Parallel Mappings and Comparability Theorem in Affine Matroid Lattices

Fumitomo MAEDA

(Received August 26, 1963)

1. Introduction.

In the theory of continuous geometry, the following theorems are significant.

THEOREM (1.1). (Perspective mappings). In a modular lattice L, when $a \sim_x b$, put

$$Ta_1 = (a_1 \cup x) \cap b \quad for \quad a_1 \in L(0, a),$$

$$Sb_1 = (b_1 \cup x) \cap a \quad for \quad b_1 \in L(0, b).$$

Then T and S are mutually inverse, isomorphic mappings between L(0, a) and L(0, b). In order that a_1, b_1 correspond by these mappings, it is necessary and sufficient that $a_1 \cup x = b_1 \cup x$ holds. And in this case $a_1 \sim_x b_1$.

Here $a \sim b$ means $a \cup x = b \cup x$ and $a \cap x = b \cap x = 0$. (Cf. [6] p. 18 and [4] p. 59).

THEOREM (1.2). (Comparability theorem). Let a, b be any elements in an upper continuous complemented modular lattice L. Then there exist a', a'', b', b'' such that

(1°) $a = a' \cup a'', \quad a' \cap a'' = 0,$ $b = b' \cup b'', \quad b' \cap b'' = 0.$ (2°) $a' \sim b' \quad and \quad e(a'') \cap e(b'') = 0.$

In this case $e(a') = e(b') = e(a) \cap e(b)$.

Here e(a) means the smallest element z such that $a \leq z, z \in Z$, where Z is the center of L. (Cf. [6] p. 265 and [4] p. 87.)

THEOREM (1.3). (Distributivity and perspectivity). Let a, b be elements in a complete complemented modular lattice L. Then the following three propositions are equivalent.

- (α) $a \nabla b$.
- (β) There do not exist nonzero elements a_1, b_1 , with $a_1 \sim b_1, a_1 \leq a, b_1 \leq b$.
- (Υ) $e(a) \cap e(b) = 0.$

Here $a \nabla b$ means $a \cap b = 0$ and (a, b)D (i.e. $(c \cup a) \cap b = (c \cap b) \cup (a \cap b)$ for

every $c \in L$). (Cf. [6] pp. 243–244; [4] p. 70 and Remark (8.1) below).

The object of this paper is to obtain formally analogous theorems with respect to the parallelism instead of the perspectivity.

As Wilcox [7] considered, the basic lattices, in which the parallelism is investigated, may be weakly modular symmetric lattices. Corresponding to Theorem (1.1) we have the following theorem.

THEOREM (3.1). (Parallel mappings). In a weakly modular symmetric lattice L, Let $a \parallel b$ and p, q be points with $p \leq a, q \leq b$. Put

$$Ta_1 = (a_1 \cup q) \cap b \quad for \quad a_1 \in L(p, a),$$

$$Sb_1 = (b_1 \cup p) \cap a \quad for \quad b_1 \in L(q, b).$$

Then T and S are mutually inverse, isomorphic mappings between L(p, a) and L(q, b). In order that a_1 , b_1 correspond by these mappings, it is necessary and sufficient that $a_1 \cup q = b_1 \cup p$ holds. And in this case $a_1 || b_1$.

Let r be a fixed point in an affine matroid lattice L, then for any incomplete element a in L, there exists one and only one element r(a), such that $r \leq r(a)$ and either r(a) || a or r(a) = a. When a is a point p, put r(p) = r. Then r(a) is an element of R = L(r, I(r)), and a || b or a = b if and only if r(a) = r(b). Since R is a modular sublattice of L, we may call R a modular contraction of L. Now r(a) is the smallest element such that $a \leq |\omega, \omega \in R$. Using this R, we can prove easily the following theorem.

THEOREM (5.1). (Comparability theorem). Let a, b be incomplete elements in an affine matroid lattice L, and p, q be points with $p \leq a$ and $q \leq b$. Then there exist a', a'', b', b'', such that

(1°)

$$a = a' \cup a'', \quad a' \cap a'' = p,$$

 $b = b' \cup b'', \quad b' \cap b'' = q.$
(2°)
 $a' \parallel b' \quad or \quad a' = b' \quad and \quad r(a'') \cap r(b'') = r.$

In this case $r(a')=r(b')=r(a) \cap r(b)$.

