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1. Introduction.

In the theory of continuous geometry, the following theorems are signi-
ficant.

Tuaeorem (1.1). (Perspective mappings). In a modular lattice L, when
a~ b, put

Ta; = (dl \V x) Nb fO?" a; € L(O, (l),
Sbi= (b1 VUx)Na for b eL(0,Dbd).

Then T and S are mutually inverse, isomorphic mappings between L(0, a) and
L0, b). In order that a1, b, correspond by these mappings, it is necessary and
sufficient that a;\Jx=>b;\Ux holds. And in this case a;~ .b.

Here a~,b means aUx=bUx and eNnax=bNx=0. (Cf. [6] p. 18 and (4]
p. 59).

Tuarorem (1.2). (Comparability theorem). Let a, b be any elements in an
upper continuous complemented modular lattice L. Then there exist o, o, V',
b such that

€89 a=ad \Ja’, adNa' =0,
b=b"Ub’, b¥Nb’'=0.
(2% a~b and e(@)Ne®”)=0.

In this case e(a’) =e(d) =e(a) Ne(d).
Here e(z) means the smallest element z such that ¢« <z, z € Z, where Z is
the center of L. (Cf. [6] p. 265 and [4] p. 87.)

Tueorem (1.3). (Distributivity and perspectivity). Let a, b be elements in
a complete complemented modular lattice L. Then the following three proposi-
tions are equivalent.

() aVvb.

(B) There do not exist nonzero elements a,, b1, With a,~by, &;a, b;=b.

1) el@)neld)=0.

Here avb means anb=0 and (g, b)D (i.e. (c\Va)nb= (cNb)\U(anb) for
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every c€ L). (Cf. (6] pp. 243-244; (4] p. 70 and Remark (8.1) below).

The object of this paper is to obtain formally analogous theorems with
respect to the parallelism instead of the perspectivity.

As Wilcox (7] considered, the basic lattices, in which the parallelism is
investigated, may be weakly modular symmetric lattices. Corresponding to
Theorem (1.1) we have the following theorem.

Tueorem (3.1). (Parallel mappings). In a weakly modular symmetric
lattice L, Let allb and p, q be points with p<a, g<b. Put

Tay =(a\Jg)Nb for a €L(p,a)
Sby =GB 1 VUp)Na for b€ L(q,b).

Then T and S are mutually inverse, tsomorphic mappings between L(p, a) and
L(g, b). In order that a,, b, correspond by these mappings, it is necessary and
sufficient that a;\Jq=>b,\Up holds. And in this case a:|[b;.

Let r be a fixed point in an affine matroid lattice L, then for any incom-
plete element « in L, there exists one and only one element r(a), such that <<
r(a) and either r(a)||a or r(a)=a. When q is a point p, put r(p)=r. Then r(a) is
an element of R=L(r, I(r)), and a|b or a=b if and only if r(a)=r(b). Since R
is a modular sublattice of L, we may call R a modular contraction of L. Now
r(a) is the smallest element such that ¢ <|w, w € R. Using this R, we can
prove easily the following theorem.

Turorem (5.1). (Comparability theorem). Let a, b be incomplete elements
in an affine matroid lattice L, and p, q¢ be points with p<<a and ¢=<b. Then
there exist o', o', b', b, such that

1°) a=d \Jad"’, dNd =p,
b=bUb’, VN =q
(2°) db or a=b and r@)Nr@")=r.

In this case r(a)=r®)=r(a)Nr(b).
Lastly, corresponding to Theorem (1.3), I have the following theorem.

Tueorem (7.3). (Modularity and parallelism). Let a, b be incomplete ele-
ments in an affine matroid lattice L and anb=0. Then the following three
propositions are equivalent.

(@) a Lb.

(B) There do not exist incomplete elements a1, by with a;||by, a;<a, b,=<lb.
@ r@nr®)=r.

Here a1 b means anb=0 and (a, b)) M (i.e. (cVa)Nb=c\U(anb) for every

¢=<b). The equivalence of (8) and (7) follows directly from the comparability
theorem (5.1). In order to prove the equivalence of («) and (B), I use the pro-
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perty of the following Wilcox lattice. Let A4 be a complemented modular
lattice and S C 4 be an ideal with 0 deleted. Then L=4-—S is a weakly modu-
lar symmetric lattice, where the equivalence of («) and (#) holds. Since an
affine matroid lattice is a Wilcox lattice, Theorem (7.3) is proved.

