J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 43-49

On Support Theorems

Shigeaki Tôgô

(Received March 1, 1965)

1. Introduction. Let R_n be the *n* dimensional Euclidean space and let Ξ_n be the dual of R_n . The elements of R_n and Ξ_n are sequences $x = (x_1, x_2, \dots, x_n)$ and $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ of real numbers. We put

 $D = (D_1, D_2, \dots, D_n)$ with $D_j = \frac{1}{i} \frac{\partial}{\partial x_j}$ $(j = 1, 2, \dots, n).$

For convenience' sake we use the notations:

$$egin{aligned} &x=(x',\,t), &x'=(x_1,\,x_2,\,\cdots,\,x_{n-1}), &t=x_n,\ &\xi=(\xi',\, au), &\xi'=(\xi_1,\,\xi_2,\,\cdots,\,\xi_{n-1}), & au=\xi_n,\ &D_{x'}=(D_1,\,D_2,\,\cdots,\,D_{n-1}), &D_t=D_n. \end{aligned}$$

We denote by \mathbb{Z}_{n-1} the n-1 dimensional space consisting of elements ξ' .

Let \mathcal{D} , \mathscr{S} and \mathcal{O}_M be the spaces of all C^{∞} -functions with compact supports, all rapidly decreasing C^{∞} -functions and all slowly increasing C^{∞} -functions on R_n respectively. These spaces are provided with usual topologies of L. Schwartz [4]. Let \mathcal{D}' and \mathscr{S}' be the strong duals of \mathcal{D} and \mathscr{S} respectively and let \mathcal{O}'_C be the space of all rapidly decreasing distributions. We shall denote by $\mathcal{O}_M(\Xi_{n-1})$ the space \mathcal{O}_M considered on Ξ_{n-1} . By the partial Fourier transform of $T \in \mathscr{S}'$ we understand the Fourier transform of T with respect to the first n-1 variables which will be denoted by $\hat{T}(\xi', t)$.

For any $A(\xi') \in \mathcal{O}_M(\mathbb{Z}_{n-1})$, we define the operator $A(D_{x'})$ on \mathscr{S}' as follows: The partial Fourier transform of $A(D_{x'})$ T, $T \in \mathscr{S}'$, is $A(\xi') \hat{T}(\xi', t)$. In this paper we are concerned with the operator of the following form:

$$F(D_{x'}, D_t) = D_t^m + A_1(D_{x'})D_t^{m-1} + \dots + A_m(D_{x'})$$

with $A_j(\xi') \in \mathcal{O}_M(\Xi_{n-1})$ $(j=1, 2, \dots, m)$ and $m \ge 1$.

J. Peetre observed in [2, 3] that the operator

$$D_t - i(1 + \sum_{j=1}^{n-1} D_j^2)^{1/2}$$

leaves invariant for every element T of a subspace of \mathscr{S}' the infimum k_T of *t*-coordinates of points of its support. We shall show that if $F(\xi', \tau) = 0$ has only roots τ whose imaginary parts are > c (a positive constant) then $F(D_{x'}, D_t)$ leaves k_T invariant for every $T \in \mathscr{S}'$ (Theorem 1), and that in the general case $F(D_{x'}, D_t)$ leaves k_T invariant for every $T \in \mathscr{S}'$ such that $k_T > -\infty$ (Theorem 2). It is the purpose of this paper to give elementary proofs of these facts.

2. For any $T \in \mathcal{D}'$ we denote by k_T

inf
$$\{t: x \in \text{supp } T\},\$$

where we understand $k_T = +\infty$ if supp T is empty.

We use the notation $[t < \alpha]$ for the set of all elements x of R_n such that $t < \alpha$ and similarly for $[t \le \alpha]$ etc.

We begin with

LEMMA 1. Let $T \in \mathcal{D}'$.

(1) If a sequence $\{T_j\}$ of \mathcal{D}' converges in \mathcal{D}' to T, then $\overline{\lim} k_{T_j} \leq k_T$.

(2) Let $\{\rho_j\}$ be a sequence of regularization, let $\{\alpha_j\}$ be a sequence of multiplicators and put $T_j = \alpha_j T * \rho_j$. Then $\lim_{i \to \infty} k_{T_j} = k_T$.

