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Introduction. In a homogeneous space G/H, each of its points is a
coset of a closed subgroup H of a Lie group G, that is, G/H is based on the
decomposition of G into the leaves (maximal integral manifolds) of the Lie
algebra of H. Generalizing, from this point of view, the notion of a
homogeneous space, we have that of a foliation M/TO in the sense of R.
Palais [4Γ\, which consists of leaves of an involutive distribution 2R on a
differentiate manifold Λf, together with the topology induced from M (see p.
82). Foliations in more general spaces have been treated by C. Ehresmann
[2], G. Reeb [5] and A. Haefliger [3].

In the present paper we shall investigate the decomposition of a Rieman-
nian manifold M into the leaves of an involutive distribution TO which has
the involutive orthogonal complement TO*. At first it will be tried to
represent the foliation M/TO with a leaf F* of TO*. This requires that the
leaf should meet all the leaves of TO. We shall find a sufficient condition of
that in terms of certain quantities related to a family of geodesic curvatures
(Theorem 2). Under this condition, for any simply connected leaf F* of TO*,
we have the relation:

(Theorem 3), where G(F*) denotes the group of diffeomorphisms of F* which
make the intersection of F * and each leaf of TO invariant. Let Hp be the
subgroup of G(V*) consisting of elements which make a point p invariant.
Then, if Hp and Hq are conjugate subgroups, it will be shown that the leaves
of TO through p and q are diffeomorphic. And, if one of the leaves of TO is
simply connected, if the leaves of TO through p and q are homeomorphic, then
Hq and Hp are isomorphic (Theorem 4). Finally we shall show that, when
G(F*) is abelian, its elements can be extended to diffeomorphisms of M
which make the decomposition of M invariant (Theorem 5).

1. Let M be an zz-dimensional differentiable1} manifold with countable base.
Let us be given an 7?z-dimensional involutive distribution TO on M. Since, as
is well known, M can be given a Riemannian structure, we have, at any point

1) By "differentiable" we always mean "of class C°°".
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p of Λf, the orthogonal complement TO* of Wlp with respect to the metric.
Assigning TO* to p, we have a differentiable distribution TO* on M. We shall
assume that TO* is involutive. It is the case when TO is of dimension n — 1.

In the first place, we shall show the existence of a certain class of
coordinate systems on M which will be called flat coordinate systems.

PROPOSITION 1. At any point p of M, there exist a coordinate system
(x1, •••,/) and a cubic neighborhood W with respect to the system which satisfy
the following conditions: (i) x\p) = 0 ( l<i<jz); (ii) if £z(l<3<jz) are numbers
smaller in absolute value than the breadth of IV, then the slice of W defined by
the equations xλ = ξλ (7τz+l<A<τz) is an integral manifold o/TO, while the slice
defined by xa — ξa (1 <α</τ&) is an integral manifold of TO*.

PROOF. There exists a coordinate system (y\ •••,/*) with the following

properties: y(p) = 0; the system of m vector fields χa = - — (l<a<m) forms

ί n d )
a local base for TO around p. Let j Yλ = ]>] Y{(y)-^~{-: m+ l<λ<?ι [ be a local
base for TO* around p. Since TO* is involutive, the system of differentiable
equations

(1) Yχx = θ (m+l<λ<n\

has m independent solutions xl

y--,xm with #α(0) = 0. Since TO^, and TO* are
orthogonal, the vectors (Xa)p, (Yχ)p are linearly independent and the deter-
minant I Yl(Ό)\ does not vanish. This and the equations (1) infer that the
functional determinant d(xι, , χm)/d(yι, , ym) does not vanish at y = 0.
Putting χx=yx (m + l<λ<n), we have a coordinate system (a1,.--, χn) at p
with xi(p) = 0. In the coordinates, TO has the system of vector fields

as its local base around p, while TO* has | -^— : ^
\ 0X

as its local base. Thus the coordinates x1,•••, xn are proved to have the
required properties.

We shall consider mappings Φ of the product space Jλ x/2 of two intervals
/i ,/ 2 in the real line into M which have the following property (D): whenever
pairs (wί? vj) (i, / = 1 , 2) are in Jλ xj2 the points Φ(uu υj) are contained in the
same leaf of TO, while Φ(uh vλ) are in the same leaf of TO*.

