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The main purpose of this paper is to extend the theory of semi-group
distributions developed by J. L. Lions [5] to a more general case where the
underlying vector space E is a locally convex space, while in his theory the
space F is confined to a Banach space.

With this end in view, we shall first discuss the continuity behaviours
of the f-convolution map between the spaces of vector valued distributions
@;(E) and @i(F) with separately continuous bilinear map 0: E x F—G, where
E, F, G are locally convex spaces, G being assumed to be quasi-complete. In
Section 1 we shall show that if L is a continuous linear map of D’(E) into
@L(G) such that the restriction of L to DXE is commutative with every
translation r;, —oco<h< oo, then L is the convolution map L(S)=Sx,T, where
Te Q__)i(ﬁ,,(E; 6)) is uniquely determined by L and 6 denotes the bilinear map
Ex 0y(E; G)—>G defined in an obvious way. The result will be used in Section
2 to make a characterization of a semi-group distribution. Concerning this,
we follow in most parts the way of the proof carried out by J. L. Lions [5]
and show that, roughly speaking, under certain conditions any semi-group
distribution under consideration is no more than the Green operator of a
differential equation of the form:

— A+ i=T, TeD.(E),

where A is the infinitesimal generator of the semi-group distribution. Finally
we shall make a remark about the relation between his results and ours.

§ 1. 0-convolution map of D' (E DES D’ (F) into D @)

Let us denote by D (resp. D,, resp. D_) the space of all C*-functions on
R', 1-dimensional Euclidean space, with compact supports (resp. with supports
bounded on the left, resp. with supports bounded on the right). These spaces
are provided with usual topologies of L. Schwartz ([6]). By @’ (resp. D})
we shall mean the strong dual of D (resp. D_). Let & be a normal space of
distributions, that is, a linear subspace C &’ with continuous injections
DK, HX—>D such that D is dense in X. Let F be a locally convex
Hausdorff topological vector space. For the sake of brevity we shall refer
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to such a space as LCS. The continuous linear maps of & into F form a
linear space H(F), called a space of F-valued distributions, on which we take
the topology of uniform convergence with respect to the equicontinuous
subsets of &’. It is also considered as the space of the continuous linear
maps of F/ into . However without specific mention about & (F), we under-
stand it the space of the continuous linear maps in the first sense. For any
T e Z(F) and ¢ €X', the image of ¢ by T is denoted by ¢-T. A subset A of
H(F) is called r-equibounded when there is a disked neighbourhood % of 0
in &, such that 7. is contained in a compact disk of F ([8], p. 54).

ProrosiTion 1. Let a, B €D, and B be a bounded disk of D. Let F be an
LCS and B be an equicontinuous subset of L(F.; D). If we put My =
a((BT) *¢) € D(F) for every T € D'(F) and ¢ € D, then the set {My 1} sep,7en 18
7-equibounded in D(F), and there exists a disked neighbourhood U of 0 in D’
and a compact disk K of F such that each My 7 can be written as

Zl,‘hi, ¢ ®f1, T
with hi s € U°CD, fir €K and 33| <o, that is, for any S€ D
SeMy,7 =2>14; <S8, hi,s> fi.7.

The proposition will be obtained from the next two lemmas, in which «,
8 denote the elements of &, as in the proposition 1.

Lemma 1. (aS)*(BT) ewists for any S, Te€D' and the map (S, T)—
(aS)*(BT) is a continuous bilinear map of D' x D" into D-.

Proor. (aS) ((BT) x¢) € & C D)1 for every ¢ €D, where the symbol v
means the symmetrization. Therefore the convolution (aS)*(BT) is well
defined and belongs to D/, ([67], IL, p. 12, [97], p. 23). Next we shall show that
the bilinear map (S, 7)— (aS)*(BT) of D' x D’ into D’ is continuous. Let B
be any bounded disk of . It is well known that the supports of elements of
B are contained in a finite interval I of R'. We can choose a function 7 of @D
equal to 1 on a finite interval, depending only on I, a, 3, such that for every
¢ €B

<(aS)*(BT), > = <(aS): R(BT)y, p(x+y)>
= <(aS):QBT)y, T(®)d(x + y)>.
Now the set B = {r(x)¢(x+ y)} ez is bounded in D, ,, the space of all C*-

functions with compact supports on R! x R.. Any compact subset of the
complete projective tensor product E;&,E. of the spaces E; and E, of type (F)
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is contained in the absolutely convex closure of 4,&4,, where 4; is a compact
subset-of E;, i=1,2 ([4], Chap. I, p. 52). Therefore there exists a bounded
subset B; of D such that B is contained in the absolutely convex closure of
Bi®B,. Consider two disked neighbourhoods %= {S; S € B; and S ¢ D'} and
W={T; BT € B; and T € D} of 0in D'. Then we have

| <(al)=(BW), B> |<| <(@lh)R(BY), BiQB:> |
=| <all, By>| | <BY, B> |

=1,

which implies that the map (S, T)— (aS)*(8T) is continuous. The proof is
completed.