PROOF. (1): We put $a = \overline{\lim_{j \to \infty}} k_{T_j}$. If $a = -\infty$, the assertion is evident. Assume that $a > -\infty$ and let α be any real number such that $\alpha < a$. Then there exists an increasing sequence $\{j_k\}$ such that $\alpha < k_{T_{j_k}}$. If $\phi \in \mathcal{D}$ and $\sup p \phi \in [t < \alpha]$, then we have

$$\langle T_{j_{k}}, \phi \rangle = 0$$

since supp $T_{j_k} \in [t \ge \alpha]$. Passing to the limit, we obtain $\langle T, \phi \rangle = 0$ and therefore $\alpha \le k_T$. Thus $\alpha \le k_T$.

(2): Since

$$ext{supp } T_j \subset ext{supp } (lpha_j T) + ext{supp }
ho_j \subset ext{supp } T + ext{supp }
ho_j,$$

we have $k_{T_j} \ge k_T + k_{\rho_j}$. T_j converges in \mathcal{D}' to T and supp ρ_j converges to the origin as $j \rightarrow \infty$. Hence by (1)

$$\underline{\lim_{j\to\infty}} k_{T_j} \ge k_T + \lim_{j\to\infty} k_{\rho_j} = k_T \ge \overline{\lim_{j\to\infty}} k_{T_j}.$$

Consequently, $\lim_{j\to\infty} k_{T_j} = k_T$.

Thus the proof is complete.

In the sequel F denotes the operator $F(D_{x'}, D_t)$ stated in the introduction. We prove

LEMMA 2. For any $T \in \mathscr{S}'$ we have $k_T \leq k_{F(T)}$.

PROOF. Since $F(T) = F\delta * T$ with δ , the Dirac measure, we have

 $\operatorname{supp} F(T) \subset \operatorname{supp} F\delta + \operatorname{supp} T$

 $\subset [t=0]+[t\geq k_T]=[t\geq k_T].$

Therefore the assertion is immediate.

LEMMA 3. Assume that $F(\xi', \tau) = 0$ has only roots τ with positive imaginary parts and let $\phi \in \mathscr{S}$. If $F(\phi) \in \mathcal{D}$, then $k_{\phi} = k_{F(\phi)}$.

PROOF. We put $\psi = F(\phi)$. Since $k_{\phi} \leq k_{\psi}$ by Lemma 2, we are only to prove that $k_{\psi} \leq k_{\phi}$. The partial Fourier transform of ϕ satisfies the differential equation

$$D_t^m \widehat{\phi}(\xi',t) + A_1(\xi') D_t^{m-1} \widehat{\phi}(\xi',t) + \dots + A_m(\xi') \widehat{\phi}(\xi',t) = \widehat{\psi}(\xi',t).$$

If we consider the equation on $[t < k_{\psi}]$, this becomes

$$D_t^m \hat{\phi}(\xi',t) + A_1(\xi') D_t^{m-1} \hat{\phi}(\xi',t) + \dots + A_m(\xi') \hat{\phi}(\xi',t) = 0.$$

We now fix $\hat{\varsigma}'$ and let $\tau_1, \tau_2, \dots, \tau_k$ be the distinct roots of $F(\hat{\varsigma}', \tau) = 0$ with respective multiplicities m_1, m_2, \dots, m_k where $\sum_{j=1}^k m_j = m$. Then we have

$$\hat{\phi}(\xi',t) = \sum_{j=1}^{k} P_j(t) e^{i \tau_j t}$$
 for $t < k_{\psi}$,

where $P_j(t)$ (j = 1, 2, ..., k) are polynomials in t of degree $m_j - 1$.

We assert that $P_j(t) \equiv 0$ (j = 1, 2, ..., k). In fact, suppose that $P_j(t) \not\equiv 0$. If we put

$$\chi(t) = (D_t - \tau_1)^{m_1} \dots (D_t - \tau_{j-1})^{m_{j-1}} (D_t - \tau_{j+1})^{m_{j+1}} \dots (D_t - \tau_k)^{m_k} \hat{\phi}(\xi', t),$$

then $\alpha(t)$ is rapidly decreasing since $\phi \in \mathscr{S}$. Now $\alpha(t)$ can be written in the form

$$\chi(t) = e^{i\tau_j t} Q(D_t) P_j(t)$$

where

$$Q(D_t) = (D_t + \tau_j - \tau_1)^{m_1} \dots (D_t + \tau_j - \tau_{j-1})^{m_{j-1}}$$
$$\times (D_t + \tau_j - \tau_{j+1})^{m_{j+1}} \dots (D_t + \tau_j - \tau_k)^{m_k}.$$

Since $\tau_j \neq \tau_h$ for all $h \neq j$, $Q(D_t)P_j(t) \neq 0$. The imaginary part of τ_j being positive,

$$e^{-(\operatorname{Im}\tau_j)t}Q(D_t)P_i(t)$$

is not rapidly decreasing for $t < k_{\psi}$ and therefore x(t) is not also, which is a contradiction. Hence we have $P_j(t) \equiv 0$ (j = 1, 2, ..., k), as was asserted.