LEMMA 1. Let Φ be a continuous mapping of Jλ xj2 into M with the
property (D). Let W be a cubic neighborhood of M with respect to a
flat coordinate system. If the points Φ(u, v0) (u e [u0, ui) C/i) and Φ(u0, v)
(v e [ΌQ9 vι) CΛ) are contained in W, so is the point Φ(u, v) for every pair (u, v)



On Decompositions of Riemannian Manifolds 77

in [uo, uι) x [j?0, vι).

PROOF. We denote the coordinates by #V--> xm. Let v2 be any number
in Oo, vι) and u2 the least upper bound of u such that Φ(u\ v) is in W for any
pair (u\ υ) e [_uQ, u) x [JΌ, ^2]. Since Φ is continuous, w2 is different from u0.
Since M has a countable base, there exist at most countably many slices of W
which are contained in a leaf of TO [T]. Hence Φ(u, υ\ for any v e (j?0, v2~]
and a fixed w e [u0, u2), are contained in the same slice of JF, that is, xλ(Φ(u, v))
= xλ(Φ(u, vo)) (m+l<,λ<jι). In the same way we have xa(Φ(u, v))=xa(Φ(u0, v))
(l<a<m), for (u9 v) e [u0, u2) x [υθ9 v2~]. From this it follows directly that u2 is
equal to uu and our lemma is proved.

The next lemma follows immediately from Lemma 1.

LEMMA 2. // Φx and Φ2 are two continuous mappings of Jx xj2 into M
which have the property (D) and if they coincide on subsets {u0} xj2 and Jλ x
{v0}, then they coincide on the whole Jλ xj2.

For convenience, we denote by Vp (resp. F*) the leaf of TO (resp. TO*)
through a point p of M, and by / the closed interval [0, 1].

LEMMA 3. Let p be a point of M. Let Ψ be a way in V* with starting
point p (i.e., ψ is continuous mapping of I into V* with <p(0)=p), and ψ a
way in Vp with starting point p. Then there exist a positive number u0 and a
continuous mapping Φ of Q0, u0) x / into M with the property (D) such that
Φ(u, 0) = φ(u) and 0(0, v) = ψ(v). If ψι is a way from p to ψ(ΐ) and homotopic
in Vp to ψ, we have

Φi(u, l) = Φ(u,ΐ) (0 <u < min. (u0, ui))

where Φ\ is a mapping of Q0, u{) x / which has the similar property to those of
Φ.

PROOF. There exists a family of flat coordinate systems 01, •••, xl)
(l<k<N) and increasing sequence of numbers Q=vo,vu , vN^u vN = l such
that cubic neighborhoods Wk with respect to these systems cover the way ψ
and that ψ(υ\ for v e [vk-u Vk], is contained in Wk.

Since ψ is continuous, there exists a positive number uλ such that <P(u),
for u 6 [0, wi), is contained in Wx. For any pair (M, V) in [0, m) x [0, i?ij we
obtain the point Φ(u, v) uniquely determined by the equations

u, v)) = x\
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Since ψ(vx) is contained in JF2, there exists a number u2 in (0, u{] such that
Φ(u, vι\ for u e [0, κ2)5 is in JF2 Hence a point <0(κ, «>), for any pair («, ι?) e
[0, u2) x &i, ^2], is uniquely determined by equations

) (l<a<m\

x\(Φ(μ, v)) = x\(Φ(μ9 vθ) (m

After finite steps like this, we obtain the positive number uo = uN and
the points Φ(u,v), for all (u,v) in [09u0)xI, which belong to the intersection
Vφ{u)r\V${v). The mapping Φ of [β9uo)xl into M defined by (u9 v)-+Φ(u9 v) is
clearly continuous and has the required properties. We know from Lemma 2
that Φ is the unique mapping of []0, u0) x / into M which has these properties.

Let ψ be a way from p to ψ(T) lying on Vp such that, for each k, any
point ψ'(v) (υ e [vk-u vj) belongs to Wk. Let Φr be the mapping constructed
from φ and ψ\ in the same way as Φ is done from ψ and ψ. Then we have
Φ'iu, l) = Φ(u, 1) for any u€ [0, u0). From this and our assumption that the
way ψι is homotopic in Vp to ψ, we have Φι(u, l) = Φ(u, 1).

REMARK. Φ is differentiate if φ and ^ are differentiable.

