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The main purpose of this paper is to extend the theory of semi-group
distributions developed by J. L. Lions [5]] to a more general case where the
underlying vector space E is a locally convex space, while in his theory the
space E is confined to a Banach space.

With this end in view, we shall first discuss the continuity behaviours
of the 0-convolution map between the spaces of vector valued distributions
2>+(E) and 2)+(F) with separately continuous bilinear map Θ: ExF—>G, where
£, F, G are locally convex spaces, G being assumed to be quasi-complete. In
Section 1 we shall show that if L is a continuous linear map of 2)+(£) into
2)+(G) such that the restriction of L to ζD&E is commutative with every
translation rΛ, — co<^<oo ? then L is the convolution map L(S)=S*θf, where
f e 2)+(A(£; G)) is uniquely determined by L and Θ denotes the bilinear map
Eχj2b(E; G)->G defined in an obvious way. The result will be used in Section
2 to make a characterization of a semi-group distribution. Concerning this,
we follow in most parts the way of the proof carried out by J. L. Lions [ζΓ\
and show that, roughly speaking, under certain conditions any semi-group
distribution under consideration is no more than the Green operator of a
differential equation of the form :

-~ '
- -~r , +

where A is the infinitesimal generator of the semi-group distribution. Finally
we shall make a remark about the relation between his results and ours.

§ 1. ^-convolution map of Q)'+ (E) x Q)'+ (F) into Q)f

+ (G)

Let us denote by 2) (resp. 2)+, resp. 2)_) the space of all C~-functions on
Rl, 1-dimensional Euclidean space, with compact supports (resp. with supports
bounded on the left, resp. with supports bounded on the right). These spaces
are provided with usual topologies of L. Schwartz (Q6]]). By 2)' (resp. 2)+)
we shall mean the strong dual of 2) (resp. 2)_). Let 9ί be a normal space of
distributions, that is, a linear subspace C 2X with continuous injections
2)-><$K, 9t-+Q)' such that 0 is dense in dt. Let F be a locally convex
Hausdorff topological vector space. For the sake of brevity we shall refer
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to such a space as LCS. The continuous linear maps of di'c into F form a
linear space dt(J?\ called a space of F- valued distributions, on which we take
the topology of uniform convergence with respect to the equicontinuous
subsets of 9fJ ' . It is also considered as the space of the continuous linear
maps of F'c into 9ί. However without specific mention about dί(F\ we under-
stand it the space of the continuous linear maps in the first sense. For any
f 6 dC(F} and φ e 9i' , the image of φ by f is denoted by φ ϊ. A subset SI of
dC(F} is called r-equibounded when there is a disked neighbourhood U of 0
in 9t!

c such that ί/ 2ί is contained in a compact disk of F ([ΊΓ], p. 54).

PROPOSITION 1. Let a, β € Q)+ and B be a bounded disk of 2). Let F be an
LCS and S3 be an equicontinuous subset of J2 (F'c 2X). If we Pu^ Mφι f =
a((βΐy*φ) e 2>(F) for every f 6 Q)\F) and φeQ), then the set {Afφ,?}φ€β,fe» is
T-equibounded in 2)(F), and there exists a disked neighbourhood U of 0 in 2)'
and a compact disk K of F such that each Mφ>f can be written as

with hitφ € 11° ζO), fi,fcK and Σ U , |<oo, that is, for any Se2X

The proposition will be obtained from the next two lemmas, in which a,
β denote the elements of 2)+ as in the proposition 1.

LEMMA 1. (<xS)*(/370 exists for any S, ΓεSX and the map (5, Γ)-»
(aS)*(βT) is a continuous bilinear map of 2)' xQ)f into 2)+.

PROOF. (aS) (09Γ)~*0) 6 β ' C ® ^ for every φ e ®, where the symbol v
means the symmetrization. Therefore the convolution (αS)*(/97Ί) is well
defined and belongs to Q)'+ ([6], II, p. 12, [9], p. 23). Next we shall show that
the bilinear map (S, Γ)-v(αS)*(/9Γ) of Q)fxQ)' into Q)'+ is continuous. Let B
be any bounded disk of 2). It is well known that the supports of elements of
B are contained in a finite interval / of Rl. We can choose a function r of 2)
equal to 1 on a finite interval, depending only on /, α, /?, such that for every

Now the set 83= {r(^)^(^ + y)}0ejB is bounded in 2)*^, the space of all C~-
functions with compact supports on Rl x Rl. Any compact subset of the
complete protective tensor product Eι^πE2 of the spaces Eι and E2 of type (F)
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is contained in the absolutely convex closure υf Ai(&A2, where Ai is a compact
subset of Eί, ί=l, 2 ([4], Chap. I, p. 52). Therefore there exists a bounded
subset BI of 2) such that 33 is contained in the absolutely convex closure of
Bι(S)Bι. Consider two disked neighbourhoods U— {S; aS e BI and S e 2)'} and
09- {Γ; βT 6 £ί and T e 2)'} of 0 in 2)'. Then we have

which implies that the map (S, Γ)-^(αS)*(/?Γ) is continuous. The proof is
completed.

