On Loop Extensions of Groups and M-cohomology Groups. II

Noboru Nishigôri
(Received March 1, 1965)

Introduction

In the previous paper [5] ${ }^{1)}$, we discussed the problem of BM-extensions of a group by a group, that is, for given two groups G and Γ, the problem to determine all Bol-Moufang loop L 's with the following properties ${ }^{2}$: (i) L has a normal subgroup G^{\prime} which is isomorphic to G, (ii) $L / G^{\prime} \cong \Gamma$, (iii) G^{\prime} is contained in the nucleus of L. When we consider the case where L is a BolMoufang loop, it seems natural to consider the case where Γ is also a BolMoufang loop. In this paper we shall investigate the classification of all $B M$ extensions of a group G by a Bol-Moufang loop Γ. In this case, we shall modify the M-cohomology groups defined in the previous paper and classify all $B M$-extensions, using this new cohomology groups.
$\S 1$ will be devoted to the construction of the M-cohomology groups of a Bol-Moufang loop Γ over an abelian group G, and in $\S 2$, we shall first obtain the necessary and sufficient conditions for the existence of the $B M$-extension L of a group G by a Bol-Moufang loop Γ by making use of a M-factor set and a system of automorphisms of G, and next, using this result and the new M-cohomology groups we shall classify the set of all $B M$-extensions. The methods used in this paper are the same as those of the previous, and the results obtaind in this paper are as follows:
(i) For a given group G with the center C, a Bol-Moufang loop Γ and a homomorphism $\theta: \Gamma \rightarrow A u t G / \operatorname{In} G^{3)}$, the BM-extension of G by Γ exists if and only if an element of $H^{* 3}(\Gamma, C)$ determined by G, Γ and θ is zero (Theorem 2). Especially in the case G is abelian, this element is always zero.
(ii) If the BM-extension exists for assigned G, Γ and θ, all non-equivalent $B M$-extensions are in one-to-one correspondence with the elements of the second M-cohomology group $H^{* 2}(\Gamma, C)$ (Theorem 3, 4).

§ 1. M-cohomology groups of a Bol-Moufang loop over an abelian group

In this section we shall extend the previous M-cohomology group of a

[^0]group Γ over an abelian group G to the case that Γ is a Bol-Moufang loop. Let G be an abelian group and Γ be a Bol-Moufang loop. Further, suppose that to each element α of Γ there corresponds an automorphism $\bar{\alpha}$ of G which satisfies the following conditions: $(g \bar{\alpha}) \bar{\beta}=g(\bar{\alpha} \bar{\beta})=g(\overline{\alpha \beta}), g \in G, \alpha, \beta \in \Gamma ; g \bar{\varepsilon}=g$ (ε is the identity element of Γ).

Every function $f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of n elements of Γ, with its value in G, is called an n-dimensional cochain and the set of these n-dimensional cochains is a group $C^{n}(\Gamma, G)$ under the ordinary addition. With every n-dimensional cochain f, we associate an $(n+1)$-dimensional cochain ∂f called the M coboundary of the cochain f and defined as follows:

$$
\left\{\begin{array}{l}
\partial f(\alpha)=a-a \bar{\alpha}, \\
\partial f\left(\alpha_{1}, \alpha_{2}\right)=f\left(\alpha_{2}\right)-f\left(\alpha_{1} \alpha_{2}\right)+f\left(\alpha_{1}\right) \bar{\alpha}_{2}, \\
\partial f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}\right)=u\left(f ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}\right)-u\left(f ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \varepsilon\right) \bar{\alpha}_{n+1} \quad(n \geqq 2), \\
\text { where } e^{4)} u\left(f ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}\right) \\
\quad=f\left(\alpha_{2},\left[\alpha_{1} \alpha_{3} \alpha_{1}\right],\left[\alpha_{1} \alpha_{4} \alpha_{1}\right], \ldots,\left[\alpha_{1} \alpha_{n} \alpha_{1}\right], \alpha_{1} \alpha_{n+1}\right) \tag{1}\\
\quad+\sum_{i=2}^{n-1}(-1)^{i} f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}, \alpha_{i+1},\left[\alpha_{i} \ldots \alpha_{i+2} \ldots \alpha_{i}\right], \ldots,\left[\alpha_{i} \ldots \alpha_{n} \ldots \alpha_{i}\right],\right. \\
\left.\quad\left[\alpha_{i} \ldots \alpha_{n+1}\right]\right)
\end{array} \quad \begin{array}{l}
\quad+(-1)^{n} f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{n+1}\right) \\
\quad+\sum_{i=1}^{n-1}(-1)^{i} f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1},\left[\alpha_{i} \ldots \alpha_{i+1} \ldots \alpha_{i}\right], \alpha_{i+2}, \ldots, \alpha_{n+1}\right) \\
\quad+(-1)^{n} f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1},\left[\alpha_{n} \ldots \alpha_{n+1}\right]\right) .
\end{array}\right.
$$

In the above definition (1), the product $\left[\alpha_{i} \ldots \alpha_{j} \ldots \alpha_{i}\right](i<j)$ means the product of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{i}, \alpha_{j}$ which is obtained by arranging these letters and multiplying them as follows:
(i) We put α_{i} at the left end and α_{j} at the right end on a line, (ii) α_{i-1} in the middle between α_{i} and α_{j}, (iii) α_{i-2} in the middles respectively both between α_{i} and α_{i-1}, and between α_{i-1} and α_{j}. (iv) After the arrangement of $\alpha_{k+1}, \alpha_{k+2}, \cdots, \alpha_{i}, \alpha_{j}(k+1<i<j)$ by the above processes we put α_{k} in the middles between all adjacent elements respectively in this sequence of the letters. (v) Continuing these processes until we put α_{1}, we get the arrangement of letters in the left half part of the product. (vi) The arrangement of α_{k} 's in the right half part $\alpha_{j} \ldots \alpha_{i}$ of the product [$\alpha_{i} \ldots \alpha_{j} \ldots \alpha_{i}$] is symmetric to the left half part $\alpha_{i} \cdots \alpha_{j}$ with respect to α_{j}. (vii) We multiply the letters of the above constructed sequence one by one from the right end to the left. For example, in the case $i=4$ and $j=6$,

