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1. Introduction.

In the theory of continuous geometry, the following theorems are signi-

ficant.

THEOREM (1.1). (Perspective mappings). In a modular lattice £, when

a^xb, put

Taι = {ax\Jx)r\b for ax € 1(0, a\

Sh = (b1\Jx)r\a for biβL (0, b).

Then T and S are mutually inverse, isomorphic mappings between £(0, a) and

L(0, b). In order that au bι correspond by these mappings, it is necessary and

sufficient that aι\Jx = bχ\Jχ holds. And in this case a\~~xb\.

Here a^xb means a\Jx=b\Jχ and aίλχ=br\χ=0. (Cf. [6] p. 18 and [4]

p. 59).

THEOREM (1.2). (Comparability theorem). Let a, b be any elements in an

upper continuous complemented modular lattice L. Then there exist a, a', b\

b" such that

(1°) a = a'\Ja",

b = b'\Jb",

(2°) a'<~V and e(β

//)Ae(ό//) = 0.

In this case e(a) — e(br) = e(a)ί\ e(b).

Here e(a) means the smallest element z such that a<Lz, z e Z, where Z is

the center of L (Cf. [6] p. 265 and [4] p. 87.)

THEOREM (1.3). (Distributivity and perspectivity). Let a, b be elements in

a complete complemented modular lattice L. Then the following three proposi-

tions are equivalent.

(a) aVb.

(/?) There do not exist nonzero elements a\, b\, with aι~~b\, a>ι<La, bι<Jb.

(r) e(a)Γ\e(b) = 0.

Here aVb means aί\b = 0 and (a9b)D (i.e. (c\Ja)r\b = (cr\b)\J(aΓΛb) for
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every c e L). (Cf. [6] pp. 243-244; [4] p. 70 and Remark (8.1) below).

The object of this paper is to obtain formally analogous theorems with

respect to the parallelism instead of the perspectivity.

As Wilcox [7] considered, the basic lattices, in which the parallelism is

investigated, may be weakly modular symmetric lattices. Corresponding to

Theorem (1.1) we have the following theorem.

THEOREM (3.1). (Parallel mappings). In a weakly modular symmetric

lattice L, Let a\\b and p, q be points with p<La, q<Lb. Put

Ύa\ = (αiUq)Γ\b for aλ 6 L(p, a),

Sbi = (bι \Jp) A a for bx 6 L(q, b).

Then T and S are mutually inverse, isomorphic mappings between L(p, a) and

L(q, b). In order that au bι correspond by these mappings, it is necessary and

sufficient that aχ\Jq=bi\Jp holds. And in this case ai\\bi.

Let r be a fixed point in an affine matroid lattice L, then for any incom-

plete element a in L, there exists one and only one element r(α), such that r<[

r(a) and either r(a)\\a or r{a) — a. When a is a point p, put r(p) = r. Then r(a) is

an element of R=L(r, I(r)), and a\\b or a=b if and only if r(a)=r(b). Since R

is a modular sublattice of L, we may call R a modular contraction of i . Now

r(a) is the smallest element such that a<L\ω, ω e R. Using this R, we can

prove easily the following theorem.

THEOREM (5.1). (Comparability theorem). Let a, b be incomplete elements

in an affine matroid lattice L, and p, q be points with p<La and q<Lb. Then

there exist a, a", b', b", such that

(1°) a = a'\Ja", a

rΓ\aff=p,

b = br\Jb", V Γ\b" = q.

(2°) a'\\V or af = br and τ(a") Γ\r(b") = r.

In this case r{a) = r{br) — r(a)Γ\r(Jb).

Lastly, corresponding to Theorem (1.3), I have the following theorem.

THEOREM (7.3). (Modularity and parallelism). Let a, b be incomplete ele-

ments in an affine matroid lattice L and aί\b = Q. Then the following three

propositions are equivalent.

(a) a±b.

(β) There do not exist incomplete elements au bι with aι\\bu ai<^a, bi<Lb.

(r) r(α)Λr(i) = r.

Here a±b means aΓ\b = Q and (a, b)M (i.e. (c\Ja)r\b=c\J(aί\b) for every

c<Lb). The equivalence of (β) and (r) follows directly from the comparability

theorem (5.1). In order to prove the equivalence of (a) and (/?), I use the pro-
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perty of the following Wilcox lattice. Let A be a complemented modular
lattice and SCΛ be an ideal with 0 deleted. Then L^Λ—S is a weakly modu-
lar symmetric lattice, where the equivalence of (α) and (/?) holds. Since an
affine matroid lattice is a Wilcox lattice, Theorem (7.3) is proved.