Lastly, corresponding to Theorem (1.3), I have the following theorem.

THEOREM (7.3). (Modularity and parallelism). Let a, b be incomplete elements in an affine matroid lattice L and $a \cap b = 0$. Then the following three propositions are equivalent.

- (α) $a \perp b$.
- (β) There do not exist incomplete elements a_1, b_1 with $a_1 || b_1, a_1 \leq a, b_1 \leq b$.
- (Υ) $r(a) \cap r(b) = r$.

Here $a \perp b$ means $a \cap b = 0$ and (a, b)M (i.e. $(c \cup a) \cap b = c \cup (a \cap b)$ for every $c \leq b$). The equivalence of (β) and (γ) follows directly from the comparability theorem (5.1). In order to prove the equivalence of (α) and (β) , I use the pro-

perty of the following Wilcox lattice. Let Λ be a complemented modular lattice and $S \subset \Lambda$ be an ideal with 0 deleted. Then $L \equiv \Lambda - S$ is a weakly modular symmetric lattice, where the equivalence of (α) and (β) holds. Since an affine matroid lattice is a Wilcox lattice, Theorem (7.3) is proved.

Thus we obtain the theorems which are formally analogus to Theorems (1.1), (1.2) and (1.3). To the center Z corresponds the modular contraction R = (r, I(r)), whereas, in the preceding paper [5], the modular center M corresponds to Z. Although the modular center M and the modular contraction R of an affine matroid lattice L are the different modular sublattices of L, they are both projective geometries.

2. Preliminary.

DEFINITION (2.1). In a lattice L with 0, $a \perp b$ means $a \cap b = 0$, (a, b)M; and $a \perp b$ means $a \cap b = 0$, $(a, b)\overline{M}$ (\overline{M} being the negation of the relation M). If $a \perp b$ and $a_1 \leq a, b_1 \leq b$, then $a_1 \perp b_1$ (Cf. [7] p. 492). When b covers a, we write $a \leq b$.

If $a \perp b$ implies $b \perp a$, L is called a symmetric lattice (Cf. [7] p. 495). And if $a \cap b \neq 0$ implies (a, b)M, L is called a weakly modular lattice (Cf. [5] (1.1)). A matroid lattice is a relatively atomic, upper continuous, symmetric lattice (cf. [5] (1.2), (1.8) and (1.9)). The converse statement follows from (2.3) below.

Remark (2.2). In a symmetric lattice L, if p is a point and $a \cap p = 0$, then (p, a)M. For, since $a \cap p = 0$ and (a, p)M, we have $a \perp p$. Hence $p \perp a$ and (p, a)M.

LEMMA (2.3). In a symmetric lattice L, if p is a point and $a \cap p = 0$, then $a \leq a \cup p$.

Proof. Take c such that $a \leq c \leq a \cup p$. When $p \leq c$, since $a \cup p \leq c$, we have $c=a \cup p$. When $p \leq c$, then $c \cap p=0$, hence by (2.2) we have (p, c)M. Therefore $c=(a \cup p) \cap c=a$. Consequently $a \leq a \cup p$.

DEFINITION (2.4). In [1] p. 272 and [5] (2.1), the *parallelism* in a lattice with 0 is defined as follows. Let a, b be nonzero elements of L, if $(1^{\circ}) a \cap b = 0$ and $(2^{\circ}) b \lt a \cup b$, then we write a < |b. And if a < |b and b < |a, then we write a|b.

Remark (2.5). When a < |b| in a lattice L with 0, then $a_1 \cup b = a \cup b$ for every a_1 such that $0 < a_1 \leq a$ (cf. [5] (2.3)). Hence when a < |b| and $0 < a_1 \leq a$, we have $a_1 < |b|$. For, $a_1 \cap b \leq a \cap b = 0$ and $b < a \cup b = a_1 \cup b$.