LEMMA 4. Lei Φ be a continuous mapping of [Ό, 1) x / into M with the
property (D). If Φ(u, v) converges, for each v in /, when u converges to 1,
then Φ can be extended uniquely to a continuous mapping Ixl into M with the
property (D).

PROOF. Let qv denot the limiting point. Let vQ be any number in /,
O1,..., xn) be a flat coordinate system at qVQ and W be a cubic neighborhood
with respect to this system. Then there exsists a number u0 in / and a
sufficiently small positive number ε such that the point Φ(u, υ), for any pair
(u, v) in [u0, l)x(ι?o —ε, ̂ o + ε), is contained in W (Lemma 1). Moreover, we
have xa(Φ(u, v))=xa(Φ(u0, v)) (l<a<m) and x\Φ(uy v)) = xx(Φ(u, υ0)) (m+l<λ<7i).
Hence the limiting point qv lies on W for v in (z?0 — ε, v0 + ε), satisfying the
equations xa(qv)=xa(Φ(u0, vj) and xx(qv) = xx(qVo). This shows that the extension
obtained by assigning qυ to (1,1;) has the required properties. The uniqueness
follows from Lemma 2.

Let 0»V 3 χ
n) be a flat coordinate system at a point p of Mand IΓbea

cubic neighborhood with respect to the system. Let X=*ΣXa(x\ ..., xm)-j—-
a = l OX

and Y = itY\χm+\ , ̂ )^Λr be differentiable vector fields in W which belong
λ=m+l OX

to TO and 2Ji*, respectively, and are nowhere zero. Let 4? denote the integral
curve of Y with <p(0)=p, ψ that of X with ψ(0)=p and ^(«, v) that of Y with

) = ir(v). Then ?? has the property (D). The surface defined by
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x^x^Viuy υ)) is a two dimensional differentiable surface on which the curves
u=const, and v = const, form an orthogonal net. From this we have

icu=-\\X\\-1-~r\og\\Yl

where tcu and κυ denote the geodesic curvatures, on this surface, of the curves
v — const, and u=const., respectively, and where || || denotes the length of
a vector.

The geodesic curvatures ιcu, κυ and their derivatives }\X\\~1-—/cu, \\ γ\\-λ-^-κΌ

uV Oil

are independent of the choices of the coordinate system and of the parametri-
zations of φ and ψ. We put

K<m,ι = g. I. b [_ιtυ~]p,
pίM,X,Y

peM,X,Y '

Then they may be infinite. We define Kyι*,i and Km*,2 in the same way.

DEFINITION. We call Km.i and Km,2 (resp. Km*,i and Km*,2) the first and
the second curvature of TO (resp! TO*), respectively.

LEMMA 5. Suppose M is complete and either the first curvature of TO* is
non negative or the second curvature of TO* is positive. Let Φbea differentiable
mapping of [0, l ) x / into M with the property (D). If the mapping ΦQ:
u->Φ(u, 0) (uζ [0, 1)) can be extended to a differentiable mapping of I into

l̂(o,o)5 then Φ itself can be extented to a differentiable mapping of Ixl into M
which has the property (D).

PROOF. We define vector fields Z, Y on the image set of Φ by X(UfV) =

—Φ(u9 v) and Y(u υ) = ~Φ(μ9 v) respectively. Our assumption says that either

ιcu vanishes at any point Φ(u, v) or IJZIJ"1-^—tcu is not smaller than Km*, 2OO).
ύv

In the first case, we have for any u in [0, 1) and any v in I

(2)

In the latter case, we have
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log (LI Y(u,v)\\/\\ r(,,<oll) < \[ \\X(u,σ)\\ {L-Km.,2 J* \\X(H,r)\\ dτ\ dσ,

where L= — g.l.b. (ιcu(u9 0))<oo. We shall show the right side of the inequ-
0Su<l

ality is less than L2/̂ m*,2 We have to consider the following three possible
cases:

(i) when L<0, it is negative and hence less than L2/K^*,2,

\\X(u>σ)\\dσ is less than L/Km*,2 then it is

less than L2/Km^2,

(iii) when L is positive and there exists a number vx in [0, v) such that

o \\X(u>σ)\\dσ = L/Kw<)2, we have

\\X(u,σ)\\ \l -Kvy,2 JQ | | Z ( β f τ ) | | d t f dσ

<L^ \\X{u,σ)\\ dσ

Thus we have always

By integration we obtain

(3) \l II Y(σ,v)\\ dσ <eL2lK**>.> Jo || Γ ( σ,0 ) | | dσ.

