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In the theory of distributions of L. Schwartz [6], multiplication for two
distributions leads to difficulties. Schwartz [6] has observed that the
multiplicative product is well defined if locally one is "more regular" than
the other is "irregular". An approach to define multiplication for distribu-
tions has been made by Y. Hirata and H. Ogata [2Γ\. In like manner
J. Mikusiήski Q5] has also given a definition of multiplication. The main
purpose of this paper is to show that these two definitions lead to equivalence
(§1. Theorem). §2 is devoted to the discussions on the multiplicators of
normal spaces of distributions. We show that, in case of functions, the
ordinary product is not in general the product in the above sense even if it is
a function. In §1 and §3 we make some remarks on the exchange formula
for Fourier transformation.

Throughout this paper we assume that unless otherwise specified a
Euclidean space on which distributions are defined is the same TV-dimensional
space.

1. Multiplicative products. By a δ-sequence or a sequence of regulariza-
tions we understand every sequence of non-negative functions Pw e 2) with
the following properties:

(1) Supp Pn converges to 0 when n -> oo

(2) \ Pn(x)dx=l, the integral being extended to the whole iV-dimensional

space.

Given any distribution S and any 5-sequence {Pj, the sequence Sn=S*Pn

will be called a regular sequence of S. Every regular sequence of 5 converges
to S in 2)'.

Recall the definitions of multiplication for two distributions S and T
given by Y. Hirata and H. Ogata ([2], p. 150) and J. Mikusiήski ([5], p. 254):

DEFINITION 1 (Hirata and Ogata). By QS] T we understand the distribu-
tional limit of the sequence {SnT}, if it exists for every regular sequence of S.
Similarly for S\^T2- If both [_S~]T and S[_T^\ exist and coincide, then [_ST~] =

is called a multiplicative product ofS and T.
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DEFINITION 2 (Mikusiήski). By ST we understand the distributional limit
of the sequence {SnTn}, if it exists for every regular sequences of S and T.

For any a e S and any 5 e 2)', the multiplicative product aS is usually
defined by the equation ([6], I, p. 115);

<aS, φ> = <S, aφ>, vφ e 2).

It is clear that Definitions 1 and 2 applied to a and S lead to the same
product aS just considered.

The main purpose of this section is to show that the two definitions are
equivalent. To this end, we shall first prove

PROPOSITION 1. If ST exists, then [SΓ] exists also and ST=[_ST^].

PROOF. It is sufficient to show that lim SnTm exists. Assume the contrary,

then there would exist a zero neighbourhood % of 2)' such that for every
positive integer k we can find n, m^>k for which SnTm—ST^ίί. Therefore we
can choose subsequences Snp, Tmp in such a way that np, mp | oo and SnpTmp —
ST&%. This is a contradiction since each of {Snp} and {Tmp} is a regular
sequence. The proof is complete.

The next two lemmas are needed for our further discussions.

LEMMA 1. Let {Gn} be a sequence of functions e 2) such that

(1) suppσw-»0 when 7z-»oo5

(2) I I Gn I dχ<L 1 and l im I Gndx = c.
J n~^°° J

If DS] T exists, then lim (S*Gn) T = c [S] T.

PROOF. It suffices to prove the lemma in the case where Gn are real

valued functions. Suppose Gn^>0 and cn— \Gn(x)dx> 0. If we put pn(χ) =

—^w_3 then {pn} is a 5-sequence. Therefore it follows that (S^Gn)T —
Cn

cn(S*Pn)T tends to c[βJT as rc-*°o. Next we shall consider the general
case. Now Gn is written in the form G^ — σ~, where G^, G~ are the positive
and negative parts of Gn respectively. We can easily construct the sequence

{Gf

n},Gf

neQ), such that G+<G'n, γσr

n-σ^)dχ^— and mvpσf

nCK2ε if suppσw

CKε, where K£ stands for the ball with center 0 and radius ε. If we put
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K=K-Gn, then σ'^0, [(σ"n-σ~)dχ=\(σ'n-σϊ)dχ^-^- and suppσj tends to 0.

For any subsequence {σ'Jn} for which A(J'Jndx} converges, it is clear that

{\(ϊ'jndχ} converges also. From the result proved above for the positive case

it follows that (S*σJn)T converges to c[_S~]T as rc->°o. Therefore it follows
that {(S*σn)T} converges to c[_S~]T. The proof is complete.

LEMMA 2. Suppose QSQ T exists. Let Aε be the set of ΰ e 2) such that supp ΰ

CKeand Uσ(x)\dχ^l. Then the set {(S^σ)T}σ€A£ is bounded in (Q)κ)\ K

being any compact ball in RN, if ε is sufficiently small.