THEOREM (2.6). In a weakly modular symmetric lattice L, if a < |b| and p is a point with $p \leq b$, then $a ||(a \cup p) \cap b$.

Proof. Using (2.3), we can prove as the proof (i) of (5) (2.8).

DEFINITION (2.7). An affine matroid lattice L is a weakly modular matroid

lattice of length ≥ 4 , which satisfies the weak Euclid's parallel axiom (cf. [5] (3.3)). A line l in L is called *incomplete*, when for any point $p \leq l$, there exists a line k such that l || k and $p \leq k$, an element a of length ≥ 2 is called *incomplete*, when any line contained in a is incomplete (cf. [5] (3.4)). When L is not modular, for any point p in L, there exists a maximal incomplete element I(p)which contains p. If I(p) = 1, then L satisfies the strong Euclid's parallel axiom. If $I(p) \neq 1$, then I(p) = I(q) or I(p) || I(q) for any points p, q in L. When L is modular, put I(p) = p. (Cf. [5] (4.1) and (4.2).)

In what follows, the assertion is trivial when the affine matroid lattice is modular. Hence we omit the explanations for the modular case.

THEOREM (2.8). Let a be an incomplete element of an affine matroid lattice L, and r be a point such that $r \leq a$. Then there exists one and only one element b such that $a \parallel b$ and $r \leq b$.

Proof. Cf. [1] p. 307.

LEMMA (2.9). In an affine matroid lattice L, if a < |b| and a is not a point, then a is an incomplete element.

Proof. Let l be any line such that $l \leq a$. Then by (2.5) we have l < |b. Since L is relatively atomic, b contains a point. Hence by (2.6) there exists an element k such that l||k. Therefore l is incomplete, and a is an incomplete element.

LEMMA (2.10). Let r be a point in an affine matroid lattice L. Then L(r, I(r)) is an irreducible modular matroid sublattice of L.

Proof. When r = I(r), it is trivial. Hence assume that r < I(r), and put R = L(r, I(r)). Then a point in R means a line $l = r \cup p$ in L, where p is a point contained in I(r) and $r \neq p$. Hence by [5] (1.4) and (1.5) we can easily prove that R is a relatively atomic, upper continuous sublattice of L. For $a, b \in R$, since $a \cap b \ge r > 0$ and L is weakly modular, we have (a, b)M. Therefore R is modular. And R is a modular matriod sublattice of L. (Cf. also [1] p. 270.) To prove the irreducibility of R, let $l_1 = r \cup p_1$ and $l_2 = r \cup p_2$ be two different points in R, then $r \le p_1 \cup p_2$. Since $p_1 \cup p_2$ is a line of L contained in I(r), by (2.8) there exists a line $l_3 = r \cup p_3$ such that $r \cup p_3 ||p_1 \cup p_2$. Then

$$l_3 = r \cup p_3 \leq r \cup p_1 \cup p_2 = l_1 \cup l_2.$$

Hence the line $l_1 \cup l_2$ in R contains a third point l_3 in R. Therefore, by [4] p. 80 Satz 2.4, R is irreducible.

3. Parallel mappings in weakly modular symmetric lattices.

THEOREM (3.1). In a weakly modular symmetric lattice L, let a || b and p, q be points such that $p \leq a, q \leq b$. Put

$$Ta_1 = (a_1 \cup q) \cap b \quad for \quad a_1 \in L(p, a),$$

$$Sb_1 = (b_1 \cup p) \cap a \quad for \quad b_1 \in L(q, b).$$

Then T and S are mutually inverse, isomorphic mappings between L(p, a) and L(q, b).

In order that a_1 , b_1 correspond by these mappings, it is necessary and sufficient that

$$(1) a_1 \cup q = b_1 \cup p$$

holds. And in this case $a_1 || b_1$.

Proof. (i) It is evident that $Ta_1 \in L(q, b)$ and $Sb_1 \in L(p, a)$. Since by (2.5) $a_1 < |b|$ and $q \leq b$, by (2.6) we have $a_1 ||Ta_1|$. Similarly we have $b_1 ||Sb_1|$.

