Convolution Maps and Semi-group Distributions

Risai Shiraishi and Yukio Hirata (Received March 20, 1964)

The main purpose of this paper is to extend the theory of semi-group distributions developed by J. L. Lions [5] to a more general case where the underlying vector space E is a locally convex space, while in his theory the space E is confined to a Banach space.

With this end in view, we shall first discuss the continuity behaviours of the θ -convolution map between the spaces of vector valued distributions $\bar{\mathcal{D}}'_+(E)$ and $\bar{\mathcal{D}}'_+(F)$ with separately continuous bilinear map $\theta: E \times F \to G$, where E, F, G are locally convex spaces, G being assumed to be quasi-complete. In Section 1 we shall show that if L is a continuous linear map of $\bar{\mathcal{D}}'_+(E)$ into $\bar{\mathcal{D}}'_+(G)$ such that the restriction of L to $\mathcal{D} \otimes E$ is commutative with every translation $\tau_h, -\infty < h < \infty$, then L is the convolution map $L(\vec{S}) = \vec{S} *_{\theta} \vec{T}$, where $\vec{T} \in \bar{\mathcal{D}}'_+(\mathcal{L}_b(E; G))$ is uniquely determined by L and θ denotes the bilinear map $E \times \mathcal{L}_b(E; G) \to G$ defined in an obvious way. The result will be used in Section 2 to make a characterization of a semi-group distribution. Concerning this, we follow in most parts the way of the proof carried out by J. L. Lions [5] and show that, roughly speaking, under certain conditions any semi-group distribution under consideration is no more than the Green operator of a differential equation of the form:

$$-A\vec{u}+rac{d}{dt}\vec{u}=\vec{T},\ \ \vec{T}\ \epsilon\ ar{\mathcal{D}}_+'(E),$$

where A is the infinitesimal generator of the semi-group distribution. Finally we shall make a remark about the relation between his results and ours.

§ 1. θ -convolution map of $\bar{\mathcal{D}}'_+(E) \times \bar{\mathcal{D}}'_+(F)$ into $\bar{\mathcal{D}}'_+(G)$

Let us denote by \mathcal{D} (resp. \mathcal{D}_+ , resp. \mathcal{D}_-) the space of all C^{\sim} -functions on \mathbb{R}^1 , 1-dimensional Euclidean space, with compact supports (resp. with supports bounded on the left, resp. with supports bounded on the right). These spaces are provided with usual topologies of L. Schwartz ([6]). By \mathcal{D}' (resp. \mathcal{D}'_+) we shall mean the strong dual of \mathcal{D} (resp. \mathcal{D}_-). Let \mathcal{H} be a normal space of distributions, that is, a linear subspace $\subset \mathcal{D}'$ with continuous injections $\mathcal{D} \to \mathcal{H}, \ \mathcal{H} \to \mathcal{D}'$ such that \mathcal{D} is dense in \mathcal{H} . Let F be a locally convex Hausdorff topological vector space. For the sake of brevity we shall refer

to such a space as LCS. The continuous linear maps of \mathscr{H}'_c into F form a linear space $\mathscr{H}(F)$, called a space of F-valued distributions, on which we take the topology of uniform convergence with respect to the equicontinuous subsets of \mathscr{H}' . It is also considered as the space of the continuous linear maps of F'_c into \mathscr{H} . However without specific mention about $\mathscr{H}(F)$, we understand it the space of the continuous linear maps in the first sense. For any $\vec{T} \in \mathscr{H}(F)$ and $\phi \in \mathscr{H}'$, the image of ϕ by \vec{T} is denoted by $\phi \cdot \vec{T}$. A subset \mathfrak{A} of $\mathscr{H}(F)$ is called τ -equibounded when there is a disked neighbourhood \mathscr{U} of 0 in \mathscr{H}'_c such that \mathscr{U} . \mathfrak{A} is contained in a compact disk of F([8], p. 54).

PROPOSITION 1. Let α , $\beta \in \mathcal{D}_+$ and B be a bounded disk of \mathcal{D} . Let F be an LCS and \mathfrak{B} be an equicontinuous subset of $\mathcal{L}(F'_c; \mathcal{D}')$. If we put $M_{\phi, \vec{\tau}} = \alpha((\beta \vec{T})^* * \phi) \in \mathcal{D}(F)$ for every $\vec{T} \in \mathcal{D}'(F)$ and $\phi \in \mathcal{D}$, then the set $\{M_{\phi, \vec{\tau}}\}_{\phi \in B, \vec{\tau} \in \mathfrak{B}}$ is τ -equibounded in $\mathcal{D}(F)$, and there exists a disked neighbourhood \mathcal{U} of 0 in \mathcal{D}' and a compact disk K of F such that each $M_{\phi, \vec{\tau}}$ can be written as

$$\sum_{i} \lambda_{i} h_{i,\phi} \otimes f_{i,\bar{I}}$$

with $h_{i,\phi} \in \mathcal{U}^{\circ} \subset \mathcal{D}, f_{i,\vec{\tau}} \in K \text{ and } \sum |\lambda_i| < \infty, \text{ that is, for any } S \in \mathcal{D}'$

$$S \cdot M_{\phi,\vec{T}} = \sum \lambda_i \langle S, h_{i,\phi} \rangle f_{i,\vec{T}}.$$

The proposition will be obtained from the next two lemmas, in which α , β denote the elements of \mathcal{D}_+ as in the proposition 1.

LEMMA 1. $(\alpha S)*(\beta T)$ exists for any S, $T \in \mathcal{D}'$ and the map $(S, T) \rightarrow (\alpha S)*(\beta T)$ is a continuous bilinear map of $\mathcal{D}' \times \mathcal{D}'$ into \mathcal{D}'_+ .

PROOF. $(\alpha S) ((\beta T)^* * \phi) \in \mathcal{E}' \subset \mathcal{D}'_{L^1}$ for every $\phi \in \mathcal{D}$, where the symbol \vee means the symmetrization. Therefore the convolution $(\alpha S)*(\beta T)$ is well defined and belongs to \mathcal{D}'_+ ([6], II, p. 12, [9], p. 23). Next we shall show that the bilinear map $(S, T) \rightarrow (\alpha S)*(\beta T)$ of $\mathcal{D}' \times \mathcal{D}'$ into \mathcal{D}'_+ is continuous. Let *B* be any bounded disk of \mathcal{D} . It is well known that the supports of elements of *B* are contained in a finite interval *I* of \mathbb{R}^1 . We can choose a function γ of \mathcal{D} equal to 1 on a finite interval, depending only on *I*, α , β , such that for every $\phi \in B$

$$<(lpha S)*(eta T), \phi>=<(lpha S)_x\otimes(eta T)_y, \phi(x+y)> \ =<(lpha S)_x\otimes(eta T)_y, au(x+y)>.$$

Now the set $\mathfrak{B} = \{\gamma(x)\phi(x+y)\}_{\phi\in B}$ is bounded in $\mathcal{D}_{x,y}$, the space of all C^{∞} -functions with compact supports on $R^1 \times R^1$. Any compact subset of the complete projective tensor product $E_1 \otimes_{\pi} E_2$ of the spaces E_1 and E_2 of type (**F**)

is contained in the absolutely convex closure of $A_1 \otimes A_2$, where A_i is a compact subset of E_i , i=1, 2 ([4], Chap. I, p. 52). Therefore there exists a bounded subset B_1 of \mathcal{D} such that \mathfrak{B} is contained in the absolutely convex closure of $B_1 \otimes B_1$. Consider two disked neighbourhoods $\mathcal{U} = \{S; \alpha S \in B_1^\circ \text{ and } S \in \mathcal{D}'\}$ and $\mathfrak{D} = \{T; \beta T \in B_1^\circ \text{ and } T \in \mathcal{D}'\}$ of 0 in \mathfrak{D}' . Then we have

$$egin{aligned} &|<\!\!(lpha \mathcal{U})\!*\!(eta \mathcal{O}\!),B\!>\!\mid\!\leq\!\mid<\!\!(lpha \mathcal{U})\!\otimes\!(eta \mathcal{O}\!),B_1\!\otimes\!B_1\!>\!\mid\ &=\!\mid<\!\!lpha \mathcal{U},B_1\!>\!\mid\mid<\!\!eta \mathcal{O}\!,B_1\!>\!\mid\ &\leq\!\!1, \end{aligned}$$

which implies that the map $(S, T) \rightarrow (\alpha S) * (\beta T)$ is continuous. The proof is completed.

