -spectral representation corresponding to S is commuting with the canonical representation of S.

ii) If S_1 and S_2 are commuting real C_c^m -scalar operators, then their canonical representations are commuting.

iii) If U is a C_c^m -spectral representation and $\varphi \in C_c^m$ is real valued, then $U(\varphi)$ is a real C_c^m -scalar operator and its canonical representation is given by U_{φ} in Lemma 3.

iv) Let S_1 and S_2 be commuting real C_c^{∞} -scalar operators and suppose $\operatorname{sp}(S_1)$ and $\operatorname{sp}(S_2)$ are both compact. Then $P(S_1, S_2)$ is a real C_c^{∞} -scalar operator for any polynomial P in two variables with real coefficients. In particular, S_1+S_2 and S_1S_2 are real C_c^{∞} -scalar operators.

PROOF: i) and ii) are immediate consequences of Proposition 3 and its

corollary. iii) follows from Lemma 3. iv) is a consequence of the corollary to Proposition 3.1 in $\lceil 4 \rceil$ and ii) above.

EXAMPLE. Let $E = \mathscr{S}(\mathbb{R}^n) =$ the space of rapidly decreasing C^{∞} -functions on \mathbb{R}^n . (Or, we may let $E = (\mathscr{S}(\mathbb{R}^n))'$.) Then any differential operator of the form

$$D = P\Big(i - \frac{\partial}{\partial x_1}, \dots, i - \frac{\partial}{\partial x_n}\Big),$$

where P is a polynomial in n variables with *real* coefficients, is a real C_c^{\sim} -scalar operator on E. (Cf. Example 2.5 of [3])

An indication of further development: It may be possible to consider similar canonical representations for other type of generalized scalar operators, e.g., for C_c^m -scalar operators whose spectra lie in a C^m -curve in C.

References

- [1] Bourbaki, N., Espaces Vectoriels Topologiques. Tome II, 1955, Paris.
- [2] Foias, M. S., Une Application des Distributions Vectorielles à la Théorie Spectrale, Bull. Sci. Math., 2^e série, 84 (1960), 147-158.
- [3] Maeda, F-Y., Generalized Spectral Operators on Locally Convex Spaces, Pacific J. Math., 13 (1963), 177-192.
- [4] _____, ____, Function of Generalized Scalar Operators, J. Sci. Hiroshima Univ., Ser. A-I, 26 (1962), 71-76.
- [5] Schwartz, L., Théorie des Distributions, Tome I, 1957, Paris.
- [6] Waelbroeck, L., Locally Convex Algebras: Spectral Theory, Seminar on complex analysis at Institute of Advanced Study, Princeton, 1958.

Faculty of Science Hiroshima University