Lemma 2. Let B be a bounded disk of D. If we put Ly(T)=a((BT) *¢) for
every T € D' and ¢ € D, then the set {Ly} scp is T-equibounded in D(D) and there
exist two disked neighbourhoods U and U(CU) of 0in D' such that Ly can be
written as

24idi Qhi,g
with d; € 1°, hig € U° and 33| 2;| <oo, that is, for every T €D’
L¢(T) = 21, < T, d;> h{,¢.

Proor. Owing to Lemma 1, we can find for the given B a disked neigh-
bourhood % of 0 in &’ such that

| <(alhyx(BU), B> | =| <U, a((BU)*B)>| <1.

This implies that {L,(U)},z=a((BU)*B)CU°. Consequently {L},s is 7-
equibounded in D(D). Since P’ is a nuclear space, there exists a-disked
neighbourhood % of 0 in @’ sucll that the natural:map J: @?’Z—n@fy is nuclear,
that is, J=>0:d:Qd; with d; € U°, d} € U and >1[1;| <oo (4], Chap. I, p. 80).
Now the map L, is factorized as follows:

i]_ ~ AS Eq& Z:2
D —>DG——>Dy ——>Dyo—>D,

where i;, i, are the canonical maps and Z; is the induced map derived from
Ls. Therefore, for any T € D’
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Ly(T)=1ize Ly GO < T, d;>d})
=3 <T, di> hig

where h;,=a((8d})*¢) € U°, d; € UI° and >}|1;| <oo, which completes the
proof.

Proof of Proposition 1. Let U, 1l be disked neighbourhoods of 0 in @’ as
chosen in the proof of Lemma 2. By assumption, B is an equicontinuous
subset of L(F’; D), so that we can choose a compact disk K of F such that
<T,K°>Cfl for every T €. Then we have for 4 € B, T ¢ B

| <U-Myz, K°>| = | <U-a((BT ) *¢), K°> |
= |¢-(lixp <T, K°>)|
=< |- (llxplh)|
<1.
This means that {M; 7}ep 7w is 7-equibounded in D(F).
In virtue of Lemma 2, we have for any (" € F’
<Myz, f'> =a((B<T, f>)*¢)
=3(di <T, f'>)hi

= <SWihiy Q(dirT), f'>.
Therefore if we put f,'j:d,"T € §I°-T C K, then we can write

Mg,z = >3 2ihi g Q fi 1,

where h;, €U°, fi7 € K and >3|1;| <oo, which completes the proof.

Let E be an LCS. We denote by i, .,(E) the space of the E-valued
distributions on R' with supports contained in the half-line [a, =), where «
denotes any real number. On the space Di,.,(E) we take the topology
induced by that of the space of E-valued distributions &'(E). Further by
D(E) we denote the space UDj, .., (E) equipped with the topology of the

inductive limit of {Dfy .y (E)} —wcacn.. DI(E) is a subspace of D'(E) but not
topologically in general. If E is a space of type (DF), it is not difficult to see
that D(E)=D'.(E) algebraically as well as topologically (4], Chap. I, p. 47).
It is to be noticed that if E is normable, D’.(E) is bornological and morgover,
if E is a Banach space, D'(E) is barrelled. This follows from a more general
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situation as follows.

Prorosttion 2. Let E, F be two LCSs such that E, E, are nuclear and F is
normable. Then the e-product E¢F (7], p. 18) is bornological whenever E is
bornological.

Proor. Let G be any complete LCS. It suffices to show that any linear
map v which transforms any bounded subset of EcF into a bounded subset of
G is continuous. Let W be any disked neighbourhood of 0 in G. The set
B=u (W) is absolutely convex and absorbs every bounded subset of EeF.
Let B be any bounded subset of £ and ¥ be the unit ball of F which we may
consider to be a normed linear space. Clearly BV is bounded in EeF, so
that it is absorbed by B. If we put U= {e;eQV B and e€ E}, it is an
absolutely convex subset of E which absorbs every bounded subset of E.
Since E is bornological, it follows that U is a neighbourhood of 0 in E. This
means that the restriction of v to ER.F (=EX.F since E is nuclear) is
continuous. Therefore it may be extended uniquely to a continuous linear
map v of EeF into G. For any ¢ € EeF, it is considered to be an element of
L.(E'; F), so that there exists a compact disk K of E such that the image
&(K°) is contained in V. Now since the space E/ is nuclear, there exists a
compact disk K;(DK) of E such that the natural map E}{?»E}{o is nuclear,
from which we can infer that &€ may be written in the form:

§= éh&@ﬁ’,

where ¢; € K, f; € V and >[4 | <eo. If we put 0,= i |4;], the set
1

i=n+
1

{ 1 i”] e fi} is bounded in EcF, whence the set {

pn i=n+1
bounded by the assumption imposed on u, and therefore ( i‘, Aiei @ fi)—0
i=n+l

as n—oco. Consequently,
u(@=ulie;f)

= N 2a®f) +ul 3 ha®f)
= é‘ilﬂ? (e; @ fi) + u( ig:ﬂliei@ﬁ)

Passing to the limit as n— oo, and taking into account the fact that v is
continuous, we can see that u(&)=v(¢). As ¢ is any element of EecF, u coincides
with v, that is, u is continuous, which completes the proof.
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Remark. Suppose E satisfies the strict Mackey condition for convergence
([8], p. 105), that is, for any bounded subset 4CE, there exists a bounded
disk B (D A) such that the topology of 4 induced by E coincides with that
induced by Es. Let F be a Banach space. Here we assume that F=~(0). If
EeF is bornological, then E is also bornological. In fact, for any ¢ € EeF which
we may consider to be an element of Z.(F’; E), there exists a bounded disk
A of E such that & may be an element of Z.(F’; E,), that is, & € E,¢F. Indeed,
let ¥ be the unit ball of F. &(V°)=K is a compact disk of E, so that, by
assumption on E, there exists a bounded disk 4D K such that the topology of 4
induced by E coincides with that induced by E,. Then the map & restricted
to V° is continuous of V° into E,. Since F is complete, owing to a proposition
of L. Schwartz ([7], p. 41), the map &: F,— E, is continuous, that is, £ CEeF.
Let u be any linear map of E into a complete LLCS G such that it transforms
any bounded subset of E into a bounded subset of G. Let us denote by u,4 the
restriction of u to E4, which is a continuous linear map of E, into G since E,
is a normed linear space. Therefore u, &I, I being the identical map of F
into itself, is a continuous linear map of E.¢F into GesF. Let us define the
linear map v of EeF into GeF by the relation v(&)=w.R 1) (§), where A4 is
chosen as indicated above. That the choice of 4 has no effect on the definition
of v is easily seen. If & runs through a bounded subset of EcF, we can take
A as the same bounded disk for these &, so that the map v becomes continuous.
Let fy € F, f; € F' be chosen so that <f;, f;>=1. Clearly the map 0: e—e®f,
of E into EcF and the map IQ)f; of GeF into G are continuous. Let us consider
the map w=IQ fy)eved which is a continuous linear map of E into G. Now
it is easy to see that w(e) =u(e) for every ee€ E, which implies that » is
continuous.

Let 0 be a saturated family of bounded subsets of an LCS F ([8], p. 198),
that is, (i) if 4 €0, then 14 € 0 for every 2>0; (ii) if 4 € 0, then any subset
of A belongs to 0; (iii) if 4 € 0, then the disked envelope of 4 belongs to 0;
(iv) if 4, B€ 0, then AUB € 0; (v) every one point subset of F belongs to 0.
We shall say that a subset 2 of Dj, .., (F) is of type 0 in Diy,.., (F), if 2,
considered as a subset of D'(F), is of type 0 in D'(F), that is, for any
bounded subset B of D the set \ /B-T is contained in an 4 € 0.

FeU
First we prove

Prorosition 8. Let E, F, G be three LCSs, where G is assumed to be quasi-
complete. Let 0 be a separately continuous bilinear map of ExF into G. Then
any S € Di, ., (E) and T € Dy ., (F) are x,-composable and Sx,T € D, .., (G).

(@) The bilinear map (S, T)—>SxT of Dig . (E) x Dip, o i(F) int0 Dig,s y(G)
18 separately quasi-continuous.

(b) If 6 is hypocontinuous with respect to the compact disks of F, then
the linear map S—Sx,T is uniformly continuous with respect to the equicon-
tinuous subsets of L(F.; Dis, o)
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(e) If 0 is hypocontinuous with respect to the bounded subsets of E and
F, then so s *,.

(D) If 0 is continuous, then so is *,.

Finally, let © be a saturated family of bounded subsets of F.

(e) If 0 is hypocontinuous with respect to the sets of 0, then the linear

map S—Sx,T is uniformly continuous with respect to the subsets of type 0 in
Dis, ey ).

Proor. For any ¢ €D, f*vqﬁ € &(F) is locally 7-bounded and S € D' (E),
the multiplicative product [S(T*¢)], is well defined as an element of D'(G)
([8], p. 133). Clearly

[S(Tx4)]o € &' (6) CD}1(6).

