On Decompositions of Riemannian Manifolds.

Китао Мічаяніта

(Received March 10, 1965)

Introduction. In a homogeneous space G/H, each of its points is a coset of a closed subgroup H of a Lie group G, that is, G/H is based on the decomposition of G into the leaves (maximal integral manifolds) of the Lie algebra of H. Generalizing, from this point of view, the notion of a homogeneous space, we have that of a foliation M/\mathfrak{M} in the sense of \mathcal{R} . Palais [4], which consists of leaves of an involutive distribution \mathfrak{M} on a differentiable manifold M, together with the topology induced from M (see p. 82). Foliations in more general spaces have been treated by C. Ehresmann [2], G. Reeb [5] and A. Haefliger [3].

In the present paper we shall investigate the decomposition of a Riemannian manifold M into the leaves of an involutive distribution \mathfrak{M} which has the involutive orthogonal complement \mathfrak{M}^* . At first it will be tried to represent the foliation M/\mathfrak{M} with a leaf V^* of \mathfrak{M}^* . This requires that the leaf should meet all the leaves of \mathfrak{M} . We shall find a sufficient condition of that in terms of certain quantities related to a family of geodesic curvatures (Theorem 2). Under this condition, for any simply connected leaf V^* of \mathfrak{M}^* , we have the relation:

$$M/\mathfrak{M} \cong V^*/G(V^*)$$

(Theorem 3), where $G(V^*)$ denotes the group of diffeomorphisms of V^* which make the intersection of V^* and each leaf of \mathfrak{M} invariant. Let H_p be the subgroup of $G(V^*)$ consisting of elements which make a point p invariant. Then, if H_p and H_q are conjugate subgroups, it will be shown that the leaves of \mathfrak{M} through p and q are diffeomorphic. And, if one of the leaves of \mathfrak{M} is simply connected, if the leaves of \mathfrak{M} through p and q are homeomorphic, then H_q and H_p are isomorphic (Theorem 4). Finally we shall show that, when $G(V^*)$ is abelian, its elements can be extended to diffeomorphisms of Mwhich make the decomposition of M invariant (Theorem 5).

1. Let M be an *n*-dimensional differentiable¹⁾ manifold with countable base. Let us be given an *m*-dimensional involutive distribution \mathfrak{M} on M. Since, as is well known, M can be given a Riemannian structure, we have, at any point

¹⁾ By "differentiable" we always mean "of class C^{∞} ".

p of M, the orthogonal complement \mathfrak{M}_p^* of \mathfrak{M}_p with respect to the metric. Assigning \mathfrak{M}_p^* to p, we have a differentiable distribution \mathfrak{M}^* on M. We shall assume that \mathfrak{M}^* is involutive. It is the case when \mathfrak{M} is of dimension n-1.

In the first place, we shall show the existence of a certain class of coordinate systems on M which will be called *flat* coordinate systems.

PROPOSITION 1. At any point p of M, there exist a coordinate system $(x^1, ..., x^n)$ and a cubic neighborhood W with respect to the system which satisfy the following conditions: (i) $x^i(p)=0$ $(1 \le i \le n)$; (ii) if $\xi^i(1 \le i \le n)$ are numbers smaller in absolute value than the breadth of W, then the slice of W defined by the equations $x^{\lambda} = \xi^{\lambda}$ $(m+1 \le \lambda \le n)$ is an integral manifold of \mathfrak{M} , while the slice defined by $x^a = \xi^a$ $(1 \le a \le m)$ is an integral manifold of \mathfrak{M}^* .

PROOF. There exists a coordinate system $(y^1, ..., y^n)$ with the following properties: $y^i(p)=0$; the system of m vector fields $X_a = -\frac{\partial}{\partial y^a}$ $(1 \le a \le m)$ forms a local base for \mathfrak{M} around p. Let $\left\{Y_{\lambda} = \sum_{i=1}^{n} Y_{\lambda}^i(y) \cdot \frac{\partial}{\partial y^i} : m+1 \le \lambda \le n\right\}$ be a local base for \mathfrak{M}^* around p. Since \mathfrak{M}^* is involutive, the system of differentiable equations

(1)
$$Y_{\lambda}x = 0 \quad (m+1 \leq \lambda \leq n),$$

has *m* independent solutions $x^1, ..., x^m$ with $x^a(0)=0$. Since \mathfrak{M}_p and \mathfrak{M}_p^* are orthogonal, the vectors $(X_a)_p$, $(Y_\lambda)_p$ are linearly independent and the determinant $|Y_{\mu}^{\lambda}(0)|$ does not vanish. This and the equations (1) infer that the functional determinant $\partial(x^1, ..., x^m)/\partial(y^1, ..., y^m)$ does not vanish at y=0. Putting $x^{\lambda}=y^{\lambda}$ $(m+1\leq\lambda\leq n)$, we have a coordinate system $(x^1,...,x^n)$ at p with $x^i(p)=0$. In the coordinates, \mathfrak{M} has the system of vector fields $\left\{\frac{\partial}{\partial x^a}: 1\leq a\leq m\right\}$ as its local base around p, while \mathfrak{M}^* has $\left\{\frac{\partial}{\partial x^{\lambda}}: m+1\leq\lambda\leq n\right\}$ as its local base. Thus the coordinates $x^1,...,x^n$ are proved to have the required properties.