Thus we obtain the theorems which are formally analogus to Theorems
(1.1), (1.2) and (1.3). To the center Z corresponds the modular contraction
R = (r, I(r)), whereas, in the preceding paper (5], the modular center M cor-
responds to Z. Although the modular center M and the modular contraction
R of an affine matroid lattice L are the different modular sublattices of L,
they are both projective geometries.

2. Preliminary.

Derintrion (2.1). In a lattice L with 0, ¢ L b means anb=0, (a, b)) M; and
a |l b means aNb=0, (a, b)M (M being the negation of the relation M). If a L b
and a;<<a, b;<{b, then a; 1 b; (Cf. [7) p. 492). When b covers a, we write a<b.

If ¢ L b implies b_La, L is called a symmetric lattice (Cf. (7] p. 495). And
if anb+0 implies (a, b)M, L is called a weakly modular lattice (Cf. (5] (1.1)).
A matroid lattice is a relatively atomic, upper continuous, symmetric lattice
(cf. (5] (1.2), (1.8) and (1.9)). The converse statement follows from (2.3) be-
low.

Remark (2.2). Ina symmetric lattice L, if p is a point and an\p=0, then
(p, a)M. For, since anp=0 and (e, p)M, we have ¢ L p. Hence p I a and

(p, &) M.

Lemma (2.3). In a symmetric lattice L, if p is a point and anp =0, then
a<a\Jp.

Proof. Take ¢ such that a<<c<a\Up. When p=c, since a\Up=<c, we have
c¢=a\Up. When pXc, then cnp=0, hence by (2.2) we have (p, c)M. Therefore
c¢=(aUp)Nc=a. Consequently a<a\Up.

DerintTioN (2.4). In (1] p. 272 and (5] (2.1), the parallelism in a lattice
with 0 is defined as follows. Let a, b be nonzero elements of L, if (1°) anb=
0 and (2°) b<<a\Ub, then we write a<|b. And if a<|b and b< |a, then we
write a/b.

Remark (2.5). When < |b in a lattice L with 0, then a;\Ub=a\Ub for
every a; such that 0<a;<a (cf. (5] (2.3)). Hence when «< |6 and 0<a1<a,
we have a; < |b. For, c; "\b=<laNb=0 and b<a\Ub=a,\Jb.

Turorem (2.6). In a weakly modular symmetric lattice L, if a<|b and p
s a point with p=<\b, then al|(a\Up)Nb.
Proof. Using (2.3), we can prove as the proof (i) of (5] (2.8).

DerinttioN (2.7).  An affine matroid lattice L is a weakly modular matroid
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lattice of length >4, which satisfies the weak Euclid’s parallel axiom (cf. (5]
(8.3)). A line ! in L is called incomplete, when for any point p=l, there exists
a line % such that |k and p<lk, an element a of length >2 is called incomplete,
when any line contained in a is incomplete (cf. (5] (3.4)). When L is not
modular, for any point p in L, there exists a maximal incomplete element 7(p)
which contains p. If I(p)=1, then L satisfies the strong Euclid’s parallel
axiom. If I(p)+1, then I(p)=1(q) or I(p)|I(g) for any points p, ¢ in L. When
L is modular, put I(p)=p. (Cf. (6] (4.1) and (4.2).)

In what follows, the assertion is trivial when the affine matroid lattice is
modular. Hence we omit the explanations for the modular case.

Tureorem (2.8). Let a be an incomplete element of an affine matroid lattice
L, and r be a point such that rXa. Then there exists one and only one element b
such that al|b and r=2b.

Proof. Cf. (1] p. 307.

Lemma (2.9). In an affine matroid lattice L, if a<<|b and a is not a point,
then a 1s an incomplete element.

Proof. Let I be any line such that /<a. Then by (2.5) we have 1< |b.
Since L is relatively atomic, b contains ¢ point. Hence by (2.6) there exists
an element k such that /|jk. Therefore [ is incomplete, and s is an incomplete
element.

Lemma (2.10). Let r be a point in an affine matroid lattice L. Then L(r,
I(r)) is an irreducible modular matroid sublattice of L.