LEMMA 2. Lei B be a bounded disk of 2). If we put Lφ(T) = a((βTy*φ) for
every T € 2)' and ψ 6 2), £Aew £λe seί {Lφ}φ65 iβ T-equίbounded in 2)(2)) and ίΛerβ
exist two disked neighbourhoods ί/ and Ϊ/(C^/) o/ 0 m 2)' ŝ cΛ ίfeaί Lφ can be
written as

, e 'S0, A, ,φ e ί/° a%d Σ U, I < °°. <Ίaί ™, for every TeQ>f

PROOF. Owing to Lemma 1, we can find for the given B a disked neigh-
bourhood U of 0 in 2)' such that

This implies that {Lφ(
ίUϊ}φ€B = a((ί3fliy*B)CfU0. Consequently {LΦ}Φ,B is T-

equibounded in 2) (2)). Since Q)r is a nuclear space, there exists a disked
~ /\ /\

neighbourhood ί/ of 0 in 2)' such that the natural map /: 2)^->Q)y i s nuclear,
that is, J=^λidί^df

i with ^ e ί/°, d{ e ί/ and ΣΓ^ίl <°° ( M , Chap. I, p. 80).
Now the map Lφ is f actorized as follows :

2)'— ̂ 2)^ — >Q)^ — >® ô — >2),

wher^ i'i, ι2 are the canonical maps and Lφ is the induced map derived from
Lφ. Therefore, for any T e 2)'
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Λ, < T, di> dί)

, d,>A, .φ,

where A, ,φ = α((/?dί ) ~*(έ) e ί/°, d, e ί/c and 2J|A, | < o o 5 which completes the
proof.

Proo/ o/ Proposition 1. Let ί/, $ be disked neighbourhoods of 0 in 2)' as
chosen in the proof of Lemma 2. By assumption, 33 is an equicontinuous
subset of J2(F'C Q)'\ so that we can choose a compact disk K of F such that
< ? , K°>CΊI for every Γ e 33. Then we have for <?5 e 5, f e 33

I <ί/ Mφ,f, £ " > I = I <<U a((βfγ*ψ), K°> I

, K°»\

This means that {Mφ;f}φ6β;feβ is r-equibounded in 2>(F).

In virtue of Lemma 2, we have for any / ' e F'

Therefore if we put fί>f = drf e ΐ/° f C^, then we can write

where hi>φ e ί/°, //,? e K and ΣUil <°°j which completes the proof.

Let E be an LCS. We denote by 2>'[βfββ)(E) the space of the £- valued
distributions on R1 with supports contained in the half -line [α, oo)5 where a
denotes any real number. On the space 2){v,fββ)(.E) we take the topology
induced by that of the space of ^-valued distributions Q)'(.E). Further by
2J+(E) we denote the space \jQ)f

[a>co)(E) equipped with the topology of the
a _

inductive limit of {2)'[βfββ) (JE)}.^^^ ©;(£?) is a subspace of 2y(E) but not
topologically in general. If £ is a space of type (DF), it is not difficult to see
that 2>U£) = 2)t(£) algebraically as well as topologically ([4], Chap. I, p. 47).
It is to be noticed that if E is normable, 2)+(E) is bornological and moreover,
if E is a Banach space, 2)+(E) is barrelled. This follows from a more general
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situation as follows.

PROPOSITION 2. Let E, F be two LCSs such that E, E'c are nuclear and F is
normable. Then the ε-product EεF (CG, p. 18) is bornological whenever E is
bornological.

PROOF. Let G be any complete LCS. It suffices to show that any linear
map u which transforms any bounded subset of EεF into a bounded subset of
G is continuous. Let W be any disked neighbourhood of 0 in G. The set
33 = M~1(ίΓ) is absolutely convex and absorbs every bounded subset of EεF.
Let B be any bounded subset of E and V be the unit ball of F which we may
consider to be a normed linear space. Clearly J3® V is bounded in EεF, so
that it is absorbed by 33. If we put U= {e;e®FC33 ande6#}, it is an
absolutely convex subset of E which absorbs every bounded subset of E.
Since E is bornological, it follows that U is a neighbourhood of 0 in E. This
means that the restriction of u to Eξξ)πF (=E®£F since E is nuclear) is
continuous. Therefore it may be extended uniquely to a continuous linear
map v of EεF into G. For any ξ e EεF, it is considered to be an element of
J1S(E'C\ F), so that there exists a compact disk K of E such that the image
ξ(K°) is contained in V. Now since the space E'c is nuclear, there exists a
compact disk Kι(^K) of E such that the natural map E'κ°-^Ef

