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In the theory of distributions of L. Schwartz [6], multiplication for two
distributions leads to difficulties. Schwartz [6] has observed that the
multiplicative product is well defined if locally one is “more regular” than
the other is “irregular”. An approach to define multiplication for distribu-
tions has been made by Y. Hirata and H. Ogata [2]. In like manner
J. Mikusinski [5] has also given a definition of multiplication. The main
purpose of this paper is to show that these two definitions lead to equivalence
(§1. Theorem). §2 is devoted to the discussions on the multiplicators of
normal spaces of distributions. We show that, in case of functions, the
ordinary product is not in general the product in the above sense even if it is
a function. In §1 and §3 we make some remarks on the exchange formula
for Fourier transformation.

Throughout this paper we assume that unless otherwise specified a
Euclidean space on which distributions are defined is the same N-dimensional
space.

1. Multiplicative products. By a 0-sequence or a sequence of regulariza-
tions we understand every sequence of non-negative functions 0, € with
the following properties:

(1) Suppo, converges to 0 when n—> oo}
(2) Spﬂ(x)dle, the integral being extended to the whole N-dimensional

space.

Given any distribution S and any d-sequence {0,}, the sequence S,=S%0,
will be called a regular sequence of S. Every regular sequence of S converges
toSin &'

Recall the definitions of multiplication for two distributions S and T
given by Y. Hirata and H. Ogata (2], p. 150) and J. Mikusinski (5], p. 254):

DeriniTion 1 (Hirata and Ogata). By [S]7T we understand the distribu-
tional limit of the sequence {S,T}, if it exists for every regular sequence of S.
Similarly for SCT]. If both [S]T and S[T] exist and coincide, then [ ST =
[SIT=S[T] is called a multiplicative product of S and T.
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DEerintrion 2 (Mikusinski). By ST we understand the distributional limit
of the sequence {S,T,}, if it exists for every regular sequences of S and T.

For any' « € & and any S ¢ D', the multiplicative product S is usually
defined by the equation (67, I, p. 115);

<asl, p> = <§, ag>, Vo eD.

It is clear that Definitions 1 and 2 applied to « and S lead to the same
product «S just considered.

The main purpose of this section is to show that the two definitions are
equivalent. To this end, we shall first prove

Prorosirion 1. If ST exists, then [ ST | exists also and ST=[ST .

Proor. It is sufficient to show that lim S, 7, exists. Assume the contrary,

nsm—>2

then there would exist a zero neighbourhood % of @’ such that for every
positive integer k& we can find n, m >k for which S,T,,—ST&%. Therefore we
can choose subsequences S, »» I'm, in such a way that ny, m, 1 oo and S, T,
STe& Y. This is a contradiction since each of {S.,} and {T,} is a regular
sequence. The proof is complete.

The next two lemmas are needed for our further discussions.

Lemma 1. Let {0,} be a sequence of functions ¢ D such that

(1) suppo,—0 when n— oo,

@) S|o~,,|dx;1 and limgo’ndxzc.

n—>00

If [S]T exists, then lim(Sxc,)T =c[S]T.

Proor. It suffices to prove the lemma in the case where ¢, are real
valued functions. Suppose ¢,>=0 and c,,=§<7,,(x)dx>0. If we put 0,(x)=

(%)
Cn
¢, (Sx0,)T tends to ¢[S]T as n—>oco. Next we shall consider the general
case. Now ¢, is written in the form ¢} —0c,, where ¢,, 6, are the positive
and negative parts of ¢, respectively. We can easily construct the sequence

, then {0,} is a 0J-sequence. Therefore it follows that (Sxo,)T =

{o}}, 01, € D, such that o, <o, S(O‘,’,——O‘; )dx__gib and supp g, C K, if suppo,
T

CK., where K, stands for the ball with center 0 and radius ¢. If we put
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6,=0,—0, then ¢,>0, g(o‘;’,—d; Ydx= S(G;—d; )dx__<_,f,17 and supp ¢, tends to 0.
For any subsequence {¢}} for which { Sd}ndx} converges, it is clear that

{So’?,ldx} converges also. From the result proved above for the positive case

it follows that (Sxc;,)T converges to ¢[S]T as n—oo. Therefore it follows
that {(Sxc,)T} converges to ¢[S]T. The proof is complete.

LemMa 2. Suppose [S]T exists. Let A. be the set of 6 € D such that supp o

CK. and Slo‘(x)]dx_gl. Then the set {(Sx0)T},ca, is bounded in (DgY, K

being any compact ball in RN, if ¢ is sufficiently small.