PROOF. Putting

Fn= {φ; φe2)κ, I <(S*σ)T, φ> \ <n for σ e AljH}9

a closed disk, we shall first show that Q)κ = \JFn. Assume the contrary,
then there would exist an element φ e Q)κ, but not e \JFn. Then for every
positive integer n we may choose an element σne Ai!n in such a way that

I <(S*σn)T,φ>\>n. Since 11σn(x) \dχ<Ll and suppΰn tends to 0, there exists

a subsequence {σJn} such that {\σJn(x)dx} converges. On the other hand,

by virtue of Lemma 1 {(S*σJn)T} converges, so that {<(S*0/Λ)Γ, Φ>} is
bounded. This is a contradiction. Therefore Q)K = vFn. Now since Q)κ is
of type (F), it follows that Fn is a zero neighbourhood of Q)κ for some n.
This means that {(S^σ)T}σ€Al is bounded. The proof is complete.

n

PROPOSITION 2. If [_S~] T exists, then we have

(1) laSJT exists and

(2) S[aT~] exists and S[αΓ] = αS[Γ], vae8;

(3) [SΓ] exists and [αS]Γ=S[αΓ] = α[S71], va e 8.

PROOF. Let φ e © and α 6 8. Let Z be a positive integer such that supp φ
is contained in the cube Qι: {#; | ^ | < Z } . Since for a large rc the value
<(αS*Pw)Γ, 0 > depends only on the behaviors of a in a compact set CQh s o

that we may assume that a is a periodic function with period 2Z for each
coordinate. Consider the Fourier expansion of a:

where {cm} is rapidly decreasing, namely Σ k w l ( l + \m\)k<oo for any positive
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k ([6], II, p. 83). Then we can write

<(aS*PH)T, Φ> ='Σcm<(eiτ<m>x>S*Pn)T, ψ>

= Σ c w <(S*e-lT<m> x>βn) T, /ι<m' x>φ>

Owing to Lemma 2, {(S*e-i7τ<m>x>ρn)T} is bounded in any (2)*)'. Therefore
there exist a positive constant M and a non-negative integer k such that

<m>x>pn)T, /τ<m'x>φ> I ̂ M ( l + \m\)\

Consequently

Since by Lemma 1 each {S^e~i7τ<m'x>ρn)T tends to [_S^\T as 7i->°°, it follows
that

lim 2>m <(S*e-f7<w *>pΛ) Γ, e 1 ! ^ x>φ>

Hence [αS] T exists and coincides with a [S] T, which completes the proof
of (1).

Now we shall show that SQαΓ] exists. For every φ 6 2) and α e δ , we
have

<S(α7% φ> = <φS, aT*P'n> = <(φS*p'n)T, a>.

Passing to the limit as rc—•co, we see that S{jocT^\ exists for every α e δ ,
since [_φS~] T exists for every φ e 2) by (1). By a similar reasoning as in the
proof of (1), we have S[aTJ = a(S[Tj). The proof of (2) is complete.

Finally we shall show that (3) holds. From (1) and (2) we have

, φ> - <α, S[_φTj> = <a, 0 ( S [ O > = <α(5[T]) ? Φ>

Consequently, [αS]71-=α(5[T]). Especially when α = l, [_S~]T=S[_TJ9 that is,
exists. Therefore we have [^S]71=S[αΓ] =

Thus the proof is complete.

Owing to this proposition, we see that it is sufficient for us to show only
the existence of either of [_SJT and 5[T] in order that the multiplicative
product of 5 and T may be defined according to Definition 1.
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PROPOSITIONS. If \JΓ\T exists, then (aS)(βT) exists for every a, β e &.

PROOF. Let φ e 2). It is sufficient to show that lim <(aS)n(βT)n, φ>

exists. Let I be a positive integer such that supp φ is contained in the cube
Qι. Since for a large n the value <(aS)n(βT)m φ> depend only on the
behaviors of a and β in a compact set CQh s o that we may assume that
a, β e 2). Furthermore we may also assume that φ is a periodic function

with period 21 for each coordinate. Let φ(χ) = *Σcmeiτ<m'x> be the Fourier
expansion of φ, then Σ | cm | (1 -f | m \ )k < oo for any positive integer k as alreadly
remarked. Now we can write

<(aS)n(βT)m φ>=T>cm<(aS)n(βT)n, /τ<m'x>>

= Σ c w <(aS\, /τ<m'x>(βT)n>

= Σ c , <(aS)n, /τ<m>x>βT*/j<m

Owing to Lemma 2,r{(aS*Pn*p/

ne~iτ<m'x>)T} is bounded in any (Q)κϊ, since, by
Proposition 2, [_aS~] T exists. Therefore we have

where M is a positive constant and h is a non-negative integer. Consequently

I <(aS)n(βT)n, φ> I ̂ M Σ \cm\ (1 + |w|)* <oo.