LEMMA 2. Let B be a bounded disk of \mathcal{D} . If we put $L_{\phi}(T) = \alpha((\beta T)^* * \phi)$ for every $T \in \mathcal{D}'$ and $\phi \in \mathcal{D}$, then the set $\{L_{\phi}\}_{\phi \in B}$ is γ -equibounded in $\mathcal{D}(\mathcal{D})$ and there exist two disked neighbourhoods \mathcal{U} and $\widetilde{\mathcal{U}}(\subset \mathcal{U})$ of 0 in \mathcal{D}' such that L_{ϕ} can be written as

$$\sum_{i} \lambda_i d_i \otimes h_{i,\phi}$$

with $d_i \in \tilde{\mathcal{U}}^\circ$, $h_{i,\phi} \in \mathcal{U}^\circ$ and $\sum |\lambda_i| < \infty$, that is, for every $T \in \mathcal{D}'$

$$L_{\phi}(T) = \sum_{i} \lambda_{i} < T, \, d_{i} > h_{i,\phi}$$

PROOF. Owing to Lemma 1, we can find for the given B a disked neighbourhood \mathcal{U} of 0 in \mathcal{D}' such that

$$|\langle (\alpha \mathcal{U})*(\beta \mathcal{U}), B \rangle| = |\langle \mathcal{U}, \alpha((\beta \mathcal{U})^**B) \rangle| \leq 1.$$

This implies that $\{L_{\phi}(\mathcal{U})\}_{\phi\in B} = \alpha((\beta\mathcal{U})^**B) \subset \mathcal{U}^\circ$. Consequently $\{L_{\phi}\}_{\phi\in B}$ is requibounded in $\mathcal{D}(\mathcal{D})$. Since \mathcal{D}' is a nuclear space, there exists a disked neighbourhood $\tilde{\mathcal{U}}$ of 0 in \mathcal{D}' such that the natural map $J: \widehat{\mathcal{D}}'_{\mathscr{U}} \to \widehat{\mathcal{D}}'_{\mathscr{U}}$ is nuclear, that is, $J = \sum \lambda_i d_i \otimes d'_i$ with $d_i \in \tilde{\mathcal{U}}^\circ$, $d'_i \in \mathcal{U}$ and $\sum |\lambda_i| < \infty$ ([4], Chap. I, p. 80). Now the map L_{ϕ} is factorized as follows:

$$\mathcal{D}' \xrightarrow{i_1} \hat{\mathcal{D}}'_{\mathscr{U}} \xrightarrow{J} \hat{\mathcal{D}}'_{\mathscr{U}} \xrightarrow{\tilde{L}_{\phi}} \mathcal{D}_{\mathscr{U}^0} \xrightarrow{i_2} \mathcal{D},$$

where i_1 , i_2 are the canonical maps and L_{ϕ} is the induced map derived from L_{ϕ} . Therefore, for any $T \in \mathcal{D}'$

$$egin{aligned} &L_{\phi}(T) = i_2 \circ ar{L}_{\phi}(\sum \lambda_i < T, \ d_i > d'_i) \ &= \sum \lambda_i < T, \ d_i > h_{i,\phi}, \end{aligned}$$

where $h_{i,\phi} = \alpha \left((\beta d'_i)^* * \phi \right) \in \mathcal{U}^\circ$, $d_i \in \tilde{\mathcal{U}}^\circ$ and $\sum |\lambda_i| < \infty$, which completes the proof.

Proof of Proposition 1. Let $\mathcal{U}, \tilde{\mathcal{U}}$ be disked neighbourhoods of 0 in \mathcal{D}' as chosen in the proof of Lemma 2. By assumption, \mathfrak{B} is an equicontinuous subset of $\mathcal{L}(F'_c; \mathcal{D}')$, so that we can choose a compact disk K of F such that $\langle \vec{T}, K^{\circ} \rangle \subset \tilde{\mathcal{U}}$ for every $\vec{T} \in \mathfrak{B}$. Then we have for $\phi \in B, \vec{T} \in \mathfrak{B}$

$$egin{aligned} |<& \mathcal{U}{\cdot}M_{\phi,ec{r}},\,K^{\circ}>| = |<& \mathcal{U}{\cdot}lphaig((etaec{T})^{\check{}}{*}{*}\phiig),\,K^{\circ}>|\ &= |\phi{\cdot}(lpha\mathcal{U}{*}eta)|\ &\leq |\phi{\cdot}(lpha\mathcal{U}{*}eta ilde{\mathcal{U}})|\ &\leq 1. \end{aligned}$$

This means that $\{M_{\phi,\vec{T}}\}_{\phi\in B,\vec{T}\in\mathfrak{B}}$ is γ -equibounded in $\mathcal{D}(F)$.

In virtue of Lemma 2, we have for any $f' \in F'$

$$egin{aligned} &<\!M_{\phi,ec{n}},f'\!> = lphaig((eta\!<\!ec{T},f'\!>)\!*\phiig) \ &= \sum\limits_i \lambda_i (d_i\!\cdot\!<\!ec{T},f'\!>)h_{i,\phi} \ &= <\!\sum\limits_i \lambda_i h_{i,\phi}\!\otimes\!(d_i\!\cdot\!ec{T}),f'\!> \end{aligned}$$

Therefore if we put $f_{i,\vec{T}} = d_i \cdot \vec{T} \in \tilde{\mathcal{U}}^\circ \cdot \vec{T} \subset K$, then we can write

$$M_{\phi,\vec{T}} = \sum \lambda_i h_{i,\phi} \bigotimes f_{i,\vec{T}},$$

where $h_{i,\phi} \in \mathcal{U}^{\circ}$, $f_{i,\vec{r}} \in K$ and $\sum |\lambda_i| < \infty$, which completes the proof.

Let *E* be an LCS. We denote by $\mathcal{D}'_{[a,\infty)}(E)$ the space of the *E*-valued distributions on \mathbb{R}^1 with supports contained in the half-line $[a, \infty)$, where *a* denotes any real number. On the space $\mathcal{D}'_{[a,\infty)}(E)$ we take the topology induced by that of the space of *E*-valued distributions $\mathcal{D}'(E)$. Further by $\overline{\mathcal{D}}'_+(E)$ we denote the space $\bigcup \mathcal{D}'_{[a,\infty)}(E)$ equipped with the topology of the inductive limit of $\{\mathcal{D}'_{[a,\infty)}(E)\}_{-\infty < a < \infty}$. $\overline{\mathcal{D}}'_+(E)$ is a subspace of $\mathcal{D}'(E)$ but not topologically in general. If *E* is a space of type (**DF**), it is not difficult to see that $\overline{\mathcal{D}}'_+(E) = \mathcal{D}'_+(E)$ algebraically as well as topologically ([4], Chap. I, p. 47). It is to be noticed that if *E* is normable, $\mathcal{D}'_+(E)$ is bornological and moreover, if *E* is a Banach space, $\mathcal{D}'_+(E)$ is barrelled. This follows from a more general

situation as follows.

PROPOSITION 2. Let E, F be two LCSs such that E, E'_c are nuclear and F is normable. Then the ε -product $E \varepsilon F$ ([7], p. 18) is bornological whenever E is bornological.

PROOF. Let G be any complete LCS. It suffices to show that any linear map u which transforms any bounded subset of $E \in F$ into a bounded subset of G is continuous. Let W be any disked neighbourhood of 0 in G. The set $\mathfrak{B} = u^{-1}(W)$ is absolutely convex and absorbs every bounded subset of $E\varepsilon F$. Let B be any bounded subset of E and V be the unit ball of F which we may consider to be a normed linear space. Clearly $B \otimes V$ is bounded in $E \varepsilon F$, so that it is absorbed by \mathfrak{B} . If we put $U = \{e; e \otimes V \subset \mathfrak{B} \text{ and } e \in E\}$, it is an absolutely convex subset of E which absorbs every bounded subset of E. Since E is bornological, it follows that U is a neighbourhood of 0 in E. This means that the restriction of u to $E \bigotimes_{\pi} F (= E \bigotimes_{\varepsilon} F$ since E is nuclear) is continuous. Therefore it may be extended uniquely to a continuous linear map v of $E \in F$ into G. For any $\xi \in E \in F$, it is considered to be an element of $\mathcal{L}_{\varepsilon}(E'_{c}; F)$, so that there exists a compact disk K of E such that the image $\xi(K^{\circ})$ is contained in V. Now since the space E'_{c} is nuclear, there exists a compact disk $K_1(\supset K)$ of E such that the natural map $\hat{E}'_{K_1} \rightarrow \hat{E}'_{K^{\circ}}$ is nuclear, from which we can infer that ξ may be written in the form:

$$\boldsymbol{\xi} = \sum_{i=1}^{\infty} \lambda_i \boldsymbol{e}_i \bigotimes \boldsymbol{f}_i,$$

where $e_i \in K_1$, $f_i \in V$ and $\sum |\lambda_i| < \infty$. If we put $\rho_n = \sum_{i=n+1}^{\infty} |\lambda_i|$, the set $\left\{\frac{1}{\rho_n}\sum_{i=n+1}^{\infty}\lambda_i e_i \otimes f_i\right\}$ is bounded in $E \in F$, whence the set $\left\{\frac{1}{\rho_n}u\left(\sum_{i=n+1}^{\infty}\lambda_i e_i \otimes f_i\right)\right\}$ is bounded by the assumption imposed on u, and therefore $u\left(\sum_{i=n+1}^{\infty}\lambda_i e_i \otimes f_i\right) \to 0$ as $n \to \infty$. Consequently,

$$u(\xi) = u(\sum \lambda_i e_i \otimes f_i)$$

= $\sum_{i=1}^n \lambda_i u(e_i \otimes f_i) + u(\sum_{i=n+1}^\infty \lambda_i e_i \otimes f_i)$
= $\sum_{i=1}^n \lambda_i v(e_i \otimes f_i) + u(\sum_{i=n+1}^\infty \lambda_i e_i \otimes f_i).$

Passing to the limit as $n \to \infty$, and taking into account the fact that v is continuous, we can see that $u(\xi) = v(\xi)$. As ξ is any element of $E \varepsilon F$, u coincides with v, that is, u is continuous, which completes the proof.

REMARK. Suppose E satisfies the strict Mackey condition for convergence ([3], p. 105), that is, for any bounded subset $A \subseteq E$, there exists a bounded disk $B(\supset A)$ such that the topology of A induced by E coincides with that induced by E_B . Let F be a Banach space. Here we assume that $F \neq (0)$. If $E \in F$ is bornological, then E is also bornological. In fact, for any $\xi \in E \in F$ which we may consider to be an element of $\mathscr{L}_{\varepsilon}(F'_{c}; E)$, there exists a bounded disk A of E such that ξ may be an element of $\mathcal{L}_{\varepsilon}(F'_{c}; E_{A})$, that is, $\xi \in E_{A} \varepsilon F$. Indeed, let V be the unit ball of F. $\xi(V^{\circ}) = K$ is a compact disk of E, so that, by assumption on E, there exists a bounded disk $A \supset K$ such that the topology of A induced by E coincides with that induced by E_A . Then the map ξ restricted to V° is continuous of V° into E_A . Since F is complete, owing to a proposition of L. Schwartz ([7], p. 41), the map $\xi: F'_c \to E_A$ is continuous, that is, $\xi \subset E_A \varepsilon F$. Let u be any linear map of E into a complete LCS G such that it transforms any bounded subset of E into a bounded subset of G. Let us denote by u_A the restriction of u to E_A , which is a continuous linear map of E_A into G since E_A is a normed linear space. Therefore $u_A \otimes I$, I being the identical map of F into itself, is a continuous linear map of $E_A \varepsilon F$ into $G \varepsilon F$. Let us define the linear map v of $E \varepsilon F$ into $G \varepsilon F$ by the relation $v(\xi) = (u_A \otimes I)(\xi)$, where A is chosen as indicated above. That the choice of A has no effect on the definition of v is easily seen. If ξ runs through a bounded subset of $E \varepsilon F$, we can take A as the same bounded disk for these ξ , so that the map v becomes continuous. Let $f_0 \in F$, $f'_0 \in F'$ be chosen so that $\langle f_0, f'_0 \rangle = 1$. Clearly the map $\theta : e \to e \otimes f_0$ of E into $E \in F$ and the map $I \otimes f'_0$ of $G \in F$ into G are continuous. Let us consider the map $w = (I \otimes f'_0) \circ v \circ \theta$ which is a continuous linear map of E into G. Now it is easy to see that w(e) = u(e) for every $e \in E$, which implies that u is continuous.

Let \widetilde{O} be a saturated family of bounded subsets of an LCS F([8], p. 198), that is, (i) if $A \in \widetilde{O}$, then $\lambda A \in \widetilde{O}$ for every $\lambda > 0$; (ii) if $A \in \widetilde{O}$, then any subset of A belongs to \widetilde{O} ; (iii) if $A \in \widetilde{O}$, then the disked envelope of A belongs to \widetilde{O} ; (iv) if $A, B \in \widetilde{O}$, then $A \cup B \in \widetilde{O}$; (v) every one point subset of F belongs to \widetilde{O} . We shall say that a subset \mathfrak{A} of $\mathcal{D}'_{[b,\infty)}(F)$ is of type \widetilde{O} in $\mathcal{D}'_{[b,\infty)}(F)$, if \mathfrak{A} , considered as a subset of $\mathcal{D}'(F)$, is of type \widetilde{O} in $\mathcal{D}'(F)$, that is, for any bounded subset B of \mathcal{D} the set $\bigvee_{\widetilde{T} \in \mathfrak{A}} \widetilde{T}$ is contained in an $A \in \widetilde{O}$.

First we prove

PROPOSITION 3. Let E, F, G be three LCSs, where G is assumed to be quasicomplete. Let θ be a separately continuous bilinear map of $E \times F$ into G. Then any $\vec{S} \in \mathcal{D}'_{[a,\infty)}(E)$ and $\vec{T} \in \mathcal{D}'_{[b,\infty)}(F)$ are $*_{\theta}$ -composable and $\vec{S}*_{\theta}\vec{T} \in \mathcal{D}'_{[a+b,\infty)}(G)$.

(a) The bilinear map $(\vec{S}, \vec{T}) \rightarrow \vec{S} *_{\theta} \vec{T}$ of $\mathcal{D}'_{[a,\infty)}(E) \times \mathcal{D}'_{[b,\infty)}(F)$ into $\mathcal{D}'_{[a+b,\infty)}(G)$ is separately quasi-continuous.

(b) If θ is hypocontinuous with respect to the compact disks of F, then the linear map $\vec{S} \rightarrow \vec{S} *_{\theta} \vec{T}$ is uniformly continuous with respect to the equicontinuous subsets of $\mathcal{L}(F'_c; \mathcal{D}'_{[b,\infty)})$. (c) If θ is hypocontinuous with respect to the bounded subsets of E and F, then so is $*_{\theta}$.

(d) If θ is continuous, then so is $*_{\theta}$.

Finally, let $\tilde{0}$ be a saturated family of bounded subsets of F.

(e) If θ is hypocontinuous with respect to the sets of \overline{O} , then the linear map $\vec{S} \to \vec{S} *_{\theta} \vec{T}$ is uniformly continuous with respect to the subsets of type \overline{O} in $\mathcal{D}'_{[b,\infty)}(F)$.

PROOF. For any $\phi \in \mathcal{D}$, $\tilde{T} * \phi \in \mathcal{E}(F)$ is locally γ -bounded and $\vec{S} \in \mathcal{D}'(E)$, the multiplicative product $[\vec{S}(\vec{T} * \phi)]_{\theta}$ is well defined as an element of $\mathcal{D}'(G)$ ([8], p. 133). Clearly

$$\left[\vec{S}(\vec{T}*\phi)
ight]_{ heta}\epsilon\, \hat{arepsilon'}(G)\!\subset\! \mathcal{D}_{L^1}'(G).$$

Therefore, by definition ([10], p. 182), \vec{S} and \vec{T} are $*_{\theta}$ -composable, and it is known that $\vec{S}*_{\theta}\vec{T} \in \mathcal{D}'_{[a+b,\infty)}(G)$ ([8], p. 167).