Therefore, by definition ([107, p. 182), S and T are s,-composable, and it is
known that Sx,T € Di,.s.., (G) (8], p. 167).

Choose two elements «, 5 € D, such that o and 8 equal 1 on [, =) and
[b, o) respectively. Let B be any bounded disk of &. Then, owing to
Proposition 1, we can choose ¥, # (resp. K), depending only on B, «, 8 (resp.
@i, T), as indicated in the same proposition and we can write a((ﬁT)'*qS) in
the form:

a((BT) *p) = S3ihis ® frr

with %4 € U°, fiz € fl°e.TCK and ST 4] <eeo. Taking into account a proposi-
tion of L. Schwartz ([ 8], p. 70), we have for any ¢ € B

@ ¢+ (SxoT) = ¢+ (aS*oBT)
= S+o(a((BD)*4))
=54 ki s Q1)
= 3320 (hi,y-S, fi,7)-

(a): Suppose S converges in D4,y (E) to 0, running through a bounded
subset B of Di, .,(E). We shall show that Sx,T converges to 0 in D{,,s,..,(G)
for every TEQ)’[,,,N) (F). Since {hi,¢-§}¢53,§e$,,-=1, 2. is bounded in E and
{fi#}i-1,2,.. is contained in a compact disk K of F, it follows that the set
{0(h; o-S, fi.1)} peB.5ew,i-1,2., i bounded in G ([10], p. 194). And for each i,
0(hi,+S, fi,1) converges to 0 as §—0 in B. Therefore from (1) it follows that
$+(S*,T) converges to 0 in Dtass, ) (G) uniformly with respect to ¢ of B as
S—0 in B. Therefore, by symmetry, the bilinear map =, is separately quasi-
continuous.
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(b): Suppose 6 is hypocontinuous with respect to the compact disks of
F. Let T lie in an equicontinuous subset % of 2(F’; Dy,,.,). Then there exists
a compact disk K of F such that <T, K°> is contained in #/. By our assump-
tion on 6, we can find a neighbourhood U of 0 in E in such a way that 6(U, K)
C W for a given neighbourhood ¥ of 0 in G. Now consider the set U of the
elements S € Do, (E) such that U °.§CU. U is, by definition, a neighbourhood
of 0 in Df, .,(E). Then ;¢S € U°-SCU and f;7 € 1°-TCK for Se U, T €%,
# € B. Therefore it follows from (1) that for every Se U, T €, ¢ € B

G (SxoT) = D340 (hi Sy fi7) € S| 1| W,

which implies that the map: §—S%,7 is uniformly continuous with respect
to the equicontinuous subsets of £ (F’; Dy ..).

(¢): Suppose 6 is hypocontinuous with respect to the bounded subsets
of E and F. It is known that any bounded subset of Di, ..,(E) (resp. Dis,.,(F))
is an equicontinuous subset of £ (E;; Di,,.,) (resp. L(F;; Dis,y) (7], p. 28).
From this fact together with the assumption on 6, we can conclude just as in
(b) that the bilinear map *, becomes hypocontinuous with respect to the
bounded subsets of Di, (E) and Dy, .\(F).

(d): We can infer in a similar way as above that if 6 is continuous, then
*, 18 also continuous.

(e): Finally we assume that 6 is hypocontinuous with respect to the
subsets of ©. Let B be a subset of type 0 in Di.,(F). Then U°-B is
contained in an element K of ©. By our assumption on 6, we find a neigh-
bourhood U of 0 in E such that (U, K) C W for any given neighbourhood W of
0 in G. Therefore we can infer in a similar way as in the proof of (b) that
§—S%,T is uniformly continuous with respect to the subsets of type O in
Dy oy (F).

Thus the proof is completed.

D(E) is the strict inductive limit of {Dis,o(E)} —wcacw- It is known that
if an LCS G is a strict inductive limit of closed linear subspaces G,, then a
subset of G is bounded if and only if it is contained in a G, and is bounded
there (17, p. 8). Therefore B is bounded in D, (E) if and only if B is con-
tained in a Dy, ..,(E) and is bounded there. We shall say that a subset 2 of
D'(F) is of type T in D'.(F), if A is contained in a Dy, ..,(F) and is of type T
there.

As an immediate consequence of the preceding proposition we have

CoroLrLARY. Let E, F, G be three LCSs, G being assumed quasi-complete.
Let 6 be a separately continuous bilinear map of ExF into G. Then any Se
D(E) and T € D, (F) are x,-composable and the bilinear map (S, T)— Sx,T of
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@L(E) X Q—);(F) nto @;(G) is separately quasi-continuous. Let © be a saturated
family of bounded subsets of F and 0 be hypocontinuous with respect to the
subsets of 0. Then the map S—SxT of D.(E) into D.(C) is uniformly
continuous with respect to the subsets of type 0 in D'.(F). In particular, if
E is normable and 0 is a separately continuous bilimear map of ExF into G,
then the map S— SxT of DL(E) into D.(G) is continuous.

