On Support Theorems

Shigeaki TôGô

(Received March 1, 1965)

1. Introduction. Let R_{n} be the n dimensional Euclidean space and let Ξ_{n} be the dual of R_{n}. The elements of R_{n} and Ξ_{n} are sequences $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ of real numbers. We put

$$
D=\left(D_{1}, D_{2}, \ldots, D_{n}\right) \quad \text { with } \quad D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}} \quad(j=1,2, \ldots, n)
$$

For convenience' sake we use the notations:

$$
\begin{array}{lll}
x=\left(x^{\prime}, t\right), & x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right), & t=x_{n} \\
\xi=\left(\xi^{\prime}, \tau\right), & \xi^{\prime}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}\right), & \tau=\xi_{n}, \\
D_{x^{\prime}}=\left(D_{1}, D_{2}, \ldots, D_{n-1}\right), \quad D_{t}=D_{n} .
\end{array}
$$

We denote by Ξ_{n-1} the $n-1$ dimensional space consisting of elements ξ^{\prime}.
Let \mathscr{D}, \mathscr{S} and \mathcal{O}_{M} be the spaces of all C^{∞}-functions with compact supports, all rapidly decreasing C^{∞}-functions and all slowly increasing C^{∞}-functions on R_{n} respectively. These spaces are provided with usual topologies of L . Schwartz [4]. Let \mathscr{D}^{\prime} and \mathscr{S}^{\prime} be the strong duals of \mathscr{D} and \mathscr{S} respectively and let O_{C}^{\prime} be the space of all rapidly decreasing distributions. We shall denote by $\mathcal{O}_{M}\left(\Xi_{n-1}\right)$ the space \mathcal{O}_{M} considered on Ξ_{n-1}. By the partial Fourier transform of $T \in \mathscr{S}^{\prime}$ we understand the Fourier transform of T with respect to the first $n-1$ variables which will be denoted by $\hat{T}\left(\xi^{\prime}, t\right)$.

For any $A\left(\xi^{\prime}\right) \in \mathcal{O}_{M}\left(\Xi_{n-1}\right)$, we define the operator $A\left(D_{x^{\prime}}\right)$ on \mathscr{S}^{\prime} as follows: The partial Fourier transform of $A\left(D_{x^{\prime}}\right) T, T \in \mathscr{S}^{\prime}$, is $A\left(\xi^{\prime}\right) \hat{T}\left(\xi^{\prime}, t\right)$. In this paper we are concerned with the operator of the following form:

$$
F\left(D_{x^{\prime}}, D_{t}\right)=D_{t}^{m}+A_{1}\left(D_{x^{\prime}}\right) D_{t}^{m-1}+\ldots+A_{m}\left(D_{x^{\prime}}\right)
$$

$$
\text { with } \quad A_{j}\left(\xi^{\prime}\right) \in \mathcal{O}_{M}\left(\Xi_{n-1}\right) \quad(j=1,2, \ldots, m) \quad \text { and } \quad m \geq 1
$$

J. Peetre observed in $[2,3]$ that the operator

$$
D_{t}-i\left(1+\sum_{j=1}^{n-1} D_{j}^{2}\right)^{1 / 2}
$$

leaves invariant for every element T of a subspace of \mathscr{S}^{\prime} the infimum k_{T} of t-coordinates of points of its support. We shall show that if $F\left(\xi^{\prime}, \tau\right)=0$ has only roots τ whose imaginary parts are $>c$ (a positive constant) then $F\left(D_{x^{\prime}}\right.$, D_{t}) leaves k_{T} invariant for every $T \in \mathscr{S}^{\prime}$ (Theorem 1), and that in the general case $F\left(D_{x^{\prime}}, D_{t}\right)$ leaves k_{T} invariant for every $T \in \mathscr{S}^{\prime}$ such that $k_{T}>-\infty$ (Theorem 2). It is the purpose of this paper to give elementary proofs of these facts.
2. For any $T \in D^{\prime}$ we denote by k_{T}

$$
\inf \{t: x \in \operatorname{supp} T\}
$$

where we understand $k_{T}=+\infty$ if supp T is empty.
We use the notation $[t<\alpha]$ for the set of all elements x of R_{n} such that $t<\alpha$ and similarly for $[t \leq \alpha]$ etc.