Since $a_1 || Ta_1$ and $p \leq a_1$, $q \leq Ta_1$, we have by (2.5) $p \cup Ta_1 = a_1 \cup Ta_1 = a_1 \cup q$. Similarly we have $q \cup Sb_1 = b_1 \cup p$. Thus (1) holds.

(ii) Conversely assume that (1) holds. Since $p \cap b \leq a \cap b_1 = 0$, by (2.2) we have (p, b)M. Hence

$$Ta_1 = (a_1 \cup q) \cap b = (b_1 \cup p) \cap b = b_1.$$

Similarly $Sb_1 = a_1$. Thus a_1 and b_1 correspond by T and S.

(iii) Next we shall prove that T and S are mutually inverse, isomorphic mappings. Put $b_1 = Ta_1$. Then by (i), (1) holds. Hence by (ii) $STa_1 = Sb_1 = a_1$. Similarly $TSb_1 = b_1$. Therefore by T and S, there exists a one-one correspondence between L(p, a) and L(q, b) preserving the order. Hence L(p, a) and L(q, b) are isomorphic.

DEFINITION (3.2). We call T and S in (3.1) parallel mappings between L(p, a) and L(q, b).

4. Modular contractions of affine matroid lattices.

DEFINITION (4.1). In an affine matroid lattice L, for any incomplete element a and any point r with $r \leq a$, by (2.8), there exists one and only one element b such that a || b and $r \leq b$. In this case we write r(a) = b. When $r \leq a$, we write r(a) = a. And, since either p || r or p = r for any point p, we write r(p) = r. We call r(a) = a ||-image of a at r.

Remark (4.2). In an affine matroid lattice L, the parallel mappings in (3.1) may be written as: $Ta_1 = q(a_1)$ and $Sb_1 = p(b_1)$. Hence, since I(p) || I(q), for any $a \in L(p, I(p))$, $b \in L(q, I(q))$, we have

$$p(q(a)) = a \text{ and } q(p(b)) = b.$$

And for any $a, b \in L(p, I(p))$, we have

$$r(a \cup b) = r(a) \cup r(b)$$
 and $r(a \cap b) = r(a) \cap r(b)$.

DEFINITION (4.3). In an affine matroid lattice L, when a || b or a = b, we write a || b, and when a < |b or $a \le b$, we write $a \le |b$.

Remark (4.4). In an affine matroid lattice L, $a \parallel b$ is an equivalence relation, and $(1^{\circ}) a \leq |a, (2^{\circ}) a \leq |b, b \leq |a \text{ imply } a \parallel b, \text{ and } (3^{\circ}) a \leq |b, b \leq |c \text{ imply } a \leq |c. (cf. [1] pp. 310-311.)$

Remark (4.5). In an affine matroid lattice L, let a, b be incomplete elements or points. Then

(1°) $a \parallel b$ if and only if r(a) = r(b), (2°) $a \leq \mid b$ if and only if $r(a) \leq r(b)$.

Proof. Since a ||| r(a) and b ||| r(b), by (4.4), $a \leq |b|$ if and only if $r(a) \leq |r(b)$. But $r(a) \cap r(b) \geq r$, hence $r(a) \leq |r(b)$ means $r(a) \leq r(b)$. Thus we have (2°). Similarly we have (1°).

Since r(a) and r(b) are elements in R = L(r, I(r)), by $a \rightarrow r(a)$, all incomplete elements and points in L are transposed into R preserving the order in the sense of (1°) and (2°) . By (2.10) R is an irreducible modular matroid lattice. Hence we may call R = L(r, I(r)) a modular contraction of L. Since $I(p) \parallel I(q)$ for any points p, q in L, by (3.1) L(p, I(p)) and L(q, I(q)) are isomorphic. Hence the modular contraction of L is uniquely determined up to isomorphism. (This is an extension of Ex. 3 in [1] p. 317.) By (1°) and (2°) , we may say that r(a)is the smallest element ω such that $a \leq |\omega, \omega \in R$.