[^1]$$
\left[\alpha_{4} \ldots \alpha_{6} \ldots \alpha_{4}\right]=\alpha_{4}\left(\alpha _ { 1 } \left(\alpha _ { 2 } \left(\alpha _ { 1 } \left(\alpha _ { 3 } \left(\alpha _ { 1 } \left(\alpha _ { 2 } \left(\alpha _ { 1 } \left(\alpha _ { 6 } \left(\alpha _ { 1 } \left(\alpha_{2}\left(\alpha_{1}\left(\alpha_{3}\left(\alpha_{1}\left(\alpha_{2}\left(\alpha_{1} \alpha_{4}\right)\right)\right)\right) \ldots\right)\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.
$$

When $j=n+1$, the product $\left[\alpha_{i} \ldots \ldots \alpha_{n+1}\right]$ is the left half part of the above product.

We explain some lemmas concerning the arguments which appear in the terms of the formula (1).

Lemma 1. If we denote $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}, \alpha_{i+1},\left[\alpha_{i} \cdots \alpha_{i+2} \ldots \alpha_{i}\right], \ldots$, $\left[\alpha_{i} \ldots \alpha_{n} \ldots \alpha_{i}\right],\left[\alpha_{i} \ldots \alpha_{n+1}\right]$ by $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ respectively, then it holds that

$$
\left[\beta_{j} \cdots \beta_{l} \cdots \beta_{j}\right]= \begin{cases}{\left[\alpha_{j} \ldots \alpha_{l} \cdots \alpha_{j}\right]} & (j<l<i \leqq n), \\ {\left[\alpha_{j} \cdots \alpha_{i+1} \cdots \alpha_{j}\right]} & (j<i, i=l<n), \\ {\left[\alpha_{j} \ldots \alpha_{i} \cdots \alpha_{l+1} \cdots \alpha_{i} \cdots \alpha_{j}\right]} & (j<i, i+1 \leqq l<n), \\ {\left[\alpha_{i+1} \cdots \alpha_{l+1} \cdots \alpha_{i+1}\right]} & (j=i, i+1 \leqq l<n), \\ {\left[\alpha_{i} \ldots \alpha_{j+1} \cdots \alpha_{l+1} \ldots \alpha_{j+1} \ldots \alpha_{i}\right]} & (i+1 \leqq j<l<n),\end{cases}
$$

where the product $\left[\alpha_{j} \ldots \alpha_{k} \ldots \alpha_{l} \ldots \alpha_{k} \ldots \alpha_{j}\right](j<k<l)$ is made as follows: (i) first, the middle part $\alpha_{k} \ldots \alpha_{l} \ldots \alpha_{k}$ is arranged by the method explained above, (ii) next, the part $\alpha_{j} \ldots \alpha_{k}$ at the left end is arranged by the above method, (iii) the part $\alpha_{k} \cdots \alpha_{j}$ at the right end is arranged in the symmetric position to $\alpha_{j} \ldots \alpha_{k}$ with respect to α_{l}, (iv) finally these letters are multiplied one by one from the right end to the left.

Proof. We prove this lemma by dividing into five cases. In the cases 1 and 2: $j<l<i$ and $j<l=i$, the lemma is evident. Case $3: j<i, l \geqq i+1$. By the definition of $\beta_{i}(1 \leqq i<n+1)$ it is sufficient to prove the following: $\left[\beta_{j} \ldots \beta_{l} \ldots \beta_{j}\right]=\left[\alpha_{j} \ldots\left[\alpha_{i} \ldots \alpha_{l+1} \cdots \alpha_{i}\right] \ldots \alpha_{j}\right]=\left[\alpha_{j} \ldots \alpha_{i} \cdots \alpha_{l+1} \ldots \alpha_{i} \ldots \alpha_{j}\right]$. Since we can easily see that the arrangement of the letters α_{k} 's is the same in both sides, we show that the two products equal in the Bol-Moufang loop Γ. To prove it, it is sufficient to show that $\left[\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right] \ldots \alpha_{j}\right]=\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i} \ldots \alpha_{j}\right]$. We prove this by dividing into few steps. We prove that $\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right]=$ $\left(\left(\alpha_{i} \cdots \alpha_{l+1} \cdots \alpha_{i}\right)\right)$, where $\left(\left(\alpha_{i} \cdots \alpha_{l+1} \cdots \alpha_{i}\right)\right)$ is the product in which the arrangement of α_{k} 's is the same as that of $\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right]$ and which is obtained by multiplying α_{k} 's from the right and from the left alternatively beginning. with the multiplication of α_{l+1} and α_{1} at the middle of this product, i.e., $\alpha_{i}\left(\left(\alpha_{1} \ldots\left(\left(\alpha_{1}\left(\alpha_{l+1} \alpha_{1}\right)\right) \ldots \alpha_{i}\right)\right.\right.$. If we use the Bol-Moufang condition for the product obtained by taking away α_{i} from the left end of ($\left(\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right)$) we have:

$$
\left(\alpha_{1}\left(\left(\alpha_{2} \ldots\left(\left(\alpha_{1}\left(\alpha_{l+1} \alpha_{1}\right)\right) \ldots \alpha_{2}\right)\right) \alpha_{1}\right)\right) \alpha_{i}=\alpha_{1}\left\{\left(\alpha_{2}\left(\ldots\left(\left(\alpha_{1}\left(\alpha_{l+1} \alpha_{1}\right)\right) \ldots \alpha_{2}\right)\right)\left(\alpha_{1} \alpha_{i}\right)\right\}\right.
$$