κ° is nuclear,
from which we can infer that ξ may be written in the form:

where e{ € Kι, f{ e V and Σ I Λ, I < °° If we put Pn= Σ U, |> the set
1=71 + 1

ι— Σ ^ie/0/i[ ίs bounded in EεF, whence the set l-=- w( Σ >Ui® Λ) r is
I Pw ί=»+ι J I Pw ί=»+ι J

bounded by the assumption imposed on u, and therefore u ( Σ Λ

as TZ^OO. Consequently,

B( Σ ^e/

i=n+l

Passing to the limit as ?z^oo5 and taking into account the fact that v is
continuous, we can see that u(ξ)=v(ξ). As ξ is any element of EεF, u coincides
with v, that is, u is continuous, which completes the proof.
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REMARK. Suppose E satisfies the strict Mackey condition for convergence
([ΊΓ], p. 105), that is, for any bounded subset ACE, there exists a bounded
disk B (^ A) such that the topology of A induced by E coincides with that
induced by EB Let F be a Banach space. Here we assume that F=J=(Q). If
EeF is bornological, then E is also bornological. In fact, for any ξ e EεF which
we may consider to be an element of J2ε(Ff

c\ E\ there exists a bounded disk
A of E such that ξ may be an element of Jl£(Ff

c EA\ that is, ? e EAεF. Indeed,
let V be the unit ball of F. ξ(V°}=K is a compact disk of £", so that, by
assumption on £", there exists a bounded disk A ̂ > K such that the topology of A
induced by E coincides with that induced by EA. Then the map ξ restricted
to V° is continuous of V° into EA. Since F is complete, owing to a proposition
of L. Schwartz ([7], p. 41), the map ξ: F'C-+EA is continuous, that is, ξζEAεF.
Let u be any linear map of E into a complete LCS G such that it transforms
any bounded subset of E into a bounded subset of G. Let us denote by UA the
restriction of u to EA, which is a continuous linear map of EA into G since EA

is a normed linear space. Therefore uA(S)I<> I being the identical map of F
into itself, is a continuous linear map of EAεF into GεF. Let us define the
linear map v of EεF into GεF by the relation »(£) = (MA®/)(?), where A is
chosen as indicated above. That the choice of A has no effect on the definition
of v is easily seen. If ξ runs through a bounded subset of EεF, we can take
A as the same bounded disk for these ξ, so that the map v becomes continuous.
Let /o e F, f0 e F be chosen so that </<,, / £ > = ! . Clearly the map θ: e -> e<g)/0

of E into EεF and the map /®/o of Gε/*1 into Gf are continuous. Let us consider
the map w = (KS>fo)°v°0 which is a continuous linear map of E into G. Now
it is easy to see that w(e) = u(e) for every e e E, which implies that u is
continuous.

Let 15 be a saturated family of bounded subsets of an LCS F ([8], p. 198),
that is, (i) if Aeϋ), then λA e 'δ for every Λ>0; (ii) if .4 e ̂  then any subset
of A belongs to $; (iii) if A e φ, then the disked envelope of A belongs to φ;
(iv) if 4 B e ®, then A\JB e %\ (v) every one point subset of F belongs to ID.
We shall say that a subset 21 of 2)'[6fββ)(F) is o/ type β in 2)'[δfββ)(F), if Si,
considered as a subset of 2)'(F), is of type 'δ in 2)'(F), that is, for any
bounded subset J5 of 2) the set \JB T is contained in an ̂ 4 e '25.

f€2l

First we prove

PROPOSITION 3. Let E, F, G be three LCSs, where G is assumed to be quasi-
complete. Let θ be a separately continuous bilinear map of ExF into G. Then
any S e 2)[α>00) (£") and f 6 2)μfββ) (F) are *θ-composable and S*θf 6 Q)(a+b)0o) (G).

(a) Γλβ WZiweαr map (S, T)^S*ΘT of Q)(a,^(E} x 2)[6>oo)(F) into Sk+^CG)
is separately quasi-continuous.

(b) // (9 is hypocontinuous with respect to the compact disks of F, then
the linear map S-^S*θf is uniformly continuous with respect to the equicon-
tinuous subsets of Jl(Ff

c\ 2){ 6 j β o )).
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(c) If Θ is hypocontinuous with respect to the bounded subsets of E and
F, then so is *θ.

(d) // θ is continuous., then so is *θ.

Finally, let Ίδ be a saturated family of bounded subsets of F.

(e) // θ is hypocontinuous with respect to the sets of ^, then the linear
map S-*S*ΘT is uniformly continuous with respect to the subsets of type 75 in

PROOF. For any φ 6 2), Γ*0e<§(F) is locally r-bounded and 5 e £>'(£),
the multiplicative product \Ί>(f*<ff]θ is well defined as an element of 2X(G)
([8], p. 133). Clearly

Therefore, by definition ([10], p. 182), 5 and T are *0-composable, and it is
known that S*ΘT e 2)'Cfl+ftfββ) (G) ([8], p. 167).