Thus we obtain the theorems which are formally analogue to Theorems
(1.1), (1.2) and (1.3). To the center Z corresponds the modular contraction
R = (r, /(r)), whereas, in the preceding paper [5], the modular center M cor-
responds to Z. Although the modular center M and the modular contraction
R of an affine matroid lattice L are the different modular sublattices of L,
they are both projective geometries.

2. Preliminary.

DEFINITION (2.1). In a lattice L with 0, a±b means aίλb^O, (α, b)M; and
a][b means aί\b = 0, (a, b)M (M being the negation of the relation M). If a±b
and <zi<Iα, &i<16, then ai±bi (Cf. [7] p. 492). When b covers α, we write «<•£.

If a±b implies b±a, L is called a symmetric lattice (Cf. [7] p. 495). And
if aίλbφO implies (a, 6)M, L is called a weakly modular lattice (Cf. [5] (1.1)).
A matroid lattice is a relatively atomic, upper continuous, symmetric lattice
(cf. [5] (1.2), (1.8) and (1.9)). The converse statement follows from (2.3) be-
low.

Remark (2.2). In a symmetric lattice L, if p is a point and αAp = 0, then
(p,a)M. For, since aΓΛp = 0 and (a,p)M, we have a±p. Hence p±a and
(p, a)M.

LEMMA (2.3). In a symmetric lattice L, if p is a point and aί\p = 0, then
a<la\J p.

Proof. Take c such that a<Lc<La\Jp. When p<Lc, since a\Jp<Lc, we have
c=a\Jp. When p^c, then cAp = 0, hence by (2.2) we have (p, c)M. Therefore
c=(a\Jp)r\c=a. Consequently a<ia\Jp.

DEFINITION (2.4). In [1] p. 272 and [5] (2.1), the parallelism in a lattice
with 0 is defined as follows. Let α, b be nonzero elements of L, if (1°) aΓ\b =
0 and (2°) ό<αUό, then we write a< \b. And if a< \b and b< \a, then we
write a\\b.

Remark (2.5). When a< \b in a lattice L with 0, then aι\Jb = a\Jb for
every aλ such that 0<aι<La (cf. [5] (2.3)). Hence when a< \b and 0<ai<La,
we have ax< \b. For, axΓλb^LaίΛb^O and

THEOREM (2.6). In a weakly modular symmetric lattice i , if a<\b and p

is a point with p<Lb, then a\\(a\Jp)ί\b.

Proof. Using (2.3), we can prove as the proof (i) of [5] (2.8).

DEFINITION (2.7). An affine matroid lattice L is a weakly modular matroid



88 Fumitomo MAEDA

lattice of length ^ 4 , which satisfies the weak Euclid's parallel axiom (cf. [5]
(3.3)). A line I in L is called incomplete, when for any point p%l, there exists
a line k such that ΐ\\k and p<Lk, an element a of length :>2 is called incomplete,
when any line contained in a is incomplete (cf. [5] (3.4)). When L is not
modular, for any point p in Z,, there exists a maximal incomplete element I(p)
which contains p. If I(p) — 1, then L satisfies the strong Euclid's parallel
axiom. If /(p)φl , then I(p)=I(q) or I(p)\\I(q) for any points p, q in L. When
L is modular, put I(p)=p. (Cf. [5] (4.1) and (4.2).)

In what follows, the assertion is trivial when the affine matroid lattice is
modular. Hence we omit the explanations for the modular case.

THEOREM (2.8). Let a be an incomplete element of an affine matroid lattice
L, and r be a point such that r^a. Then there exists one and only one element b
such that a\\b and r<Lb.

Proof. Cf. [1] p. 307.

LEMMA (2.9). In an affine matroid lattice L, if a< \ b and a is not a point,
then a is an incomplete element.

Proof. Let I be any line such that l<La. Then by (2.5) we have K\b.
Since L is relatively atomic, b contains a point. Hence by (2.6) there exists
an element k such that l\\k. Therefore I is incomplete, and a is an incomplete
element.

LEMMA (2.10). Let r be a point in an affine matroid lattice L. Then i(r,
/(r)) is an irreducible modular matroid sublattice of L.