Proor. Putting
F,={p; ¢ € Dg, | <(Sx0)T, > | <n for o € A},

a closed disk, we shall first show that Dx=\UF,. Assume the contrary,
then there would exist an element ¢ € Dg, but not € UF,. Then for every
positive integer n we may choose an element ¢, € 4,,, in such a way that

| <(Sxc,)T, $>|>n. Since glo’,,(x) |dx<_1 and supp o, tends to 0, there exists

a subsequence {¢,} such that {So‘jn(x)dx} converges. On the other hand,

by virtue of Lemma 1 {(Sx0,)T} converges, so that {<(Sx0;)7T, ¢>} is
bounded. This is a contradiction. Therefore Dx=\F,. Now since Dy is
of type (F), it follows that F, is a zero neighbourhood of @Dy for some n.
This means that {(Sx0)T},.4, is bounded. The proof is complete.

Proposition 2. If [S]T exists, then we have

(1) [aS]T existsand [aS|T=a[S]T, Vac€&;

(2) S[aT’] existsand S[aT]=aS[T]), Vae€&;

(8) [ST] exists and [aS]T=S[aT J=a[ST], Vac€é&.

Proor. Let ¢ € D and o € &. Let [ be a positive integer such that supp ¢
is contained in the cube Q;: {x; |x;|<I}. Since for a large n the value
<(aSx0,)T, ¢> depends only on the behaviors of « in a compact set CQ,, so

that we may assume that « is a periodic function with period 2/ for each
coordinate. Consider the Fourier expansion of «:

o) = Slane T,

where {c,} is rapidly decreasing, namely >|c, |(1+ |m|)*< oo for any positive
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E (6], 11, p. 83). Then we can write

<(@S+0,)T, P> = Sew < (7<% Sx0,) T, >

= Slon <(Sxe T 0, T, 6T g

Owing to Lemma 2, {(S*e"'jzi‘\’”’ *20,)T} 1is bounded in any (Dx). Therefore
there exist a positive constant M and a non-negative integer % such that

I<(S*e".’7<m’x>0,,)T, 61’7I£<m,a|:>¢> I é_M(l + Im’l)k
Consequently
| <(aS*0,)T, > | <MD [en| 1+ |m] )t <oo.

Since by Lemma 1 each (S*e"'%m’ *>0,)T tends to [S]T as n— oo, it follows
that

lim e, <(S*e“’{l"<"" “>0,)T, T h >

=Slen <[STT, 1< 9> = <al[S1T, 6>,

Hence [aS]T exists and coincides with «[ ST, which completes the proof
of (1).

Now we shall show that S[aT] exists. For every ¢ €D and a e &, we
have

<S@D, ¢> = <¢S, al0,> = <(#S*6,) T, a>.

Passing to the limit as n— oo, we see that S[ a7 ] exists for every a €&,

since [¢S]T exists for every ¢ € D by (1). By a similar reasoning as in the

proof of (1), we have S[aT |=a(S[T]). The proof of (2) is complete.
Finally we shall show that (3) holds. From (1) and (2) we have

<[aS]T, ¢> = <a, S[$T]1> = <a, (S[T D> = <a(SLT]), >.

Consequently, [aS | T=a(S[ T]). Especially when a=1, [ S]T=S[T], that is,
[ST7) exists. Therefore we have [aS|T=S[aT ]=a[ST ).

Thus the proof is complete.
Owing to this proposition, we see that it is sufficient for us to show only

the existence of either of [S]T and S[ T ] in order that the multiplicative
product of S and 7 may be defined according to Definition 1.
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ProrosiTioN 8. If [ST exists, then (aS)(BT) exists for every a, € &.

Proor. Let ¢eD. It is sufficient to show that lim <(aS),(BT)., ¢>

n—>o0

exists. Let I be a positive integer such that supp¢ is contained in the cube
Q;. Since for a large n the value <(aS),(BT)., > depend only on the
behaviors of « and £ in a compact set CQ;, so that we may assume that
a, B€D. Furthermore we may also assume that ¢ is a periodic function

with period 2! for each coordinate. Let ¢(x)=2cmei7li<’"’ *> Dbe the Fourier

expansion of ¢, then >|c,|(1+ |m|)*< oo for any positive integer k as alreadly
remarked. Now we can write

(@) (BT )y > = Do <(@S)u(BT),, €T<™ %>
= Scp <(@S),, T (BT, >
= e <(AS), €1 *>BTrei T<™ *>0! >

=Den <(@SH0,x0,7 T )T, I TIB>

Owing to Lemma 2,,{(aS*0ﬂ*5;e‘i%<'”' *>)YT} is bounded in any (Dg), since, by
Proposition 2, [«S]T exists. Therefore we have

| <(aS%0,%0,e~ T<™ )T, T8> | < M(1L+ |m|),
where M is a positive constant and % is a non-negative integer. Consequently
| <(@8)n (BT )y > | <M |cn| L+ |m|)f <oo.