Thus we have

$$\hat{\phi}(\xi',t) = 0 \quad \text{for} \quad t < k_{\psi},$$

which shows that $k_{\psi} \leq k_{\hat{\phi}(\xi',t)}$. By using the fact that

$$k_{\phi} = \inf_{\xi'} k_{\hat{\phi}(\xi',t)},$$

we conclude that $k_{\psi} \leq k_{\phi}$.

The proof of the lemma is complete.

3. We shall now show the two theorems stated in the introduction. We first prove the following

THEOREM 1. Assume that $F(\xi', \tau) = 0$ has only roots τ whose imaginary parts are > c for a positive constant c. Then $k_T = k_{F(T)}$ for every $T \in \mathscr{S}'$.

PROOF. Denoting the roots of $F(\xi', \tau) = 0$ by $\tau_j(\xi')$ (j = 1, 2, ..., m), we have

$$F(\xi',\tau) = \prod_{j=1}^{m} \left(\tau - \tau_j(\xi')\right)$$

and therefore

$$|F(\xi', \tau)| \ge \prod_{j=1}^m \operatorname{Im} \tau_j(\xi') \ge c^m > 0.$$

Hence $1/F(\xi', \tau)$ is in \mathcal{O}_M . Let G be the inverse Fourier transform of $1/F(\xi', \tau)$. Then G is an element of \mathcal{O}'_C and for every $T \in \mathscr{S}'$

$$G * F(T) = F(G * T) = T.$$

46

Now take a sequence $\{\rho_j\}$ of regularization and a sequence $\{\alpha_j\}$ of multiplicators and put $T_j = \alpha_j T * \rho_j$. Then $T_j \in \mathcal{D}$, $G * T_j \in \mathscr{S}$ and $F(G * T_j) = T_j$. Therefore it follows from Lemma 3 that $k_{T_j} = k_{G * T_j}$. Since T_j converges in \mathscr{S}' to $T, G * T_j$ converges in \mathscr{S}' to G * T. Therefore by using Lemma 1 we see that

$$k_T = \lim_{j \to \infty} k_{T_j} = \lim_{j \to \infty} k_{G \ast T_j} \leq k_{G \ast T}.$$

Since F(G * T) = T, Lemma 2 shows that $k_{G*T} \leq k_T$. Hence it follows that $k_T = k_{G*T}$. By replacing T by F(T), we have

$$k_{F(T)} = k_{G \ast F(T)} = k_T.$$

Thus the proof is complete.

We next prove the following

THEOREM 2. Let T be a distribution $\in \mathscr{S}'$ such that $k_T > -\infty$. Then $k_T = k_{F(T)}$.

PROOF. By the assumption

$$A_j(\xi') \in \mathcal{O}_M(\Xi_{n-1}) \qquad (j=1, 2, \ldots, m).$$

Hence there exist a positive integer h and a positive constant c such that

$$|A_{j}(\xi')|^{1/j} \leq |\xi'|^{2h}$$
 for $|\xi'| \geq c$ $(j = 1, 2, ..., m)$

If we denote the roots of $F(\xi', \tau) = 0$ by $\tau_j(\xi')$ (j = 1, 2, ..., m), it is easily shown that

$$|\tau_j(\xi')| < 2|\xi'|^{2h}$$
 for $|\xi'| \ge c$ $(j = 1, 2, ..., m)$.

On the other hand for $|\xi'| \leq c$ we have with a constant d

$$|\operatorname{Im} \tau_j(\xi')| < d$$
 $(j = 1, 2, ..., m).$

We put

$$U(\xi', t) = e^{-2(|\xi'|^{2h} + d)t} \hat{T}(\xi', t).$$

Then we assert that $U \in \mathscr{G}'$. In fact, take a real number *a* such that $a < k_T$ and choose a bounded C^{∞} -function $\phi(t)$ in such a way that

Shigeaki Tôgô

$$\phi(t) = \begin{cases} 1 & \text{for } t \ge a \\ 0 & \text{for } t \le a - 1. \end{cases}$$

Then we have

$$\phi(t)e^{-2(|\xi'|^{2h}+d)t} \in \mathcal{O}_M$$

and $U = \phi U$. It follows that $U \in \mathscr{S}'$, as was asserted. We now define $S \in \mathscr{S}'$ as follows:

$$\hat{S}(\xi', t) = U(\xi', t).$$

Then it is evident that $k_S = k_T$.