Choose two elements α , $\beta \in \mathcal{D}_+$ such that α and β equal 1 on $[a, \infty)$ and $[b, \infty)$ respectively. Let *B* be any bounded disk of \mathcal{D} . Then, owing to Proposition 1, we can choose $\mathcal{U}, \tilde{\mathcal{U}}$ (resp. *K*), depending only on *B*, α, β (resp. $\tilde{\mathcal{U}}, \vec{T}$), as indicated in the same proposition and we can write $\alpha((\beta \vec{T})^* * \phi)$ in the form:

$$\alpha((\beta \vec{T}) \cdot \ast \phi) = \sum_{i} \lambda_{i} h_{i,\phi} \otimes f_{i,\vec{T}}$$

with $h_{i,\phi} \in \mathcal{U}^{\circ}, f_{i,\vec{r}} \in \tilde{\mathcal{U}}^{\circ} \cdot \vec{T} \subset K$ and $\sum |\lambda_i| < \infty$. Taking into account a proposition of L. Schwartz ([8], p. 70), we have for any $\phi \in B$

(1)

$$\begin{aligned} \phi \cdot (\vec{S} *_{\theta} \vec{T}) &= \phi \cdot (\alpha \vec{S} *_{\theta} \beta \vec{T}) \\ &= \vec{S} \cdot_{\theta} (\alpha ((\beta \vec{T})^{\check{}} * \phi)) \\ &= \vec{S} \cdot_{\theta} (\sum \lambda_{i} h_{i,\phi} \otimes f_{i,\vec{\tau}}) \\ &= \sum \lambda_{i} \theta (h_{i,\phi} \cdot \vec{S}, f_{i,\vec{\tau}}). \end{aligned}$$

(a): Suppose \vec{S} converges in $\mathcal{D}'_{[a,\infty)}(E)$ to 0, running through a bounded subset \mathfrak{B} of $\mathcal{D}'_{[a,\infty)}(E)$. We shall show that $\vec{S} *_{\theta} \vec{T}$ converges to 0 in $\mathcal{D}'_{[a+b,\infty)}(G)$ for every $\vec{T} \in \mathcal{D}'_{[b,\infty)}(F)$. Since $\{h_{i,\phi} \cdot \vec{S}\}_{\phi \in B, \vec{S} \in \mathfrak{B}, i=1, 2, ..., is}$ is bounded in E and $\{f_{i,\vec{T}}\}_{i=1,2,...}$ is contained in a compact disk K of F, it follows that the set $\{\theta(h_{i,\phi} \cdot \vec{S}, f_{i,\vec{T}})\}_{\phi \in B, \vec{S} \in \mathfrak{B}, i=1,2,...,}$ is bounded in G ([10], p. 194). And for each i, $\theta(h_{i,\phi} \cdot \vec{S}, f_{i,\vec{T}})$ converges to 0 as $\vec{S} \to 0$ in \mathfrak{B} . Therefore from (1) it follows that $\phi \cdot (\vec{S} *_{\theta} \vec{T})$ converges to 0 in $\mathcal{D}'_{[a+b,\infty)}(G)$ uniformly with respect to ϕ of B as $\vec{S} \to 0$ in \mathfrak{B} . Therefore, by symmetry, the bilinear map $*_{\theta}$ is separately quasicontinuous. (b): Suppose θ is hypocontinuous with respect to the compact disks of F. Let \vec{T} lie in an equicontinuous subset \mathfrak{A} of $\mathcal{L}(F'_c; \mathcal{D}'_{[b,\infty)})$. Then there exists a compact disk K of F such that $\langle \vec{T}, K^{\circ} \rangle$ is contained in $\tilde{\mathcal{U}}$. By our assumption on θ , we can find a neighbourhood U of 0 in E in such a way that $\theta(U, K) \subset W$ for a given neighbourhood W of 0 in G. Now consider the set U of the elements $\vec{S} \in \mathcal{D}'_{[a,\infty)}(E)$ such that $\mathcal{U}^{\circ} \cdot \vec{S} \subset U$. U is, by definition, a neighbourhood of 0 in $\mathcal{D}'_{[a,\infty)}(E)$. Then $h_{i,\phi} \cdot \vec{S} \in \mathcal{U} \circ \cdot \vec{S} \subset U$ and $f_{i,\vec{T}} \in \tilde{\mathcal{U}} \circ \cdot \vec{T} \subset K$ for $\vec{S} \in U, \vec{T} \in \mathfrak{A}, \phi \in B$. Therefore it follows from (1) that for every $\vec{S} \in U, \vec{T} \in \mathfrak{A}, \phi \in B$

$$\phi \cdot (\vec{S} *_{\theta} \vec{T}) = \sum \lambda_i \theta(h_{i,\phi} \cdot \vec{S}, f_{i,\vec{T}}) \in \sum |\lambda_i| W,$$

which implies that the map: $\vec{S} \to \vec{S} *_{\theta} \vec{T}$ is uniformly continuous with respect to the equicontinuous subsets of $\mathcal{L}(F'_{c}; \mathcal{D}'_{[b,\infty)})$.

(c): Suppose θ is hypocontinuous with respect to the bounded subsets of E and F. It is known that any bounded subset of $\mathcal{D}'_{[a,\infty)}(E)$ (resp. $\mathcal{D}'_{[b,\infty)}(F)$) is an equicontinuous subset of $\mathcal{L}(E'_b; \mathcal{D}'_{[a,\infty)})$ (resp. $\mathcal{L}(F'_b; \mathcal{D}'_{[b,\infty)})$) ([7], p. 28). From this fact together with the assumption on θ , we can conclude just as in (b) that the bilinear map $*_{\theta}$ becomes hypocontinuous with respect to the bounded subsets of $\mathcal{D}'_{[a,\infty)}(E)$ and $\mathcal{D}'_{[b,\infty)}(F)$.

(d): We can infer in a similar way as above that if θ is continuous, then $*_{\theta}$ is also continuous.

(e): Finally we assume that θ is hypocontinuous with respect to the subsets of $\overline{\mathbb{O}}$. Let \mathfrak{B} be a subset of type $\overline{\mathbb{O}}$ in $\mathcal{D}'_{[b,\infty)}(F)$. Then $\mathscr{U}^{\circ}\mathfrak{B}$ is contained in an element K of $\overline{\mathbb{O}}$. By our assumption on θ , we find a neighbourhood U of 0 in E such that $\theta(U, K) \subset W$ for any given neighbourhood W of 0 in G. Therefore we can infer in a similar way as in the proof of (b) that $\vec{S} \to \vec{S} *_{\theta} \vec{T}$ is uniformly continuous with respect to the subsets of type $\overline{\mathbb{O}}$ in $\mathcal{D}'_{[b,\infty)}(F)$.

Thus the proof is completed.

 $\mathcal{D}'_{+}(E)$ is the strict inductive limit of $\{\mathcal{D}'_{[a,\infty)}(E)\}_{-\infty < a < \infty}$. It is known that if an LCS G is a strict inductive limit of closed linear subspaces G_n , then a subset of G is bounded if and only if it is contained in a G_n and is bounded there ([1], p. 8). Therefore \mathfrak{B} is bounded in $\overline{\mathcal{D}}'_{+}(E)$ if and only if \mathfrak{B} is contained in a $\mathcal{D}'_{[a,\infty)}(E)$ and is bounded there. We shall say that a subset \mathfrak{A} of $\overline{\mathcal{D}}'_{+}(F)$ is of type $\widetilde{\mathcal{O}}$ in $\overline{\mathcal{D}}'_{+}(F)$, if \mathfrak{A} is contained in a $\mathcal{D}'_{[b,\infty)}(F)$ and is of type $\widetilde{\mathcal{O}}$ there.

As an immediate consequence of the preceding proposition we have

COROLLARY. Let E, F, G be three LCSs, G being assumed quasi-complete. Let θ be a separately continuous bilinear map of $E \times F$ into G. Then any $\vec{S} \in \overline{\mathcal{D}}'_{+}(E)$ and $\vec{T} \in \overline{\mathcal{D}}'_{+}(F)$ are $*_{\theta}$ -composable and the bilinear map $(\vec{S}, \vec{T}) \rightarrow \vec{S} *_{\theta} \vec{T}$ of $\bar{\mathcal{D}}'_+(E) \times \bar{\mathcal{D}}'_+(F)$ into $\bar{\mathcal{D}}'_+(G)$ is separately quasi-continuous. Let $\bar{\mathbb{O}}$ be a saturated family of bounded subsets of F and θ be hypocontinuous with respect to the subsets of $\bar{\mathbb{O}}$. Then the map $\vec{S} \to \vec{S} *_{\theta} \vec{T}$ of $\bar{\mathcal{D}}'_+(E)$ into $\bar{\mathcal{D}}'_+(G)$ is uniformly continuous with respect to the subsets of type $\bar{\mathbb{O}}$ in $\bar{\mathcal{D}}'_+(F)$. In particular, if E is normable and θ is a separately continuous bilinear map of $E \times F$ into G, then the map $\vec{S} \to \vec{S} *_{\theta} \vec{T}$ of $\bar{\mathcal{D}}'_+(G)$ is continuous.

We note that the last statement follows from the fact that if E is normable, then $\overline{\mathcal{D}}'_+(E)$ is bornological.