Choose two elements α, 0 e 2)+ such that a and β equal 1 on [α, °o) and
[ό, oo ) respectively. Let B be any bounded disk of 2). Then, owing to
Proposition 1, we can choose ί/, U (resp. K\ depending only on B, α, β (resp.
ί/, Γ), as indicated in the same proposition and we can write α((/97*y*^) in
the form:

with Λ, ,φ c ί/°, yi,f c ί/° f ζK and ΣU/I <° ° Taking into account a proposi-
tion of L. Schwartz ([8], p. 70), we have for any φ 6 B

(1) φ.(S*θf) =

(a): Suppose 5 converges in 2){;α,βo) (£) to 0, running through a bounded
subset S3 of © ,̂00) (£). We shall show that S*θf converges to 0 in 2>j;fl+6tββ)(G)
for every f € 2)^)0o) (F). Since {Λί,φ S}φ€βf̂ eg?,, =ιf2f...f is bounded in E and
{/;,?} , =ι, 2,... is contained in a compact disk K of F, it follows that the set
{θ(hίtφ S9 fi,f)}φcB,s€*,i=ι,2..., is bounded in G ([10], p. 194). And for each ί,
0(Λί>φ S, /;-,?) converges to 0 as 5 ->0 in S3. Therefore from (1) it follows that
$ (S*0?) converges to 0 in 2)[α+6>00)(G) uniformly with respect to 0 of 5 as
5->0 in S3. Therefore, by symmetry, the bilinear map *# is separately quasi-
continuous.
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(b): Suppose Θ is hypocontinuous with respect to the compact disks of
F. Let T lie in an equicontinuous subset SI of J2(F'C\ 2y[6>oo)). Then there exists
a compact disk K of F such that < ? , K° > is contained in ί/. By our assump-
tion on 0, we can find a neighbourhood U of 0 in £" in such a way that 0(t7, K)
C fF for a given neighbourhood JF of 0 in G. Now consider the set 17 of the
elements 5 e 2){ α>ββ)(J?) such that ί/° 5 C Z7. 17 is, by definition, a neighbourhood
of 0 in Q)(aj0θ}(E\ Then ^,φ 5 6 ί/° 5 C U and /, ,f 6 ί/° f CK for 5 6 17, f 6 Si,
0 6 £. Therefore it follows from (1) that for every S 6 17, f e 31, φeB

Ψ (s*θτ) = Σ W/,Φ £ Λ*) 6 Σ U/l ^

which implies that the map: S->S*0Γ is uniformly continuous with respect
to the equicontinuous subsets of J1(F'C\ Q)[bi0o}).

(c): Suppose Θ is hypocontinuous with respect to the bounded subsets
of E and F. It is known that any bounded subset of 2>£α>βo)(£) (resp. 2>£6)βo)(F))
is an equicontinuous subset of J>(E'b\ 2)'[βf~)) (resp. ^(F^; 0^,^)) ([7], p. 28).
From this fact together with the assumption on Θ, we can conclude just as in
(b) that the bilinear map *θ becomes hypocontinuous with respect to the
bounded subsets of Q)(a>oo)(E) and Q)(b>oo)(F).

(d): We can infer in a similar way as above that if Θ is continuous, then
*θ is also continuous.

(e): Finally we assume that Θ is hypocontinuous with respect to the
subsets of Ί5. Let 83 be a subset of type β in Q)(b>oo}(F}. Then ί/° 33 is
contained in an element K of ΊQ. By our assumption on 0, we find a neigh-
bourhood U of 0 in E such that 0(17, K)CW for any given neighbourhood W of
0 in G. Therefore we can infer in a similar way as in the proof of (b) that
S-*S*ΘT is uniformly continuous with respect to the subsets of type $ in

Thus the proof is completed.

©+(£") is the strict inductive limit of {S)/

[α,oo)(£')}_00<ίZ<00. It is known that
if an LCS G is a strict inductive limit of closed linear subspaces Gn, then a
subset of G is bounded if and only if it is contained in a Gn and is bounded
there ([1], p. 8). Therefore S is bounded in Q)'+(E) if and only if S3 is con-
tained in a Q)(a>00)(E) and is bounded there. We shall say that a subset SI of
2)+(F) is of type To in 2)+CF), if SI is contained in a Q)(b>oo}(F) and is of type $
there.