Proof. When r = /(r), it is trivial. Hence assume that r < /(r), and put
R=L(r, /(r)). Then a point in R means a line l — r\Jp in L, where p is a point
contained in /(r) and rφp. Hence by [5] (1.4) and (1.5) we can easily prove
that R is a relatively atomic, upper continuous sublattice of L. For a, b e R,
since ar\b^r > 0 and L is weakly modular, we have (a, b)M. Therefore R is
modular. And R is a modular matriod sublattice of L. (Cf. also [1] p. 270.)
To prove the irreducibility of R, let h —-rVJpi and I2~r\jp2 be two different
points in R, then r^pλ\Jp2. Since piUp2 is a line of L contained in /(r), by
(2.8) there exists a line I3 = r\jp3 such that r\Jp3\\pι\Jp2. Then

h = r \J ps <: r U pi U p2 = h \J Z2.

Hence the line h\Jl2 in R contains a third point Z3 in R. Therefore, by [4] p.
80 Satz 2.4, R is irreducible.

3. Parallel mappings in weakly modular symmetric lattices.

THEOREM (3.1). In a weakly modular symmetric lattice L, let a\\b and p, q
be points such that p<La, q<Jb. Put
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for aλ e L(p, a\

Sbi = (bι\Jp)ί\a for bι 6 L(q, b).

Then T and S are mutually inverse, isomorphic mappings between £(p, a) and

Uq,b).
In order that αi, b\ correspond by these mappings, it is necessary and suf-

ficient that

(1) aι\Jq = bι\Jp

holds. And in this case aι\\bι.

Proof, (i) It is evident that Tax e L(q, b) and Sbi e L(p, a). Since by (2.5)
«i< |ό and q<jb, by (2.6) we have αi| |ϊαi. Similarly we have δi||S6i.

Since aι\\Taι and p<Lau q<,Tau we have by (2.5) p\jTaι^aι\JTaι = ax\jq.
Similarly we have qVJSbι = bι\Jp. Thus (1) holds.

(ii) Conversely assume that (1) holds. Since pΓ\b<Laί\bι = O, by (2.2) we
have (p, b)M. Hence

Tax — (αiU q) ίλb = (bi\Jp) Γ\b = bλ.

Similarly Sbι = ax. Thus a\ and bι correspond by T and S.
(iii) Next we shall prove that T and S are mutually inverse, isomorphic

mappings. Put bι = Taλ. Then by (i), (1) holds. Hence by (ii) STaι = Sbι=aι.
Similarly TSbx = bλ. Therefore by T and S, there exists a one-one correspon-
dence between L(p, a) and L(q, b) preserving the order. Hence L(p, a) and L(q,
b) are isomorphic.

DEFINITION (3.2). We call T and S in (3.1) parallel mappings between L(p,
a) and JXq9 b).

4. Modular contractions of affine matroid lattices.

DEFINITION (4.1). In an affine matroid lattice L, for any incomplete ele-
ment a and any point r with r % α, by (2.8), there exists one and only one ele-
ment b such that a\\b and r<Lb. In this case we write r(a) = b. When r<ία, we
write r(a) = a. And, since either p\\r or p=r for any point p, we write r(p) = r.
We call r(a) a \\-image of a at r.

R e m a r k (4.2). In an affine matroid lattice L, the parallel mappings in
(3.1) may be written as: Tai = q(a{) and Sbι=p(b{). Hence, since I(p)\\I(q\ for
any α e L(p, /(p)), b e L(q, I(q))9 we have

P (q (a)) = a and q (p (b)) = b.

And for any α, b e L(p, /(p)), we have

= r(α) \J r(b) and r
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DEFINITION (4.3). In an affine matroid lattice L, when a\\b or a = b, we
write α|||&, and when a< \b or a<jb, we write a<L\b.

Remark (4.4). In an affine matroid lattice £, αlllft is an equivalence rela-
tion, and ( l ° ) α ^ | α , (2°) a<L\b, b<:\a imply a\\\b, and (3°) a<L\b, b<L\c imply
a^\c. (cf. [1] pp. 310-311.)

Remark (4.5). In an affine matroid lattice L, let α, b be incomplete ele-
ments or points. Then

(1°) a III b if and only if r(a) = r(b\

(2°) a^\b if and only if r

Proof. Since α|||r(α) and 6|||r(δ), by (4.4), a^\b if and only if r(a)^\r(b).
But r(α)Ar(6)^r, hence r(a)<L\r(b) means r(a)<Lr(b). Thus we have (2°). Simi-
larly we have (1°).