We shall consider mappings $\boldsymbol{\Phi}$ of the product space $J_1 \times J_2$ of two intervals J_1, J_2 in the real line into M which have the following property (D): whenever pairs (u_i, v_j) (i, j=1, 2) are in $J_1 \times J_2$ the points $\boldsymbol{\Phi}(u_1, v_j)$ are contained in the same leaf of \mathfrak{M} , while $\boldsymbol{\Phi}(u_i, v_1)$ are in the same leaf of \mathfrak{M}^* .

LEMMA 1. Let $\boldsymbol{\Phi}$ be a continuous mapping of $J_1 \times J_2$ into M with the property (D). Let W be a cubic neighborhood of M with respect to a flat coordinate system. If the points $\boldsymbol{\Phi}(u, v_0)$ ($u \in [u_0, u_1) \subset J_1$) and $\boldsymbol{\Phi}(u_0, v)$ ($v \in [v_0, v_1) \subset J_2$) are contained in W, so is the point $\boldsymbol{\Phi}(u, v)$ for every pair (u, v)

 $in [u_0, u_1) \times [v_0, v_1).$

PROOF. We denote the coordinates by x^1, \ldots, x^m . Let v_2 be any number in (v_0, v_1) and u_2 the least upper bound of u such that $\boldsymbol{\varPhi}(u', v)$ is in W for any pair $(u', v) \in [u_0, u) \times [v_0, v_2]$. Since $\boldsymbol{\varPhi}$ is continuous, u_2 is different from u_0 . Since M has a countable base, there exist at most countably many slices of Wwhich are contained in a leaf of \mathfrak{M} [1]. Hence $\boldsymbol{\varPhi}(u, v)$, for any $v \in [v_0, v_2]$ and a fixed $u \in [u_0, u_2)$, are contained in the same slice of W, that is, $x^{\lambda}(\boldsymbol{\varPhi}(u, v))$ $= x^{\lambda}(\boldsymbol{\varPhi}(u, v_0)) (m+1 \leq \lambda \leq n)$. In the same way we have $x^a(\boldsymbol{\varPhi}(u, v)) = x^a(\boldsymbol{\varPhi}(u_0, v))$ $(1 \leq a \leq m)$, for $(u, v) \in [u_0, u_2) \times [v_0, v_2]$. From this it follows directly that u_2 is equal to u_1 , and our lemma is proved.

The next lemma follows immediately from Lemma 1.

LEMMA 2. If Φ_1 and Φ_2 are two continuous mappings of $J_1 \times J_2$ into M which have the property (D) and if they coincide on subsets $\{u_0\} \times J_2$ and $J_1 \times \{v_0\}$, then they coincide on the whole $J_1 \times J_2$.

For convenience, we denote by V_p (resp. V_p^*) the leaf of \mathfrak{M} (resp. \mathfrak{M}^*) through a point p of M, and by I the closed interval [0, 1].

LEMMA 3. Let p be a point of M. Let φ be a way in V_p^* with starting point p (i.e., φ is continuous mapping of I into V_p^* with $\varphi(0)=p$), and ψ a way in V_p with starting point p. Then there exist a positive number u_0 and a continuous mapping $\boldsymbol{\Phi}$ of $[0, u_0) \times I$ into M with the property (D) such that $\boldsymbol{\Phi}(u, 0) = \varphi(u)$ and $\boldsymbol{\Phi}(0, v) = \psi(v)$. If ψ_1 is a way from p to $\psi(1)$ and homotopic in V_p to ψ , we have

$$\Phi_1(u, 1) = \Phi(u, 1)$$
 (0 $\leq u < min. (u_0, u_1)$)

where Φ_1 is a mapping of $[0, u_1) \times I$ which has the similar property to those of Φ .

PROOF. There exists a family of flat coordinate systems $(x_k^1, ..., x_k^n)$ $(1 \le k \le N)$ and increasing sequence of numbers $0 = v_0, v_1, ..., v_{N-1}, v_N = 1$ such that cubic neighborhoods W_k with respect to these systems cover the way ψ and that $\psi(v)$, for $v \in [v_{k-1}, v_k]$, is contained in W_k .

