On Loop Extensions of Groups and M-cohomology Groups. II

Noboru Nishigôri

(Received March 1, 1965)

Introduction

In the previous paper $[5]^{1}$, we discussed the problem of BM-extensions of a group by a group, that is, for given two groups G and Γ , the problem to determine all Bol-Moufang loop L's with the following properties²⁾: (i) L has a normal subgroup G' which is isomorphic to G, (ii) $L/G'\cong\Gamma$, (iii) G' is contained in the nucleus of L. When we consider the case where L is a Bol-Moufang loop, it seems natural to consider the case where Γ is also a Bol-Moufang loop. In this paper we shall investigate the classification of all BMextensions of a group G by a Bol-Moufang loop Γ . In this case, we shall modify the M-cohomology groups defined in the previous paper and classify all BM-extensions, using this new cohomology groups.

§1 will be devoted to the construction of the *M*-cohomology groups of a Bol-Moufang loop Γ over an abelian group *G*, and in §2, we shall first obtain the necessary and sufficient conditions for the existence of the *BM*-extension *L* of a group *G* by a Bol-Moufang loop Γ by making use of a *M*-factor set and a system of automorphisms of *G*, and next, using this result and the new *M*-cohomology groups we shall classify the set of all *BM*-extensions. The methods used in this paper are the same as those of the previous, and the results obtaind in this paper are as follows:

(i) For a given group G with the center C, a Bol-Moufang loop Γ and a homomorphism $\theta: \Gamma \rightarrow Aut G/In G^{3}$, the BM-extension of G by Γ exists if and only if an element of $H^{*3}(\Gamma, C)$ determined by G, Γ and θ is zero (Theorem 2). Especially in the case G is abelian, this element is always zero.

(ii) If the BM-extension exists for assigned G, Γ and θ , all non-equivalent BM-extensions are in one-to-one correspondence with the elements of the second M-cohomology group $H^{*2}(\Gamma, C)$ (Theorem 3, 4).

§ 1. M-cohomology groups of a Bol-Moufang loop over an abelian group

In this section we shall extend the previous M-cohomology group of a

¹⁾ The number in the bracket referes to the references at the end of this paper.

²⁾ A loop which satisfies the condition a[b(ac)] = [a(ba)]c is called a Bol-Moufang loop.

³⁾ Aut G means the group of all automorphisms of G and $\ln G$ is the group of all inner automorphisms of G.

group Γ over an abelian group G to the case that Γ is a Bol-Moufang loop. Let G be an abelian group and Γ be a Bol-Moufang loop. Further, suppose that to each element α of Γ there corresponds an automorphism $\bar{\alpha}$ of G which satisfies the following conditions: $(g\bar{\alpha})\bar{\beta} = g(\bar{\alpha}\bar{\beta}) = g(\bar{\alpha}\bar{\beta}), g \in G, \alpha, \beta \in \Gamma; g\bar{\varepsilon} = g$ (ε is the identity element of Γ).

Every function $f(\alpha_1, \alpha_2, ..., \alpha_n)$ of *n* elements of Γ , with its value in *G*, is called an *n*-dimensional cochain and the set of these *n*-dimensional cochains is a group $C^n(\Gamma, G)$ under the ordinary addition. With every *n*-dimensional cochain *f*, we associate an (n + 1)-dimensional cochain ∂f called the *M*-coboundary of the cochain *f* and defined as follows:

$$\begin{cases} \partial f(\alpha) = a - a\bar{\alpha}, \\ \partial f(\alpha_{1}, \alpha_{2}) = f(\alpha_{2}) - f(\alpha_{1} \alpha_{2}) + f(\alpha_{1})\bar{\alpha}_{2}, \\ \partial f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n+1}) = u(f; \alpha_{1}, \alpha_{2}, \dots, \alpha_{n+1}) - u(f; \alpha_{1}, \alpha_{2}, \dots, \alpha_{n}, \varepsilon)\bar{\alpha}_{n+1} \quad (n \geq 2), \\ \text{where}^{4)} \quad u(f; \alpha_{1}, \alpha_{2}, \dots, \alpha_{n+1}) \\ = f(\alpha_{2}, [\alpha_{1}\alpha_{3}\alpha_{1}], [\alpha_{1}\alpha_{4}\alpha_{1}], \dots, [\alpha_{1}\alpha_{n}\alpha_{1}], \alpha_{1}\alpha_{n+1}) \\ + \sum_{i=2}^{n-1} (-1)^{i} f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{i-1}, \alpha_{i+1}, [\alpha_{i} \dots \alpha_{i+2} \dots \alpha_{i}], \dots, [\alpha_{i} \dots \alpha_{n} \dots \alpha_{i}], \\ [\alpha_{i} \dots \alpha_{n+1}]) \\ + (-1)^{n} f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n-1}, \alpha_{n+1}) \\ + \sum_{i=1}^{n-1} (-1)^{i} f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{i-1}, [\alpha_{i} \dots \alpha_{i+1} \dots \alpha_{i}], \alpha_{i+2}, \dots, \alpha_{n+1}) \\ + (-1)^{n} f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n-1}, [\alpha_{n} \dots \alpha_{n+1}]). \end{cases}$$