Since r(a) and r(b) are elements in R=L(r, I(r% by a-*r(a), all incomplete
elements and points in L are transposed into R preserving the order in the
sense of (1°) and (2°). By (2.10) R is an irreducible modular matroid lattice.
Hence we may call R = L(r, /(r)) a modular contraction of L. Since I(p)\\\I(q)
for any points p, q in L, by (3.1) £(p, /(p)) and L(gr, /(j)) are isomorphic. Hence
the modular contraction of L is uniquely determined up to isomorphism. (This
is an extension of Ex. 3 in [1] p. 317.) By (1°) and (2°), we may say that r(a)
is the smallest element ω such that a<L | ω, ω e R.

Remark (4.6). In an affine matroid lattice L, let b be an incomplete ele-
ment and α< \b. Then for any point p<Iα, by (2.8), there exists one and only
one element α2 such that a2\\b and p^a2. In this case a<La2. For, by (2°) in
(4.5), we have a = p(a)<,p(b) = a2. Therefore a2 is uniquely determined irre-
spective of p<a.

5. Comparability theorem in affine matroid lattices.

THEOREM (5.1). Let a, b be incomplete elements in an affine matroid lattice
L, and p, q be points such that p<La and q<Lb. Then there exist a, a\ b\ b" such
that

) a =

b = b'\J b'\ b' Γ\ b" = q.

(2°) α'Wδ' and τ(a") r\r(b") = r.

In this case r(a) = r(br) = r(a)ΓΛr(b).

Proof. Put ω = r(a)ίλr(b). Since R=L(r, /(r)) is a complemented modular
lattice, if we take u and v such that

(1) r(a) = ω\Ju,
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(2) r(b) = ω\Jv,

then we have

(3)

(Cf. [4] p. 14 Hilfssatz 1. 12.) Put a=p(ω\ a"=p(u), br = q(ω\ b" = q(v). Then
by (4.2) and (1) we have

a = p(r(aj) =p(ώ)\Jp(u) = a \J a",

a! Γ\a" =p(ώ)ί\p(u) =p(θ> Aw) = p(r) = p.

Similarly from (2) we have

b = b'\Jb"9 b'r\b" = q.

Since a'\\\ω and b'\\\ω, we have a'\\\b\ and from (3) we have

r(a")Γ\r(b") = r(p(uj) ΓΛr(q(v)) = uΓ\v = r,

and r (a) = r(p (to)) = ίΰ = r(β)Λr (6),

similarly r (b') = r(a)r\ r (b).

THEOREM (5.2). Let a, b be incomplete elements in an affine matroid lattice
L. Then the following two propositions (a) and (/?) are equivalent.

(a) There exist no incomplete elements au b\ such that αilllόi, αi<ία, bι<Lb.

(/?) r(α)Λr(J) = r.

Proof. (α)^(/9). When r(α) Ar(fe)>r, from (5.1), there exist a', V such
that α'<Iα, b'<Lb, and r(a')=rQ>') = r(a)Γ\r(b)>r. Then a', V are incomplete, in
contradiction to (α).

(/9)->(α). If there exist incomplete elements au bλ such that αilllδi, a>ι<La,
bι<Lb, then by (4.5) r(ai) = r(bi). Hence r(α)Ar(6)^r(αi)Ar(δi)=r(αi). Since aλ is
incomplete, we have r(«i)>r, which contradicts (β).

6. Parallelism in Wilcox lattices.

DEFINITION (6.1). Let S be a subset of a lattice L. If a, b e S implies a\J
b 6 5, and α e S, ό^α imply be S, then 5 is called an ideal of X.

THEOREM (6.2). Let Λ be a given complemented modular lattice partially
ordered by a relation a<J), and having the operations a\/b, a/\b. Let SCΛbe a
fixed ideal of A with 0 deleted. Define L=A—S. Then L is a weakly modular
symmetric lattice partially ordered by the relation a<Lb, with the operations
a\Jb, aίΛb which satisfy the following conditions:

(6.2.1)
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(a A b if aΛb 6 £,
(6.2.2) aί\b =

(0 if aΛbtS.

And for a,beL,

(6.2.3) a±b in L if and only if aΛb = 0,

(6.2.4) a 1L b in L if and only if a Λ b 6 S.
Proof. Cf. [7] pp. 497-498.