By virtue of Lemma 1, each (aS*On*é,’,e"'%”" YT tends to [aS]T as n— oo,
so that we have

n—oo

.2 E
=1lim Sl¢,, <aSx0,x0.Le  T<™*) T, <™ >R3>

n—oo

= Sle, <[aS]T, T<m >8>

which completes the proof.

As a consequence of the preceding propositions, we have

TueoreM. Definitions 1 and 2 are entirely equivalent. The existence of
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either of [S1T and S[T] assures the existence of the product of S and T, and
then (aS)T, S(aT) are also defined for every « € & and hold the relations:

(@S)T=S(aT)=a(ST).

If (aS)T 1is defined for every « €D, then ST exists.

The multiplicative product is commutative and distributive, but not
associative in general as the well known example shows ([6], I, p. 119):

(%@a —o, %(xa) —0. J. Mikusifski [5] gives sufficient criteria for the

existence of the product and the law of associativity by introducing the
concept of order of a distribution. Now we shall introduce the definition of
multiplication for three distributions.

Derinition 8. Let S, T, WeD'. If the distributional limit: lim S,T,W,

n—oo

exists for every regular sequence S,, T, and W,, then the limit will be defined
as the multiplicative product of S, T and W, and denoted by STW.

Prorosition 4. If ST, TW and STW exist, then (ST)W and S(TW) exist
and (ST)W=S(TW).

Proor. Similarly as in the proof of Proposition 1, we can show that
lim S, 7,W,=STW. Then we have

mons p—roo

(STYW =1im (ST)W, = lim S,T,W, =1lim S,,(TW) = S(TW),

e Mans p—>oo m—roo

which completes the proof.

The value of distribution 7 at a point x, is defined [37] as the distribu-
tional limit

k=0
provided that such limit exists, where %~ stands for an N-dimensional vector
h=(h1, hagy -, ]lN) with hﬁé(), ]=1, 2, .., N, and hxz(hlxl, ho%oy -y thN) and

T(x+h%) is a distribution defined by

Tt b, $@> = <T@, i # (G w)>,
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where —% = < b 1 \ If the limit exists, it is always a constant func-

tion [9]. After M1kusmsk1 [4] we understand by value T'(x,) of T at x, the
value of this constant function. If T is a function continuous at x, with
value ¢, then it is clear that the value of the distribution 7" at x, is also equal
to c.

Lemma 8. If, for every 0-sequence {0,}, lim <T, 0,> =c exists, then there

N0

exists a zero neighbourhood of RY in which T 1is equivalent to a bounded function
continuous at 0 with value c, which is also the value of the distribution T at 0.

Proor. We may assume that ¢=0. Let A. denote the set defined in

Lemma 2. Similarly as there we can show that sup | <7, 06>|—>0 as e—>0.
o€ Ag

Therefore T is a bounded function f(x) in a zero neighbourhood K. of R", and
ess. sup |f(x)|—>0 as ¢—0. The last statement is evident because of the
x€K¢e

remark preceding Lemma 3. The proof is complete.

Prorosition 5. The product ST exists if and only 1f, for every « €D,
there exists a zero neighbourhood in which aS+T is a bounded function continu-
ous at 0. In this case <ST, a>=(aS*T)(0), the value at 0.

Further, if S(c,T) exists for every t € K, then aS«T 1is a bounded function
on a neighbourhood of K. and continuous at every point of K.

Proor. The first statement is evident from the relation <S(7'x0)), a> =
<aS+T, 0.>, together with Lemma 3. As for the last statement, owing to
the relations

<S((z,T)x0}), a> = <aSwc_,T, 0,> = <v_,(aSxT), 0;,>,

we see that there corresponds to each point ¢ of K. a neighbourhood of ¢ in
which «S*T is a bounded function continuous at . It follows that the last
part of the proposition is also true.