Remark (4.6). In an affine matroid lattice *L*, let *b* be an incomplete element and a < |b|. Then for any point $p \leq a$, by (2.8), there exists one and only one element a_2 such that $a_2 ||b|$ and $p \leq a_2$. In this case $a \leq a_2$. For, by (2°) in (4.5), we have $a = p(a) \leq p(b) = a_2$. Therefore a_2 is uniquely determined irrespective of $p \leq a$.

5. Comparability theorem in affine matroid lattices.

THEOREM (5.1). Let a, b be incomplete elements in an affine matroid lattice L, and p, q be points such that $p \leq a$ and $q \leq b$. Then there exist a', a'', b', b'' such that

(1°)

$$a = a' \cup a'', \quad a' \cap a'' = p,$$

 $b = b' \cup b'', \quad b' \cap b'' = q.$
(2°)
 $a' |||b' \quad and \quad r(a'') \cap r(b'') = r$

In this case $r(a')=r(b')=r(a) \cap r(b)$.

Proof. Put $\omega = r(a) \cap r(b)$. Since R = L(r, I(r)) is a complemented modular lattice, if we take u and v such that

(1)
$$r(a) = \omega \cup u, \quad \omega \cap u = r,$$

Parallel Mappings and Comparability Theorem in Affine Matroid Lattices

(2)
$$r(b) = \omega \cup v, \quad \omega \cap v = r,$$

then we have

$$(3) u \cap v = r.$$

(Cf. [4] p. 14 Hilfssatz 1. 12.) Put $a' = p(\omega), a'' = p(u), b' = q(\omega), b'' = q(v)$. Then by (4.2) and (1) we have

$$a = p(r(a)) = p(\omega) \cup p(u) = a' \cup a'',$$

$$a' \cap a'' = p(\omega) \cap p(u) = p(\omega \cap u) = p(r) = p.$$

Similarly from (2) we have

$$b = b' \cup b'', \quad b' \cap b'' = q$$

Since $a' ||| \omega$ and $b' ||| \omega$, we have a' ||| b', and from (3) we have

$$r(a'') \cap r(b'') = r(p(u)) \cap r(q(v)) = u \cap v = r,$$

$$r(a') = r(p(\omega)) = \omega = r(a) \cap r(b),$$

$$r(b') = r(a) \cap r(b).$$

and

$$r(b') = r(a) \cap r(b)$$

similarly

THEOREM (5.2). Let a, b be incomplete elements in an affine matroid lattice L. Then the following two propositions (α) and (β) are equivalent.

- (a) There exist no incomplete elements a_1, b_1 such that $a_1 ||| b_1, a_1 \leq a, b_1 \leq b$.
- (β) $r(a) \cap r(b) = r$.

Proof. $(\alpha) \rightarrow (\beta)$. When $r(a) \cap r(b) > r$, from (5.1), there exist a', b' such that $a' \leq a, b' \leq b$, and $r(a') = r(b') = r(a) \cap r(b) > r$. Then a', b' are incomplete, in contradiction to (α) .

 $(\beta) \rightarrow (\alpha)$. If there exist incomplete elements a_1, b_1 such that $a_1 || b_1, a_1 \leq a$, $b_1 \leq b$, then by (4.5) $r(a_1) = r(b_1)$. Hence $r(a) \cap r(b) \geq r(a_1) \cap r(b_1) = r(a_1)$. Since a_1 is incomplete, we have $r(a_1) > r$, which contradicts (β).

6. Parallelism in Wilcox lattices.

DEFINITION (6.1). Let S be a subset of a lattice L. If $a, b \in S$ implies $a \cup$ $b \in S$, and $a \in S$, $b \leq a$ imply $b \in S$, then S is called an *ideal* of L.

THEOREM (6.2). Let Λ be a given complemented modular lattice partially ordered by a relation $a \leq b$, and having the operations $a \lor b$, $a \land b$. Let $S \subset A$ be a fixed ideal of A with 0 deleted. Define $L \equiv A - S$. Then L is a weakly modular symmetric lattice partially ordered by the relation $a \leq b$, with the operations $a \cup b$, $a \cap b$ which satisfy the following conditions:

$$(6.2.1) a \cup b = a \vee b,$$

Fumitomo MAEDA

(6.2.2)
$$a \cap b = \begin{cases} a \wedge b & \text{if } a \wedge b \in L, \\ 0 & \text{if } a \wedge b \in S. \end{cases}$$

And for $a, b \in L$,

$$(6.2.3) a \perp b in L if and only if a \wedge b = 0,$$

 $(6.2.4) a \coprod b \text{ in } L \text{ if and only if } a \land b \in S.$

Proof. Cf. [7] pp. 497–498.