If we use again the Bol-Moufang condition for the part in parenthesises
$\left\{\left(\alpha_{2}\left(\left(\alpha_{1} \ldots\left(\left(\alpha_{1}\left(\alpha_{l+1} \alpha_{1}\right)\right) \ldots \alpha_{2}\right)\right)\left(\alpha_{1} \alpha_{i}\right)\right\}\right.\right.$ of the right side of the above equation, we obtain

$$
\left(\alpha _ { 2 } \left(\left(\alpha_{1} \ldots\left(\left(\alpha_{1}\left(\alpha_{l+1} \alpha_{1}\right)\right) \ldots \alpha_{2}\right)\right)\left(\alpha_{1} \alpha_{i}\right)=\alpha_{2}\left\{\left(\alpha_{1}\left(\left(\ldots\left(\left(\alpha_{1}\left(\alpha_{l+1} \alpha_{1}\right)\right) \ldots \alpha_{1}\right)\right)\left[\alpha_{2} \alpha_{1} \alpha_{i}\right]\right\}\right.\right.\right.\right.
$$

Continuing the same processes we get $\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right]=\left(\left(\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right)\right)$. We now proceed to prove that $\left[\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right] \ldots \alpha_{j}\right]=\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i} \ldots \alpha_{j}\right]$. Since $\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right]=\left(\left(\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right)\right)$, it holds that

$$
\left[\left[\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right] \ldots \alpha_{j}\right]=\left(\left(\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right)\right)\left(\alpha_{1} \ldots\left(\alpha_{1}\left(\alpha_{2}\left(\alpha_{1} \alpha_{j}\right)\right)\right) \ldots\right)
$$

In the same way as the above, taking into account to two α_{i} 's at the both ends of ($\left.\alpha_{i} \ldots \alpha_{l+1} \ldots \alpha_{i}\right)$), if we use the Bol-Moufang condition on the right side of this equation, we have

$$
\begin{aligned}
\left(\left(\alpha_{i} \cdots \alpha_{l+1} \cdots \alpha_{i}\right)\right)\left(\alpha _ { 1 } \cdots \left(\alpha_{1}\right.\right. & \left.\left.\left(\alpha_{2}\left(\alpha_{1} \alpha_{j}\right)\right)\right) \cdots\right) \\
& =\alpha_{i}\left\{\left(\left(\alpha_{1} \ldots \alpha_{l+1} \cdots \alpha_{1}\right)\right)\left(\alpha_{i}\left(\alpha_{1} \cdots\left(\alpha_{2}\left(\alpha_{1} \alpha_{j}\right)\right) \cdots\right)\right)\right\}
\end{aligned}
$$

Further, if we use again the Bol-Moufang condition for the part $\left\{\left(\left(\alpha_{1} \ldots \alpha_{l+1} \ldots \alpha_{1}\right)\right)\left(\alpha_{i}\left(\alpha_{1} \ldots\left(\alpha_{1} \alpha_{j}\right)\right) \ldots\right)\right\}$ on the right side of the above, we obtain

$$
\alpha_{i}\left\{\alpha_{1}\left\{\left(\left(\alpha_{2} \ldots \alpha_{l+1} \ldots \alpha_{2}\right)\right)\left(\alpha_{1}\left(\alpha_{i}\left(\alpha_{1}\left(\ldots\left(\alpha_{2}\left(\alpha_{1} \alpha_{j}\right)\right) \ldots\right)\right)\right)\right)\right\}\right\}
$$

Hence we have the required result by repeating the same processes.
Case 4: $j=i, l \geqq i+1$: We may prove this case in the same way as that of the case 3 .

Case 5: $i+1 \leqq j<l$: We show that when we rewrite β_{i} by α_{k} 's the arrangement of the letters in $\left[\beta_{j} \ldots \beta_{l} \ldots \beta_{j}\right]$ coincides with that of α_{k}^{\prime} 's in $\left[\alpha_{i} \cdots \alpha_{j+1} \cdots \alpha_{l+1} \cdots \alpha_{j+1} \cdots \alpha_{i}\right]$. It is sufficient to prove it about the left half product. Since $\beta_{k}(k=i+1, i+2, \cdots, j)$ contains only one $\alpha_{k+1}(k=i+1, i+2, \ldots, j)$ respectively, only one α_{j} appears between α_{j+1} and α_{l+1} and only one α_{j-1} appears between α_{j+1} and α_{j}, and between α_{j} and α_{l+1} respectively in the sequence of $\beta_{l}, \beta_{j}, \beta_{j-1}, \cdots, \beta_{i+1}$ in the course of the construction of the product $\left[\beta_{j} \ldots \beta_{l}\right]$. Continuing the same considerations we may see that the arrangement and numbers of $\alpha_{l+1}, \alpha_{j+1}, \alpha_{j}, \ldots, \alpha_{i+2}$ in $\left[\beta_{j} \ldots \beta_{l}\right]$ coincide with those of them in the part $\alpha_{j+1} \ldots \alpha_{l+1}$ of $\left[\alpha_{i} \ldots \alpha_{j+1} \ldots \alpha_{l+1}\right]$. Since each of $\beta_{l}, \beta_{j}, \ldots, \beta_{i+1}$ does not contain α_{i+1}, when we put $\beta_{i}=\alpha_{i+1}$ in the middle of each adjacent pair of letters in the sequence constructed by $\beta_{l}, \beta_{j}, \cdots, \beta_{i+1}$, only one α_{i+1} appears in the middle of each adjacent pair of letters in the sequence of α_{l+1}, $\alpha_{j+1}, \alpha_{j}, \ldots, \alpha_{i+2}$ in $\left[\beta_{j} \ldots \beta_{l}\right]$. Further, since each of $\beta_{l}, \beta_{j}, \ldots, \beta_{i+1}$ contains α_{i} 's on both ends and each of $\beta_{i-1}, \beta_{i-2}, \ldots, \beta_{1}$ does not contain α_{i}, the arrangement of $\alpha_{l+1}, \alpha_{j+1}, \ldots, \alpha_{i}$ in $\left[\beta_{j} \ldots \beta_{l}\right]$ is the same as that of $\alpha_{l+1}, \alpha_{j+1}, \ldots, \alpha_{i}$ in $\left[\alpha_{i} \cdots \alpha_{j+1} \ldots \alpha_{l+1}\right]$. Moreover, since $\beta_{i-1}=\alpha_{i-1}, \cdots, \beta_{1}=\alpha_{1}$ and the arrangement
of α_{k} 's in each of $\beta_{l}, \ldots, \beta_{i+1}$ is the same as that of α_{k} 's in the construction of $\left[\alpha_{i} \cdots \alpha_{j+1} \cdots \alpha_{l+1}\right]$, we may see that the arrangement of α_{k}^{\prime} 's in $\left[\beta_{j} \ldots \beta_{l}\right]$ is the same as that of $\left[\alpha_{i} \ldots \alpha_{j+1} \ldots \alpha_{l+1}\right]$. Therefore the arrangement of α_{k} 's in $\left[\beta_{j} \ldots \beta_{l} \ldots \beta_{j}\right]$ is the same as that of α_{k} 's in $\left[\alpha_{i} \ldots \alpha_{j+1} \ldots \alpha_{l+1} \ldots \alpha_{j+1} \ldots \alpha_{i}\right]$.