Next we shall consider a convolution map of $\overline{\mathcal{D}}'_+(E)$ into $\overline{\mathcal{D}}'_+(F)$. By $\mathcal{L}_b(E; F)$ we denote the space of all continuous linear maps of E into F, where b denotes the topology of bounded convergence. We take θ as the bilinear map of $E \times \mathcal{L}_b(E; F)$ into F defined by the relation: $\theta(e, u) = u(e)$, $e \in E$, $u \in \mathcal{L}_b(E; F)$, then the map θ is hypocontinuous with respect to the bounded subsets of E and the equicontinuous subsets of $\mathcal{L}_b(E; F)$, which is a saturated family of bounded subsets of $\mathcal{L}_b(E; F)$.

Next we prove the following proposition which will play a fundamental rôle in the next section.

PROPOSITION 4. Let E, F be two LCSs, where F is assumed to be quasicomplete. Let L be a continuous linear map of $\overline{\mathcal{D}}'_+(E)$ into $\overline{\mathcal{D}}'_+(F)$. If the restriction of L to $\mathcal{D}\otimes E$ is commutative with any translation τ_h , $-\infty < h < \infty$, then there exists a unique $\vec{T} \in \overline{\mathcal{D}}'_+(\mathcal{L}_b(E; F))$ such that \vec{T} is $*_{\theta}$ -composable with any element \vec{S} of $\overline{\mathcal{D}}'_+(E)$ and $L(\vec{S}) = \vec{S} *_{\theta} \vec{T}$, where θ is the bilinear map of $E \times$ $\mathcal{L}_b(E; F)$ into F defined above. Conversely, for any $\vec{T} \in \overline{\mathcal{D}}'_+(\mathcal{L}_b(E; F))$ which maps any bounded subset of \mathcal{D} into an equicontinuous subset of $\mathcal{L}_b(E; F)$ the map $\vec{S} \to \vec{S} *_{\theta} \vec{T}$ of $\overline{\mathcal{D}}'_+(E)$ into $\overline{\mathcal{D}}'_+(F)$ is continuous and its restriction to $\mathcal{D}\otimes E$ is commutative with any τ_h .

PROOF. Let $S \in \mathcal{D}'_+$, $e \in E$, $\psi \in \mathcal{D}_-$. Putting $M(S, \psi)e = \psi \cdot L(S \otimes e)$, since L is continuous, it follows that $M(S, \psi) \in \mathcal{L}(E; F)$. Further if we put $\psi \cdot M(S) =$ $M(S, \psi)$, then the map $M(S): \psi \to M(S, \psi)$ of \mathcal{D}_- into $\mathcal{L}_b(E; F)$ is continuous. In fact, when ψ and e run through any bounded subsets of \mathcal{D}_- and E respectively, the set $\{(\psi \cdot M(S))e\} = \{\psi \cdot L(S \otimes e)\}$ is bounded in F. Since \mathcal{D}_- is bornological, it follows that M(S) is continuous, that is, $M(S) \in \mathcal{D}'_+(\mathcal{L}_b(E; F))$. We note that the map $M: S \to M(S)$ of \mathcal{D}'_+ into $\mathcal{D}'_+(\mathcal{L}_b(E; F))$ is continuous. Further, let $\phi \in \mathcal{D}$. Then we have for any translation τ_h

$$egin{aligned} ig(\psi \cdot M(au_h \phi)ig) e &= \psi \cdot L(au_h \phi \otimes e) \ &= \psi \cdot au_h L(\phi \otimes e) \ &= ig(\psi \cdot au_h M(\phi)ig) e. \end{aligned}$$

Hence the restriction M to \mathcal{D} is commutative with any translation τ_h . Con-

sequently, owing to Proposition 4 in Shiraishi ([10), p. 179), there exists a unique distribution $\vec{T} \in \mathcal{D}'(\mathcal{L}_b(E; F))$ such that $M(S) = S * \vec{T}$ for every $S \in \mathcal{D}'_+$. And \vec{T} is $*_{\theta}$ -composable for any $S \otimes e, S \in \mathcal{D}'_+$ and $e \in E$ (see Remark 3 of [10], p. 186).

Next we shall prove that there exists a real number a such that $\vec{T} \in \mathcal{D}'_{[a,\infty)}(\mathcal{L}_b(E;F))$. To do so, it is sufficient to prove that there exists a number a such that $L(\delta \otimes e) = \vec{T}e \in \mathcal{D}'_{[a,\infty)}(F)$ for all $e \in E$. Contrary assumed, there exists a sequence $\{e_n\}, e_n \in E$, such that $L(\delta \otimes e_n) \notin \mathcal{D}'_{[-2c_n,\infty)}(F)$, where $c_n \to \infty$ as $n \to \infty$ and c_n 's are positive numbers. Now, as L is continuous and $\{\delta_{c_n} \otimes e_n\}$ is bounded in $\mathcal{D}'_{[0,\infty)}(E)$ since $c_n \to \infty$, it follows that $\{L(\delta_{c_n} \otimes e_n)\}$ is bounded in $\mathcal{D}'_{+}(F)$, and therefore it is bounded in a $\mathcal{D}'_{[a,\infty)}(F)$, while, on the other hand, $L(\delta_{c'_n} \otimes e_n) \notin \mathcal{D}'_{[-c_n,\infty)}(F), n=1, 2, \cdots$, which is a contradiction.

Finally, let us denote by Γ the set of $\vec{S} \in \mathcal{D}'_{+}(E)$ such that $L(\vec{S})=\vec{S}*_{\theta}\vec{T}$. Clearly Γ is linear and contains $\mathcal{D}\otimes E$ which is strictly dense in $\overline{\mathcal{D}}'_{+}(E)$ ([7], p. 46). Since the map $\vec{S} \to \vec{S}*_{\theta}\vec{T}$ is quasi-continuous and L is continuous, it follows that $\overline{\mathcal{D}}'_{+}(E)=\Gamma$.

Let \overline{O} be the family of the equicontinuous subsets of $\mathcal{L}_b(E; F)$. Then θ is hypocontinuous with respect to the subsets of \overline{O} and $\overline{T} \in \overline{\mathcal{D}}'_+(\mathcal{L}_b(E; F))$ is of type \overline{O} in $\overline{\mathcal{D}}'_+(\mathcal{L}_b(E; F))$. Therefore we can apply Corollary to Proposition 3 to conclude the last statement of the proposition.

Thus the proof is completed.

When E and F are Banach spaces, the proposition was proved by J. L. Lions ([5], p. 150).

We note that if E happens to be a barrelled space, $\mathcal{D}'_+(\mathcal{L}_s(E; F)) = \overline{\mathcal{D}}'_+(\mathcal{L}_b(E; F))$ algebraically, because any bounded subset of $\mathcal{L}_s(E; F)$ becomes equicontinuous since E is barrelled ([1], p. 27).

§ 2. On characterization of semi-group distribution

Let *E* be a quasi-complete LCS. We shall consider a vector valued distribution $\mathfrak{G} \in \mathcal{D}'_{1^{0,\infty}}(\mathcal{L}_{b}(E; E))$. For a given $x \in E$, $\mathfrak{G}_{x} \in \mathcal{D}'_{1^{0,\infty}}(E)$ is defined by

$$\phi \cdot \mathfrak{G}_x = (\phi \cdot \mathfrak{G})_x \quad \text{for any} \quad \phi \in \mathcal{D}.$$

In the sequel we shall use the notation $\mathfrak{G}(\phi)$ instead of $\phi \cdot \mathfrak{G}$. Following J. L. Lions ([5], p. 142) \mathfrak{G} is referred to as a *semi-group distribution in E* if the following conditions are satisfied:

- (i) $\mathfrak{G}(\phi * \psi) = \mathfrak{G}(\phi) \mathfrak{G}(\psi)$ for any $\phi, \psi \in \mathcal{Q}_{[0,\infty)}$;
- (ii) for any $y = \mathfrak{G}(\phi)x$, $\phi \in \mathcal{D}_{[0,\infty)}$, $x \in E$, the distribution $\mathfrak{G}y \in \overline{\mathcal{D}}'_+(E)$ is a function u(t) such that u(t)=0 for t<0;
- (iii) the set $\{ \mathfrak{G}(\phi)x; \phi \in \mathcal{Q}_{[0,\infty)}, x \in E \}$ is total;

(iv) if, for a given $x \in E$, $\mathfrak{G}(\phi)x=0$ for any $\phi \in \mathcal{D}_{[0,\infty)}$, then x=0.