DEFINITION (6.3). When a weakly modular symmetric lattice L arises from a complemented modular lattice Λ in the manner described in (6.2) we call L a Wilcox lattice, and Λ the modular extension of L.

The characterization of Wilcox lattices is as yet unsolved (cf. [7] p. 505). In Wilcox lattices, we can define the parallelism by (2.4).

THEOREM (6.4). In a Wilcox lattice L, let a be an element which is neither zero nor a point. Then the following three propositions are equivalent.

- (α) a < |b.
- (b) $a \cap b = 0$ and $a_1 \cup b = a \cup b$ for every a_1 such that $0 < a_1 \leq a$.
- (7) $a \wedge b \in S$ and $a \wedge b \leq a$ in A.

Proof. $(\alpha) \rightarrow (\beta)$ follows from [5] (2.3).

 $(\beta) \rightarrow (\gamma)$. Since a is not a point, there exists a_1 such that $0 < a_1 < a$. Hence by (β)

$$(a_1 \cup b) \cap a = (a \cup b) \cap a = a > a_1 = a_1 \cup (b \cap a).$$

Thus $(b, a)\overline{M}$. Therefore by (6.2.4) $a \wedge b \in S$. In A, take an element c such that

(1)
$$a = (a \wedge b) \lor c, (a \wedge b) \wedge c = 0.$$

Since $a \in L$ and $a \wedge b \in S$, we have $c \in L$. Lex x be any element of L such that $0 < x \leq c$. Since $0 < x \leq c \leq a$, by (β), we have $x \cup b = c \cup b = a \cup b$, therefore by (6.2.1) we have

$$x \lor b = c \lor b = a \lor b,$$

and from (1), $x \wedge b \leq c \wedge b = 0$. That is, x and c are relative complements of b in $a \vee b$, such that $x \leq c$. By the modularity of Λ , we have x = c (cf. [4] p. 6 Satz 1. 4). Consequently c is a point, hence from (1) we have $a \wedge b \leq a$ in Λ .

 $(r) \rightarrow (\alpha)$. Since $a \wedge b \lt a$, there exists a point p in A such that

$$a = (a \wedge b) \lor p$$
, $(a \wedge b) \land p = 0$.

Since $a \in L$ and $a \wedge b \in S$, we have $p \in L$. Then

$$a \lor b = (a \land b) \lor p \lor b = p \lor b$$
 and $b \land p = 0$.

Hence $b \leq a \lor b$ in Λ . Therefore by (6.2.1) we have $b \leq a \lor b$ in L. Since $a \land b \in S$, by (6.2.2), we have $a \land b = 0$. Consequently a < |b|.

Reference. Hsu [2] defined (*)-parallelism using (β) , and I have proved in [5] (2.3) that (**)-parallelism is equivalent to that defined by (α) . (2.4) shows that in a Wilcox lattice, these two parallelisms coincide (when a is a point p, by (2.3) p < |b for any element b > 0 such that $p \cap b = 0$, and (β) also holds), and from above proof, when a||b, a contains at least one point. In [5] (2.4) Reference, I noted that the same statement holds in a left complemented lattice.

DEFINITION (6.5). Let a be an element in a Wilcox lattice L. If there exist a point $p \in L$ and $u \in S$ such that $a=p \vee u$ in Λ , then we call a a singular element of L.

Remark (6.6). In a Wilcox lattice L, when a is not a point and a < |b, by (6.4), we have $a \land b \in S$ and $a \land b < a$ in Λ . Hence there exists a point $p \in \Lambda$ such that $a = p \lor (a \land b)$. If $p \in S$ then $a \in S$, which contradicts $a \in L$. Hence p is a point in L, and a is a singular element of L. Especially when a ||b and a, b are not points, there exist points $p, q \in L$ such that

$$a = p \lor (a \land b), \quad b = q \lor (a \land b) \text{ and } a \land b \in S.$$

THEOREM (6.7). Let a be a singular element in a Wilcox lattice L. Then for any point $q \in L$ with $q \leq a$, there exists a singular element $b \in L$ such that a || band q < b.