We begin with
Lemma 1. Let $T \in \mathscr{D}^{\prime}$.
(1) If a sequence $\left\{T_{j}\right\}$ of \mathscr{D}^{\prime} converges in D^{\prime} to T, then $\varlimsup_{j \rightarrow \infty} k_{T_{j}} \leq k_{T}$.
(2) Let $\left\{\rho_{j}\right\}$ be a sequence of regularization, let $\left\{\alpha_{j}\right\}$ be a sequence of multiplicators and put $T_{j}=\alpha_{j} T * \rho_{j}$. Then $\lim _{j \rightarrow \infty} k_{T_{j}}=k_{T}$.

Proof. (1): We put $a=\varlimsup_{j \rightarrow \infty} k_{T_{j}}$. If $a=-\infty$, the assertion is evident. Assume that $a>-\infty$ and let α be any real number such that $\alpha<a$. Then there exists an increasing sequence $\left\{j_{k}\right\}$ such that $\alpha<k_{T_{j_{k}}}$. If $\phi \epsilon \mathscr{D}$ and $\operatorname{supp} \phi \subset[t<\alpha]$, then we have

$$
<T_{j_{k}}, \phi>=0
$$

since supp $T_{j_{k}} \subset[t \geq \alpha]$. Passing to the limit, we obtain $\langle T, \phi\rangle=0$ and therefore $\alpha \leq k_{T}$. Thus $a \leq k_{T}$.
(2): Since

$$
\operatorname{supp} T_{j} \subset \operatorname{supp}\left(\alpha_{j} T\right)+\operatorname{supp} \rho_{j} \subset \operatorname{supp} T+\operatorname{supp} \rho_{j},
$$

we have $k_{T_{j}} \geq k_{T}+k_{\rho_{j}} . \quad T_{j}$ converges in \mathscr{D}^{\prime} to T and supp ρ_{j} converges to the origin as $j \rightarrow \infty$. Hence by (1)

$$
\underline{\lim }_{j \rightarrow \infty} k_{T_{j}} \geq k_{T}+\lim _{j \rightarrow \infty} k_{\rho_{j}}=k_{T} \geq \varlimsup_{j \rightarrow \infty} k_{T_{j}}
$$

Consequently, $\lim _{j \rightarrow \infty} k_{T_{j}}=k_{T}$.

Thus the proof is complete.
In the sequel F denotes the operator $F\left(D_{x^{\prime}}, D_{t}\right)$ stated in the introduction. We prove

Lemma 2. For any $T \in \mathscr{S}^{\prime}$ we have $k_{T} \leq k_{F(T)}$.
Proof. Since $F(T)=F \delta * T$ with δ, the Dirac measure, we have

$$
\begin{aligned}
\operatorname{supp} F(T) & \subset \operatorname{supp} F \delta+\operatorname{supp} T \\
& \subset[t=0]+\left[t \geq k_{T}\right]=\left[t \geq k_{T}\right] .
\end{aligned}
$$

Therefore the assertion is immediate.
Lemma 3. Assume that $F\left(\xi^{\prime}, \tau\right)=0$ has only roots τ with positive imaginary parts and let $\phi \in \mathscr{S}$. If $F(\phi) \in \mathscr{D}$, then $k_{\phi}=k_{F(\phi)}$.

Proof. We put $\psi=F(\phi)$. Since $k_{\phi} \leq k_{\psi}$ by Lemma 2 , we are only to prove that $k_{\psi} \leq k_{\phi}$. The partial Fourier transform of ϕ satisfies the differential equation

$$
D_{t}^{m} \hat{\phi}\left(\xi^{\prime}, t\right)+A_{1}\left(\xi^{\prime}\right) D_{t}^{m-1} \hat{\phi}\left(\xi^{\prime}, t\right)+\cdots+A_{m}\left(\xi^{\prime}\right) \hat{\phi}\left(\xi^{\prime}, t\right)=\hat{\psi}\left(\xi^{\prime}, t\right) .
$$

If we consider the equation on $\left[t<k_{\psi}\right]$, this becomes

$$
D_{t}^{m} \hat{\phi}\left(\xi^{\prime}, t\right)+A_{1}\left(\xi^{\prime}\right) D_{t}^{m-1} \hat{\phi}\left(\xi^{\prime} t\right)+\ldots+A_{m}\left(\xi^{\prime}\right) \hat{\phi}\left(\xi^{\prime}, t\right)=0 .
$$