DEFINITION (6.3). When a weakly modular symmetric lattice L arises
from a complemented modular lattice A in the manner described in (6.2) we
call L a Wilcox lattice, and A the modular extension of L.

The characterization of Wilcox lattices is as yet unsolved (cf. [7] p. 505).
In Wilcox lattices, we can define the parallelism by (2.4).

THEOREM (6.4). In a Wilcox lattice L, let a be an element which is neither
zero nor a point Then the following three propositions are equivalent

(a) a<\ b.

(/?) aί\b = 0 and aχ\Jb = a\Jb for every a>\ such that 0 <ciΛ<La.

(r) a/\b 6 S and a/\b<ia in A.

Proof. (α:)-K/9) follows from [5] (2.3).

(/?)->(/). Since a is not a point, there exists a\ such that 0<«i<α. Hence

byO?)

= aχ\J (b ί\a).

Thus (δ, a)fit. Therefore by (6.2.4) aΛb e S. In A, take an element c such that

(1) a = (aΛb)Vc, (aΛb)Λc = 0.

Since α e L and a/\b e S, we have ce L. Lex x be any element of L such that
0<x<Lc. Since 0 <χ<Lc<La, by (/?), we have x\Jb=c\Jb=a\Jb, therefore by
(6.2.1) we have

and from (1), xΛb<LcΛb=0. That is, x and c are relative complements of b in
a V6, such that #<Ic. By the modularity of Λ, we have Λ;=C (cf. [4] p. 6 Satz
1. 4). Consequently c is a point, hence from (1) we have aΛb<ia in A.

. Since αΛKβ, there exists a point p in A such that

α = (a Λ 6) Vp, (a Λ 6) Λ p = 0.

Since α 6 ί and a/\b 6S, we havep 6L. Then

p\/b and
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Hence b<iaVb in Λ. Therefore by (6.2.1) we have b<a\Jb in L. Since a/\b e S,
by (6.2.2), we have aΓΛb=0. Consequently a< \b.

Reference. Hsu [2] defined (*)-parallelism using (/?), and I have proved
in [5] (2.3) that (**)-parallelism is equivalent to that defined by (a). (2.4)
shows that in a Wilcox lattice, these two parallelisms coincide (when a is a
point p, by (2.3) p<\b for any element b > 0 such that p n b = 0, and (/?) also
holds), and from above proof, when a\\b, a contains at least one point. In [5]
(2.4) Reference, I noted that the same statement holds in a left complemented
lattice.

DEFINITION (6.5). Let a be an element in a Wilcox lattice L. If there
exist a point p e L and u e S such that a=p\Ju in Λ, then we call a a singular
element of L.

Remark (6.6). In a Wilcox lattice L, when a is not a point and α< \b, by
(6.4), we have a/\b e S and a/\b<ia in Λ. Hence there exists a point p e Λ such
that a=p\/(a/\b). If p eS then αeS, which contradicts a eL. Hencep is a
point in L, and α is a singular element of L. Especially when a\\b and α, Z> are
not points, there exist points p, q 6 L such that

a = p\/(aΛb)9 b = qV(aΛb) and aΛbeS.

THEOREM (6.7). Lei a be a singular element in a Wilcox lattice L. Then
for any point q e L with q^$a, there exists a singular element b e L such that a\\b
and q<b.

Proof. By (6.5) there exist a point peL and ue S such t h a t a=pVu.

Since aίλq=0 and (a> q)M, we have a±q. Hence by (6.2.3) we have aAq=0.

Therefore, if we put b = qVu, then a/\b — a A(qWu) = u 6 S, and aΛb = u<ib.
Hence by (6.4), we have b< \a. Similarly, from a=pVu we have aΛb=u<ia,
that is β< \b. Consequently a\\b.

LEMMA (6.8). In a Wilcox lattice L, if a]\_b and p is a point with p < α,
then aι=p\f (a/\b) is a singular element of L such that

aχ<C\b and p < αΊ <lα.

In this case a>ιΛb = aΛb e S.

Proof. From (6.2.4), we have af\b e S. Hence aι=p\J(aΛb) is a singular
element and p<a>ι<La in L. If pΛb=p, then by (6.2.2), we have pΛb=pΓ\b<L
aΓ\b = 0, which is absured. Hence pΛb = 0, and we have aιΛb= {pV(aΛb)}
Λb=aΛb. Therefore, since «i=pV(oiΛδ), we have αiΛ6<αi. Consequently
from (6.4), aι<\b holds.