As an immediate consequence of the preceding proposition we have

COROLLARY. Let E, F, G be three LCSs, G being assumed quasi-complete.
Let θ be a separately continuous bilinear map of ExF into G. Then any S €
Q>+(E) and f 6 ©ί(F) are *θ-composable and the bilinear map (5, f)->>S*0f of
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x2)+(F) mίo 2)+(G) is separately quasi-continuous. Let H) be a saturated
family of bounded subsets of F and θ be hypocontinuous with respect to the
subsets of Tδ. Then the map S-^S*θf of Q)+(E) into 2)+(G) is uniformly
continuous with respect to the subsets of type To in ®'H(F). In particular, if
E is normable and θ is a separately continuous bilinear map of ExF into G,
then the map S-+S*ΘT of 2)+(F) into 2)+(G) is continuous.

We note that the last statement follows from the fact that if E is norma-
ble, then 2H(F) is bornological.

Next we shall consider a convolution map of 2)+(F) into 2)+(F). By
Jlb(E\ F) we denote the space of all continuous linear maps of E into F, where
b denotes the topology of bounded convergence. We take θ as the bilinear map
of F x A(£; F) into F defined by the relation: θ(e, u) = u(e\ e € E, u€ J2b(E\ F),
then the map θ is hypocontinuous with respect to the bounded subsets of
E and the equicontinuous subsets of Jlb(E\ F\ which is a saturated family of
bounded subsets of J2b(E, F).

Next we prove the following proposition which will play a fundamental
role in the next section.

PROPOSITION 4. Let E, F be two LCSs, where_F is assumed to be quasi-
complete. Let L be a continuous linear map of 2)+(E) into 2)+(F). // the
restriction ofL to 2)®F is commutative with any translation ΓΛ, — oo<A<oo,
then there exists a unique T e Q)+(Jlb(E\ F)) such that f is *θ-composable with
any element S of 2)+(F) and L(S) = S*0Γ, where θ is the bilinear map of Ex
Jlb(E; F) into F defined above. Conversely, for any f e 2)+(j?&(F; F)) which maps
any bounded subset of 2) into an equicontinuous subset of Mb(E; F) the map
S-^S*θf of 2)+(F) into 2)+(F) is continuous and its restriction to © ® F is
commutative with any rh.

PROOF. Let S € 2>;, e 6 F, φ e 2)_. Putting Λf(S, ψ)e = φ L(S®e), since L is
continuous, it follows that M(S, 0 ) e ^ ( F ; F). Further if we put 0 M(S) =
M(S, ψ\ then the map Λf(S): φ-+M(S, 0) of ©_ into £b(E\ F) is continuous. In
fact, when φ and e run through any bounded subsets of 2)_ and E respective-
ly, the set {(0 M(S))e} = {0 L(S(g)e)| is bounded in F. Since 2)_ is bornological,
it follows that M(S) is continuous, that is, M(5) 6 Q)'+(jdb(E; F)). We note that
the map M:S^M(S) of Q)'+ into <S)f

+(J2b(E\ F)) is continuous. Further, let
0 e S). Then we have for any translation r*

Hence the restriction M to © is commutative with any translation rh. Con-
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sequently, owing to Proposition 4 in Shiraishi ([10), p. 179), there exists a
unique distribution f 6 ©'(ACE; ί1)) such that M(S)=S*f for every SeQ)'+.
And f is *0-composable for any S0e, S e 2)+ and eel? (see Remark 3 of [10],
p. 186).

Next we shall prove that there exists a real number a such that f e
2>U~) (A(#; F)) To do so, it is sufficient to prove that there exists a number
a such that i(ί(g)e) = fe 6 2)jαfβo) (F) for all eci 1 . Contrary assumed, there
exists a sequence {e«}, e n eS, such that L(δ®e,ϊ)&Q)(-2ca,-)(F\ where cn-+°°
as π-> oo and c '̂s are positive numbers. Now, as L is continuous and {δCn®en}
is bounded in Q)[ot^(E) since cw-»oo? it follows that {L(#Cn(S)ew)} is bounded
in Q)+(F\ and therefore it is bounded in a Q)(a>00^(F\ while, on the other hand,
Uδc$$en)$:Q)(-cnt»)(F\ τι = l, 2, ..., which is a contradiction.

Finally, let us denote by Γ the set of 5 eQ)f

+(E) such that L(S)=S*θf.
Clearly Γ is linear and contains ζbξ$E which is strictly dense in Q)+(E) ([7],
p. 46). Since the map 5->5*^Γ is quasi-continuous and L is continuous, it
follows that 0)f

+(E} = Γ.
Let It) be the family of the equicontinuous subsets of J2b(E\ F). Then θ is

hypocontinupus with respect to the subsets of $ and f ζQ)f

+(Jlb(E\ F)) is of
type ΊQ in Q)r

+(J2b(E\ F)). Therefore we can apply Corollary to Proposition 3
to conclude the last statement of the proposition.

Thus the proof is completed.

When E and F are Banach spaces, the proposition was proved by J. L.
Lions ([5], p. 150).