We now fix ξ^{\prime} and let $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ be the distinct roots of $F\left(\xi^{\prime}, \tau\right)=0$ with respective multiplicities $m_{1}, m_{2}, \ldots, m_{k}$ where $\sum_{j=1}^{k} m_{j}=m$. Then we have

$$
\hat{\phi}\left(\xi^{\prime}, t\right)=\sum_{j=1}^{k} P_{j}(t) e^{i \tau_{j} t} \quad \text { for } t<k_{\psi},
$$

where $P_{j}(t)(j=1,2, \ldots, k)$ are polynomials in t of degree $m_{j}-1$.
We assert that $P_{j}(t) \equiv 0(j=1,2, \cdots, k)$. In fact, suppose that $P_{j}(t) \neq 0$. If we put

$$
x(t)=\left(D_{t}-\tau_{1}\right)^{m_{1}} \ldots\left(D_{t}-\tau_{j-1}\right)^{m_{j-1}}\left(D_{t}-\tau_{j+1}\right)^{m_{j+1}} \ldots\left(D_{t}-\tau_{k}\right)^{m_{k}} \hat{\phi}\left(\xi^{\prime}, t\right),
$$

then $\chi(t)$ is rapidly decreasing since $\phi \in \mathscr{S}$. Now $\chi(t)$ can be written in the form

$$
\chi(t)=e^{i \tau_{j} t} Q\left(D_{t}\right) P_{j}(t)
$$

where

$$
\begin{aligned}
Q\left(D_{t}\right)= & \left(D_{t}+\tau_{j}-\tau_{1}\right)^{m_{1} \ldots\left(D_{t}+\tau_{j}-\tau_{j-1}\right)^{m_{j-1}}} \\
& \times\left(D_{t}+\tau_{j}-\tau_{j+1}\right)^{m_{j+1}} \ldots\left(D_{t}+\tau_{j}-\tau_{k}\right)^{m_{k}} .
\end{aligned}
$$

Since $\tau_{j} \neq \tau_{h}$ for all $h \neq j, Q\left(D_{t}\right) P_{j}(t) \neq 0$. The imaginary part of τ_{j} being positive,

$$
e^{-\left(\operatorname{Im} \tau_{j}\right) t} Q\left(D_{t}\right) P_{j}(t)
$$

is not rapidly decreasing for $t<k_{\psi}$ and therefore $\chi(t)$ is not also, which is a contradiction. Hence we have $P_{j}(t) \equiv 0(j=1,2, \ldots, k)$, as was asserted.

Thus we have

$$
\hat{\phi}\left(\xi^{\prime}, t\right)=0 \quad \text { for } t<k_{\psi},
$$

which shows that $k_{\psi} \leq k_{\hat{\phi}\left(\xi^{\prime}, t\right)}$. By using the fact that

$$
k_{\phi}=\inf _{\xi^{\prime}} k_{\hat{\phi}\left(\xi^{\prime}, t\right)},
$$

we conclude that $k_{\psi} \leq k_{\phi}$.
The proof of the lemma is complete.
3. We shall now show the two theorems stated in the introduction. We first prove the following

Theorem 1. Assume that $F\left(\xi^{\prime}, \tau\right)=0$ has only roots τ whose imaginary parts are $>c$ for a positive constant c. Then $k_{T}=k_{F(T)}$ for every $T \in \mathscr{S}^{\prime}$.

Proof. Denoting the roots of $F\left(\xi^{\prime}, \tau\right)=0$ by $\tau_{j}\left(\xi^{\prime}\right)(j=1,2, \ldots, m)$, we have

$$
F\left(\xi^{\prime}, \tau\right)=\prod_{j=1}^{m}\left(\tau-\tau_{j}\left(\xi^{\prime}\right)\right)
$$

and therefore

$$
\left|F\left(\xi^{\prime}, \tau\right)\right| \geq \prod_{j=1}^{m} \operatorname{Im} \tau_{j}\left(\xi^{\prime}\right) \geq c^{m}>0
$$

Hence $1 / F\left(\xi^{\prime}, \tau\right)$ is in O_{M}. Let G be the inverse Fourier transform of $1 / F\left(\xi^{\prime}, \tau\right)$. Then G is an element of \mathcal{O}_{C}^{\prime} and for every $T \in \mathscr{S}^{\prime}$

$$
G * F(T)=F(G * T)=T
$$

Now take a sequence $\left\{\rho_{j}\right\}$ of regularization and a sequence $\left\{\alpha_{j}\right\}$ of multiplicators and put $T_{j}=\alpha_{j} T * \rho_{j}$. Then $T_{j} \in \mathscr{D}, G * T_{j} \in \mathscr{S}$ and $F\left(G * T_{j}\right)=T_{j}$. Therefore it follows from Lemma 3 that $k_{T_{j}}=k_{G * T_{j}}$. Since T_{j} converges in \mathscr{S}^{\prime} to $T, G * T_{j}$ converges in \mathscr{S}^{\prime} to $G * T$. Therefore by using Lemma 1 we see that

$$
k_{T}=\lim _{j \rightarrow \infty} k_{T_{j}}=\lim _{j \rightarrow \infty} k_{G * T_{j}} \leq k_{G * T} .
$$