Remark 1. If S< ) j=1,2, ..., N, exist, then ST and g—iT, i=12
s
., N, exist, and the followmg relations hold:
0(ST) 0S oT

ox; :WT S—, j=1,2,~~~,N

In fact, let « be any element of &@. It follows from Proposition 5 that
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'6T>

0 . .
aS*k F) ——6567(aS*T), j=1,2, ..., N,

are bounded near the origin. Therefore, owing to a Theorem of Kryloff (6],
IL, p. 37), aS*T is continuous near the origin, which, together with the same
proposition, shows that ST exists. Similarly from the relation:

gfj «(aT)’ = —s*< af: T)v —s*<a—g%>v,

7 7

0S
0x;

we see also that ( >T, j=1,2,..., N, exist. Then it follows from the

following relations:

< a(ng) , > = — <ST, g“ >=— ((—a— S)*T) (0),

0S A
<a—x, T, aa> =<C¥ ox; *T) (0),

<sg S, a> =(as«( )= —(—a%(aS*T))(O),

that

oST) 0§ oT

ax] = axj T+S*a‘x_j—a i=1,2, .., N

Remark 2. Using Proposition 5 we can give a simple proof of the
exchange formula for Fourier transformation obtained by Y. Hirata and H.
Ogata [2]. Let S and T be &’-composable tempered distributions. Put
U=3(S) and ¥=F(T). Then for any « € D, we have because of al € & CO,

F-H(aUsV) = (F 1 (@)*S)T € Dj..

Therefore aU+V is a continuous function as a Fourier transform of an element
of @.. It follows from Proposition 5 that the multiplicative product UV
exists, and we have

<UV,a> = S(Q‘l(a)*S)de= <SxT, Fa)> = <F(SxT), a>>,

which implies that UV=(SxT).
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2. Multiplicators. A space of distributions & is, by definition, a
locally convex vector space contained in &’ as a linear subspace with a finer
topology. A space of distributions & is referred to as normal if D is
contained in & with a finer topology and is dense in &.

Let & be a normal space of distributions and ./ be a space of distribu-
tions. According to L. Schwartz ([7], p. 69), S€ D’ is a multiplicator of X
into £, if there exists a continuous linear mapping <S> of & into £ which
coincides with the multiplicative product by S on DCH. When £ =L, we
shall say that S is a multiplicator of .

Prorosition 6. Let H be a barrelled normal space of distributions. If S
18 a distribution such that for every T € K the multiplicative product ST exists,
then S is a multiplicator of X into @', <S>T=ST for every TeX, and
@S eH for every ¢ € D.

In addition, assume that SH C L with D strictly dense in L., L being a
normal space of distributions, then S 1s a multiplicator of X into L.

Proor. By definition, ST=1im S(T+0.). Since the mapping 7' — S(T*0,)

n—oo

of & into @’ is continuous and & is barrelled, it follows that the mapping
<8>:T—ST of & into D' is continuous. Since for every ¢ € D the relation
<S8>¢=S¢ holds, S is a multiplicator of & into &@’. Therefore, for every
¢ € D, the mapping T— <ST, ¢> is obviously a continuous linear form on
X, so that there exists an element W, e &' such that <ST, ¢>=<T, Wy>.
If T=9€D, <S¢, ¢>=<¢, Sp>=<¢, W,>. Then it follows that Sp=
Wye'.

As for the last statement of the proposition, that the linear mapping
<S> :T—ST of & into £ is continuous is an immediate consequence of a
theorem of R. Shiraishi ([87], p. 176). Therefore S is a multiplicator of &
into £. The proof is complete.

ExampLe 1. S € & if and only if ST is defined for every T¢€ @'. In fact,
@’ is a space of distributions & satisfying all the conditions of Proposition
6. Therefore if ST exists for every T € D', then ¢S e D for every ¢ €D, so
that S€ &. The converse is trivial.

ExampLe 2. S € Oy if and only if ST is defined and ST € &’ for every
Te%'. Infact, ¥ is a space of distributions & satisfying all the conditions
of Proposition 6. Therefore if ST exists for every T € %’, then ¢S €.« for
every ¢ €D, sothat Se&. The mapping 7— ST of &’ into &' is continuous
with its dual mapping: & — . Therefore S ¢ & becomes a multiplicator of
&, that is, S € Oy. The converse is trivial.
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Prorosition 7. Let K, £ be mormal spaces of distributions with the
approximation properties by regularization and truncation ([7], p. 7). Further
we suppose that L has r-topology. Let S be a multiplicator of H into L, then
ST exists for every T e X and <S>T=ST, and S is also a multiplicator of L/
wmto K., so that SW exists for every We L and <S>W=SW.

Proor. Let {a,} be any sequence of multiplicators, that is, a, €D, «,
tends to 1 in & as n—>oco and {«,} is bounded in £. Let {0,} be any 4-
sequence and T be any element of &. Since «,,(T*0,) € D, it follows that

<8> (am(T*pn)) = S(am(T*pn))-

Passing to the limit as m— oo, since & has the approximation property by
truncation, we see that

<S> (T%0,) = S(T0,).