We note that if E happens to be a barrelled space, 2)+(J?5(#; F)) =
ζb+(£b(E\ F)) algebraically, because any bounded subset of £S(E\ F) becomes
equicontinuous since E is barrelled ([1], p. 27).

§ 2. On characterization of semi-group distribution

Let E be a quasi-complete LCS. We shall consider a vector valued distri-

bution ® e 2>ίo,oo) (ΛGE; #)). For a given x e E, ®xc 2){-0fββ) (£) is defined by

0.®* = (φ.®)χ for any 0 6 2).

In the sequel we shall use the notation ®($) instead of φ ®. Following J. L.
Lions ([5], p. 142) © is referred to as a semi-group distribution in E if the
following conditions are satisfied :

(i) ©(0*0) = ®(0)®(0) for any φ, φ e 2) [0,oo);

(ii) for any y = © ( 0 χ φ € Q)LO>00^ x € E, the distribution ®y e 3>+(E) is a

function w(ί) such that ι*(ί) = 0 for ί < 0 ;

(iii) the set {®(φ)x; φ 6 ©co,^), x e £} is total;
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(iv) if , for a given x e E, ®(φ)x=Q for any ^eSVo,-), then x = 0.

REMARK. From (i) and (ii) it is easy to see that we can take u(^ =
S C O

φ(t)®(rtφ)χdt. J. L. Lions
o

has treated the case where E is a Banach space, where, as remarked in the
preceding section, Q)(0t^(j2b(E; E^) = Q)(0>βo)(Ms(E; £)) algebraically.

Let © be a semi-group distribution in E. For any T e §>(o>oo) we define
an operator ®(Γ) as follows: x e 35®(r) (domain of ®(Γ)) if and only if there
exists an element y such that

(1) ®(T*φ)x = ®(φ)y for every φζζDLOt^.

The element y is, if it exists, uniquely determined because of (iv). And we

put ®(T)x=y. Now it is easy to see that any ®(φ)x belongs to 3)©(r) and
therefore the domain S)@(r) is a dense linear subspace of E and that it is also
a closed linear operator. Then for any x e S)@(τ) we have

(2) ®(T*φ)x = ®(φ)®(T)x = ®(T)®(φ)x.

For example ®(δ) = IE (the idential map of E into itself). Especially A =

©( — ίO is called infinitesimal generator of the semi-group distribution under
consideration. If, for any φ e 2), we denote by φ+ the function equal to ψ (t)

for £l>0 and 0 for £<0, then φ+ € S[0t00^ and we can show that ®(ψ+) =

and ®(0)®(21> = ®(0+*Γ> for any z € S)©(Γ). Indeed, for y =
we have

Consequently, this together with (iii) implies that (8(0+) = ©(0). The second
part follows from the equalities :

= ®(Φ*Φ+*T)z.

Similarly if z € ®©(r>κ +̂), then ®(0)z belongs to ®g(r) and

® (Γ)® (0+)z = ®(T*0+)^.
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For example, for any x e E and for any φ e 2), &(φ)x belongs to S)A and

(3) ^®(0)* = ® ( - ί ' * 0 + ) *

- - ® (0')* -0(0)*-

Now we take on 3) A the weakest topology which makes the maps #->#,
A ; - > ^ of ®^ into E continuous. Such a topology we shall refer to as the
graph topology. It follows from (3) that ® may be considered to be a
continuous linear map of 2) into Jlb(E\ ®A\ or more precisely we can write ©
in the form :

where φ e 2)[o,oo) (-^(E; ®A)) and y is the continuous injection 3Xι->l? and
)(0) means ;(£($)). Then (3) is rewritten in the form

(4) (

where convolutions, say, (fl'(g)y)*φ means that ((ff'®y)*Φ)(0)=y(-7-Φ(0)) for
\ Gtί /

any ^ 6 2). Similarly, we have

(5)

By making use of (4), (5) and Proposition 4, we can conclude that the
differential equation

admits a unique solution ύ e 2>+(®^) such that ύ 6 2X[0,oo)(SXO if f e Q)(0tC0^(E\
besides, if φ maps any bounded subset of 2) into an equicontinuous subset of
£(β\ S)A), then the map ?->2 is continuous, which is the case when E is
barrelled.

Our main purpose of this section is to show the converse of the preceding
statement. Hereafter we shall assume E satisfies the following conditions :

(*) ί/j for a given sequence {xn} , xn 6 £", and for any xf 6 Ef, the sequence
{<xn, χ>} is ultimately equal to zero, then {xn} is also ultimately equal to
zero:,

(*)' ί/j f°r a given sequence {xr

n}^ xf

n 6 E', and for any x 6 E, the sequence
{<χ, χ'n>} is ultimately equal to zero, then {xf

n} is also ultimately equal to
zero.