Because Φo can be extended to a differentiate curve of /, it follows from
(2) and (3) that in either case the curve: σ{ e [Ό, uJ)-+Φ(σ, v) has the length
bounded, for any u and v. Since M is complete, Φ(u, v) converges when v is
flexed and u converges to 1. Defining Φ(l, v) to be the limiting point, we
have an extension which has the property (D) (Lemma 4). It is easily seen
as in the proof of Lemma 4 that this extension is differentiable. Thus our
assertion is proved.

As an immediate consequence of Lemmas 3 and 5 and of dual of them,
we have the following theorem.

THEOREM 1. Suppose that M is complete, and that either one of the first
curvatures of Tl and 97̂ * is non negative or one of the second curvatures of Wl
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and 2ft* is positive. Let φ and ψ be differentiate ways which start from a
point p of M and lie on Vp and Vp respectively. Then there exists unique
differentiate mapping Φφ>Ψ of Ixl into M with property (D) such that
Φφ,ψ(u, ϋ) = φ(μ) Φφ>Ψ(0, v)=ψ(v\ for any u, v in I.

As a corollary of Theorem 1 we have

COROLLARY. Let V and V* denote any leaves of 2ft and 2ft*, respectively,
which have a common point. Under the same assumptions as of Theorem 1,
every leaf of W through a point of V* meets any leaf of '2ft* which meets V.

Let p be any point of M, and Wp denote the union \J {Vq: q e F*}. Then
it is obvious that Wp contains an open neighborhood Up of F * such that
Wp = \j{Vq: qe Up}. This shows that Wp is open set of M [5]. Corollary to
Theorem 1 says that, for any pair p and q of points of M, the open sets Wp

and Wq either coincide or have no common point. Since M is connected we
have

THEOREM 2. Under the same assumptions as of Theorem 1, every leaf of
2ft meets any leaves of 2ft*. In other words, M is represented as the union of
leaves of 2ft (resp. 2ft*) which meet a fixed leaf of 2ft* (resp. 2ft).

2. In what follows we assume that the manifold M with distributions
2ft and 2ft* has the property stated in the conclusion of Theorem 1.

Let φ be a way starting from a point p of M and lying on V*, and ψ be a
way in Vp with starting point p. There exists, for any u (resp. v) in /, a
differentiate way φu in F* (resp. ψv in Vp) which is homotopic to the part of
φ (resp. ψ) from p to φ(u) (resp. ψ(v)). In virtue of our assumption, there
exists a mapping ΦΨu,ψv such that Φφu,ψυ (1, 1) is contained in both Vφ(u) and
V*(υy This point is independent of ways Ψu and ψv (Lemma 3). Assigning
the point to the pair (u, v), we have a mapping ΦψtΨ of Ixl into M which is
continuous and has the property (D). The point Φφ>Ψ (1, 1) depends only on
the homotopy classes [_φ~] and \jψ\\ which contain φ and ψ respectively.
Especially when F* is simply connected, Φφ,ψ(l, 1) is the point determined by
the point q=φ(ΐ) and the homotopy class QVQ which contains ψ. In this case
we have a mapping Φw of Vf into F* ( 1 ) , defined by Φiψi(q) = Φφ,γ (1, 1).

PROPOSITION 2. Suppose V* is simply connected. Then Φιψj is a differen-
tiate covering mapping of V* onto V%(1). Hence if F* ( 1 ) is also simply
connected, it is a diffeomorphism.

PROOF. Let q be the image of a point q under Φtψy Let φ be a way in
F * from p to q. We take a finite set of flat coordinate systems such that cubic
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neighborhoods with respect to them cover the way: v-+Φφtψ(l, v) (v e /). By
the coordinate systems we know that Φίψl is a differentiable local homeomor-
phism. Let q[ be any point of F* ( 1 ) , <Pλ be a way in F* ( 1 ) from ψ(ΐ) to q[.
Putting <P0(u) = Φφifψ-ι(u, 1) and 0>o(l)=?i we have ΦψQ,Ψ(l, l)=q[, that is,
Φw(q1)=q'u which proves that Φw is a surjection. Let U be any simply
connected open set in F* ( 1 ) , and Uo be a connected component of the inverse
image Φ^ (U). It can be easily seen that the restriction of Φ^^ to Uo is a
univalent mapping onto U and hence homeomorphism. Thus ϋP^ is a cover-
ing mapping.