Proof. When r=1I(r), it is trivial. Hence assume that r < I(r), and put
R=L(r, I(r)). Then a point in R means a line /=rUp in L, where p is a point
contained in I(r) and r==p. Hence by (5] (1.4) and (1.5) we can easily prove
that R is a relatively atomic, upper continuous sublattice of L. For a, b€ R,
since a Nb=r >0 and L is weakly modular, we have (a, b)) M. Therefore R is
modular. And R is a modular matriod sublattice of L. (Cf. also [1] p. 270.)
To prove the irreducibility of R, let I, =ruUp, and lL,=rUp, be two different
points in R, then rXp, Up.. Since pi\Up, is a line of L contained in I(r), by
(2.8) there exists a line [;=r\Up; such that r\Ups|pi\Up.. Then

l3:rUp3§rUp1Up2=l1Ulg.

Hence the line /;\Ul; in R contains a third point /; in R. Therefore, by 4] p.
80 Satz 2.4, R is irreducible.

3. Parallel mappings in weakly modular symmetric lattices.

Tueorem (8.1). In a weakly modular symmetric lattice L, let allb and p, ¢
be points such that p<a, ¢<b. Put
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Ta, = (al\Jq)f\b fO'r a; € L(p, a),
Sby = (b1 \./p) Na for b€ L(q, b).

Then T and S are mutually inverse, isomorphic mappings between L(p, a) and
L(g, b).

In order that a,, b; correspond by these mappings, it is necessary and suf-
ficient that

@ a\Jg=b\Up

holds. And in this case a||b;.

Proof. (i) It is evident that T, € L(g, b) and Sb; € L(p, a). Since by (2.5)
a1 < |b and ¢=<b, by (2.6) we have a,|Ta;. Similarly we have b,]/Sb;.

Since a1||Ta; and p<a, ¢<Ta;, we have by (2.5) pUTa;=a:\JTa;=a,\Uq.
Similarly we have ¢\uSb=b,\Up. Thus (1) holds.

(ii) Conversely assume that (1) holds. Since pN\b=<<anb,=0, by (2.2) we
have (p, b)) M. Hence

Ta1=(a1Uq)/\b=(b1Up)/\b=bl.

Similarly Sb;=a;. Thus «; and b, correspond by T and S.

(iii) Next we shall prove that 7 and S are mutually inverse, isomorphic
mappings. Put b,=7Ta;. Then by (i), (1) holds. Hence by (ii) STa;=Sb;=a;.
Similarly 7Sb; =b,. Therefore by T and S, there exists a one-one correspon-
dence between L(p, a) and L(g, b) preserving the order. Hence L(p, ) and L(g,
b) are isomorphic.

DeriniTiON (3.2). We call 7 and S in (3.1) parallel mappings between L(p,
a) and L(g, b).

4. Modular contractions of affine matroid lattices.

DeriniTiON (4.1). In an affine matroid lattice L, for any incomplete ele-
ment ¢ and any point » with r X «, by (2.8), there exists one and only one ele-
ment b such that o||b and r<{b. In this case we write r(a¢)=b. When r<{a, we
write r(@)=a. And, since either p|[r or p=r for any point p, we write r(p)=r.
We call r(a) a ||-image of a at r.

Remark (4.2). In an affine matroid lattice L, the parallel mappings in
(3.1) may be written as: Ta;=q(a:) and Sb;=p(b;). Hence, since I(p)|I(g), for
any a € L(p, I(p)), b € L(q, I(g)), we have

p(¢@)=a and q(p®)=0>.
And for any a, b € L(p, I(p)), we have
rlaub)=r(@)ur®) and r(lenbd)=r(e)Nr).
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DeriniTION (4.3). In an affine matroid lattice L, when a|b or a=5b, we
write aflb, and when a< |b or a<<b, we write a<|b.

Remark (4.4). In an affine matroid lattice L, «llb is an equivalence rela-
tion, and (1°) a<<|a, (2°) a<X|b, b<_|a imply «allb, and (3°) a<|b, b<|c imply
a<|c. (cf. (1] pp. 310-311.)

Remark (4.5). In an affine matroid lattice L, let a, b be incomplete ele-
ments or points. Then

(1°) allb if and only if r(a)=r(),
(2%) a<|b if and only if r(a)=r().