Since φ is continuous, there exists a positive number u_1 such that $\varphi(u)$, for $u \in [0, u_1)$, is contained in W_1 . For any pair (u, v) in $[0, u_1) \times [0, v_1]$ we obtain the point $\boldsymbol{\Phi}(u, v)$ uniquely determined by the equations

$$\begin{aligned} x_1^a(\boldsymbol{\emptyset}(u, v)) &= x_1^a(\boldsymbol{\psi}(v)) \qquad (1 \leq a \leq m), \\ x_1^\lambda(\boldsymbol{\emptyset}(u, v)) &= x_1^\lambda(\boldsymbol{\varphi}(u)) \qquad (m+1 \leq \lambda \leq n). \end{aligned}$$

Since $\psi(v_1)$ is contained in W_2 , there exists a number u_2 in $(0, u_1]$ such that $\boldsymbol{\varPhi}(u, v_1)$, for $u \in [0, u_2)$, is in W_2 . Hence a point $\boldsymbol{\varPhi}(u, v)$, for any pair $(u, v) \in [0, u_2) \times [v_1, v_2]$, is uniquely determined by equations

$$\begin{aligned} x_2^a(\boldsymbol{\varPhi}(u,v)) &= x_2^a(\boldsymbol{\psi}(v)) \qquad (1 \leq a \leq m), \\ x_2^\lambda(\boldsymbol{\varPhi}(u,v)) &= x_2^\lambda(\boldsymbol{\varPhi}(u,v_1)) \qquad (m+1 \leq \lambda \leq n). \end{aligned}$$

After finite steps like this, we obtain the positive number $u_0 = u_N$ and the points $\mathcal{O}_{(u,v)}$, for all (u, v) in $[0, u_0) \times I$, which belong to the intersection $V_{\varphi(u)} \cap V^*_{\varphi(v)}$. The mapping \mathcal{O} of $[0, u_0) \times I$ into M defined by $(u, v) \rightarrow \mathcal{O}(u, v)$ is clearly continuous and has the required properties. We know from Lemma 2 that \mathcal{O} is the unique mapping of $[0, u_0) \times I$ into M which has these properties.

Let ψ' be a way from p to $\psi(1)$ lying on V_p such that, for each k, any point $\psi'(v)$ ($v \in [v_{k-1}, v_k]$) belongs to W_k . Let \mathscr{O}' be the mapping constructed from φ and ψ' , in the same way as \mathscr{O} is done from φ and ψ . Then we have $\mathscr{O}'(u, 1) = \mathscr{O}(u, 1)$ for any $u \in [0, u_0)$. From this and our assumption that the way ψ_1 is homotopic in V_p to ψ , we have $\mathscr{O}_1(u, 1) = \mathscr{O}(u, 1)$.

REMARK. $\boldsymbol{\Phi}$ is differentiable if φ and ψ are differentiable.

LEMMA 4. Let $\boldsymbol{\Phi}$ be a continuous mapping of $[0, 1) \times I$ into M with the property (D). If $\boldsymbol{\Phi}(u, v)$ converges, for each v in I, when u converges to 1, then $\boldsymbol{\Phi}$ can be extended uniquely to a continuous mapping $I \times I$ into M with the property (D).

PROOF. Let q_v denot the limiting point. Let v_0 be any number in I, (x^1, \dots, x^n) be a flat coordinate system at q_{v_0} and W be a cubic neighborhood with respect to this system. Then there exsists a number u_0 in I and a sufficiently small positive number ε such that the point $\boldsymbol{\varPhi}(u, v)$, for any pair (u, v) in $[u_0, 1) \times (v_0 - \varepsilon, v_0 + \varepsilon)$, is contained in W (Lemma 1). Moreover, we have $x^a(\boldsymbol{\varPhi}(u, v)) = x^a(\boldsymbol{\varPhi}(u_0, v))$ $(1 \le a \le m)$ and $x^\lambda(\boldsymbol{\varPhi}(u, v)) = x^\lambda(\boldsymbol{\varPhi}(u, v_0))$ $(m+1 \le \lambda \le n)$. Hence the limiting point q_v lies on W for v in $(v_0 - \varepsilon, v_0 + \varepsilon)$, satisfying the equations $x^a(q_v) = x^a(\boldsymbol{\varPhi}(u_0, v))$ and $x^\lambda(q_v) = x^\lambda(q_{v_0})$. This shows that the extension obtained by assigning q_v to (1, v) has the required properties. The uniqueness follows from Lemma 2.