We note that the last statement follows from the fact that if £ is norma-
ble, then @’.(E) is bornological.

Next we shall consider a convolution map of @Q(E) into Q_)L(F). By
U4(E; F) we denote the space of all continuous linear maps of E into F, where
b denotes the topology of bounded convergence. We take 6 as the bilinear map
of Ex 0,(E; F) into F defined by the relation: 6(e, u)=ule), e € E, u € L,(E; F),
then the map 6 is hypocontinuous with respect to the bounded subsets of
E and the equicontinuous subsets of ./,(£; F), which is a saturated family of
bounded subsets of L,(E; F).

Next we prove the following proposition which will play a fundamental
rdle in the next section.

ProrosiTion 4. Let E, F be two LCSs, where F is assumed to be quasi-
complete. Let L be a continuous linear map of D' (E) into D.(F). If the
restriction of L to DRE is commutative with any translation v, — oo <h< oo,
then there exists a unique T € D' (L,(E; F)) such that T is x,-composable with
any element S of @i(E) and L(S)=Sx,T, where 0 is the bilinear map of Ex
Ly(E; F) into F defined above. Comversely, for any T € Q_);(,Qb(E ; F)) which maps
any bounded subset of D into an egquicontinuous subset of Ly(E; F) the map
S — ST of @L(E) into Q__);(F) is continuous and its restriction to DRE 1s
commutative with any c.

Proor. Let Se D), ecE, ¢ € D_. Putting M(S, P)e=¢-L(SRe), since L is
continuous, it follows that M(S, ¢) e L(E; F). Further if we put ¢-M(S)=
M(S, ¢), then the map M(S): ¢ — M(S, ¢) of D_ into L,(E; F) is continuous. In
fact, when ¢ and e run through any bounded subsets of &_ and E respective-
ly, the set {(¢-M(S))e} = {¢-L(SRpe)} is bounded in F. Since D_ is bornological,
it follows that M(S) is continuous, that is, M(S) € D (L,(E; F)). We note that
the map M: S—M(S) of D into D, (L,(E; F)) is continuous. Further, let
¢ €D. Then we have for any translation 7,

(¢'M(fh¢))€ =¢-L(mdRe)
= ¢ L Re)
= (¢t M(9))e.

Hence the restriction M to @ is commutative with any translation ;. Con-
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sequently, owing to Proposition 4 in Shiraishi ([10), p. 179), there exists a
unique distribution 7 € @' (4(E; F)) such that M(S)=S+T for every Se D’.
And T is s,-composable for any S®e, S € D’ and ¢ € E (see Remark 3 of [107],
p. 186).

Next we shall prove that there exists a real number « such that T ¢
Dia,y (L(E; F)). To do so, it is sufficient to prove that there exists a number
a such that L(OQe)=Te € Diy,y (F) for all ee E. Contrary assumed, there
exists a sequence {e,}, e, € E, such that L(0®e,)E D 2., .., (F), where c,—> oo
as n—oo and ¢,’s are positive numbers. Now, as L is continuous and {0. Se,}
is bounded in Dio,..,(E) since ¢, — oo, it follows that {L(0.,Re,)} is bounded
in @' (F), and therefore it is bounded in a D¢, ..,(F), while, on the other hand,
L0 Re) €Di_c, (F), n=1, 2, ..., which is a contradiction.

Finally, let us denote by I" the set of S € D\(E) such that L(S)=Sx,T.
Clearly I is linear and contains Q®E which is strictly dense in D(E) (7],
p. 46). Since the map S —Sx,I is quasi-continuous and L is continuous, it
follows that D\(E)=T".

Let 0 be the family of the equicontinuous subsets of Z,(E; F). Then 6 is
hypocontinuous with respect to the subsets of © and 7 € D, (4,(E; F)) is of
type 0 in D, (Ly(E; F)). Therefore we can apply Corollary to Proposition 3
to conclude the last statement of the proposition.

Thus the proof is completed.

When E and F are Banach spaces, the proposition was proved by J. L.
Lions ([5], p. 150).

We note that if E happens to be a barrelled space, D, (L (E; F)) =
Q);(ﬁb(E; F)) algebraically, because any bounded subset of Z(E; F) becomes
equicontinuous since E is barrelled (1], p. 27).

§ 2. On characterization of semi-group distribution

Let E be a quasi-complete LCS. We shall consider a vector valued distri-
bution & € Diy...,(Ly(E; E)). For a given x € E, Gx € Dio,..,(E) is defined by

b Gx = (¢-O)x for any ¢eD.