The space of type (F) considered by Gelfand and Shilov satisfies these
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conditions ([2], p. 37). More generally if E is a space of type (F) with a
continuous norm p, then E satisfies the conditions (*) and (*)'. Indeed, let
U= {*; pGO^l}, then E^ is a Banach space. Putting A'k={χ'\ <χk, x> =
Ojfe+i, χ> = ••• = 0 and x e E^o} which is a closed linear subspace of jÊ o, we
have E'υ* = \jAr

k, whence, by a theorem of Baire E^=Ar

k for some fc, which
implies that p(χk)=p(χk+l)=...=Q, and therefore χk=χk+l=...=Q. Thus the
condition (*) is verified. The condition (*)' holds for any space of type (F).
This may be shown in a similar way. Of course there are spaces which do
not satisfy these conditions: (s), (<§), (<§'), (2)), (2X) Most of the classical
spaces of distributions considered by L. Schwartz [6] satisfy these conditions.
For example, consider the space (O'c). It is known that y C O'c C <%, where
injections are continuous. Since the conditions (*) and (*)' are valid for se
and ^, it is easy to see that these conditions are also valid for ((%)•

Now we show

THEOREM. Let E, F be two quasi-complete LCSs such that E satisfies the
conditions (*) and (*)'. We assume that there is a continuous injection jQ: F-+E
such that jo (F) is dense in E. Let A0 be a continuous linear map of F into E.
If the equation

(G) - Aoύ— yαo"' π^ jo Ί. u< — -* 5 -LI- ^s+\ u )•)

admits a unique solution ύ € 2)+(F) for every f e 2)+(J?) and the map f ->ώ is
continuous and ύ € 0)(0>oo)(F) whenever f e Q)(Q>00^(E\ then there exists a unique
semi-group distribution ® €Q)[ot00)(jβ'b(E; E)} with the following properties:
Let A be the infinitesimal generator of @ in E with domain S^ equipped with
the graph topology. Let j be the natural injection of ®^ into E. There exists
then an isomorphism j\ of ®^ onto F such that J=JQ°JI and A=AQ°jι.

Moreover we can write j0u = ®*θf.

PROOF. According to proposition 4, there exists a unique vector valued
distribution § 0 e 2)'[βtββ)(j0δCE; F)) such that M=φo*02*5 where we may assume that
ff = 0, since, by assumption, ύ 6 ζb(Q>oo)(F) for every f € 2)[Ot«*,)(#). Putting © =
ΌΦo, we shall first show that © is a semi-group distribution 6 Q)(Q>oo}(J2b(E\ £"))
with requisite properties.

Conditions (i) and (ii) are valid for ©. For we may carry out the proof
following the way of the corresponding proof due to J. L. Lions ((ΊΓ], pp. 150-
152). Hence the proof thereof is omitted.

Condition (iv): Let x be an element of E such that ®(ψ)x = 0 for every
0e2)[0,oo). This means that ®x is a vector valued distribution €ζb(Qt00)(E)
with support in 0. Therefore, for any x e Έ' we can write <©#, x> in the
following from:
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where (ak(xf)} is a sequence of complex numbers which is ultimately equal
to zero. Now ak(χr) is a continuous linear form on E'C9 whence we can write
α*OO= <χk, χ'> for some xk e E. Therefore we can write

(1) ©Λ^Σ^*'®**, *kCE.
k

Since ©x = j0^Qx and /0 is a continuous injection, the support of §0# is
also in 0 and we can write similarly as above

(2) Φo« = Σff(*)®y*, y*ef,

where χk=joyk Putting ύ = tQ0x into the equation (G) we have

which yields the equations

(3) x = — Aoy0, JQyo = AQγι, • •-,

By hypothesis, .E satisfies the condition (*). Hence {xk} is ultimately equal
to zero, so that {yk} is also ultimately equal to zero and in turn it follows
from (3) that x=Q.

Condition (iii): Let x be any element of E' such that <©($)#, Λ/>=0
for every φ € 2)Co>oo) and for every x € E. We define '&> e Sfo.^CΛC^ ^ ) ) by
the relation: ^ 0 (0) = '(Φo(0)) for every 0 6 ® . Then the relations <®(0>, ΛJ'>
= </oΦo(^)Λ, Λ?'> = <Λ;5 ^o(^)Vo^> yield 1$o(φyjoχ' = Q for every 060 [ 0 ) C o ) ,
therefore t^otjoχf is a vector valued distribution e ©Jo.co)^) with support in
0. As in the preceding proof we can write

(4) W W^Σ^®^,

where {x'k} is a sequence of elements of Έ which becomes ultimately equal to
zero.