Let (x^1, \dots, x^n) be a flat coordinate system at a point p of M and W be a cubic neighborhood with respect to the system. Let $X = \sum_{a=1}^{m} X^a(x^1, \dots, x^m) \frac{\partial}{\partial x^a}$ and $Y = \sum_{\lambda=m+1}^{n} Y^{\lambda}(x^{m+1}, \dots, x^n) \frac{\partial}{\partial x^{\lambda}}$ be differentiable vector fields in W which belong to \mathfrak{M} and \mathfrak{M}^* , respectively, and are nowhere zero. Let φ denote the integral curve of Y with $\varphi(0) = p$, ψ that of X with $\psi(0) = p$ and $\eta(u, v)$ that of Y with $\eta(0, v) = \psi(v)$. Then η has the property (D). The surface defined by

 $x^i = x^i (\eta(u, v))$ is a two dimensional differentiable surface on which the curves u = const. and v = const. form an orthogonal net. From this we have

$$\kappa_{u} = - \|X\|^{-1} \frac{\partial}{\partial v} \log \|\dot{Y}\|,$$

$$\kappa_{v} = - \|Y\|^{-1} \frac{\partial}{\partial u} \log \|X\|,$$

where κ_u and κ_v denote the geodesic curvatures, on this surface, of the curves v = const. and u = const., respectively, and where $|| \quad ||$ denotes the length of a vector.

The geodesic curvatures κ_u , κ_v and their derivatives $||X||^{-1} \frac{\partial}{\partial v} \kappa_u$, $||Y||^{-1} \frac{\partial}{\partial u} \kappa_v$ are independent of the choices of the coordinate system and of the parametrizations of φ and ψ . We put

$$K_{\mathfrak{M},1} = \underset{p \in M, X, Y}{g. l. b} [\kappa_v]_p,$$
$$K_{\mathfrak{M},2} = \underset{p \in M, X, Y}{g. l. b} [||Y||^{-1} \frac{\partial}{\partial u} \kappa_v]_p$$

Then they may be infinite. We define $K_{\mathfrak{M}^{*},1}$ and $K_{\mathfrak{M}^{*},2}$ in the same way.

DEFINITION. We call $K_{\mathfrak{M},1}$ and $K_{\mathfrak{M},2}$ (resp. $K_{\mathfrak{M}^*,1}$ and $K_{\mathfrak{M}^*,2}$) the first and the second curvature of \mathfrak{M} (resp. \mathfrak{M}^*), respectively.

LEMMA 5. Suppose M is complete and either the first curvature of \mathfrak{M}^* is non negative or the second curvature of \mathfrak{M}^* is positive. Let $\boldsymbol{\Phi}$ be a differentiable mapping of $[0, 1) \times I$ into M with the property (D). If the mapping $\boldsymbol{\Phi}_0$: $u \rightarrow \boldsymbol{\Phi}(u, 0)$ ($u \in [0, 1)$) can be extended to a differentiable mapping of I into $V_{\boldsymbol{\Phi}(0,0)}^*$, then $\boldsymbol{\Phi}$ itself can be extended to a differentiable mapping of $I \times I$ into M which has the property (D).

PROOF. We define vector fields X, Y on the image set of \mathcal{O} by $X_{(u,v)} = \frac{\partial}{\partial v} \mathcal{O}(u, v)$ and $Y_{(u,v)} = \frac{\partial}{\partial u} \mathcal{O}(u, v)$ respectively. Our assumption says that either κ_u vanishes at any point $\mathcal{O}(u, v)$ or $||X||^{-1} \frac{\partial}{\partial v} \kappa_u$ is not smaller than $K_{\mathfrak{M}^*, 2}(>0)$. In the first case, we have for any u in [0, 1) and any v in I

(2)
$$\int_0^u \|Y_{(\sigma,v)}\| d\sigma = \int_0^u \|Y_{(\sigma,0)}\| d\sigma.$$

In the latter case, we have

Kumao Miyashita

$$\log (\|Y_{(u,v)}\|/\|Y_{(u,0)}\|) \leq \int_0^v \|X_{(u,\sigma)}\| \left\{ L - K_{\mathfrak{M}^*,2} \int_0^\sigma \|X_{(u,\tau)}\| d\tau \right\} d\sigma,$$

where $L = -g_{0 \le u \le 1} l.b. (\kappa_u(u, 0)) < \infty$. We shall show the right side of the inequality is less than $L^2/K_{\mathbb{R}^*,2}$. We have to consider the following three possible cases:

(i) when $L \leq 0$, it is negative and hence less than $L^2/K_{\mathfrak{M}^*,2}$,

(ii) when L is positive and $\int_0^v ||X_{(u,\sigma)}|| d\sigma$ is less than $L/K_{\mathfrak{M}^*,2}$ then it is less than $L^2/K_{\mathfrak{M}^*,2}$,