Since $F(G * T)=T$, Lemma 2 shows that $k_{G * T} \leq k_{T}$. Hence it follows that $k_{T}=k_{G * T}$. By replacing T by $F(T)$, we have

$$
k_{F(T)}=k_{G * F(T)}=k_{T} .
$$

Thus the proof is complete.
We next prove the following
Theorem 2. Let T be a distribution $\epsilon \mathscr{S}^{\prime}$ such that $k_{T}>-\infty$. Then $k_{T}=k_{F(T)}$.

Proof. By the assumption

$$
A_{j}\left(\xi^{\prime}\right) \in \mathcal{O}_{M}\left(\Xi_{n-1}\right) \quad(j=1,2, \ldots, m)
$$

Hence there exist a positive integer h and a positive constant c such that

$$
\left|A_{j}\left(\xi^{\prime}\right)\right|^{1 / j} \leq\left|\xi^{\prime}\right|^{2 h} \quad \text { for } \quad\left|\xi^{\prime}\right| \geq c \quad(j=1,2, \ldots, m)
$$

If we denote the roots of $F\left(\xi^{\prime}, \tau\right)=0$ by $\tau_{j}\left(\xi^{\prime}\right)(j=1,2, \ldots, m)$, it is easily shown that

$$
\left|\tau_{j}\left(\xi^{\prime}\right)\right|<2\left|\xi^{\prime}\right|^{2 h} \quad \text { for } \quad\left|\xi^{\prime}\right| \geq c \quad(j=1,2, \ldots, m)
$$

On the other hand for $\left|\xi^{\prime}\right| \leq c$ we have with a constant d

$$
\left|\operatorname{Im} \tau_{j}\left(\xi^{\prime}\right)\right|<d \quad(j=1,2, \ldots, m) .
$$

We put

$$
U\left(\xi^{\prime}, t\right)=e^{-2\left(\left|\xi^{\prime}\right| 2 h_{+}+d\right) t} \hat{T}\left(\xi^{\prime}, t\right) .
$$

Then we assert that $U \in \mathscr{S}^{\prime}$. In fact, take a real number a such that $a<k_{T}$ and choose a bounded C^{∞}-function $\phi(t)$ in such a way that

$$
\phi(t)= \begin{cases}1 & \text { for } t \geq a \\ 0 & \text { for } t \leq a-1\end{cases}
$$

Then we have

$$
\phi(t) e^{-2\left(|\xi|^{2 h}+d\right) t} \in \mathcal{O}_{M}
$$

and $U=\phi U$. It follows that $U \in \mathscr{S}^{\prime}$, as was asserted. We now define $S \in \mathscr{S}^{\prime}$ as follows:

$$
\hat{S}\left(\xi^{\prime}, t\right)=U\left(\xi^{\prime}, t\right) .
$$

Then it is evident that $k_{S}=k_{T}$.
Let F_{1} be the operator of the same type as F, which is defined by

$$
\begin{aligned}
F_{1}\left(\xi^{\prime}, D_{t}\right)= & \left(D_{t}-2 i\left(\left|\xi^{\prime}\right|^{2 h}+d\right)\right)^{m}+ \\
& +A_{1}\left(\xi^{\prime}\right)\left(D_{t}-2 i\left(\left|\xi^{\prime}\right|^{2 h}+d\right)\right)^{m-1}+\ldots+A_{m}\left(\xi^{\prime}\right)
\end{aligned}
$$

Then the partial Fourier transform of $F_{1}(S)$ is

$$
\begin{aligned}
\widehat{F_{1}(S)}\left(\xi^{\prime}, t\right)= & {\left[\left(D_{t}-2 i\left(\left|\xi^{\prime}\right|^{2 h}+d\right)\right)^{m}+\right.} \\
& \left.+A_{1}\left(\xi^{\prime}\right)\left(D_{t}-2 i\left(\left|\xi^{\prime}\right|^{2 h}+d\right)\right)^{m-1}+\cdots+A_{m}\left(\xi^{\prime}\right)\right] \hat{U}\left(\xi^{\prime}, t\right) \\
= & e^{-2\left(\left.| | \xi^{\prime}\right|^{2 h}+d\right) t}\left[D_{t}^{m}+A_{1}\left(\xi^{\prime}\right) D_{t}^{m-1}+\cdots+A_{m}\left(\xi^{\prime}\right)\right] \hat{T}\left(\xi^{\prime}, t\right) \\
= & e^{-2\left(\left.\left|\xi^{\prime}\right|\right|^{2 h}+d\right) t} \widehat{F(T)}\left(\xi^{\prime}, t\right) .
\end{aligned}
$$