By virtue of Lemma 1, each (aS*Qn*pr

ne~iτ<m>x>)T tends to [jxSQT as rc
so that we have

lim <(aS)n(βT\, φ>

= lim Σ c n <α5*PJ(*p;e"111<"!^>)Γ, e'τ<* *>/9>

which completes the proof.

As a consequence of the preceding propositions, we have

THEOREM. Definitions 1 and 2 are entirely equivalent. The existence of
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either of [_S~]T and S [ Γ ] assures the existence of the product of S and T, and
then (aS)T, S(aT) are also defined for every a e & and hold the relations:

If (aS)T is defined for every α c @ , then ST exists.

The multiplicative product is commutative and distributive, but not
associative in general as the well known example shows (H6], I, p. 119):

( — x ) δ = δ, — (xδ) = 0. J. Mikusiήski [5Γ\ gives sufficient criteria for the
\ X / X

existence of the product and the law of associativity by introducing the
concept of order of a distribution. Now we shall introduce the definition of
multiplication for three distributions.

DEFINITION 3. Let S, T, WeQ)'. If the distributional limit: \im SnTnJFn

exists for every regular sequence Sn, Tn and Wm then the limit will be defined

as the multiplicative product of S, T and W, and denoted by STW.

PROPOSITION 4. // ST, TWand STW exist, then {ST)W and S(TW) exist
and (βT)W=S(TW).

PROOF. Similarly as in the proof of Proposition 1, we can show that
lim SmTnWp=STW. Then we have

p

Q5T)W= lim(ST)WP= lim SmTnWp = \\

which completes the proof.

The value of distribution T at a point x0 is defined [3] as the distribu-
tional limit

lim T(x0 + hx)

provided that such limit exists, where h stands for an iV-dimensional vector
h = ( h u h 2 , •••, h N ) w i t h h j φ O , ; = = 1 , 2 , ••-, N> a n d hx = ( h 1 x u h2x2, •••, h N x N ) a n d
T(xo+h£) is a distribution defined by
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where —j— — ( -7—, . -Ί— i. If the limit exists, it is always a constant func-
h \ hi /IN /

tion PΓ|. After Mikusiήski [_4Γ\ we understand by value T(x0) of T at #0 the
value of this constant function. If T is a function continuous at x0 with
value c, then it is clear that the value of the distribution T at x0 is also equal
to c.

LEMMA 3. //, for every d-sequence {Pn}, lim <T, Pn>=c exists, then there

exists a zero neighbourhood of RN in which T is equivalent to a bounded function

continuous at 0 with value c, which is also the value of the distribution T at 0.

PROOF. We may assume that c = 0. Let Λε denote the set defined in
Lemma 2. Similarly as there we can show that sup | <T, σ> | —•() as ε-*0.

Therefore T is a bounded function f(x) in a zero neighbourhood Kε of RN, and
ess. sup |/(#)|—>0 as ε^-0. The last statement is evident because of the

remark preceding Lemma 3. The proof is complete.

PROPOSITION 5. The product ST exists if and only if for every α e ® ,
there exists a zero neighbourhood in which aS*T is a bounded function continu-
ous at 0. In this case <ST, a> = (α5*Γ) (0), the value at 0.

Further, if S(ttT) exists for every t e Kε, then aS*T is a bounded function
on a neighbourhood of Kε and continuous at every point of Kε.

PROOF. The first statement is evident from the relation <S(T*P^), α > =
<aS*f, Qf

n>, together with Lemma 3. As for the last statement, owing to
the relations

;) 5

 a> = <αS*r_ / ί , P;

n> = <r_,(αS*f), p'H>,

we see that there corresponds to each point t of K£ a neighbourhood of t in
which aS*T is a bounded function continuous at t. It follows that the last
part of the proposition is also true.