(iii) when L is positive and there exists a number v_1 in [0, v) such that $\int_0^{v_1} ||X_{(u,\sigma)}|| d\sigma = L/K_{\mathfrak{M}^*,2}$, we have

$$\begin{split} & \int_{0}^{v} \|X_{(u,\sigma)}\| \left\{ L - K_{\mathfrak{W}^{*},2} \int_{0}^{\sigma} \|X_{(u,\tau)}\| d\tau \right\} d\sigma \\ & < L \int_{0}^{v_{1}} \|X_{(u,\sigma)}\| d\sigma + \int_{v_{1}}^{v} \|X_{(u,\sigma)}\| \left\{ L - K_{\mathfrak{W}^{*},2} \int_{0}^{\sigma} \|X_{(u,\tau)}\| d\tau \right\} d\sigma \\ & < L \int_{0}^{v_{1}} \|X_{(u,\sigma)}\| d\sigma = L^{2}/K_{\mathfrak{W}^{*},2}. \end{split}$$

Thus we have always

$$\log (\|Y_{(u,v)}\|/\|Y_{(u,\sigma)}\|) < L^2/K_{\mathfrak{M}^*,2}.$$

By integration we obtain

(3)
$$\int_{0}^{u} \|Y_{(\sigma,v)}\| d\sigma < e^{L^{2}/K_{\mathfrak{M}^{n},2}} \int_{0}^{u} \|Y_{(\sigma,0)}\| d\sigma$$

As an immediate consequence of Lemmas 3 and 5 and of dual of them, we have the following theorem.

THEOREM 1. Suppose that M is complete, and that either one of the first curvatures of \mathfrak{M} and \mathfrak{M}^* is non negative or one of the second curvatures of \mathfrak{M}

80

and \mathfrak{M}^* is positive. Let φ and ψ be differentiable ways which start from a point p of M and lie on V_p^* and V_p respectively. Then there exists unique differentiable mapping $\boldsymbol{\Phi}_{\varphi,\psi}$ of $I \times I$ into M with property (D) such that $\boldsymbol{\Phi}_{\varphi,\psi}(u,0) = \varphi(u) \quad \boldsymbol{\Phi}_{\varphi,\psi}(0,v) = \psi(v)$, for any u, v in I.

As a corollary of Theorem 1 we have

COROLLARY. Let V and V* denote any leaves of \mathfrak{M} and \mathfrak{M}^* , respectively, which have a common point. Under the same assumptions as of Theorem 1, every leaf of \mathfrak{M} through a point of V* meets any leaf of \mathfrak{M}^* which meets V.

Let p be any point of M, and W_p denote the union $\cup \{V_q: q \in V_p^*\}$. Then it is obvious that W_p contains an open neighborhood U_p of V_p^* such that $W_p = \bigcup \{V_q: q \in U_p\}$. This shows that W_p is open set of M [5]. Corollary to Theorem 1 says that, for any pair p and q of points of M, the open sets W_p and W_q either coincide or have no common point. Since M is connected we have

THEOREM 2. Under the same assumptions as of Theorem 1, every leaf of \mathfrak{M} meets any leaves of \mathfrak{M}^* . In other words, M is represented as the union of leaves of \mathfrak{M} (resp. \mathfrak{M}^*) which meet a fixed leaf of \mathfrak{M}^* (resp. \mathfrak{M}).

2. In what follows we assume that the manifold M with distributions \mathfrak{M} and \mathfrak{M}^* has the property stated in the conclusion of Theorem 1.

Let φ be a way starting from a point p of M and lying on V_p^* , and ψ be a way in V_p with starting point p. There exists, for any u (resp. v) in I, a differentiable way φ_u in V_p^* (resp. ψ_v in V_p) which is homotopic to the part of φ (resp. ψ) from p to $\varphi(u)$ (resp. $\psi(v)$). In virtue of our assumption, there exists a mapping $\mathcal{O}_{\varphi_u,\psi_v}$ such that $\mathcal{O}_{\varphi_u,\psi_v}$ (1, 1) is contained in both $V_{\varphi(u)}$ and $V_{\psi(v)}^*$. This point is independent of ways φ_u and ψ_v (Lemma 3). Assigning the point to the pair (u, v), we have a mapping $\mathcal{O}_{\varphi,\psi}$ of $I \times I$ into M which is continuous and has the property (D). The point $\mathcal{O}_{\varphi,\psi}$ (1, 1) depends only on the homotopy classes $[\varphi]$ and $[\psi]$ which contain φ and ψ respectively. Especially when V_p^* is simply connected, $\mathcal{O}_{\varphi,\psi}(1, 1)$ is the point determined by the point $q = \varphi(1)$ and the homotopy class $[\psi]$ which contains ψ . In this case we have a mapping $\mathcal{O}_{[\psi]}$ of V_p^* into $V_{\psi(1)}^*$, defined by $\mathcal{O}_{[\psi]}(q) = \mathcal{O}_{\varphi,\psi}(1, 1)$.