We assume that a leaf F* of TO* is simply connected. Let p be a point
of F* and ψ be a way in Vp from p to a common point of F* and F/>. In virtue
of Proposition 2, we have the diffeomorphism 0 ^ of F* onto itself which
sends any point q into the intersection F*AF ? . The set of these diffeomor-
phisms forms a group. The group is the same for all points p in F*, and is
denoted by G(F*).

Naturally an equivalence relation in F* is introduced by the group
G(F*). We introduce the strongest topology in the factor set V*/G(V*) that
makes the natural mapping Π of F * into V*/G(V*) continuous. Then its
open sets are subsets whose inverse images under Π are open in F*. If Ϊ7*
is an open set of F*, then g(U*) is open in F* for any member g of G(F*).
Hence Π~ι(Π(U*)) is open, that is, ZΓ is an open mapping.

We introduce the quotient topology [4] in the set M/Sΰl of leaves of Wl
by the family of open sets

{U: Πvι(JJ) is open in M}

where Πo means the natural mapping of M onto M/Sΰl. The mapping Πo is
an open and continuous mapping [4].

Let F be any leaf of Wl, and q be any common point of Fand F * (Theorem
2). The element Π(q) of V*/G(V*) is independent of the choice of the common
point. Assigning Π(q) to F, we have a mapping α: of M/Wl onto F*/£(F*).

THEOREM 3. Suppose that a differentiable manifold M and two distribu-
tions Wl and TO* have the property stated in the conclusion of Theorem 1. //
a leaf V* of TO* is simply connected, the space M/TO of the leaves of TO is
homeomorphic to the quotient space V*/G(V*).

PROOF. We shall show the mapping a is a homeomorphism. It is obvious
that a is a univalent mapping of M/TO onto V*/G(V*).

Let Z7* be any open set of V*. Then the union W of leaves of TO which
meet Z7* is an open set of M [5]. We have
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This shows a is continuous, because both Πo and Π are open mappings. On
the other hand, if W is an open set of M, we have

where W denotes the union of leaves of Wl which meet W. The set W is
open in M and hence F* r\ W is open in F*. It follows from the above equation
that a is an open mapping. Our assertion is thereby proved.

We shall consider the subgroup Hq of G(F*) each of whose elements
leaves a point q of F* fixed. The subgroup consists of such elements 0 w ' s
that ψ's are closed way with end points q, and is a homomorphic image of the
fundamental group τt\iy^ q) of the leaf Vq. If qι is another point of F * which
is also in Vq, Hq and HQl are conjugate subgroups of £(F*).

Let Lq denote the kernel of the homomorphism: %\(yq, q)-+Hq. Then Lq,
for any points q of F*, are isomorphic to one another. In fact, if q is any
other point of F* and ψ is a way from q to q\ then we have for any class [_ψ~]
in Lq

where ψx denote the way defined by ψι(V) = Φφ>ψ(l, v). The class \jψ\] being in
Lq, Φzψo *s ^ e identity mapping of F*, and hence the class Q îD is an element
of Lqx. We assign CViH to [_ψ~2 to have an isomorphism of Lq onto Z^.

If follows immediately from above property of the L/s that, if there
exists at least a simply connected one among the leaves of TO, Lq for any
point q of F* is the trivial subgroup of τΐι(Vq, q) and Hq is isomorphic to
πi(Vq, q). This proves the first half of the following theorem.

THEOREM 4. Let assumptions be as in Theorem 3. If there exists at least
one leaf of 3JΪ which is simply connected and if two leaves Vq and Vq, (q, q € F*)
of Wl are homeomorphic, then the groups Hp and Hq, are isomorphic to each
other. On the other hand, if Hq and ΐlq, are conjugate subgroups of G(F*), the
leaves Vq and Vq> of Wl are diffeomorphic to each other.

PROOF. We have to prove the latter half. Our assumption says that
there exists an element g of £(F*) such that Hq=g~1Hq,g. Since the point
q//=g"1(qf) is contained in Vqr and Hq,, coincides with g^H^g, it is sufficient
to prove this when Hq and Hq, coincide.