In the sequel we shall use the notation ®&(¢) instead of ¢-&. Following J. L.
Lions ([5], p. 142) ® is referred to as a semi-group distribution in E if the
following conditions are satisfied:

() S@x)=6($)S(Y) for any 4, ¢ € Do .y;
(i) for any y=G(@)x, ¢ € Dyy,..,, » € E, the distribution Gy e D/ (E) is a

function u(z) such that u(x)=0 for :<0;

(iii) the set {&(#)x; ¢ € Dro,..), x € E} is total;
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(iv) if, for a given x € E, &(¢)x=0 for any ¢ € Dy, .., then x=0.

Remark. From (i) and (ii) it is easy to see that we can take u(;)=O(r,4)x
for :>0, because of the equation @(gb)@(qﬁ)x:S:gb(z)@(r,qﬂ)xdt. J. L. Lions [5]

has treated the case where E is a Banach space, where, as remarked in the
preceding section, Di, ., (Ly(E; E))=Dio,«) (L:(E; E)) algebraically.
Let ® be a semi-group distribution in E. For any T € &., we define

an operator G(7T) as follows: x € Dz, (domain of &(7)) if and only if there
exists an element y such that

1) S(T+p)x =S (@) y for every ¢ € Dy,

The element y is, if it exists, uniquely determined because of (iv). And we

put @(T)xzy. Now it is easy to see that any &(g)x belongs to Dgr, and
therefore the domain Dgr, is a dense linear subspace of E and that it is also
a closed linear operator. Then for any x ¢ D, we have

@ S(Tx)x =B (H)G(T)x = B(T)G(9)x.

For example @(6):IE (the idential map of E into itself). Especially A=

@(—6’) is called infinitesimal generator of the semi-group distribution under
consideration. If, for any ¢ € D, we denote by ¢, the function equal to ¢ ()

for =0 and 0 for :<0, then ¢, € &f, ., and we can show that ®(¢+)=®(¢),

and @(¢)®(T)z=@(¢+*T)z for any z € D). Indeed, for y=8(g)x, ¢ € Dry, ..y,
we have

Gy = S:uw@dz - §:¢<z>@<r,¢>xdt

=8,y

Consequently, this together with (iii) implies that &(¢,)=®(¢). The second
part follows from the equalities:

BHBW)B(T)z =G (¢, )B(T)z = O(pr¢. +T)z.
Similarly if z € DF 4y ,) then G(P)z belongs to Dy and

SIS,z =8(Tx¢,)z
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For example, for any x € E and for any ¢ € D, &(p)x belongs to D4 and

(3) AGP)x =8 (— 0" x¢,)x
= —BW)x— )

Now we take on ®, the weakest topology which makes the maps x— =,
x— Ax of D, into E continuous. Such a topology we shall refer to as the
graph topology. It follows from (8) that @& may be considered to be a
continuous linear map of D into £,(E; D,), or more precisely we can write &
in the form:

where 9 € Dio,.) (Lo(E; Da)) and j is the continuous injection D,—E and
(0 ®;)*9) (4) means j(H(¢)). Then () is rewritten in the form

C)) (—0RA4+0"R)*D=0&1x,

where convolutions, say, (6"®j)*$ means that ((0'®Q))*D) ()= j( gx @(qﬁ)) for

any ¢ €. Similarly, we have
(5) G (—0RA+IR)=0R1z,.

By making use of (4), (5) and Proposition 4, we can conclude that the
differential equation

—Aﬁ+j7idt—zi=f, TeD,(E),

admits a unique solution # € D,(D,) such that i € Dio,y(Da) if T € Do, (E),
besides, if © maps any bounded subset of O into an equicontinuous subset of
L(E; D), then the map T—i is continuous, which is the case when E is
barrelled.

Our main purpose of this section is to show the converse of the preceding
statement. Hereafter we shall assume E satisfies the following conditions:

(=) tf, for a given sequence {x,}, x, € E, and for any x € E', the sequence
{<x, &' >} 18 ultimately equal to zero, then {x,} is also ultimately equal to
zero;

() if, for a given sequence {x.}, x, € E/, and for any x € E, the sequence
{<x, x,>} 1is ultimately equal to zero, then {x)} is also ultimately equal to
zero.