We prove that $\left[\beta_{j} \ldots \beta_{l} \ldots \beta_{j}\right]=\left[\alpha_{i} \ldots \alpha_{j+1} \ldots \alpha_{l+1} \ldots \alpha_{j+1} \ldots \alpha_{i}\right]$ in the BolMoufang loop Γ. First, in the same way as the case 3, we have that [$\left.\beta_{i+1} \ldots \beta_{j}\right]$ at the right end of $\left[\beta_{j} \cdots \beta_{l} \cdots \beta_{j}\right]$ is equal to $\left[\alpha_{i} \cdots \alpha_{i+2} \cdots \alpha_{j+1} \cdots \alpha_{i}\right]$. Next, we can prove $\left[\beta_{i+2} \cdots \beta_{j}\right]=\left[\alpha_{i} \ldots \alpha_{i+3} \ldots \alpha_{j+1} \cdots \alpha_{i}\right]$, where $\left[\beta_{i+2} \cdots \beta_{j}\right]$ is the part of the right end of $\left[\beta_{j} \ldots \beta_{l} \ldots \beta_{j}\right]$. Continuing these processes as often as $\beta_{s}(s \geqq i+1)$ appears, we obtain $\left[\beta_{j} \ldots \beta_{l} \cdots \beta_{j}\right]=\left[\alpha_{i} \cdots \alpha_{j+1} \cdots \alpha_{l+1} \cdots \alpha_{j+1} \cdots \alpha_{i}\right]$.

In the same way as the above, we may prove that the following lemma.

Lemma 2. If we denote $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1},\left[\alpha_{i} \ldots \alpha_{i+1} \ldots \alpha_{i}\right], \alpha_{i+2}, \alpha_{i+3}, \ldots, \alpha_{n+1}$ by $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ respectively, then it holds that

$$
\left[\beta_{j} \ldots \beta_{l} \ldots \beta_{j}\right]= \begin{cases}{\left[\alpha_{j} \ldots \alpha_{l} \ldots \alpha_{j}\right]} & (j<l<i \leqq n), \\ {\left[\alpha_{j} \ldots \alpha_{i} \ldots \alpha_{i+1} \ldots \alpha_{i} \ldots \alpha_{j}\right]} & (j<i, l=i<n), \\ {\left[\alpha_{j} \ldots \alpha_{l+1} \ldots \alpha_{j}\right]} & (j<i, i+1 \leqq l<n), \\ {\left[\alpha_{i} \ldots \alpha_{i+1} \ldots \alpha_{l+1} \ldots \alpha_{i+1} \ldots \alpha_{i}\right]} & (j=i, i+1 \leqq l<n), \\ {\left[\alpha_{j+1} \ldots \alpha_{l+1} \ldots \alpha_{j+1}\right]} & (i+1 \leqq j<l<n) .\end{cases}
$$

Note. By the method of the above proof, we may see that the similar lemmas, concerning the half product $\left[\beta_{j} \ldots \beta_{n}\right]$ as the lemmas 1 and 2, hold.

Under these preparations, we shall construct the M-cohomology group of a Bol-Moufang loop Γ over an abelian group G.