Proof. By (6.5) there exist a point $p \in L$ and $u \in S$ such that $a = p \lor u$. Since $a \cap q = 0$ and (a, q)M, we have $a \perp q$. Hence by (6.2.3) we have $a \wedge q = 0$. Therefore, if we put $b = q \lor u$, then $a \wedge b = a \wedge (q \lor u) = u \in S$, and $a \wedge b = u \leq b$. Hence by (6.4), we have b < |a|. Similarly, from $a = p \lor u$ we have $a \wedge b = u \leq a$, that is a < |b|. Consequently a ||b|.

LEMMA (6.8). In a Wilcox lattice L, if $a \coprod b$ and p is a point with p < a, then $a_1 = p \lor (a \land b)$ is a singular element of L such that

$$a_1 < | b \quad and \quad p < a_1 \leq a_1$$

In this case $a_1 \wedge b = a \wedge b \in S$.

Proof. From (6.2.4), we have $a \wedge b \in S$. Hence $a_1 = p \vee (a \wedge b)$ is a singular element and $p < a_1 \leq a$ in *L*. If $p \wedge b = p$, then by (6.2.2), we have $p \wedge b = p \cap b \leq a \cap b = 0$, which is absured. Hence $p \wedge b = 0$, and we have $a_1 \wedge b = \{p \vee (a \wedge b)\} \wedge b = a \wedge b$. Therefore, since $a_1 = p \vee (a_1 \wedge b)$, we have $a_1 \wedge b \leq a_1$. Consequently from (6.4), $a_1 < |b|$ holds.

THEOREM (6.9). In a Wilcox lattice L, if $a \parallel b$ and p, q are points with p < aand q < b, then $a_1 = p \lor (a \land b)$ and $b_1 = q \lor (a \land b)$ are singular elements of L such that

$$a_1 \, \| \, b_1 \quad and \quad p < a_1 {\, \leq \,} a, \quad q < b_1 {\, \leq \,} b.$$

In this case $a_1 \wedge b_1 = a \wedge b \in S$.

Proof. Since $a \parallel b$ and p < a, from (6.8), $a_1 = p \lor (a \land b)$ is a singular element such that

$$a_1 < |b, p < a_1 \leq a$$
 and $a_1 \wedge b = a \wedge b \in S$.

Hence by [5] (2.5) $a_1 \perp b$ and q < b. Applying (6.8) again, $b_1 = p \land (a_1 \land b) = p \land (a \land b)$ is a singular element such that

$$b_1 < |a_1, q < b_1 \leq b$$
 and $a_1 \wedge b_1 = a_1 \wedge b \in S$.

Since $a_1 < |b, by (6.4)$, we have $a_1 \land b \lt a_1$. Then $a_1 \land b_1 \lt a_1$ and we have $a_1 < |b_1$. Consequently $a_1 ||b_1$.

THEOREM (6.10). Let a and b be elements in a Wilcox lattice L, each of which contains at least one point, and $a \cap b = 0$. Then the following two propositions are equivalent.

(a) $a \perp b$. (b) There do not exist singular elements a_1, b_1 such that $a_1 || b_1, a_1 \leq a, b_1 \leq b$.

Proof. $(\alpha) \rightarrow (\beta)$. If there exist singular elements a_1 , b_1 such that $a_1 || b_1$, $a_1 \leq a$, $b_1 \leq b$, then from [5] (2.5) we have $(a_1, b_1)\overline{M}$. But from $a \perp b$, we have $a_1 \perp b_1$, which is absured.

 $(\beta) \rightarrow (\alpha)$ follows from (6.9).

Remark (6.11). In (6.10), we can not delete the condition " $a \cap b = 0$ ", even if we write $a_1 ||b_1$ instead of $a_1 ||b_1$ in (β). For example, in an affine matroid lattice *L*, let *a*, *b* be two different lines which intersect at a point. Then (α) does not hold, although (β) holds.