PROPOSITION 2. Suppose V_p^* is simply connected. Then $\boldsymbol{\Phi}_{\lfloor \psi \rfloor}$ is a differentiable covering mapping of V_p^* onto $V_{\psi(1)}^*$. Hence if $V_{\psi(1)}^*$ is also simply connected, it is a diffeomorphism.

PROOF. Let q' be the image of a point q under $\boldsymbol{\Phi}_{\llbracket \psi \rrbracket}$. Let φ be a way in V_p^* from p to q. We take a finite set of flat coordinate systems such that cubic

neighborhoods with respect to them cover the way: $v \to \mathbf{0}_{\varphi,\psi}(1, v)$ ($v \in I$). By the coordinate systems we know that $\mathbf{0}_{[\psi]}$ is a differentiable local homeomorphism. Let q'_1 be any point of $V^*_{\psi(1)}$, φ_1 be a way in $V^*_{\psi(1)}$ from $\psi(1)$ to q'_1 . Putting $\varphi_0(u) = \mathbf{0}_{\varphi_1,\psi-1}(u, 1)$ and $\varphi_0(1) = q_1$ we have $\mathbf{0}_{\varphi_0,\psi}(1, 1) = q'_1$, that is, $\mathbf{0}_{[\psi]}(q_1) = q'_1$, which proves that $\mathbf{0}_{[\psi]}$ is a surjection. Let U be any simply connected open set in $V^*_{\psi(1)}$, and U_0 be a connected component of the inverse image $\mathbf{0}_{[\psi]}^{-1}(U)$. It can be easily seen that the restriction of $\mathbf{0}_{[\psi]}$ to U_0 is a univalent mapping onto U and hence homeomorphism. Thus $\mathbf{0}_{[\psi]}$ is a covering mapping.

We assume that a leaf V^* of \mathfrak{M}^* is simply connected. Let p be a point of V^* and ψ be a way in V_p from p to a common point of V^* and V_p . In virtue of Proposition 2, we have the diffeomorphism $\mathfrak{O}_{\lfloor \psi \rfloor}$ of V^* onto itself which sends any point q into the intersection $V^* \cap V_q$. The set of these diffeomorphisms forms a group. The group is the same for all points p in V^* , and is denoted by $G(V^*)$.

Naturally an equivalence relation in V^* is introduced by the group $G(V^*)$. We introduce the strongest topology in the factor set $V^*/G(V^*)$ that makes the natural mapping Π of V^* into $V^*/G(V^*)$ continuous. Then its open sets are subsets whose inverse images under Π are open in V^* . If U^* is an open set of V^* , then $g(U^*)$ is open in V^* for any member g of $G(V^*)$. Hence $\Pi^{-1}(\Pi(U^*))$ is open, that is, Π is an open mapping.

We introduce the quotient topology [4] in the set M/\mathfrak{M} of leaves of \mathfrak{M} by the family of *open* sets

 $\{U: \Pi_0^{-1}(U) \text{ is open in } M\}$

where Π_0 means the natural mapping of M onto M/\mathfrak{M} . The mapping Π_0 is an open and continuous mapping [4].

Let V be any leaf of \mathfrak{M} , and q be any common point of V and V* (Theorem 2). The element $\Pi(q)$ of $V^*/G(V^*)$ is independent of the choice of the common point. Assigning $\Pi(q)$ to V, we have a mapping α of M/\mathfrak{M} onto $V^*/G(V^*)$.

THEOREM 3. Suppose that a differentiable manifold M and two distributions \mathfrak{M} and \mathfrak{M}^* have the property stated in the conclusion of Theorem 1. If a leaf V^* of \mathfrak{M}^* is simply connected, the space M/\mathfrak{M} of the leaves of \mathfrak{M} is homeomorphic to the quotient space $V^*/G(V^*)$.

PROOF. We shall show the mapping α is a homeomorphism. It is obvious that α is a univalent mapping of M/\mathfrak{M} onto $V^*/G(V^*)$.

Let U^* be any open set of V_p^* . Then the union W of leaves of \mathfrak{M} which meet U^* is an open set of M [5]. We have

$$\Pi_0(W) = \alpha^{-1} \big(\Pi(U^*) \big).$$

This shows α is continuous, because both Π_0 and Π are open mappings. On the other hand, if W is an open set of M, we have

$$\alpha(\Pi_0(W)) = \Pi(V^* \cap W'),$$

where W' denotes the union of leaves of \mathfrak{M} which meet W. The set W' is open in M and hence $V^* \cap W'$ is open in V^* . It follows from the above equation that α is an open mapping. Our assertion is thereby proved.

We shall consider the subgroup H_q of $G(V^*)$ each of whose elements leaves a point q of V^* fixed. The subgroup consists of such elements $\mathbf{\Phi}_{[\psi]}$'s that ψ 's are closed way with end points q, and is a homomorphic image of the fundamental group $\pi_1(V_q, q)$ of the leaf V_q . If q_1 is another point of V^* which is also in V_q , H_q and H_{q_1} are conjugate subgroups of $G(V^*)$.