In the following, we shall prove the theorem:
Theorem 1. If f is any cochain, then $\partial(\partial f)=0$.
Proof. In the case where $n=0$ and $n=1$, we may prove this by simple calculations. So, we assume $n \geqq 2$. If f is an n-dimensional cochain, then $\partial(\partial f)$ is an $(n+2)$-dimensional cochain. When we express $\partial(\partial f)\left(\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n+2}\right)$ in terms of the values of ∂f, using the definition (1), we obtain

$$
\partial(\partial f)\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+2}\right)=u\left(\partial f ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+2}\right)-u\left(\partial f ; \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n+1}, \varepsilon\right) \bar{\alpha}_{n+2} .
$$

Further, we express each term in $u\left(\partial f ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+2}\right)$ and $u\left(\partial f ; \alpha_{1}, \ldots, \alpha_{n+1}, \varepsilon\right)$ in terms of the values of f, we have:

$$
\begin{aligned}
\partial(\partial f) & \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+2}\right) \\
= & \sum_{i=1}^{2(n+1)}\left\{u\left(f ; \beta_{i 1}, \beta_{i 2}, \ldots, \beta_{i n+1}\right)-u\left(f ; \beta_{i 1}, \beta_{i 2}, \ldots, \beta_{i n}, \varepsilon\right) \bar{\beta}_{i n+1}\right\} \\
& -\sum_{i=1}^{2(n+1)}\left\{u\left(f ; \beta_{i 1}, \beta_{i 2}, \ldots, \beta_{i n}, \beta_{i n+1}^{\prime}\right) \bar{\alpha}_{n+2}-u\left(f ; \beta_{i 1}, \beta_{i 2}, \ldots, \beta_{i n}, \varepsilon\right) \bar{\beta}_{i n+1}^{\prime} \bar{\alpha}_{n+2}\right\},
\end{aligned}
$$

where $u\left(f ; \beta_{i 1}, \beta_{i 2}, \cdots, \beta_{i n+1}\right)-u\left(f ; \beta_{i 1}, \ldots, \beta_{i n}, \varepsilon\right) \bar{\beta}_{i n+1}$ is the expression obtained by expressing the i term of $u\left(\partial f ; \alpha_{1}, \ldots, \alpha_{n+2}\right)$ in terms of the values of f and $\beta_{i n+1}^{\prime}$ is the argument obtained by putting $\alpha_{n+2}=\varepsilon$ in $\beta_{i n+1}$. If we combine each of the terms in $\sum_{i=1}^{2(n+1)} u\left(f ; \beta_{i 1}, \cdots, \beta_{i n+1}\right)$ and $\sum_{i=1}^{2(n+1)} u\left(f ; \beta_{i 1}, \ldots, \beta_{i n}, \beta_{i n+1}^{\prime}\right)$ with the other whose sign only differs from each other as we did in [5], we obtain that $\sum_{i=1}^{2(n+1)} u\left(f ; \beta_{i 1}, \ldots, \beta_{i n+1}\right)=0$ and $\sum_{i=1}^{2(n+1)} u\left(f ; \beta_{i 1}, \ldots, \beta_{i n}, \beta_{i n+1}^{\prime}\right)=0$ (cf. [5], pp. 156158). Further, from $\bar{\beta}_{i n+1}^{\prime} \bar{\alpha}_{n+2}=\bar{\beta}_{i n+1}$, it follows that $-\sum_{i=1}^{2(n+1)} u\left(f ; \beta_{i 1}, \beta_{i 2}, \ldots, \beta_{i n}, \varepsilon\right) \bar{\beta}_{i n+1}$ $+\sum_{i=1}^{2(n+1)} u\left(f ; \beta_{i 1}, \cdots, \beta_{i n}, \varepsilon\right) \bar{\beta}_{i n+1}^{\prime} \bar{\alpha}_{n+2}=0$. Therefore we obtain $\partial(\partial f)=0$.

We call an n-dimensional cochain f an n-dimensional M-cocycle if $\partial f=0$. All n-dimensional M-cocycles form a subgroup of $C^{n}(\Gamma, G)$, which we denote by $Z^{* n}(\Gamma, G)$. For $n>0$ the n-dimensional cochains that are M-coboundaries of some ($n-1$)-dimensional cochains form also a subgroup of $C^{n}(\Gamma, G)$, which we denote by $B^{* n}(\Gamma, G)$. Since $\partial(\partial f)=0$, we have $B^{* n}(\Gamma, G) \subset Z^{* n}(\Gamma, G)$. The factor group $H^{* n}(\Gamma, G)=Z^{* n}(\Gamma, G) / B^{* n}(\Gamma, G)$ is called the n-th M-cohomology group of a Bol-Moufang loop Γ over an abelian group G.

In the following, we assume that $C^{1}(\Gamma, G)$ and $C^{2}(\Gamma, G)$ are the groups of the normalized cochains f, that is, $f(\varepsilon)=0$ and $f(\alpha, \varepsilon)=0=f(\varepsilon, \beta)$.

§ 2. Extensions of a group by a Bol-Moufang loop

We shall proceed to classify all $B M$-extensions of a group G by a BolMoufang loop Γ by making use of the 2nd and 3rd M-cohomology groups constructed in §1.

A loop L is called a $B M$-extension of G by Γ if it satisfies the following conditions: (i) L is a Bol-Moufang loop, (ii) L contains a normal subgroup G^{\prime} which is isomorphic to G, (iii) $L / G^{\prime} \cong \Gamma$, (iv) G^{\prime} is contained in the nucleus of L, where the nucleus is a subgroup consisted of elements a which satisfies the conditions: $(a x) y=a(x y),(x a) y=x(a y)$ and $(x y) a=x(y a)$. (Usually we identify G^{\prime} with G). Further, we define the equivalence of two $B M$-extensions of G by Γ exactly as in the case Γ is a group (cf. [5], pp. 153). Then we can prove the following propositions by the same methods as those where Γ is a group (cf. [5], pp. 152-154).

Proposition 1. For a given BM-extension of a group G by a Bol-Moufang loop Γ, there exists a system of elements $f(\alpha, \beta)$ of G and a system of automorphisms T_{α} which satisfy the conditions:

$$
\begin{gathered}
a T_{\alpha} T_{\beta}=a T_{\alpha \beta} T_{f(\alpha, \beta)} \quad a \epsilon G, \\
f(\alpha,[\beta \alpha \gamma]) f(\beta, \alpha \gamma) f(\alpha, \gamma)=f([\alpha \beta \alpha], \gamma)\left(f(\alpha, \beta \alpha) T_{\gamma}\right)\left(f(\beta, \alpha) T_{\gamma}\right), \\
f(\alpha, \varepsilon)=e=f(\varepsilon, \beta) .
\end{gathered}
$$

Conversely, to every system of elements $f(\alpha, \beta)$ and every system of automorphisms T_{α} of G which satisfy the above conditions, there corresponds a $B M$-extension of G by Γ.