Further, since & has the approximation property by regularization, it follows
that <S>(Tx0,) tends to <S>T as n—co, so that S(Tx0,) converges to
<S> T, which implies that ST exists and S7= <S>T. Since <S> is
continuous, the dual mapping denoted by the same symbol <S> is also a
continuous linear mapping of £/ into &/, and therefore S is a multiplicator
of 2/ into #.. We know that /. has the approximation properties by
regularization and truncation (7], p. 10). Therefore by a similar reasoning
as above we see that the last statement of the proposition is true. The proof
is complete.

Remark 3. Let f, g be functions, that is, locally summable functions.
Even if the ordinary product fg is a function, it may occur that fg is not the
multiplicative product. For example, let &, K be the spaces of functions
defined as follows (we assume N=2):

a={r; 11 = [ LD g ool

[
K= g3 gl = 1@ |x] du <o},

We note that & is the dual Banach space of K. Suppose multiplication for
every f and every g is possible. Let &; denote the subspace of & consisting
of functions with support in the unit ball. It follows from the closed graph
theorem that the mapping (/, g)— fxg of &1 x X into L}, is continuous. By
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Proposition 5, fxg is bounded in a zero neighbourhood of RY. If we put

H, = {f€y; ess. sup |fxg| <n},
¥EH1

n

then H, is a closed disk of &; and #;=\UH,. Therefore fxg is uniformly
bounded in a zero neighbourhood of R" for a fixed g ¢ X and all fe &, with
[fll=1. By a similar reasoning we see that in a zero neighbourhood
K: (0<e<1) each fxg is a bounded function. For any ¢ ¢ D we have

<(@f) (g0, > = S(((r, F)B)) oudc

= S (f(f—t ¢)*g)f—tpizdx'

If we take ¢ € K¢j5, the sequence {<(r:f)(g*0,), #>>} is bounded. Moreover
if g is taken from &, the sequence converges to <(r;f)g, ¢>. Therefore, by
a Theorem of Banach-Steinhaus, the sequence {<(r,f) (g*0.), $>>} converges.
This means that the multiplicative product of r,f and every ge X exists.

. 2
Then it follows from Proposition 6 that ,fe &, that is, S ii(T;lf)L dx < oo
for every fec &,. Therefore Iol%klfl is bounded in K/, a contradiction. Thus

we see that there are functions fe & and g € K such that the multiplicative
product of fand g does not exist.

On the other hand, by the ordinary multiplication, fg is a function € L!
because of the equality: | f(x)g ()] :J{;(r%} 5|12 g()]. And it is easy to
see that the mapping g— fg (ordinary product) of X into L' is continuous,
that is, £ is a multiplicator of X into L'. ZK has obviously a barrelled normal
space of distributions with the approximation property by truncation. This
together with Proposition 7 shows that & has not the approximation property
by regularization.

3. Digressions. Let S, T be tempered distributions. If S, T are &'-
composable, F(S)JF(T) is defined and F(S)F(T)=F(SxT) (2], p. 151). Here
we shall show that the sequence {(F(S)),(F(T)).} converges in &".

First we note that if {0,} is a d-sequence, then &(0,) converges to 1 in
&,. This is a consequence of direct calculation. Let ¢ be any element of .
Then we have
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<(F(S)x0,) (F(T)50,), 3> = <F(S)x0,, (F(T)*0;) 4>

- g(gl(s»kp,,) (F(T)0;) ddx.
According to Parseval’s formula, it follows that
(I ®10,) (Fw0)), > = |(5FG) (F T @)d
~ ({5036 @T - 9FE) G—»IFB ) duty
~[|5@70I® @+ nFe) @I sy

By our assumption, (S,Q7T,)F (@) (& + ) € (D}:),,, and by the preceding
remark &(0,) (x)F(0,) (y) tends tolin &, as n—co. Hence, it follows that

lim <(F(S)0,) (F(I)0,), $> = <S+T, F($)>
= <H(S*T), ¢>.

Therefore, (F(S)x0,) (F(T)*0,) converges to F(S*T) in &'.

Next we suppose S, T are composable and SxT € .&’. Then in the above
proof <J(8),F(T),, 4> converges to <I(SxT), > if we take ¢ € F(D).
On the other hand L. Ehrenpreis [1] introduced the space D, the Fourier
transform of &, with the topology which makes the mapping ¢—J(¢)
topological. Therefore it follows that the above consideration shows that
F(9),J(T), converges to F(SxT) in D', the strong dual of D.
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