REMARK. From (i) and (ii) it is easy to see that we can take $u(i) = \mathfrak{G}(\tau_i \phi) x$ for $i \ge 0$, because of the equation $\mathfrak{G}(\phi)\mathfrak{G}(\phi)x = \int_0^\infty \phi(i)\mathfrak{G}(\tau_i \phi)x di$. J. L. Lions [5] has treated the case where E is a Banach space, where, as remarked in the preceding section, $\mathfrak{Q}'_{[0,\infty)}(\mathcal{L}_b(E; E)) = \mathfrak{Q}'_{[0,\infty)}(\mathcal{L}_s(E; E))$ algebraically.

Let \mathfrak{G} be a semi-group distribution in *E*. For any $T \in \mathfrak{S}'_{[0,\infty)}$ we define an operator $\mathfrak{G}(T)$ as follows: $x \in \mathfrak{D}_{\mathfrak{G}(T)}$ (domain of $\mathfrak{G}(T)$) if and only if there exists an element γ such that

(1)
$$\mathfrak{G}(T*\phi)x = \mathfrak{G}(\phi)y$$
 for every $\phi \in \mathcal{D}_{[0,\infty)}$.

The element y is, if it exists, uniquely determined because of (iv). And we put $\widetilde{\mathfrak{G}}(T)x=y$. Now it is easy to see that any $\mathfrak{G}(\phi)x$ belongs to $\mathfrak{D}_{\widetilde{\mathfrak{G}}(T)}$ and therefore the domain $\mathfrak{D}_{\widetilde{\mathfrak{G}}(T)}$ is a dense linear subspace of E and that it is also a closed linear operator. Then for any $x \in \mathfrak{D}_{\widetilde{\mathfrak{G}}(T)}$ we have

(2)
$$\mathfrak{G}(T*\phi)x = \mathfrak{G}(\phi)\mathfrak{\widetilde{G}}(T)x = \mathfrak{\widetilde{G}}(T)\mathfrak{G}(\phi)x.$$

For example $\mathfrak{S}(\delta) = I_E$ (the idential map of E into itself). Especially $A = \mathfrak{S}(-\delta')$ is called *infinitesimal generator* of the semi-group distribution under consideration. If, for any $\psi \in \mathcal{D}$, we denote by ψ_+ the function equal to $\psi(t)$ for $t \ge 0$ and 0 for t < 0, then $\psi_+ \in \mathfrak{S}'_{[0,\infty)}$ and we can show that $\mathfrak{S}(\psi_+) = \mathfrak{S}(\psi)$, and $\mathfrak{S}(\psi) \mathfrak{S}(T) z = \mathfrak{S}(\psi_+ * T) z$ for any $z \in \mathfrak{D}_{\mathfrak{S}(T)}$. Indeed, for $\gamma = \mathfrak{S}(\phi) x$, $\phi \in \mathfrak{Q}_{[0,\infty)}$, we have

$$\mathfrak{G}(\psi)y = \int_0^\infty u(t)\psi(t)dt = \int_0^\infty \psi(t)\mathfrak{G}(\tau_t\phi)xdt$$
$$= \mathfrak{G}(\psi_+ *\phi)x$$
$$= \widetilde{\mathfrak{G}}(\psi_+)y.$$

Consequently, this together with (iii) implies that $\widehat{\mathfrak{G}}(\psi_+) = \mathfrak{G}(\psi)$. The second part follows from the equalities:

$$\mathfrak{G}(\phi)\mathfrak{G}(\psi)\mathfrak{G}(T)z = \mathfrak{G}(\phi * \psi_{+})\mathfrak{G}(T)z = \mathfrak{G}(\phi * \psi_{+} * T)z.$$

Similarly if $z \in \mathfrak{D}_{\mathfrak{G}(T * \psi_{+})}$, then $\mathfrak{G}(\psi)z$ belongs to $\mathfrak{D}_{\mathfrak{G}(T)}$ and

$$\widetilde{\mathfrak{G}}(T)\widetilde{\mathfrak{G}}(\psi_{+})z = \widetilde{\mathfrak{G}}(T*\psi_{+})z$$

For example, for any $x \in E$ and for any $\psi \in \mathcal{D}$, $\mathfrak{G}(\psi)x$ belongs to \mathfrak{D}_A and

(3)
$$A \mathfrak{G}(\psi) x = \widetilde{\mathfrak{G}}(-\delta' * \psi_+) x$$
$$= -\mathfrak{G}(\psi') x - \psi(0) x.$$

Now we take on \mathfrak{D}_A the weakest topology which makes the maps $x \to x$, $x \to Ax$ of \mathfrak{D}_A into E continuous. Such a topology we shall refer to as the graph topology. It follows from (3) that \mathfrak{G} may be considered to be a continuous linear map of \mathfrak{D} into $\mathcal{L}_b(E; \mathfrak{D}_A)$, or more precisely we can write \mathfrak{G} in the form:

$$\mathfrak{G} = (\delta \otimes j) * \mathfrak{H},$$

where $\mathfrak{H} \in \mathcal{D}'_{[0,\infty)}(\mathcal{L}_b(E; \mathfrak{D}_A))$ and j is the continuous injection $\mathfrak{D}_A \to E$ and $((\delta \otimes j) * \mathfrak{H})(\phi)$ means $j(\mathfrak{H}(\phi))$. Then (3) is rewritten in the form

(4)
$$(-\delta \otimes A + \delta' \otimes j) * \mathfrak{H} = \delta \otimes I_E,$$

where convolutions, say, $(\delta' \otimes j) * \mathfrak{Y}$ means that $((\delta' \otimes j) * \mathfrak{Y})(\phi) = j(\frac{d}{dt} \mathfrak{Y}(\phi))$ for any $\phi \in \mathcal{Q}$. Similarly, we have

(5)
$$\mathfrak{G}*(-\delta \otimes A + \delta' \otimes j) = \delta \otimes I_{\mathfrak{D}_A}.$$

By making use of (4), (5) and Proposition 4, we can conclude that the differential equation

$$-A\,\vec{u}+j\frac{d}{dt}\,\vec{u}=\vec{T},\ \vec{T}\,\epsilon\,\bar{\mathcal{D}}_+'(E),$$

admits a unique solution $\vec{u} \in \bar{\mathcal{D}}'_{+}(\mathfrak{D}_{A})$ such that $\vec{u} \in \mathcal{D}'_{[0,\infty)}(\mathfrak{D}_{A})$ if $\vec{T} \in \mathcal{D}'_{[0,\infty)}(E)$, besides, if \mathfrak{D} maps any bounded subset of \mathcal{D} into an equicontinuous subset of $\mathcal{L}(E; \mathfrak{D}_{A})$, then the map $\vec{T} \rightarrow \vec{u}$ is continuous, which is the case when E is barrelled.

Our main purpose of this section is to show the converse of the preceding statement. Hereafter we shall assume *E* satisfies the following conditions:

(*) if, for a given sequence $\{x_n\}$, $x_n \in E$, and for any $x' \in E'$, the sequence $\{\langle x_n, x' \rangle\}$ is ultimately equal to zero, then $\{x_n\}$ is also ultimately equal to zero;

(*)' if, for a given sequence $\{x'_n\}$, $x'_n \in E'$, and for any $x \in E$, the sequence $\{\langle x, x'_n \rangle\}$ is ultimately equal to zero, then $\{x'_n\}$ is also ultimately equal to zero.

The space of type (\mathbf{F}) considered by Gelfand and Shilov satisfies these

conditions ([2], p. 37). More generally if E is a space of type (**F**) with a continuous norm p, then E satisfies the conditions (*) and (*)'. Indeed, let $U = \{x; p(x) \leq 1\}$, then E'_{U^0} is a Banach space. Putting $A'_k = \{x'; \langle x_k, x' \rangle = \langle x_{k+1}, x' \rangle = \dots = 0$ and $x' \in E'_{U^0}\}$ which is a closed linear subspace of E'_{U^0} , we have $E'_{U^0} = \bigcup A'_k$, whence, by a theorem of Baire $E'_{U^0} = A'_k$ for some k, which implies that $p(x_k) = p(x_{k+1}) = \dots = 0$, and therefore $x_k = x_{k+1} = \dots = 0$. Thus the condition (*) is verified. The condition (*)' holds for any space of type (**F**). This may be shown in a similar way. Of course there are spaces which do not satisfy these conditions: (s), (\mathfrak{E}), (\mathfrak{D}), (\mathfrak{D}). Most of the classical spaces of distributions considered by L. Schwartz [6] satisfy these conditions. For example, consider the space (\mathcal{O}'_C). It is known that $\mathscr{S} \subset \mathcal{O}'_C \subset \mathscr{K}$, where injections are continuous. Since the conditions (*) and (*)' are valid for \mathscr{S} and \mathscr{K} , it is easy to see that these conditions are also valid for (\mathcal{O}'_C).