A set of elements $f(\alpha, \beta)$ of G which satisfy the above conditions is called a M-factor set.

Proposition 2. Two BM-extensions L and L^{\prime} of a group G by a BolMoufang loop Γ which are given by the M-factor sets $f(\alpha, \beta)$ and $f^{\prime}(\alpha, \beta)$, and automorphisms T_{α} and T_{α}^{\prime} respectively, are equivalent if and only if every element α of Γ can be associated with an element $c_{\alpha}\left(c_{\varepsilon}=e\right)$ of G in such a way that the following conditions are satisfied:

$$
\begin{gathered}
f^{\prime}(\alpha, \beta)=c_{\alpha \beta}^{-1} f(\alpha, \beta)\left(c_{\alpha} T_{\beta}\right) c_{\beta}, \\
T_{\alpha}^{\prime}=T_{\alpha} T_{c_{\alpha}} .
\end{gathered}
$$

We prepare some lemmas to investigate the set of all $B M$-extensions of G by Γ. In the same way as in the previous paper, for a given $B M$-extension L of G by Γ there exists a homomorphism θ on Γ into Aut $G / \operatorname{In} G$ defined by $\alpha \rightarrow T_{\alpha}(\operatorname{In} G)$, which is called the homomorphism associated with this $B M$ extension L.

Let now G, Γ and a homomorphism $\theta: \Gamma \rightarrow$ Aut $G / \operatorname{In} G$ be given. Then the homomorphism θ induces a homomorphism $\theta_{0}: \Gamma \rightarrow$ Aut C. So, we may regard Γ as an operator set of the center C of G. Therefore, we may construct the M-cohomology group $H^{* n}(\Gamma, C)$, using the methods in §1. If in every $\operatorname{coset} \theta(\alpha)$ of $\operatorname{In} G$ in Aut G, we choose a representative φ_{α}, where φ_{ε} is the identity automorphism, then there exist the elements $h(\alpha, \beta)$ of G such that $\varphi_{\alpha} \varphi_{\beta}=\varphi_{\alpha \beta} T_{h(\alpha, \beta)}$, where $h(\alpha, \varepsilon)=e=h(\varepsilon, \beta)$. Using the Bol-Moufang condition to the representatives $\varphi_{\alpha}, \varphi_{\beta}$ and φ_{γ} and taking into account that for $a \in G, \varphi \in$ Aut G it holds that $\varphi^{-1} T_{a} \varphi=T_{(a \varphi)}$, we can see that there exists an element $z^{*}(\alpha, \beta, \gamma)$ of C such that

$$
\begin{equation*}
h(\alpha,[\beta \alpha \gamma]) h(\beta, \alpha \gamma) h(\alpha, \gamma)=z^{*}(\alpha, \beta, \gamma) h([\alpha \beta \alpha], \gamma)\left(\{h(\alpha, \beta \alpha) h(\beta, \alpha)\} \varphi_{\gamma}\right) . \tag{2}
\end{equation*}
$$

So, for given G, Γ and θ, there exists an element $z^{*}(\alpha, \beta, \gamma)$ of $C^{3}(\Gamma, C)$. We can prove that in the case where Γ is a Bol-Moufang loop, the following lemmas concerning $z^{*}(\alpha, \beta, \gamma)$, which are similar to those in the previous paper, also hold.

Lemma 3. A 3-dimensional cochain $z^{*}(\alpha, \beta, \gamma)$ is an element of $z^{* 3}(\Gamma, C)$.
Proof. We calculate the expression:

$$
\begin{aligned}
J= & h(\alpha,[\beta \alpha \gamma \dot{\alpha} \alpha \alpha \delta]) h(\beta,[\alpha \gamma \alpha \beta \alpha \delta]) h(\alpha,[\gamma \alpha \beta \alpha \delta]) h(\gamma,[\alpha \beta \alpha \delta]) . \\
& \cdot h(\alpha,[\beta \alpha \delta]) h(\beta, \alpha \delta) h(\alpha, \delta)
\end{aligned}
$$