Proof. Since allr(¢) and b[r(), by (4.4), a<|b if and only if r(a)=<|r(d).
But r(e) () =r, hence r(a) < |r(b) means r(a)<r(b). Thus we have (2°). Simi-
larly we have (1°).

Since 7(a) and 7(b) are elements in R=L(r, I(r)), by a—r(a), all incomplete
elements and points in L are transposed into R preserving the order in the
sense of (1°) and (2°). By (2.10) R is an irreducible modular matroid lattice.
Hence we may call R=L(r, I(r)) a modular contraction of L. Since I(p)llI(q)
for any points p, ¢ in L, by (3.1) L(p, I(p)) and L(q, I(g)) are isomorphic. Hence
the modular contraction of L is uniquely determined up to isomorphism. (This
is an extension of Ex. 3 in (1] p. 317.) By (1°) and (2°), we may say that r(a)
is the smallest element w such that e<<|w, v € R.

Remark (4.6). In an affine matroid lattice L, let » be an incomplete ele-
ment and «<|b. Then for any point p<{e, by (2.8), there exists one and only
one element a, such that a;[/b and p<{a,. In this case a<{a,. For, by (2°) in
(4.5), we have a =p(a) <p(b) =as. Therefore a, is uniquely determined irre-
spective of p<a.

5. Comparability theorem in affine matroid lattices.

Tueorewm (5.1). Let a, b be incomplete elements in an affine matroid lattice
L, and p, q be points such that p<<a and q<b. Then there exist a’, a"’, b', b such
that

1°) a=d \Jd’', dNad =p,
b=k Ub, ¥ Nb =g
(2 ally’ and r@)Nr@®")=r.

In this case r(a)=r(b")=r(a)Nr(d).

Proof. Put w=r(c)Nr(b). Since R=L(r, I(r)) is a complemented modular
lattice, if we take u and v such that

¢)) rle)=0o\JVu, oNu=r,
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2 rb)=w\Jy, oNv=r,
then we have
3) uNv=r.
(Cf. (4] p. 14 Hilfssatz 1. 12.) Put o'=p(w), "’ =p(), b’ =¢(w), b’ =q(v). Then
by (4.2) and (1) we have
a=p(r(@)=p@)Vpl)=d\Ud,
adnad =plNp)=plonu)=p()=p.
Similarly from (2) we have
b=b\Ub’, YN =q.
Since a'llw and ¥'[lw, we have ’|lb’, and from (3) we have
r@H)Nr@)=r(p)Nr(qgw) =uvnv=r,
and r@)=r(p@)=0=r@@nNrb),
similarly r(®) =r(a) N\r(b).
Tureorem (5.2). Let a, b be incomplete elements in an affine matroid lattice
L. Then the following two propositions () and (B) are equivalent.
(a) There exist no tncomplete elements a,, b, such that a,llb,, a;<a, b;=b.
B) r@nr@®=r.

Proof. (a@)—(B). When r(a) N\r(b) >r, from (5.1), there exist o', b’ such
that o’ <la, ¥’<b, and r(a)=r®)=r(a)Nr(d)>r. Then &, b’ are incomplete, in
contradiction to ().

(B)—(a). If there exist incomplete elements a;, b, such that a;llb;, a1 <aq,
b,<b, then by (4.5) r(a1)=r(b1). Hence r(a)N\r(b)=r(a))Nr(b))=r(a;). Since q, is
incomplete, we have r(¢;)>r, which contradicts (B3).

6. Parallelism in Wilcox lattices.

Derinition (6.1). Let S be a subset of a lattice L. If a, b € S implies e\
beS,and a €S, b=<a imply b € S, then S is called an ideal of L.

TureoreMm (6.2). Let A be a given complemented modular lattice partially
ordered by a relation «=<<b, and having the operations a\/b, a \Nb. Let SCAbea
fixed ideal of A with 0 deleted. Define L=A—S. Then L is a weakly modular
symmetric lattice partially ordered by the relation a b, with the operations
a\Jb, an\b which satisfy the following conditions:

(6.2.1) a\Jb=a\Vb,
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aANb tf aNbelL,

6.2.2) “m’z{o if aAbES.

And for a, b€ L,
(6.2.3) albinL ifand only if aANb=0,
(6.2.4) allbin L if and only if aANb € S.
Proof. Cf. [7] pp. 497-498.