The space of type (F) considered by Gelfand and Shilov satisfies these
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conditions ([27], p. 37). More generally if F is a space of type (F) with a
continuous norm p, then E satisfies the conditions (x) and (). Indeed, let
U= {x; p(x) <1}, then Ej. is a Banach space. Putting A,={x"; <m, ' >=
<xpy1, 8 >=...=0 and ' € E/o} which is a closed linear subspace of E[., we
have Ejv=\UA4;, whence, by a theorem of Baire E/ =4, for some k, which
implies that p(x;)=p(xs,1)=---=0, and therefore x,=x;,,=--=0. Thus the
condition (x) is verified. The condition (x) holds for any space of type (F).
This may be shown in a similar way. Of course there are spaces which do
not satisfy these conditions: (s), (&), (&), (D), (D). Most of the classical
spaces of distributions considered by L. Schwartz [ 6] satisfy these conditions.
For example, consider the space (0f). It is known that & C0OLC &, where
injections are continuous. Since the conditions (x) and (%) are valid for &
and &, it is easy to see that these conditions are also valid for (0f).

Now we show

Turorem. Let E, F be two quasi-complete LCSs such that E satisfies the
conditions (x) and (x)'. We assume that there is a continuous injection j,: F—>E
such that j,(F) is dense in E. Let A, be a continuous linear map of F into E.
If the equation ‘

©) — Aoii + jogt—ﬁ =T, TeDUE),

admits a unique solution i € @i(F) for every T € D(E) and the map T —i is

continuous and i € Di, .,(F) whenever T € Diy ., (E), then there exists a unique

semi-group distribution & € Dio .., (Li(E; E)) with the following properties:

Let A be the infinitesimal generator of & in E with domain D, equipped with

the graph topology. Let j be the natural ingection of Dy into E. There exists

then an isomorphism j, of D4 onto F such that j=joej; and A= Aej;.
Moreover we can write jozi=@*97".

Proor. According to proposition 4, there exists a unique vector valued
distribution 9, € D, .,(L,(E; F)) such that i =Dx,T, where we may assume that
a=0, since, by assumption, i € D, ..,(F) for every Te Do, (E). Putting &=
joDo, we shall first show that ® is a semi-group distribution € Dy .,(Ly(E; E))
with requisite properties.

Conditions (i) and (ii) are valid for &. For we may carry out the proof
following the way of the corresponding proof due to J. L. Lions ([5], pp. 150-
152). Hence the proof thereof is omitted.

Condition (iv): Let x be an element of E such that &(¢)x =0 for every
$ € Dry,..,. This means that Gx is a vector valued distribution € D, .., (E)
with support in 0. Therefore, for any &' ¢ E' we can write <®ux, ' > in the
following from:
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<O, 2> = Dlap(x) 6P
%

where {a(x)} is a sequence of complex numbers which is ultimately equal
to zero. Now ay(x’) is a continuous linear form on E/, whence we can write
a(x)= <, > for some x, € E. Therefore we can write

@ Gx=>0PRxp, = €E.
k

Since Gx=jo,Dor and j, is a continuous injection, the support of Hox is
also in 0 and we can write similarly as above

) Dox = Ek'j@("’®yk, ¥ € F,
where x,=j,y;. Putting i=%9,x into the equation (¢) we have
- AO(;a(k)(g}’k) + Ekla(k+1)®jo}’k =0,
which yields the equations

3 x=— Aoyo, joyo= Aoy, -5 Joyr= Aoyrs1, -

By hypothesis, E satisfies the condition (x). Hence {x;} is ultimately equal
to zero, so that {y,} is also ultimately equal to zero and in turn it follows
from (3) that x=0.

Condition (iii): Let &’ be any element of £ such that <®&(@)x, x> =0
for every ¢ € D .., and for every x € E. We define ‘D, € Dio,..,(L(F.; E.)) by
the relation: ‘Oy(¢)="(De(¢)) for every ¢ € D. Then the relations <&(@)w, x>

= <joDo(P)x, ' > =<, 'De(B)jox'> yield "o(4)jox'=0 for every ¢ e Dpy ..,
therefore ‘Do'jox’ is a vector valued distribution € 9Di, ..,(E,) with support in
0. As in the preceding proof we can write

€] Do'for’ = 230P Q@ xp,
k
where {x;} is a sequence of elements of £’ which becomes ultimately equal to

Zero.
Now we show

(5) — D) Ao+ o= O)]r, €D,

where I is the identical map of F into itself. Indeed, if we put #=J®y into
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the equation (G), we obtain
— A+ o= — @ Ay + (B Rjoy,
whence
IRy = — (Doxd) Aoy + (D¢*) joy,
consequently for =0 we obtain the equation (5).

Putting o ='9.y’, where y =’j,a’, we can verify that v satisfies the
equation

L, d /
(6) —ton-i—’]o*dTv:@(X)y.
In fact, by making use of the equation (5), we have for any y ¢ F

<= o'y + o g By >
=<y, —Dodoy + Dgjoy>
=<y, 0Ry>
=<0Ry, y>,

which yields the equation (6).