in two ways. First, we begin with the calculations of the first three factors and the last three factors, using (2). Then we have:
$J=z^{*}(\alpha, \beta,[\gamma \alpha \beta \alpha \delta]) z^{*}(\alpha, \beta, \delta) h([\alpha \beta \alpha],[\gamma \alpha \beta \alpha \delta]) h(\gamma,[\alpha \beta \alpha \delta]) h([\alpha \beta \alpha], \delta)$.
$\cdot\left((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{[\gamma \alpha \beta \alpha \delta]} T_{h(\gamma,[\alpha \beta \alpha \delta]) h([\alpha \beta \alpha], \delta)}\right)\left((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\delta}\right)$
$=z^{*}(\alpha, \beta,[\gamma \alpha \beta \alpha \delta]) z^{*}(\alpha, \beta, \delta) z^{*}([\alpha \beta \alpha], \gamma, \delta) h([\alpha \beta \alpha \gamma \alpha \beta \alpha], \delta)((h[\alpha \beta \alpha],[\gamma \alpha \beta \alpha])$.
$\left.\cdot h(\gamma,[\alpha \beta \alpha])) \varphi_{\delta}\right)\left((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\gamma} \varphi_{[\alpha \beta \alpha]} \varphi_{\delta}\right)\left((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\delta}\right)$
$=z^{*}(\alpha, \beta,[\gamma \alpha \beta \alpha \delta]) z^{*}(\alpha, \beta, \delta) z^{*}([\alpha \beta \alpha], \gamma, \delta) h([\alpha \beta \alpha \gamma \alpha \beta \alpha], \delta)\left(h([\alpha \beta \alpha],[\gamma \alpha \beta \alpha]) \varphi_{\delta}\right)$.
$\left.\cdot\left(\left\{(h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{[\gamma \alpha \beta \alpha]}\right) h(\gamma,[\alpha \beta \alpha])\right\} \varphi_{\delta}\right)\left((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\delta}\right)$.
Next, we begin with the calculation of the middle three factors by applying (2). Then we obtain:

```
J=\mp@subsup{z}{}{*}(\alpha,\gamma,[\beta\alpha\delta])h(\alpha,[\beta\alpha\gamma\alpha\beta\alpha\delta])h(\beta,[\alpha\gamma\alpha\beta\alpha\delta])h([\alpha\gamma\alpha],[\beta\alpha\delta])h(\beta,\alpha\delta).
    - ((h(\alpha,r\alpha)h(\gamma,\alpha))\mp@subsup{\varphi}{\beta}{}\mp@subsup{\varphi}{\alpha\delta}{})h(\alpha,\delta)
    = z* (\alpha,\gamma,[\beta\alpha\delta])\mp@subsup{z}{}{*}(\beta,[\alpha\gamma\alpha],\alpha\delta)h(\alpha,[\beta\alpha\gamma\alpha\beta](\alpha\delta))h([\beta\alpha\gamma\alpha\beta],\alpha\delta)h(\alpha,\delta).
    - ({h(\beta,[\alpha\gamma\alpha\beta])h([\alpha\gamma\alpha], \beta)} \varphi \mp@subsup{\varphi}{\alpha}{}\mp@subsup{\varphi}{\delta}{})({h(\alpha,\gamma\alpha)h(\gamma,\alpha)} \mp@subsup{\varphi}{\beta}{}\mp@subsup{\varphi}{\alpha}{}\mp@subsup{\varphi}{\delta}{})
    = z*}(\alpha,\gamma,[\beta\alpha\delta])\mp@subsup{z}{}{*}(\beta,[\alpha\gamma\alpha],\alpha\delta)\mp@subsup{z}{}{*}(\alpha,[\beta\alpha\gamma\alpha\beta],\delta)h([\alpha\beta\alpha\gamma\alpha\beta\alpha],\delta)
```



```
    - ({h(\alpha,\gamma\alpha)h(\gamma,\alpha)} \varphi }\mp@subsup{\beta}{\beta}{}\mp@subsup{\varphi}{\alpha}{}\mp@subsup{\varphi}{\delta}{}
    = z*}(\alpha,\gamma,[\beta\alpha\delta])\mp@subsup{z}{}{*}(\beta,[\alpha\gamma\alpha],\alpha\delta)\mp@subsup{z}{}{*}(\alpha,[\beta\alpha\gamma\alpha\beta],\delta)
    •(z*-1}(\beta,[\alpha\gamma\alpha],\alpha)\mp@subsup{\varphi}{\delta}{})h([\alpha\beta\alpha\gamma\alpha\beta\alpha],\delta) ({h(\alpha,[\beta\alpha\gamma\alpha\beta\alpha])h(\beta,[\alpha\gamma\alpha\beta\alpha])}\mp@subsup{\varphi}{\delta}{})
    \cdot({h([\alpha\gamma\alpha], \beta\alpha) ((h(\alpha,\gamma\alpha)h(r,\alpha))\mp@subsup{\varphi}{\beta\alpha}{})}\mp@subsup{\varphi}{\delta}{})(h(\beta,\alpha)\mp@subsup{\varphi}{\delta}{})
```

$$
\begin{aligned}
= & z^{*}(\alpha, \gamma,[\beta \alpha \delta]) z^{*}(\beta,[\alpha \gamma \alpha], \alpha \delta) z^{*}(\alpha,[\beta \alpha \gamma \alpha \beta], \delta)\left(z^{*-1}(\beta,[\alpha \gamma \alpha], \alpha) \varphi_{\delta}\right) \\
& \cdot\left(z^{*-1}(\alpha, \gamma, \beta \alpha) \varphi_{\delta}\right) h([\alpha \beta \alpha \gamma \alpha \beta \alpha], \delta)(\{h(\alpha,[\beta \alpha \gamma \alpha \beta \alpha]) h(\beta,[\alpha \gamma \alpha \beta \alpha]) \cdot \\
& \left.\cdot h(\alpha,[\gamma \alpha \beta \alpha]) h(\gamma,[\alpha \beta \alpha]) h(\alpha, \beta \alpha) h(\beta, \alpha)\} \varphi_{\delta}\right) \\
= & z^{*}(\alpha, \gamma,[\beta \alpha \delta]) z^{*}(\beta,[\alpha \gamma \alpha], \alpha \delta) z^{*}(\alpha,[\beta \alpha \gamma \alpha \beta], \delta)\left(z^{*-1}(\beta,[\alpha \gamma \alpha], \alpha) \varphi_{\delta}\right) \cdot \\
& \cdot\left(Z^{*-1}(\alpha, \gamma, \beta \alpha) \varphi_{\delta}\right)\left(z^{*}(\alpha, \beta,[\gamma \alpha \beta \alpha]) \varphi_{\delta}\right) h([\alpha \beta \alpha \gamma \alpha \beta \alpha], \delta)(\{h([\alpha \beta \alpha],[\gamma \alpha \beta \alpha]) \cdot \\
& \left.\left.\cdot\left((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{[\gamma \alpha \beta \alpha]}\right) h(\gamma,[\alpha \beta \alpha])\right\} \varphi_{\delta}\right)\left(\{h(\alpha, \beta \alpha) h(\beta, \alpha)\} \varphi_{\delta}\right)
\end{aligned}
$$

Comparing the above two calculations, we have $\partial z^{*}(\alpha, \beta, \gamma, \delta)=0$.
The M-cocycle $z^{*}(\alpha, \beta, \gamma)$ depends on the choice of the representatives φ_{α} and of the elements $h(\alpha, \beta)$. In the following we investigate the change of $z^{*}(\alpha, \beta, \gamma)$ for different choices of $h(\alpha, \beta)$ and φ_{α}. Taking into account that we must consider what order to multiply the letters in Γ as we did in the above lemma, we have the following lemmas by the same methods as used in the previous paper (cf. [5], pp. 161-162).