Now we show

THEOREM. Let E, F be two quasi-complete LCSs such that E satisfies the conditions (*) and (*)'. We assume that there is a continuous injection $j_0: F \rightarrow E$ such that $j_0(F)$ is dense in E. Let A_0 be a continuous linear map of F into E. If the equation

(G)
$$-A_0\vec{u}+j_0\frac{d}{dt}\vec{u}=\vec{T}, \quad \vec{T} \in \bar{\mathcal{D}}'_+(E),$$

admits a unique solution $\vec{u} \in \bar{\mathbb{D}}'_{+}(F)$ for every $\vec{T} \in \bar{\mathbb{D}}'_{+}(E)$ and the map $\vec{T} \to \vec{u}$ is continuous and $\vec{u} \in \mathcal{D}'_{[0,\infty)}(F)$ whenever $\vec{T} \in \mathcal{D}'_{[0,\infty)}(E)$, then there exists a unique semi-group distribution $\mathfrak{G} \in \mathcal{D}'_{[0,\infty)}(\mathcal{L}_b(E; E))$ with the following properties: Let A be the infinitesimal generator of \mathfrak{G} in E with domain \mathfrak{D}_A equipped with the graph topology. Let j be the natural injection of \mathfrak{D}_A into E. There exists then an isomorphism j_1 of \mathfrak{D}_A onto F such that $j=j_0\circ j_1$ and $A=A_0\circ j_1$.

Moreover we can write $j_0 \vec{u} = \mathfrak{S} *_{\theta} \vec{T}$.

PROOF. According to proposition 4, there exists a unique vector valued distribution $\mathfrak{H}_0 \in \mathcal{D}'_{[a,\infty)}(\mathcal{L}_b(E;F))$ such that $\vec{u} = \mathfrak{H}_0 *_{\theta} \vec{T}$, where we may assume that a = 0, since, by assumption, $\vec{u} \in \mathcal{D}'_{[0,\infty)}(F)$ for every $\vec{T} \in \mathcal{D}'_{[0,\infty)}(E)$. Putting $\mathfrak{G} = j_0 \mathfrak{H}_0$, we shall first show that \mathfrak{G} is a semi-group distribution $\epsilon \, \mathcal{D}'_{[0,\infty)}(\mathcal{L}_b(E;E))$ with requisite properties.

Conditions (i) and (ii) are valid for \mathfrak{G} . For we may carry out the proof following the way of the corresponding proof due to J. L. Lions ([5], pp. 150-152). Hence the proof thereof is omitted.

Condition (iv): Let x be an element of E such that $\mathfrak{G}(\phi)x = 0$ for every $\phi \in \mathcal{D}_{[0,\infty)}$. This means that \mathfrak{G}_x is a vector valued distribution $\epsilon \mathcal{D}'_{[0,\infty)}(E)$ with support in 0. Therefore, for any $x' \in E'$ we can write $\langle \mathfrak{G}x, x' \rangle$ in the following from:

Risai Shiraishi & Yukio Hirata

$$\langle \mathfrak{G}x, x' \rangle = \sum_{k} a_k(x') \delta^{(k)}$$

where $\{a_k(x')\}\$ is a sequence of complex numbers which is ultimately equal to zero. Now $a_k(x')$ is a continuous linear form on E'_c , whence we can write $a_k(x') = \langle x_k, x' \rangle$ for some $x_k \in E$. Therefore we can write

(1)
$$\mathfrak{G}x = \sum_{k} \delta^{(k)} \otimes x_{k}, \quad x_{k} \in E.$$

Since $\Im x = j_0 \Im_0 x$ and j_0 is a continuous injection, the support of $\Im_0 x$ is also in 0 and we can write similarly as above

where $x_k = j_0 y_k$. Putting $\vec{u} = \mathfrak{D}_0 x$ into the equation (G) we have

$$-A_0(\sum_k \delta^{(k)} \otimes y_k) + \sum_k \delta^{(k+1)} \otimes j_0 y_k = \delta \otimes x,$$

which yields the equations

(3)
$$x = -A_0 y_0, \quad j_0 y_0 = A_0 y_1, \dots, \quad j_0 y_k = A_0 y_{k+1}, \dots$$

By hypothesis, E satisfies the condition (*). Hence $\{x_k\}$ is ultimately equal to zero, so that $\{y_k\}$ is also ultimately equal to zero and in turn it follows from (3) that x=0.

Condition (iii): Let x' be any element of E' such that $\langle \mathfrak{G}(\phi)x, x' \rangle = 0$ for every $\phi \in \mathcal{D}_{[0,\infty)}$ and for every $x \in E$. We define ${}^{t}\mathfrak{H}_{0} \in \mathcal{D}'_{[0,\infty)}(\mathcal{L}_{b}(F'_{c}; E'_{c}))$ by the relation: ${}^{t}\mathfrak{H}_{0}(\phi) = {}^{t}(\mathfrak{H}_{0}(\phi))$ for every $\phi \in \mathcal{D}$. Then the relations $\langle \mathfrak{G}(\phi)x, x' \rangle = \langle j_{0}\mathfrak{H}_{0}(\phi)x, x' \rangle = \langle x, {}^{t}\mathfrak{H}_{0}(\phi){}^{t}j_{0}x' \rangle$ yield ${}^{t}\mathfrak{H}_{0}(\phi){}^{t}j_{0}x' = 0$ for every $\phi \in \mathcal{D}_{[0,\infty)}$, therefore ${}^{t}\mathfrak{H}_{0}{}^{t}j_{0}x'$ is a vector valued distribution $\epsilon \mathcal{D}'_{[0,\infty)}(E'_{c})$ with support in 0. As in the preceding proof we can write

(4)
$${}^{t}\mathfrak{H}_{0}{}^{t}j_{0}x' = \sum_{k} \delta^{(k)} \otimes x'_{k},$$

where $\{x'_k\}$ is a sequence of elements of E' which becomes ultimately equal to zero.

Now we show

(5)
$$-\mathfrak{H}_0(\psi)A_0 + \frac{d}{dt}\mathfrak{H}_0(\psi)j_0 = \psi(0)I_F, \quad \psi \in \mathcal{D},$$

where I_F is the identical map of F into itself. Indeed, if we put $\vec{u} = \check{\psi} \otimes y$ into

the equation (G), we obtain

$$-A_0 ec{u} + j_0 rac{d}{du} ec{u} = -\check{\psi} \otimes A_0 y + (\check{\psi})' \otimes j_0 y,$$

whence

$$\check{\psi} \otimes y = - (\mathfrak{H}_0 * \check{\psi}) A_0 y + (\mathfrak{H}'_0 * \check{\psi}) j_0 y,$$

consequently for t=0 we obtain the equation (5).

Putting $\vec{v} = {}^t \mathfrak{H}_0 y'$, where $y' = {}^t j_0 x'$, we can verify that \vec{v} satisfies the equation

(6)
$$-{}^{t}A_{0}\vec{v}+{}^{t}j_{0}-\frac{d}{dt}\vec{v}=\delta\otimes y'.$$

In fact, by making use of the equation (5), we have for any $y \in F$

$$<-{}^tA_0{}^t\mathfrak{H}_0y'+{}^tj_0rac{d}{dt}{}^t\mathfrak{H}_0y',\,y>$$

 $=<\!y',\,-\mathfrak{H}_0A_0y+\mathfrak{H}_0j_0y>$
 $=<\!y',\,\delta\otimes y>$
 $=<\!\delta\otimes y',\,y>,$

which yields the equation (6).

Now from the condition (*)' together with the equations (4) and (6) we can conclude as before that x'=0, that is, the set $\{\mathfrak{G}(\phi)x; \phi \in \mathcal{D}_{[0,\infty)} \text{ and } x \in E\}$ is total in E.

Thus we have shown that \mathfrak{G} is a semi-group distribution in *E*. Let *A* be its infinitesimal generator with domain \mathfrak{D}_A equipped with the graph topology.