THEOREM (6.9). In a Wilcox lattice L, if a]\_b and p, q are points with p<a
and q<b, then aι=p\J(a/\b) and bx = q\/(a/\b) are singular elements of L such
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that

ciι\\bι and p<αi<[α, q<bλ<Lb.

In this case aι/\bχ=a/\b e S.

Proof. Since a]\_b and p<α, from (6.8), a\ —p V (a/\b) is a singular ele-
ment such that

(tι<C\b, p<ai<ία and a>ιΛb = aΛb€S.

Hence by [5] (2.5) aιj\_b and q<b. Applying (6.8) again, 6i =pΛ (αiΛ6) =
(a/\b) is a singular element such that

and αi Λ fei = a>\ Λ 6 6" S.

Since «i< |δ, by (6.4), we have αiΛi<ai. Then αiΛ6i<αi and we have α x< |δi.
Consequently αi||δi.

THEOREM (6.10). Let a and b be elements in a Wilcox lattice L, each of
which contains at least one point, and aί\b=0. Then the following two proposi-
tions are equivalent.

(a) a±b.

(/?) There do not exist singular elements au &i such that

h<Lb.

Proof. (α)->(j8). If there exist singular elements au bλ such that ax ||6i,
β, bχ<Lb, then from [5] (2.5) we have (au bι)M. But from a±b, we have

± 6i, which is absured.
((3)->(a) follows from (6.9).

Remark (6.11). In (6.10), we can not delete the condition " α n δ = 0",
even if we write rzilll&i instead of αi[|ί>i in (/?). For example, in an affine matroid
lattice L, let α, b be two different lines which intersect at a point. Then (a)
does not hold, although (/?) holds.

7. Modularity and parallelism in affine matroid lattices*

DEFINITION (7.1). Let L be an affine matroid lattice with the operations
flWi, aΓ\b. Since by (4.4) a\\\b is an equivalence relation, we put [a] = {b; b\\\a}9

and denote by S the set of all [a], where a is any incomplete element of L.
Define Λ=L\JS.

In ^, we can define a partial order a<Lβ by the following convention:

1° When a, b e L, a<Lb in A means a<Lb in L.

2° When M £ S, b e L, (a}<binA means β ^ 16 in L.

3° When M , CW eS, M^CW in -4 means α^|& in L.
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4° F o r M e S, t h e r e e x i s t s n o n o n z e r o e l e m e n t beL s u c h t h a t b< M i n

A.

5° For every element M e S, 0< M in A.

Then, in [1] pp. 311-314, it is proved that A is a modular matroid lattice
with the operations aVβ, αΛ/?, which satisfy the following conditions: For
α, b € L,

(7.1.1) aVb
=aΓ\b if aίλbφO,

(7.1.2) flΛi,
( e 5 or = 0 if aί\b =

And S = { α e Λ ; 0 < α < i [/(r)]}, where r is a point in L (cf. (2.7)). S is isomor-
phic to the modular contraction R = L(r, I(r)) with r deleted.

THEOREM (7.2). An affine matroid lattice L is a Wilcox lattice. And ae L
is singular if and only if a is incomplete.

Proof. In (7.1), L=Λ-S, and (7.1.2) is equivalent to (6.2.2), from (6.2) L
is a Wilcox lattice. When a e L is singular, by (6.7), there exists an element
b e L such that a\\b. Hence by (2.9), a is incomplete. Similarly, when a e L is
incomplete, by (2.8), there exists an element b e L such that a [| b. Hence by
(6.6), a is singular.

THEOREM (7.3). Let a, b be incomplete elements in an affine matroid lattice
L, and aίΛb = 0. Then the following three propositions are equivalent.

(a) a±b.

(/9) There do not exist incomplete elements au bλ such that

«il|6i, CLi^a, bλ<Lb.

(Γ) r(«)Ar(fe) = r.

Proof, (a)-^(β) from (6.10), and (/2)ϊ±(α) from (5.2).

8. Appendix.

Remark (8.1). In [4] p. 70, Theorem (1.3) is proved when L is an upper
continuous complemented modular lattice. But as Kaplansky [3, p. 537] sug-
gested, this theorem can be proved without the use of the upper continuity.
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