DeriniTiON (6.3). When a weakly modular symmetric lattice L arises
from a complemented modular lattice 4 in the manner described in (6.2) we
call L a Wilcox lattice, and A the modular extension of L.

The characterization of Wilcox lattices is as yet unsolved (cf. (7] p. 505).
In Wilcox lattices, we can define the parallelism by (2.4).

TueoreMm (6.4). In a Wilcox lattice L, let a be an element which is neither
zero nor a point. Then the following three propositions are equivalent.

(@) a<|b.
B anb=0 and a;\Jb=a\Jb for every a, such that 0 <a;<a.
(") aANbeS and aANb<a in A.

Proof. (a)—~>(B) follows from (5] (2.3).
(B)—(7). Since « is not a point, there exists ¢; such that 0<a;<a. Hence

by (8)
(mub)Nna=(@@ub)Naea=ae>a=a\J(bNa).
Thus (b, @) M. Therefore by (6.2.4) a/Ab€S. In 4, take an element ¢ such that
ey a=@Ab)Ve, (@Ab)ANc=0.

Since ac € L and aA\b €S, we have c€ L. Lex x be any element of L such that

0<x<<c. Since 0 <x<<c=<la, by (B), we have x\Ub=c\Ub=a\Ub, therefore by
(6.2.1) we have

x\Vb=cVb=a\b,

and from (1), x Ab<cAb=0. That is, x and ¢ are relative complements of 5 in

a\/b, such that x<c. By the modularity of 4, we have x=c (cf. (4] p. 6 Satz

1. 4). Consequently c is a point, hence from (1) we have a Ab<<a in 4.
(r)—(a). Since a/\b<a, there exists a point p in 4 such that

a=@NAb)Vp, (@Ab)Ap=0.
Since a € L and aA\b € S, we have p € L. Then
aVb=@Ab)VpVb=pVb and bAp=0.
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Hence 5<¢a\/b in 4. Therefore by (6.2.1) we have b<<a\Ub in L. Since aAb€ S,
by (6.2.2), we have anb=0. Consequently a< |b.

Reference. Hsu [2] defined (x)-parallelism using (), and I have proved
in (6] (2.3) that (xx)-parallelism is equivalent to that defined by («). (2.4)
shows that in a Wilcox lattice, these two parallelisms coincide (when « is a
point p, by (2.3) p < |b for any element b >0 such that p b =0, and (B) also
holds), and from above proof, when «||b, @ contains at least one point. In [5)
(2.4) Reference, I noted that the same statement holds in a left complemented
lattice.

Derinttion (6.5). Let o be an element in a Wilcox lattice L. If there
exist a point p € L and » € S such that a=p\u in 4, then we call a a singular
element of L.

Remark (6.6). In a Wilcox lattice L, when « is not a point and a< |b, by
(6.4), we have a/\b € S and s A\b<<a in 4. Hence there exists a point p € 4 such
that a=p\/ (eAb). If p€S then a €S, which contradicts ¢ € L. Hence p is a
point in L, and « is a singular element of L. Especially when 4|/ and q, b are
not points, there exist points p, ¢ € L such that

a=pV(aAb), b=gV(@ANb) and aAbe€S.

TuareoreM (6.7). Let a be a singular element in a Wilcox lattice L. Then
for any point q € L with qXa, there exists a singular element b € L such that allb
and ¢<<b.

Proof. By (6.5) there exist a point pe€ L and u €S such that ¢=pVu.
Since ang=0 and (a, g) M, we have a 1 q. Hence by (6.2.3) we have a \g=0.
Therefore, if we put b=¢Vu, then a Ab=a A (gVu)=ue€S, and aANb=u<b.
Hence by (6.4), we have b<|a. Similarly, from e=p\u we have a\Nb=u<a,
that is ¢< |b. Consequently a/b.

Lemma (6.8). In a Wilcox lattice L, tf a1l b and p is a point with p <a,
then a,=p\/ (a/\b) is a singular element of L such that

a<|b and p<a=Za.

In this case a; AN\b=a /b € S.