Now from the condition (x)' together with the equations (4) and (6) we
can conclude as before that »' =0, that is, the set {&(p)x; ¢ € D,.., and x € E}
is total in E.

Thus we have shown that & is a semi-group distribution in E. Let A be
its infinitesimal generator with domain ®, equipped with the graph topology.

The solution # of the equation:
L. d /o
) — Aot +jo o= —0RQAx 4+ 0" D jw, x €D,

is given by i=—9oAx+Djjx. On the other hand, d®x is the solution of the
equation:

8 —AH,'»adt—a:—a@Aera’@jx,

therefore
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0Rx=—G4x+ & jx = jou,

consequently we can write i in the form i=0&y. Now we put y=jx. j; is

a continuous injection of ®, into F. For it is clear that j; is an injection.

The linear map x——0®Ax+0'Rjx of D4 into Dy, ..,(E) is continuous. Hence

the equation (7) shows that the map x—0®y of D, into Dy, ..,(F) is continu-
ous, so that we can conclude that j; is continuous. From the equation

— A, (0Ry) +j0j$—(6®y)= —0R Ay +0'Rjoy, ye€F,
and the equation (7) we have for y=jx
0RAx+ 0" Rjx=—0QQ Ay + 0" Rjoy,
therefore
Ax=Aojix and  jx=joj1x,
that is,
A=4o0j; and  j=jooji.

Next consider any element y ¢ F. The solution # of the equation
L, . d ;o
—Av-{—]—dt~v= — 0@ Aoy + 0" Rjoy,
is given by #=—84,y+®j,y. On the other hand,

~ 4G®y) + o O D)

= —0Q@Ay + 0" Rjoy.

Therefore we can write 0&y= —Dodoy +Dgjoy. By making use of the relation
S =joH, we see that

which implies that joy € Da.  joy=j(joy) =jojijoy imply that y=jij,y, therefore
ji in an onto map. On the other hand, 4j,y=4ojijoy=40y. Therefore when
y—0in F, then j,y —0, 4j,y —0 in E, that is, when y —0 in F, then j,y -0 in
D,4. This implies that y—joy of F into D, is continuous. Thus we have
shown that j; is an isomorphism of D, onto F.
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Let &* be another semi-group distribution in E with infinitesimal gen-
erator 4* whose domain ®,. is equipped with the graph topology. Suppose
there exists an isomorphism jf of D,. onto F such that 4* =40} and j*=
joojT, where j* is the natural injection of D,4. into E. Then it is not difficult
to see that j,=;% and therefore 4*=4, and in turn G=G*In fact, D,.=
R =R; =R,=,, where R denotes the range of the map indicated in the
suffix. Then for any x € D,(=D4+) we have jo(jTx)=jo(jix), so that jix=jx.
This means that jF=j.

Thus the proof is completed.

From the preceding theorem we have as an immediate consequence the
following

CoroLLARY. Let E be a quasi-complete LCS with the properties (x) and
(xY. Let A be a closed linear operator in E with domain D, dense in E, where
we take on D, the graph topology and let j be the natural injection of D, into
E. Suppose the equation

i=T, TeD,(E),

E:i&

admits a unique solution i € D'(D,) such that the map T — i is continuous and
ii € D]o,0) (D) whenever T ¢ Dio,y (E). Then A is an infinttesimal generator
of a semi-group distribution & which is uniguely determined by A. Moreover
we can write ji = &x,T.

Remark. In this corollary, if there exists another closed linear operator
B with the same properties as 4 such that BC 4, that is, 3D, and Bx=Ax
for any x € Dp, then we can conclude that B=A4. In fact, take any element
% € D, and define T by the equation

T=—0Qd4x+ 0 Qjx,
then the corresponding solution # of the equation

—Bzi+j%12:’f

is an element of D'(Dp)C D' (D,) and we see that #=0 R =x, which implies
that x € ®p, that is 4=B8.

Finally, let us assume that E is a Banach space. Let & be a semi-group
distribution in E. The infinitesimal generator 4 of & was introduced by J. L.
Lions as the closure of the operator &(—¢") which is defined as follows: x €
D5,y if and only if there exists a sequence of regularization {0,} CDy..),
which may depend on «x, such that (1) &(0,)x—x and (2) &(—0d"*0,) tends to
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some element y € E as n— oo and he put G(—0")x=y.

For this infinitesimal generator 4, the assumptions made in the above
corollary are valid as seen from his result (Theorem 5.1, [57, p. 149) and the
fact that the convolution map T — ®x,T of DL(E) into D(D,) is, by Proposi-
tion 4, continuous. Therefore from the above remark the infinitesimal
generator 4 of J. L. Lions coincides with that given in our discussions.
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