In the above definition (1), the product $[\alpha_i \dots \alpha_j \dots \alpha_i]$ (i < j) means the product of $\alpha_1, \alpha_2, \dots, \alpha_i, \alpha_j$ which is obtained by arranging these letters and multiplying them as follows:

(i) We put α_i at the left end and α_j at the right end on a line, (ii) α_{i-1} in the middle between α_i and α_j , (iii) α_{i-2} in the middles respectively both between α_i and α_{i-1} , and between α_{i-1} and α_j . (iv) After the arrangement of $\alpha_{k+1}, \alpha_{k+2}, \dots, \alpha_i, \alpha_j$ (k+1 < i < j) by the above processes we put α_k in the middles between all adjacent elements respectively in this sequence of the letters. (v) Continuing these processes until we put α_1 , we get the arrangement of letters in the left half part of the product. (vi) The arrangement of α_k 's in the right half part $\alpha_j \dots \alpha_i$ of the product $[\alpha_i \dots \alpha_j \dots \alpha_i]$ is symmetric to the left half part $\alpha_i \dots \alpha_j$ with respect to α_j . (vii) We multiply the letters of the above constructed sequence one by one from the right end to the left. For example, in the case i=4 and j=6,

In the right side of the definition of u(f; α₁, α₂,..., α_{n+1}) we take the form (-1)ⁿ⁻¹f(α₁, α₂,..., α_{n-2}, α_n, [α_{n-1}...α_{n+1}]) when i equals n-1 in the second line.

$$[\alpha_4 \cdots \alpha_6 \cdots \alpha_4] = \alpha_4(\alpha_1(\alpha_2(\alpha_1(\alpha_3(\alpha_1(\alpha_2(\alpha_1(\alpha_6(\alpha_1(\alpha_2(\alpha_1(\alpha_3(\alpha_1(\alpha_2(\alpha_1\alpha_4)))))\cdots)$$

When j=n+1, the product $[\alpha_i,\ldots,\alpha_{n+1}]$ is the left half part of the above product.

We explain some lemmas concerning the arguments which appear in the terms of the formula (1).

LEMMA 1. If we denote $\alpha_1, \alpha_2, ..., \alpha_{i-1}, \alpha_{i+1}, [\alpha_i ... \alpha_{i+2} ... \alpha_i], ..., [\alpha_i ... \alpha_n ... \alpha_i], [\alpha_i ... \alpha_{n+1}]$ by $\beta_1, \beta_2, ..., \beta_n$ respectively, then it holds that

$$\begin{bmatrix} \beta_{j} \dots \beta_{l} \dots \beta_{j} \end{bmatrix} = \begin{cases} \begin{bmatrix} \alpha_{j} \dots \alpha_{i} \dots \alpha_{j} \end{bmatrix} & (j < l < i \leq n), \\ \begin{bmatrix} \alpha_{j} \dots \alpha_{i+1} \dots \alpha_{j} \end{bmatrix} & (j < i, i = l < n), \\ \begin{bmatrix} \alpha_{j} \dots \alpha_{i} \dots \alpha_{l+1} \dots \alpha_{i} \dots \alpha_{j} \end{bmatrix} & (j < i, i+1 \leq l < n), \\ \begin{bmatrix} \alpha_{i+1} \dots \alpha_{l+1} \dots \alpha_{i+1} \end{bmatrix} & (j = i, i+1 \leq l < n), \\ \begin{bmatrix} \alpha_{i} \dots \alpha_{j+1} \dots \alpha_{l+1} \dots \alpha_{j+1} \dots \alpha_{i} \end{bmatrix} & (i+1 \leq j < l < n), \end{cases}$$

where the product $[\alpha_j...\alpha_k...\alpha_l...\alpha_k...\alpha_j]$ (j < k < l) is made as follows: (i) first, the middle part $\alpha_k...\alpha_l...\alpha_k$ is arranged by the method explained above, (ii) next, the part $\alpha_j...\alpha_k$ at the left end is arranged by the above method, (iii) the part $\alpha_k...\alpha_j$ at the right end is arranged in the symmetric position to $\alpha_j...\alpha_k$ with respect to α_l , (iv) finally these letters are multiplied one by one from the right end to the left.