REMARK 1. If 5 ^ - , ; = 1, 2, •••, N, exist, then ST and ψ-T, / = 1, 2,
V oXj / oXj

.., ΛΓ, exist, and the following relations hold:

d(sτ±_j^ oτ ._
dxj - dXj

 1 + b dxj ' 7 - 1 ' 2 ' •• > i V

In fact, let a be any element of 2). It follows from Proposition 5 that
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aS*' "* ι d

are bounded near the origin. Therefore, owing to a Theorem of Kryloff (Q6],
II, p. 37), aS*T is continuous near the origin, which, together with the same
proposition, shows that ST exists. Similarly from the relation:

we see also that (-^-jT, ; = 1, 2, •• ,iV, exist. Then it follows from the

following relations:

, ? r to // da

' a> = ~ <ST> > {{

that

8(5Γ) _ OS dT

REMARK 2. Using Proposition 5 we can give a simple proof of the
exchange formula for Fourier transformation obtained by Y. Hirata and H.
Ogata [2Γ\- Let S and T be y'-composable tempered distributions. Put
U=9(S) and V=9(T). Then for any a e 2), we have because of at/ e & C O'c

9-\aU^V) - (3--\a)*S)T e ©£a.

Therefore aί7*F is a continuous function as a Fourier transform of an element
of Q)f

Lu It follows from Proposition 5 that the multiplicative product UV
exists, and we have

<UV, a> = [(3-1(a)*S)Tdχ=

which implies that UV=9(S*T).
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2. Multiplicators. A space of distributions 96 is, by definition, a
locally convex vector space contained in 2X as a linear subspace with a finer
topology. A space of distributions 96 is referred to as normal if 2) is
contained in 96 with a finer topology and is dense in 96.

Let 96 be a normal space of distributions and H be a space of distribu-
tions. According to L. Schwartz ([7], p. 69), S e 2X is a multiplίcator of 96
into J?, if there exists a continuous linear mapping < 5 > of 96 into 1 which
coincides with the multiplicative product by Son Q)C96. When 96=&, we
shall say that S is a multiplicator of ^ .

PROPOSITION 6. Let 96 be a barrelled normal space of distributions. If S
is a distribution such that for every T e 9i the multiplicative product ST exists,
then S is a multiplicator of 9ί into 2X, <S>T=ST for every T a 96, and
φS e 9t' for every φeQ).

In addition, assume that S9ί C H with 2) strictly dense in H'σ, £ being a
normal space of distributions, then S is a multiplicator of 9t into M.

PROOF. By definition, SΓ=lim S(T*Qr

n). Since the mapping T^S(T*Pn)

of 9ί into 2X is continuous and 96 is barrelled, it follows that the mapping
<S> : T-+ST of 9ί into 2)' is continuous. Since for every φ e 2) the relation
<S>φ = Sφ holds, S is a multiplicator of 9t into 2)'. Therefore, for every
φ e 2), the mapping T-+<ST, φ> is obviously a continuous linear form on
91, so that there exists an element Wφ a 9ί' such that <ST,φ> = <T, Wφ>.
If T=φeQ), <Sφ,φ> = <φ,Sφ> = <φ,Wφ>. Then it follows that Sφ =

As for the last statement of the proposition, that the linear mapping
< 5 > : T-^ST of 96 into M is continuous is an immediate consequence of a
theorem of R. Shiraishi ([8], p. 176). Therefore S is a multiplicator of 96
into J2. The proof is complete.

EXAMPLE 1. S e S if and only if ST is defined for every T e 2)'. In fact,
2)' is a space of distributions 96 satisfying all the conditions of Proposition
6. Therefore if ST exists for every T e 2)', then 0S e 2) for every 0 e 2), so
that S e <§. The converse is trivial.

EXAMPLE 2. S 6 0M if and only if ST is defined and ST e ¥' for every
T e Sf'. In fact, S? is a space of distributions ^ satisfying all the conditions
of Proposition 6. Therefore if ST exists for every T e yf, then φS e Sf for
every φ e 2), so that 5 e <8. The mapping T-+ST of Sf' into 5^ is continuous
with its dual mapping: Sf -> ̂ . Therefore 5 e § becomes a multiplicator of
Sf) that is, 5 6 CV The converse is trivial.
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PROPOSITION 7. Let 96, H be normal spaces of distributions with the
approximation properties by regularization and truncation (C7H, P> 7). Further
we suppose that R has ϊ-topology. Let S be a multiplicator of 9ί into J2, then
ST exists for every T e 9ί and <S>T=ST, and S is also a multiplicator of Hf

c

into 9ί'c, so that SW exists for every W a £' and <S> W=

PROOF. Let {an} be any sequence of multiplicators, that is, an e 2), an

tends to 1 in S as /z->oo and {<xn} is bounded in £. Let {βn} be any δ-
sequence and T be any element of 9ί. Since am{T*βn) e 2), it follows that

<S> (am(T*Pn)) = S(am{T*9n)).