Lemma 4. If the choice of $h(\alpha, \beta)$ is changed, then $z^{*}(\alpha, \beta, \gamma)$ is changed to a cohomologous M-cocycle. By suitably changing the choice of $h(\alpha, \beta)$, $z^{*}(\alpha, \beta, \gamma)$ may be changed to any M-cohomologous cocycle.

Using the expression

$$
M=c([\alpha \beta \alpha \gamma]) z^{*}(\alpha, \beta, \gamma) h^{\prime}([\alpha \beta \alpha], \gamma)\left(\left\{h^{\prime}(\alpha, \beta \alpha) h^{\prime}(\beta, \alpha)\right\} \varphi_{\gamma}^{\prime}\right)
$$

we have the following:
LEMMA 5. If the automorphisms φ_{α} are changed, then with a suitable new choice of $h(\alpha, \beta)$ the 3-dimensional M-cocycle $z^{*}(\alpha, \beta, \gamma)$ remains unchanged.

Thus, we have proved that only one element of $H^{* 3}(\Gamma, C)$ corresponds to the given group G, the Bol-Moufang loop Γ and the homomorphism θ. After S. MacLane, we call a pair of a Bol-Moufang loop Γ and a group G together with a homomorphism $\theta: \Gamma \rightarrow$ Aut $G / \operatorname{In} G$ an abstract kernel and denote by (Γ, G, θ). The unique element of $H^{* 3}(\Gamma, C)$ determined by a given abstract kernel (Γ, G, θ) is called an obstraction of it and denoted by $\operatorname{Obs}(\Gamma, G, \theta)$.

Then, we have the following theorem in the similar way as that where Γ is a group (cf. [5] pp. 162-163).

Theorem 2. The abstract kernel ($\Gamma, G, \theta)$ has a BM-extension if and only if $\operatorname{Obs}(\Gamma, G, \theta)=0$.

We now give a survey of the non-equivalent $B M$-extensions of G by Γ.

In the case that Γ is a Bol-Moufang loop, we can obtain similar results to those in the case that Γ is a group.

When G is an abelian group and Γ is a Bol-Moufang loop, we have the following theorem:

Theorem 3. If G, Γ and a homomorphism $\theta: \Gamma \rightarrow A u t G$ are given, there always exists a BM-extension of G by Γ and all non-equivalent $B M$-extensions correspond one-to-one to the elements of the second M-cohomology group $H^{* 2}(\Gamma, G)$.

Proof. Since G is an abelian group, the 3-dimensional M-cocycle $z^{*}(\alpha, \beta, \gamma)$ corresponding to the abstract kernel (Γ, G, θ) is an M-coboundary from the definition (2). Hence, from the theorem 2, there exists a $B M$-extension of G by Γ.

On account of the 2 nd and 3 rd conditions of the proposition 1 , to a given $B M$-extension of G by Γ there corresponds a 2 -dimensional M-cocycle, i.e., M-factor set. Conversely, for every 2-dimensional M-cocycle there exists a $B M$-extension of G by Γ from the proposition 1. Further, the proposition 2 shows that the two M-factor sets which correspond to two equivalent $B M$ extensions are cohomologous. Hence we have proved the theorem 3.

When G is a non-abelian group, taking into account the theorem 2, the following theorem is proved in the same way as that where Γ is a group (cf. [5], pp. 162-163).

Theorem 4. Let a non-abelian group G with the center C, a Bol-Moufang loop Γ and a homomorphism $\theta: \Gamma \rightarrow A u t G / I n G$ be given. If the obstraction of the abstract kernel (Γ, G, θ) is zero, there exists a $B M$-extension of G by Γ and all non-equivalent $B M$-extensions of G by Γ are in one-to-one correspondence with the elements of the second M-cohomology group $H^{* 2}(\Gamma, C)$.

References

[1] R. H. Bruck, An extension theory for a certain class of loops, Bull. Amer. Math. Soc., 57 (1951), 1126.
[2] S. Eilenberg and S. MacLane, Cohomology theory in abstract groups. I, Ann. of Math., 48 (1947), 51-78.
[3] —.................. ibid., 48 (1947), 326-341.
[4] A. G. Kurosh, The theory of groups I and II, New York, 1956.
[5] N. Nishigôri, On loop extensions of groups and M-cohomology groups, J. Sci. Hiroshima Univ. Ser. A-I, 27 (1963), 151-165.

[^0]: 1) The number in the bracket referes to the references at the end of this paper.
 2) A loop which satisfies the condition $a[b(a c)]=[a(b a)] c$ is called a Bol-Moufang loop.
 3) Aut G means the group of all automorphisms of G and In G is the group of all inner automorphisms of G.
[^1]: 4) In the right side of the definition of $u\left(f ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}\right)$ we take the form $(-1)^{n-1} f\left(\alpha_{1}, \alpha_{2}, \ldots\right.$, $\left.\alpha_{n-2}, \alpha_{n},\left[\alpha_{n-1} \ldots \alpha_{n+1}\right]\right)$ when i equals $n-1$ in the second line.