Let L_q denote the kernel of the homomorphism: $\pi_1(V_q, q) \rightarrow H_q$. Then L_q , for any points q of V^* , are isomorphic to one another. In fact, if q' is any other point of V^* and φ is a way from q to q', then we have for any class $[\psi]$ in L_q

$${\mathbf I}_{[\psi_1]} = {\mathbf I}_{[\psi]}$$

where ψ_1 denote the way defined by $\psi_1(V) = \mathbf{0}_{\varphi,\psi}(1, v)$. The class $[\psi]$ being in $L_q, \mathbf{0}_{[\psi_1]}$ is the identity mapping of V^* , and hence the class $[\psi_1]$ is an element of L_{q_1} . We assign $[\psi_1]$ to $[\psi]$ to have an isomorphism of L_q onto L_{q_1} .

If follows immediately from above property of the L_q 's that, if there exists at least a simply connected one among the leaves of \mathfrak{M} , L_q for any point q of V^* is the trivial subgroup of $\pi_1(V_q, q)$ and H_q is isomorphic to $\pi_1(V_q, q)$. This proves the first half of the following theorem.

THEOREM 4. Let assumptions be as in Theorem 3. If there exists at least one leaf of \mathfrak{M} which is simply connected and if two leaves V_q and $V_{q'}$ $(q, q' \in V^*)$ of \mathfrak{M} are homeomorphic, then the groups H_p and $H_{q'}$ are isomorphic to each other. On the other hand, if H_q and $H_{q'}$ are conjugate subgroups of $G(V^*)$, the leaves V_q and $V_{q'}$ of \mathfrak{M} are diffeomorphic to each other.

PROOF. We have to prove the latter half. Our assumption says that there exists an element g of $G(V^*)$ such that $H_q = g^{-1}H_{q'g'}$. Since the point $q'' = g^{-1}(q')$ is contained in $V_{q'}$ and $H_{q''}$ coincides with $g^{-1}H_{q'g}$, it is sufficient to prove this when H_q and $H_{q'}$ coincide.

Let φ be a way in V^* from q to q', q_1 be any point of V_q and ψ_1 be a way in V_q from q to q_1 . Then the point $\mathcal{O}_{\varphi,\psi_1}(1, 1)$ is independent of the chice of the way φ . We shall show that it is independent also of the way ψ_1 . Let ψ_2 be another way. We have, from ψ_1 and ψ_2^{-1} , a closed way ψ in V_q . It follows from our assumption $\mathcal{O}_{[\psi]}$ leaves the point q' invariant. This shows $\Phi_{\varphi,\psi_1}(1,1) = \Phi_{\varphi_1,\psi_2}(1,1)$ and proves our assertion. It is easy to show that the mapping: $q \rightarrow \Phi_{\varphi,\psi}(1,1)$ is a diffeomorphism of V_q onto $V_{q'}$.

One of the next examples shows that the conclusion of Theorem 4 is not true when there exists no simply connected leaf of \mathfrak{M} . The other shows that there occurs the case where subgroups H_q and $H_{q'}$ are isomorphic but not conjugate even when leaves V_q and $V_{q'}$ are homeomorphic.

EXAMPLE. In the two dimensional Euclidean space R^2 we introduce the equivalence relation $\rho: \rho(x, y) = \rho(x', y')$ if and only if $x \equiv x' \pmod{1}$ and $y' = (-1)^{x-x'}y$. Let M denote the quotient space R^2/ρ . Let U_1 denote the domain $\{\rho(x_1, y_1): 0 < x_1 < 1\}$ of M and h_1 the homeomorphism: $\rho(x_1, y_1) \rightarrow (x_1, y_1)$. Let U_2 denote the domain $\{\rho(x_2, y_2): \frac{1}{2} < x_2 < \frac{3}{2}\}$ and h_2 the homeomorphism: $\rho(x_2, y_2) \rightarrow (x_2, y_2)$. Then (U_i, h_i) (i=1, 2) are two charts in M related analytically. Thus M is an analytic manifold. The manifold M has the Riemannian metric $ds^2 = (dx_1)^2 + (dy_1)^2$ in (x_1, y_1) and $ds^2 = (dx_2)^2 + (dy_2)^2$ in (x_2, y_2) .