Consequently,

$$
k_{F_{1}(S)}=\inf _{\xi^{\prime}} k_{F 1(S)\left(\xi^{\prime}, t\right)}=\inf _{\xi^{\prime}} \hat{k_{F(T)} \hat{\left.\xi^{\prime}, t\right)}}{=k_{F(T)}}
$$

Now the roots of $F_{1}\left(\xi^{\prime}, \tau\right)=0$ are

$$
\tilde{\tau}_{j}\left(\xi^{\prime}\right)=2 i\left(\left|\xi^{\prime}\right|^{2 h}+d\right)+\tau_{j}\left(\xi^{\prime}\right) \quad(j=1,2, \cdots, m)
$$

By considering separately the cases where $\left|\xi^{\prime}\right| \geq c$ and where $\left|\xi^{\prime}\right| \leq c$, we have

$$
\left|\operatorname{Im} \tilde{\tau}_{j}\left(\xi^{\prime}\right)\right| \geq \mathbf{2}\left(\left|\xi^{\prime}\right|^{2 h}+d\right)-\left|\operatorname{Im} \tau_{j}\left(\xi^{\prime}\right)\right|>d
$$

Therefore we can apply Theorem 1 to infer that $k_{S}=k_{F_{1}(S)}$. Hence we conclude that $k_{T}=k_{F(T)}$.

Thus the proof of the theorem is complete.
Similarly, we can show that if we put

$$
K_{T}=\sup \{t: x \in \operatorname{supp} T\}
$$

then $K_{T}=K_{F(T)}$ for every $T \in \mathscr{S}^{\prime}$ such that $K_{T}<+\infty$.
Theorem 2 does not hold for an element T of \mathscr{S}^{\prime} such that $k_{T}=-\infty$ in general. For example, take $F=D_{t}$ and let T be a non-zero constant. Then $k_{T}=-\infty$ and $k_{F(T)}=+\infty$.

As an illustration of our results, we consider the differential operator

$$
P(D)=D_{t}^{m}+A_{1}\left(D_{x^{\prime}}\right) D_{t}^{m-1}+\ldots+A_{m}\left(D_{x^{\prime}}\right)
$$

where $A_{j}\left(D_{x^{\prime}}\right)(j=1,2, \ldots, m)$ are polynomials in $D_{x^{\prime}}$ with constant coefficients. If the plane $t=0$ is characteristic with respect to $P(D)$, then the differential equation $P(D) T=0$ has a null solution with respect to the half space $[t \geq 0]$, that is, a C^{∞}-function which is 0 for $t<0$ and whose support contains the origin ([1], p. 121). By making use of Theorem 2 we can assert that there exist no null solutions of $P(D) T=0$ contained in \mathscr{S}^{\prime}. In fact, let T be a null solution of $P(D) T=0$. If $T \in \mathscr{S}^{\prime}$, then by Theorem 2 we see that $k_{T}=k_{P(D) T}$, which contradicts the facts that $k_{T}=0$ and $k_{P(D) T}=+\infty$. Therefore $T \notin \mathscr{S}^{\prime}$.

For example, the equation

$$
P(D) T=\frac{\partial T}{\partial t}-\sum_{j=1}^{n-1} \frac{\partial^{2} T}{\partial x_{j}^{2}}=0
$$

has actually a null solution, since the plane $t=0$ is characteristic with respect to $P(D)$. By the result stated above, there exist no null solutions contained in \mathscr{S}^{\prime}.

References

[1] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-GöttingenHeidelberg, 1963.
[2] J. Peetre, Théorèmes de régularité pour quelques classes d'opérateurs différentiels, Medd. Lunds Univ. Mat. Sem., 16 (1959), 1-172.
[3] , Another approach to elliptic boundary problems, Comm. Pure Appl. Math., 14 (1961), 711731.
[4] L. Schwartz, Théorie des Distributions I-II, Hermann, Paris, 1950-51.
Department of Mathematics,
Faculty of Science, Hiroshima University