Proof. From (6.2.4), we have a Ab€S. Hence a;=pV (aAb) is a singular
element and p<a;<a in L. If pAb=p, then by (6.2.2), we have p Ab=pNb=
anb =0, which is absured. Hence p/A\b=0, and we have a; Ab={pV(aAb)}
Ab=aAb. Therefore, since a;=p\/(a:A\b), we have a; Ab<a;. Consequently
from (6.4), a; < |b holds.

Traeorem (6.9). In a Wilcox lattice L, if all b and p, ¢ are points with p<a
and q<b, then ai=p\ (aA\b) and bi=q\/ (aA\b) are singular elements of L such
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that
a1 ”bl and p<a1_£_a, q<b1§b

In this case a; \Nbi=a/\b€S.

Proof. Since ¢ b and p<a, from (6.8), a; =p \V (aAb) is a singular ele-
ment such that

a<lb, p<ai<a and e ANb=aANbe€S.

Hence by (5] (2.5) a, 1| b and ¢<b. Applying (6.8) again, b, =pA (a1 Ab)=pA
(aA\Db) is a singular element such that

b1<1a1, q<b1§b and al/\b1=a1/\b65.

Since a; < |, by (6.4), we have a; Ab<-a;. Then a; \b; < a; and we have a; < |b;.
Consequently a;||b;.

TuEOREM (6.10). Let a and b be elements in a Wilcox lattice L, each of
which contains at least one point, and aNb=0. Then the following two proposi-
tions are equivalent.

(@) aLlb.
(B) There do not exist singular elements a,, b, such that
a ”bl, a<a, bi=b.

Proof. («)—(B). If there exist singular elements a;, b; such that a; |5y,
a1 <a, by<b, then from (5] (2.5) we have (a1, b)) M. But from a1 b, we have
a; L by, which is absured.

(B)—(a) follows from (6.9).

Remark (6.11). In (6.10), we can not delete the condition “cN\b=0,
even if we write a,/1b, instead of a,]/b, in (8). For example, in an affine matroid
lattice L, let a, b be two different lines which intersect at a point. Then («)
does not hold, although (8) holds.

7. Modularity and parallelism in affine matroid Iattices.

Derinttion (7.1). Let L be an affine matroid lattice with the operations
a\Ub, anb. Since by (4.4) allb is an equivalence relation, we put [a] = {b; blla},
and denote by S the set of all [a], where « is any incomplete element of L.
Define A=L\US.

In A4, we can define a partial order =3 by the following convention:
1° When a, b€ L, a<<b in 4 means a=<b in L.

2° When (@] €S,b€L, [al<bin 4 means a<|b in L.

3° When [a], (0] €8S, [aJ<[b] in 4 means a<|b in L.
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4° TFor [a) € S, there exists no nonzero element b € L such that < [a) in
A.
5° For every element [a) €S, 0< [a] in 4.

Then, in (1) pp. 311-314, it is proved that 4 is a modular matroid lattice
with the operations a\/ 83, « A B, which satisfy the following conditions: For
a, bel,

(7.1.1D a\Vb=a\Ub,
(712) /\b{zaf\b if anb==0,
- “N0es or =0 if anb=0.

And S={a € 4; 0 < a<[I(r)]}, where r is a point in L (cf. (2.7)). S is isomor-
phic to the modular contraction R=L(r, I(r)) with r deleted.

Tarorem (7.2). An affine matroid lattice L is a Wilcox lattice. And a € L
18 singular if and only if a is incomplete.

Proof. In (7.1), L=A4—S, and (7.1.2) is equivalent to (6.2.2), from (6.2) L
is a Wilcox lattice. When « € L is singular, by (6.7), there exists an element
b € L such that o|jp. Hence by (2.9), o is incomplete. Similarly, when a € L is
incomplete, by (2.8), there exists an element b € L such that «|/b. Hence by
(6.6), a is singular.

Turorem (7.3).  Let a, b be incomplete elements in an affine matroid lattice
L, and anb=0. Then the following three propositions are equivalent.

(@) alb.

(B) There do not exist incomplete elements a, by such that
a l|b, a1<a, b =<b.

@) rl@nrd)=r.

Proof. (a)(B) from (6.10), and (8)<(«) from (5.2).

8. Appendix.

Remark (8.1). In [4] p. 70, Theorem (1.3) is proved when L is an upper
continuous complemented modular lattice. But as Kaplansky (3, p. 537] sug-
gested, this theorem can be proved without the use of the upper continuity.
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