Let F_1 be the operator of the same type as F, which is defined by

$$egin{aligned} F_1(\xi', D_t) &= ig(D_t - 2i(|\xi'|^{2h} + d) ig)^m + \ &+ A_1(\xi') ig(D_t - 2i(|\xi'|^{2h} + d) ig)^{m-1} + \ldots + A_m(\xi'). \end{aligned}$$

Then the partial Fourier transform of $F_1(S)$ is

$$\begin{split} \widehat{F_1(S)}(\xi',t) &= \left[\left(D_t - 2i(|\xi'|^{2h} + d) \right)^m + \\ &+ A_1(\xi') \left(D_t - 2i(|\xi'|^{2h} + d) \right)^{m-1} + \dots + A_m(\xi') \right] \widehat{U}(\xi',t) \\ &= e^{-2(|\xi'|^{2h} + d)t} \left[D_t^m + A_1(\xi') D_t^{m-1} + \dots + A_m(\xi') \right] \widehat{T}(\xi',t) \\ &= e^{-2(|\xi'|^{2h} + d)t} \widehat{F(T)}(\xi',t). \end{split}$$

Consequently,

$$k_{F_1(S)} = \inf_{\xi'} k_{F_1(S)(\xi',t)}^{\wedge} = \inf_{\xi'} k_{F(T)(\xi',t)}^{\wedge} = k_{F(T)}$$

Now the roots of $F_1(\xi', \tau) = 0$ are

$$\tilde{\tau}_{j}(\xi') = 2i(|\xi'|^{2h} + d) + \tau_{j}(\xi') \qquad (j = 1, 2, ..., m).$$

By considering separately the cases where $|\xi'| \ge c$ and where $|\xi'| \le c$, we have

$$|\operatorname{Im} \tilde{\tau}_j(\xi')| \ge 2(|\xi'|^{2h} + d) - |\operatorname{Im} \tau_j(\xi')| > d.$$

Therefore we can apply Theorem 1 to infer that $k_S = k_{F_1(S)}$. Hence we conclude that $k_T = k_{F(T)}$.

48

Thus the proof of the theorem is complete.

Similarly, we can show that if we put

$$K_T = \sup \{t: x \in \text{supp } T\}$$

then $K_T = K_{F(T)}$ for every $T \in \mathscr{S}'$ such that $K_T < +\infty$.

Theorem 2 does not hold for an element T of \mathscr{S}' such that $k_T = -\infty$ in general. For example, take $F = D_t$ and let T be a non-zero constant. Then $k_T = -\infty$ and $k_{F(T)} = +\infty$.

As an illustration of our results, we consider the differential operator

$$P(D) = D_t^m + A_1(D_{x'})D_t^{m-1} + \dots + A_m(D_{x'})$$

where $A_j(D_{x'})$ (j = 1, 2, ..., m) are polynomials in $D_{x'}$ with constant coefficients. If the plane t = 0 is characteristic with respect to P(D), then the differential equation P(D) T=0 has a null solution with respect to the half space $[t \ge 0]$, that is, a C^* -function which is 0 for t < 0 and whose support contains the origin ([1], p. 121). By making use of Theorem 2 we can assert that there exist no null solutions of P(D) T=0 contained in \mathscr{S}' . In fact, let T be a null solution of P(D) T=0. If $T \in \mathscr{S}'$, then by Theorem 2 we see that $k_T = k_{P(D)T}$, which contradicts the facts that $k_T=0$ and $k_{P(D)T}=+\infty$. Therefore $T \notin \mathscr{S}'$.

For example, the equation

$$P(D) T = \frac{\partial T}{\partial t} - \sum_{j=1}^{n-1} \frac{\partial^2 T}{\partial x_j^2} = 0$$

has actually a null solution, since the plane t=0 is characteristic with respect to P(D). By the result stated above, there exist no null solutions contained in \mathscr{S}' .

References

- [1] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [2] J. Peetre, Théorèmes de régularité pour quelques classes d'opérateurs différentiels, Medd. Lunds Univ. Mat. Sem., 16 (1959), 1-172.
- [3] _____, Another approach to elliptic boundary problems, Comm. Pure Appl. Math., 14 (1961), 711-731.
- [4] L. Schwartz, Théorie des Distributions I-II, Hermann, Paris, 1950-51.

Department of Mathematics, Faculty of Science, Hiroshima University