Passing to the limit as m^oo, since 9t has the approximation property by
truncation, we see that

Further, since St has the approximation property by regularization, it follows
that <S>(T*Pn) tends to <S>T as z^oo, so that S(T*Pn) converges to
<S>T, which implies that ST exists and ST=<S>T. Since < 5 > is
continuous, the dual mapping denoted by the same symbol < 5 > is also a
continuous linear mapping of Jlr

c into 91'^ and therefore S is a multiplicator
of A'c into 9tr

c. We know that Jl'c has the approximation properties by
regularization and truncation ([7], p. 10). Therefore by a similar reasoning
as above we see that the last statement of the proposition is true. The proof
is complete.

REMARK 3. Let /, g be functions, that is, locally summable functions.
Even if the ordinary product fg is a function, it may occur that fg is not the
multiplicative product. For example, let 91, 9i be the spaces of functions
defined as follows (we assume N^> 2):

We note that 9ί is the dual Banach space of 9i. Suppose multiplication for
every / and every g is possible. Let 9tx denote the subspace of 9t consisting
of functions with support in the unit ball. It follows from the closed graph
theorem that the mapping (/, g) -^»f*g of 9Cλx£K into L}oc is continuous. By
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Proposition 5, f*g is bounded in a zero neighbourhood of RN. If we put

Hn= { / e ^ ess. sup \frg\^n}9

then Hn is a closed disk of 9ίγ and 9ίx^\jEn. Therefore f*g is uniformly
bounded in a zero neighbourhood of RN for a fixed g e X and all fz9t\ with
11/11 <Ξ1. By a similar reasoning we see that in a zero neighbourhood
Kε (0<ε<l) each f*g is a bounded function. For any φ e Q) we have

If we take ί e Ken, the sequence {<(r*/) (g*Pn)> Φ>} is bounded. Moreover
if g is taken from 2), the sequence converges to <(Xtf)g, Φ> Therefore, by
a Theorem of Banach-Steinhaus, the sequence {<(r//)(g *Pw), <̂ >} converges.
This means that the multiplicative product of τtf and every g e di exists.

Then it follows from Proposition 6 that τtf^9ί, that is, \ -J^Γ-^J— d%<^

for every fe 9ίλ. Therefore •, ̂  L-— is bounded in X"£/2, a contradiction. Thus
J |Λ+ί |

we see that there are functions / e 9t and g e 3ί such that the multiplicative
product of / and g does not exist.

On the other hand, by the ordinary multiplication, fg is a function e L1

because of the equality: \f(χ)g(χ)\ =—f^γ^Γ\χ\ll2\g(χ)\. And it is easy to
\x

see that the mapping g-*fg (ordinary product) of έK into Lι is continuous,
that is, / is a multiplicator of 3ί into L1. 9i has obviously a barrelled normal
space of distributions with the approximation property by truncation. This
together with Proposition 7 shows that 9i has not the approximation property
by regularization.

3. Digressions. Let S, T be tempered distributions. If 5, T are 6f'-
composable, 9(S)9(T) is defined and 3(S)9[(71) = 3(S*Γ) ([2], p. 151). Here
we shall show that the sequence {(3(S))W(9[(7Ί))K} converges in s?'.

First we note that if {Pn} is a (̂ -sequence, then 3-(Pn) converges to 1 in
Jlc. This is a consequence of direct calculation. Let φ be any element of Sf.
Then we have
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i), Φ> =

According to ParsevaΓs formula, it follows that

= J J 5 (*) T(y) 3- (φ) (x + y) 5 (PB)v (*) 3 (Pi)v (y) dxdy.

By our assumption, (S*® 2^)3(0) (A + y) e (Q>'Li)x,y and by the preceding
remark 3(PK) 0»)3(Pi) (y) tends to 1 in £c as n-> oo. Hence, it follows that

l i m ( ( ) B ) ( ( > i ) , ^

= <9(S*T),φ>.

Therefore, (9(S)*PΛ)(9c(Γ)*p;) converges to 3(5*r) in ^ .
Next we suppose 55 T are composable and S*T e &>f. Then in the above

proof <9-(S\9-(T)n,φ> converges to <3(S*T\ φ> if we take φe9-(Q)).
On the other hand L. Ehrenpreis [ΎJ introduced the space D, the Fourier
transform of 2), with the topology which makes the mapping φ^>S (φ)
topological. Therefore it follows that the above consideration shows that
9-(S)n3-(T)n converges to 5(S*Γ) in D\ the strong dual of D.
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