7. Modularity and parallelism in affine matroid lattices.

DEFINITION (7.1). Let L be an affine matroid lattice with the operations $a \cup b$, $a \cap b$. Since by (4.4) $a \parallel b$ is an equivalence relation, we put $[a] = \{b; b \parallel a\}$, and denote by S the set of all [a], where a is any incomplete element of L. Define $A \equiv L \cup S$.

In Λ , we can define a partial order $\alpha \leq \beta$ by the following convention:

- 1° When $a, b \in L, a \leq b$ in Λ means $a \leq b$ in L.
- 2° When $[a] \in S, b \in L, [a] < b$ in Λ means $a \leq |b|$ in L.
- 3° When [a], [b] ϵS , [a] \leq [b] in Λ means $a \leq$ |b in L.

- 4° For $[a] \in S$, there exists no nonzero element $b \in L$ such that b < [a] in A.
- 5° For every element $[a] \in S, 0 < [a]$ in Λ .

Then, in [1] pp. 311-314, it is proved that Λ is a modular matroid lattice with the operations $\alpha \lor \beta$, $\alpha \land \beta$, which satisfy the following conditions: For $a, b \in L$,

(7.1.1) $a \lor b = a \lor b,$ (7.1.2) $a \land b \begin{cases} = a \land b & \text{if } a \land b \neq 0, \\ \epsilon S & \text{or } = 0 & \text{if } a \land b = 0. \end{cases}$

And $S = \{\alpha \in \Lambda; 0 < \alpha \leq [I(r)]\}$, where r is a point in L (cf. (2.7)). S is isomorphic to the modular contraction R = L(r, I(r)) with r deleted.

THEOREM (7.2). An affine matroid lattice L is a Wilcox lattice. And $a \in L$ is singular if and only if a is incomplete.

Proof. In (7.1), L=A-S, and (7.1.2) is equivalent to (6.2.2), from (6.2) L is a Wilcox lattice. When $a \in L$ is singular, by (6.7), there exists an element $b \in L$ such that a || b. Hence by (2.9), a is incomplete. Similarly, when $a \in L$ is incomplete, by (2.8), there exists an element $b \in L$ such that a || b. Hence by (6.6), a is singular.

THEOREM (7.3). Let a, b be incomplete elements in an affine matroid lattice L, and $a \cap b = 0$. Then the following three propositions are equivalent.

- (α) $a \perp b$.
- (β) There do not exist incomplete elements a_1 , b_1 such that

 $a_1 \parallel b_1, a_1 \leq a, b_1 \leq b.$

(\tilde{r}) $r(a) \cap r(b) = r$.

Proof. $(\alpha) \stackrel{\rightarrow}{\leftarrow} (\beta)$ from (6.10), and $(\beta) \stackrel{\rightarrow}{\leftarrow} (\alpha)$ from (5.2).

8. Appendix.

Remark (8.1). In [4] p. 70, Theorem (1.3) is proved when L is an upper continuous complemented modular lattice. But as Kaplansky [3, p. 537] suggested, this theorem can be proved without the use of the upper continuity.

Bibliography

- 1. M. L. Dubreil-Jacotin, L. Lesieur and R. Croisot, Leçons sur la théorie des treillis des structures algébriques ordonnées et des treillis géométriques. Paris, 1953.
- C. Hsu, On lattice theoretic characterization of the parallelism in affine geometry, Annals of Math., (2) 50 (1949), 1-7.
- 3. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Annals of Math.,

Fumitomo Maeda

(2) 61 (1955), 524-541.

- 4. F. Maeda, Kontinuierliche Geometrien. Berlin, 1958.
- 5. ____, Modular centers of affine matroid lattices, J. Sci. Hiroshima Univ. Ser. A-I, 27 (1963), 73-84.
- 6. J. von Neumann, Continuous geometry. Princeton, 1960.
- 7. L. R. Wilcox, Modularity in the theory of lattices, Annals of Math., (2) 40 (1939), 490-505.