The solution \vec{u} of the equation:

(7)
$$-A_0\vec{u} + j_0\frac{d}{dt}\vec{u} = -\delta \otimes Ax + \delta' \otimes jx, \quad x \in \mathfrak{D}_A,$$

is given by $\vec{u} = -\mathfrak{H}_0 A x + \mathfrak{H}'_0 j x$. On the other hand, $\delta \otimes x$ is the solution of the equation:

(8)
$$-A\vec{v}+j\frac{d}{dt}\vec{v}=-\delta\otimes Ax+\delta'\otimes jx,$$

therefore

Risai Shiraishi & Yukio Hirata

$$\delta \otimes x = - \otimes Ax + \otimes' jx = j_0 \vec{u},$$

consequently we can write \vec{u} in the form $\vec{u} = \delta \otimes y$. Now we put $y = j_1 x$. j_1 is a continuous injection of \mathfrak{D}_A into F. For it is clear that j_1 is an injection. The linear map $x \to -\delta \otimes Ax + \delta' \otimes jx$ of \mathfrak{D}_A into $\mathscr{D}'_{[0,\infty)}(E)$ is continuous. Hence the equation (7) shows that the map $x \to \delta \otimes y$ of \mathfrak{D}_A into $\mathscr{D}'_{[0,\infty)}(F)$ is continuous, so that we can conclude that j_1 is continuous. From the equation

$$-A_0(\delta\otimes y)+j_0\frac{d}{dt}(\delta\otimes y)=-\delta\otimes A_0y+\delta'\otimes j_0y, \quad y\in F,$$

and the equation (7) we have for $y = j_1 x$

$$\delta \otimes Ax + \delta' \otimes jx = -\delta \otimes A_0 y + \delta' \otimes j_0 y,$$

therefore

$$Ax = A_0 j_1 x$$
 and $jx = j_0 j_1 x$,

that is,

$$A = A_0 \circ j_1$$
 and $j = j_0 \circ j_1$.

Next consider any element $y \in F$. The solution \vec{v} of the equation

$$-Aec v+jrac{d}{dt}ec v=-\delta \mathop{\otimes} A_{\scriptscriptstyle 0}y+\delta'\mathop{\otimes} j_{\scriptscriptstyle 0}y,$$

is given by $\vec{v} = -\Im A_0 y + \Im' j_0 y$. On the other hand,

$$egin{aligned} &-A_0(\delta\otimes y)+j_0rac{d}{dt}(\delta\otimes y)\ &=-\delta\otimes A_0\,y+\delta'\otimes j_0\,y \end{aligned}$$

Therefore we can write $\delta \otimes y = - \mathfrak{H}_0 A_0 y + \mathfrak{H}'_0 j_0 y$. By making use of the relation $\mathfrak{B} = j_0 \mathfrak{H}_0$ we see that

$$\vec{v} = \delta \bigotimes j_0 y$$

which implies that $j_{0}y \in \mathfrak{D}_{A}$. $j_{0}y=j(j_{0}y)=j_{0}j_{1}j_{0}y$ imply that $y=j_{1}j_{0}y$, therefore j_{1} in an onto map. On the other hand, $Aj_{0}y=A_{0}j_{1}j_{0}y=A_{0}y$. Therefore when $y \rightarrow 0$ in F, then $j_{0}y \rightarrow 0$, $Aj_{0}y \rightarrow 0$ in E, that is, when $y \rightarrow 0$ in F, then $j_{0}y \rightarrow 0$ in \mathfrak{D}_{A} . This implies that $y \rightarrow j_{0}y$ of F into \mathfrak{D}_{A} is continuous. Thus we have shown that j_{1} is an isomorphism of \mathfrak{D}_{A} onto F.

86

Let \mathfrak{G}^* be another semi-group distribution in E with infinitesimal generator A^* whose domain \mathfrak{D}_{A^*} is equipped with the graph topology. Suppose there exists an isomorphism j_1^* of \mathfrak{D}_{A^*} onto F such that $A^* = A_0 \circ j_1^*$ and $j^* = j_0 \circ j_1^*$, where j^* is the natural injection of \mathfrak{D}_{A^*} into E. Then it is not difficult to see that $j_1 = j_1^*$ and therefore $A^* = A$, and in turn $\mathfrak{G} = \mathfrak{G}^*$. In fact, $\mathfrak{D}_{A^*} = \mathfrak{R}_{j_0} = \mathfrak{R}_j = \mathfrak{D}_A$, where \mathfrak{R} denotes the range of the map indicated in the suffix. Then for any $x \in \mathfrak{D}_A(=\mathfrak{D}_{A^*})$ we have $j_0(j_1^*x) = j_0(j_1x)$, so that $j_1^* = j_1x$. This means that $j_1^* = j_1$.

Thus the proof is completed.

From the preceding theorem we have as an immediate consequence the following

COROLLARY. Let E be a quasi-complete LCS with the properties (*) and (*)'. Let A be a closed linear operator in E with domain \mathfrak{D}_A dense in E, where we take on \mathfrak{D}_A the graph topology and let j be the natural injection of \mathfrak{D}_A into E. Suppose the equation

$$-A\vec{u}+j\frac{d}{dt}\vec{u}=\vec{T},\quad \vec{T}\in\bar{\mathcal{D}}_{+}'(E),$$

admits a unique solution $\[mu]{u} \in \overline{\mathcal{D}}'_+(\mathfrak{D}_A)$ such that the map $\[mu]{T} \to \[mu]{u}$ is continuous and $\[mu]{u} \in \mathfrak{D}'_{(0,\infty)}(\mathfrak{D}_A)$ whenever $\[mu]{T} \in \mathfrak{D}'_{(0,\infty)}(E)$. Then A is an infinitesimal generator of a semi-group distribution $\[mu]{W}$ which is uniquely determined by A. Moreover we can write $\[mu]{u} = \[mu]{*}_{u}\[mu]{T}$.

REMARK. In this corollary, if there exists another closed linear operator B with the same properties as A such that $B \subset A$, that is, $\mathfrak{D}_B \subset \mathfrak{D}_A$ and Bx = Ax for any $x \in \mathfrak{D}_B$, then we can conclude that B = A. In fact, take any element $x \in \mathfrak{D}_A$ and define \vec{T} by the equation

$$\vec{T} = -\delta \otimes Ax + \delta' \otimes jx,$$

then the corresponding solution \vec{u} of the equation

$$-B\vec{u} + j\frac{d}{dt}\vec{u} = \vec{T}$$

is an element of $\overline{\mathcal{D}}'_+(\mathfrak{D}_B)\subset \overline{\mathcal{D}}'_+(\mathfrak{D}_A)$ and we see that $\vec{u}=\delta \otimes x$, which implies that $x \in \mathfrak{D}_B$, that is A=B.

Finally, let us assume that E is a Banach space. Let \mathfrak{G} be a semi-group distribution in E. The infinitesimal generator A of \mathfrak{G} was introduced by J. L. Lions as the closure of the operator $\mathfrak{G}(-\delta')$ which is defined as follows: $x \in \mathfrak{D}_{\mathfrak{G}(-\delta')}$ if and only if there exists a sequence of regularization $\{\rho_n\} \subset \mathfrak{D}_{[0,\infty)}$, which may depend on x, such that (1) $\mathfrak{G}(\rho_n)x \to x$ and (2) $\mathfrak{G}(-\delta'*\rho_n)$ tends to

some element $y \in E$ as $n \to \infty$ and he put $\mathfrak{S}(-\delta')x = y$.

For this infinitesimal generator A, the assumptions made in the above corollary are valid as seen from his result (Theorem 5.1, [5], p. 149) and the fact that the convolution map $\vec{T} \to \mathfrak{S}_{*_{\theta}}\vec{T}$ of $\mathcal{D}'_{+}(E)$ into $\mathcal{D}'_{+}(\mathfrak{D}_{A})$ is, by Proposition 4, continuous. Therefore from the above remark the infinitesimal generator A of J. L. Lions coincides with that given in our discussions.

References

- [1] N. Bourbaki, Espaces vectoriels topologiques, Chap. III, IV, V. Paris, Hermann (1955).
- [2] J. M. Gelfand and G. E. Shilov, Generalized functions, vol. 2, Spaces of fundamental functions and generalized functions (in Russian), Moscow (1958).
- [3] A. Grothendieck, Sur les espaces (F) et (DF), Summa. Brasil. Math., 3 (1954), 57-122.
- [4] _____, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. no. 16 (1955).
- [5] J. L. Lions, Les semi groupes distributions, Portugal. Math., 19 (1960), 141-164.
- [6] L. Schwartz, Théorie des distributions, I, II. Paris, Hermann (1951).
- [7] _____, Théorie des distributions à valeures vectorielles, Chap. I, Ann. Inst. Fourier, 7 (1957), 1-141.
- [8] L. Schwartz, Théorie des distributions à valeures vectorielles, Chap. II, Ann. Inst. Fourier 8 (1958), 1-209.
- [9] R. Shiraishi, On the definition of convolutions for distributions, this Journal, 23 (1959), 19-32.
- [10] —, On θ-convolutions of vector valued distributions, this Journal, 27 (1963), 173-212.

Maritime Safety Academy, Kure and Faculty of Education Hiroshima University, Fukuyama.