Let \mathfrak{M}_1 and \mathfrak{M}_2 be one dimensional distributions with the base vector fields X_1 and X_2 , respectively, which are defined as follows:

$$X_1 = egin{pmatrix} rac{\partial}{\partial x_1} \ rac{\partial}{\partial x_2} \ \end{pmatrix}, \qquad X_2 = egin{pmatrix} rac{\partial}{\partial x_1} + arepsilon_1 rac{\partial}{\partial y_1} \ rac{\partial}{\partial x_2} + arepsilon_2 rac{\partial}{\partial y_2} \ \end{pmatrix}$$

where the functions ξ_i (i=1, 2) are given by

$$arsigma_i = egin{cases} 0 & y_i = 0, & |y_i| \ge 1 \ exp\left(-rac{1}{y_i + 1} + rac{1}{y_i}
ight) & -1 < y_i < 0 \ -exp\left(-rac{1}{y_i} + rac{1}{y_i - 1}
ight) & 0 < y_i < 1. \end{cases}$$

The leaves of the distribution $\mathfrak{M}_1^*(\perp \mathfrak{M}_1)$ are the geodecics $x_1 = \text{const.}$ and $x_2 = 1$, and every leaf of \mathfrak{M}_1 is a closed curve. Let V^* be the geodesic defined by $x_2 = 1$, q_i (i=0, 1) be the point with coordinates $x_2(q_0) = x_2(q_1) = 1$, $y_2(q_0) = 0$, $y_2(q_1) = 1$. Then V_{q_0} is homeomorphic to V_{q_1} . But H_{q_0} is isomorphic to the group of order two, and H_{q_1} is the trivial.

The distribution \mathfrak{M}_2^* has, in U_i (i=1, 2), a local base Y_i :

$$Y_i = -\xi_i rac{\partial}{\partial x_i} + rac{\partial}{\partial \gamma_i}$$

All of the leaves of \mathfrak{M}_2^* are homeomorphic to a line. Let V_1^* denote the leaf

of \mathfrak{M}_2^* through the point p_0 $(x_1(p_0) = \frac{1}{2}, y_1(p_0) = 0)$. If p_1 is a common point of V_1^* and the leaf of \mathfrak{M}_2 through the point $(x_1, y_1) = (\frac{1}{2}, 1)$, then the group H_{p_0} and H_{p_1} are isomorphic to the additive group of integers, but they do not coincide.

We do not know whether every member of $G(V^*)$ can be extended to an automorphism of M which leaves invariant the decomposition of M by the leaves of \mathfrak{M} and \mathfrak{M}^* . But we have the following theorem.

THEOREM 5. Let assumptions be as in Theorem 3. If an element of $G(V^*)$ belongs to the center of the group, it can be extended to a diffeomorphism of M which sends any point of M into the intersection of the leaves of \mathfrak{M} and \mathfrak{M}^* which contains the point.

PROOF. Let g_0 be an element of the center of $G(V^*)$. Let q' be a point of M and q be a point of V^* which lies on $V_{q'}$. Let ψ be a way in $V_{q'}$ from qto q' and φ a way in V^* from q to $g_0(q)$. We shall show that the point $\mathscr{O}_{\varphi,\psi}(1,1)$ is independent of the choices of q, φ and ψ . In fact, let q_1 be another point in $V_{q'} \cap V^*$, ψ_1 be a way in $V_{q'}$ from q_1 to q' and φ_1 be a way in V^* from q_1 to $g_0(q_1)$. The ways ψ and ψ_1^{-1} define an element g of $G(V^*)$. The diffeomorphism g_0 being in the center of $G(V^*)$, we have

$$g_0(q_1) = g_0(g(q)) = g(g_0(q)).$$

This shows that $\boldsymbol{\varphi}_{q_1,\psi_1}(1,1) = \boldsymbol{\varphi}_{\varphi,\psi}(1,1)$, which proves our assertion. Hence we can define a mapping \tilde{g}_0 of M into M by $\tilde{g}_0(q) = \boldsymbol{\varphi}_{\varphi,\psi}(1,1)$. We know easily that \tilde{g}_0 is differentiable and $\tilde{g}_0(q')$ is contained in the intersection $V_{q'} \cap V_{q'}^*$. Considering the inverse element g_0^{-1} , we know \tilde{g}_0 is an diffeomorphism of Monto M. Our theorem is thereby proved.

In conclusion, I wish to express my hearty thanks to Prof. K. Morinaga for his kind suggestions and encouragement during the preparation of this paper.

Bibliography

- [1]. C. Chevalley; Theory of Lie groups, Princ. Univ. Press (1964).
- [2]. C. Ehresmann; Structures feuilletées, Proc. Fifth Canad. Math. Congress (1963), 109-172.
- [3]. A. Haefliger; Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, Vol. 16 (1962), 367-397.
- [4]. R. Palais; A global formulation of the Lie theory of tranformation groups, Mem. Amer. Math. Soc., No. 22 (1957).
- [5]. G. Reeb; Sur certaines propriétés topologiques des variétés feuilletées, Act. Scient. et Ind., Hermann, Paris (1952).

Department of Mathematics, Faculty of Science, Hiroshima University