Now we show

(5) -

where IF is the identical map of F into itself. Indeed, if we put ύ = 0®y into
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the equation (G)5 we obtain

d
-A0ύ + jo-fa u=-φ<8) AQy + (0)' ®/o y,

whence

consequently for z— 0 we obtain the equation (5).
Putting v = ίξ>Qy', where yf = tj0χ, we can verify that υ satisfies the

equation

(6) - % » + '/o-

In fact, by making use of the equation (5), we have for any y € F

which yields the equation (6).

Now from the condition (*)' together with the equations (4) and (6) we
can conclude as before that #' = (), that is, the set {©($)#; φ 6 2)r0j0o) and Λ e E}
is total in E.

Thus we have shown that © is a semi-group distribution in E. Let A be
its infinitesimal generator with domain ® A equipped with the graph topology.

The solution u of the equation :

(7) - Aou + jQ~r-u =

is given by u= —SQ0Aχ + ί8Όjx. On the other hand, δ®x is the solution of the
equation :

(8) -Av + j~~υ=

therefore
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consequently we can write ύ in the form ύ = δξξ)y. Now we put y—jιχ. Ί is
a continuous injection of ®^ into F. For it is clear that j \ is an injection.
The linear map x-+ — δ§ζ>Ax + δ'§ζ>jx of ®^ into Q)(0>oo)(E) is continuous. Hence
the equation (7) shows that the map x-+δ(S)y of ®^ into Q)(Q>oo)(F) is continu-
ous, so that we can conclude that j \ is continuous. From the equation

and the equation (7) we have for y=j\x

therefore

that is,

A = Ao°jι and — /o°/ι

Next consider any element y e F. The solution v of the equation

is given by v= —®A0y + ®'joy. On the other hand,

Therefore we can write 5(g)y= — Φo-̂ oy + ̂ ί/oy By making use of the relation
©=;ΌΦo we see that

which implies that ;Vχ e ®Λ ]'Qy=j(JQyϊ=JQJιjoy imply that y=/ι/Όy, therefore
Ί in an onto map. On the other hand, Aj0y=AojιJQy = AQy. Therefore when
y->0 in F, then ;0y->0, AjQy-*Q in £", that is, when y->0 in F, then j0y->Q in
S Λ This implies that y-+joy of F into ® A is continuous. Thus we have
shown that Ί is an isomorphism of ® Λ onto F.
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Let @* be another semi-group distribution in E with infinitesimal gen-
erator A* whose domain ®^* is equipped with the graph topology. Suppose
there exists an isomorphism yf of 3Xι* onto F such that A*=A0°j* and y* =
7o°y*5 where y* is the natural injection of 3Xι* into E. Then it is not difficult
to see that 71=7? and therefore A*=A, and in turn © = ©*. In fact, 3Xι* =
9ly*==3ly0 = 9ΐy==3X4, where yt denotes the range of the map indicated in the
suffix. Then for any x e 3Xι( = 3Xι*) we have JQ(J*X)=JQ(JIX), so that j*χ=j1χ.
This means that 7* =7*1.

Thus the proof is completed.

From the preceding theorem we have as an immediate consequence the
following

COROLLARY. Let E be a quasi-complete LCS with the properties (*) and
(*)'. Let Abe a closed linear operator in E with domain ®A dense in E, where
we take on ®A the graph topology and let j be the natural injection of ®^ into
E. Suppose the equation

ύ = f f6 2

~"^J dt
admits a unique solution ύ e 2)+(3X0 sucft that the map f-+u is continuous and
ύ 6 3){o,eo)(3XO whenever f e Sy^^CE1). Then A is an infinitesimal generator
of a semi-group distribution ® which is uniquely determined by A. Moreover
we can write jύ = ®*ΘT.

REMARK. In this corollary, if there exists another closed linear operator
B with the same properties as A such that BζA, that is, ®βC®^ι and Bx=Ax
for any x € ®β, then we can conclude that B=A. In fact, take any element
x e 3Xι and define f by the equation

f = —

then the corresponding solution ύ of the equation

is an element of S>+(®B)C©+(®A) and we see that ύ = δ®x, which implies
that # 6 ® β , that is A=B.

Finally, let us assume that E is a Banach space. Let © be a semi-group
distribution in E. The infinitesimal generator A of © was introduced by J. L.
Lions as the closure of the operator ©( — £') which is defined as follows: x e
®©(_8/) if and only if there exists a sequence of regularization {pn} C2)co,oo),
which may depend on x, such that (1) ®(Pn)x-^x and (2) ®( — ί'*Pn) tends to
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some element y e E as τz-»°o and he put ®( — δ')x=y.
For this infinitesimal generator A, the assumptions made in the above

corollary are valid as seen from his result (Theorem 5.1, [ΊΓ|, p. 149) and the
fact that the convolution map T-*®*ΘT of Q)'+(E) into ©+(®^) is, by Proposi-
tion 4, continuous. Therefore from the above remark the infinitesimal
generator A of J. L. Lions coincides with that given in our discussions.
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