Let φ be a way in F* from q to q\ qι be any point of Vq and Vi be a way
in Vq from q to qλ. Then the point Φφ,Ψl(l, 1) is independent of the chice of
the way ψ. We shall show that it is independent also of the way ψx. Let ψ2

be another way. We have, from ψλ and Ψΐ1, & closed way ψ in Vq. It follows
from our assumption Φ^Ψi leaves the point q invariant. This shows
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ΦφtΨl(l9 l) = Φφitφ2(l, 1) and proves our assertion. It is easy to show that the
mapping: q-+Φφtψ(X, 1) is a diffeomorphism of Vq onto Fβ,.

One of the next examples shows that the conclusion of Theorem 4 is not
true when there exists no simply connected leaf of Wl. The other shows that
there occurs the case where subgroups Hq and Hq, are isomorphic but not
conjugate even when leaves Vq and Vqr are homeomorphic.

EXAMPLE. In the two dimensional Euclidean space R2 we introduce the
equivalence relation p: P(χ9y) = P(χ'9y') if and only if x=x (mod 1) and / =
(—ΐ)x~x'y. Let M denote the quotient space R2/p. Let Uι denote the domain
{P(xu yd'- 0 < A ; I < 1 } of M and h the homeomorphism: p(xu yi)-+(xi9 yi). Let
U2 denote the domain {P(χ2, y2): i <.χ2 < f} and h2 the homeomorphism:
p(x29 y2)-+(χ29 y2). Then (Ui9 hi) (ί = l9 2) are two charts in M related analyti-
cally. Thus M is an analytic manifold. The manifold M has the Riemannian
metric ds2 = (dxι)2-\-(dyi)2 in (xi9 yi) and ds2 — (dx2)

2jr(dy2) in (x29 y2\

Let 9Jii and 5W2 be one dimensional distributions with the base vector
fields Xι and X2, respectively, which are defined as follows:

, d , 9 , ^ 9

d d . . d
dx2 " dx2 ^ ζ2 dy2

where the functions ξi (ί — 1, 2) are given by

The leaves of the distribution Tlf (±Wli) are the geodecics xλ — const, and
x2 = l, and every leaf of Wl1 is a closed curve. Let F* be the geodesic defined
by #2 = 1, qι (i = 0, 1) be the point with coordinates Λ; 2(^ 0)=^2(^I) = 1, y2(qo) = O,
y2(qι) = l. Then F ί o is homeomorphic to VQl. But iyίo is isomorphic to the
group of order two, and HQι is the trivial.

The distribution Tl2 has, in [/",- G = l, 2), a local base 7, :

All of the leaves of ffll* are homeomorphic to a line. Let Ff denote the leaf
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of Wl* through the point p0 (χι(po)=i, yi(po) =0). If px is a common point of
Vf and the leaf of Wl2 through the point (χi,yi) = (i9 1), then the group HPo

and HPl are isomorphic to the additive group of integers, but they do not
coincide.

We do not know whether every member of G(F*) can be extended to an
automorphism of M which leaves invariant the decomposition of M by the
leaves of 9JI and 2JI*. But we have the following theorem.

THEOREM 5. Let assumptions be as in Theorem 3. If an element of G(V*)
belongs to the center of the group, it can be extended to a diffeomorphism of M
which sends any point of M into the intersection of the leaves of Wl and 2ft*
which contains the point.

PROOF. Let g0 be an element of the center of G(F*). Let q be a point
of M and q be a point of F* which lies on Vq>. Let ψ be a way in Vq, from q
to q and φ a way in F* from q to go(q). We shall show that the point
Φφ,ψ(l, 1) is independent of the choices of q, φ and ψ. In fact, let qλ be another
point in Vq,r\ V*, ψι be a way in Vq> from qx to q and Ψι be a way in F* from
?i to go(qi). The ways ^ and ψΐ1 define an element g of G(F*). The diffeomor-
phism go being in the center of G(V*\ we have

go (qθ = go (g (?)) = g (go (g))

This shows that Φφi>ΛJri(l, l) = Φφ>ψ(l, 1), which proves our assertion. Hence
we can define a mapping g0 of M into M by go(q) = Φφtφ(l, 1). We know easily
that £o is differentiate and go(?O is contained in the intersection V^ίλVp.
Considering the inverse element go S we know g0 is an diffeomorphism of M
onto Λf. Our theorem is thereby proved.

In conclusion, I wish to express my hearty thanks to Prof. K. Morinaga
for his kind suggestions and encouragement during the preparation of this
paper.
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