PROOF. We prove this lemma by dividing into five cases. In the cases 1 and 2: j < l < i and j < l = i, the lemma is evident. Case 3: j < i, $l \ge i+1$. By the definition of β_i $(1 \le i < n+1)$ it is sufficient to prove the following: $[\beta_j \dots \beta_l \dots \beta_j] = [\alpha_j \dots [\alpha_i \dots \alpha_{l+1} \dots \alpha_i] \dots \alpha_j] = [\alpha_j \dots \alpha_i \dots \alpha_{l+1} \dots \alpha_i \dots \alpha_j]$. Since we can easily see that the arrangement of the letters α_k 's is the same in both sides, we show that the two products equal in the Bol-Moufang loop Γ . To prove it, it is sufficient to show that $[[\alpha_i \dots \alpha_{l+1} \dots \alpha_i] \dots \alpha_j] = [\alpha_i \dots \alpha_{l+1} \dots \alpha_i \dots \alpha_j]$. We prove this by dividing into few steps. We prove that $[\alpha_i \dots \alpha_{l+1} \dots \alpha_i] = ((\alpha_i \dots \alpha_{l+1} \dots \alpha_i))$, where $((\alpha_i \dots \alpha_{l+1} \dots \alpha_i))$ is the product in which the arrangement of α_k 's is the same as that of $[\alpha_i \dots \alpha_{l+1} \dots \alpha_i]$ and which is obtained by multiplying α_k 's from the right and from the left alternatively beginning with the multiplication of α_{l+1} and α_1 at the middle of this product, i.e., $\alpha_i((\alpha_1 \dots ((\alpha_1(\alpha_{l+1}\alpha_1)) \dots \alpha_i))$. If we use the Bol-Moufang condition for the product obtained by taking away α_i from the left end of $(((\alpha_i \dots \alpha_{l+1} \dots \alpha_i)))$ we have:

$$(\alpha_1((\alpha_2\dots((\alpha_1(\alpha_{l+1}\alpha_1))\dots\alpha_2))\alpha_1))\alpha_i = \alpha_1\{(\alpha_2(\dots((\alpha_1(\alpha_{l+1}\alpha_1))\dots\alpha_2))(\alpha_1\alpha_i)\}.$$

If we use again the Bol-Moufang condition for the part in parenthesises

 $\{(\alpha_2((\alpha_1...((\alpha_1(\alpha_{l+1}\alpha_1))...\alpha_2))(\alpha_1\alpha_i)\}\)$ of the right side of the above equation, we obtain

$$(\alpha_2((\alpha_1 \cdots ((\alpha_1(\alpha_{l+1}\alpha_1)) \cdots \alpha_2)) (\alpha_1\alpha_i) = \alpha_2 \{(\alpha_1((\cdots ((\alpha_1(\alpha_{l+1}\alpha_1)) \cdots \alpha_1)) [\alpha_2\alpha_1\alpha_i]\}) = \alpha_2 \{(\alpha_1(\alpha_1(\alpha_{l+1}\alpha_1)) \cdots \alpha_1) (\alpha_1(\alpha_{l+1}\alpha_1)) \cdots \alpha_n) \}$$

Continuing the same processes we get $[\alpha_i \dots \alpha_{l+1} \dots \alpha_i] = ((\alpha_i \dots \alpha_{l+1} \dots \alpha_i))$. We now proceed to prove that $[[\alpha_i \dots \alpha_{l+1} \dots \alpha_i] \dots \alpha_j] = [\alpha_i \dots \alpha_{l+1} \dots \alpha_i \dots \alpha_j]$. Since $[\alpha_i \dots \alpha_{l+1} \dots \alpha_i] = ((\alpha_i \dots \alpha_{l+1} \dots \alpha_i))$, it holds that

$$\left[\left[\alpha_{i}\cdots\alpha_{l+1}\cdots\alpha_{i}\right]\cdots\alpha_{j}\right]=\left(\left(\alpha_{i}\cdots\alpha_{l+1}\cdots\alpha_{i}\right)\right)\left(\alpha_{1}\cdots\left(\alpha_{1}\left(\alpha_{2}\left(\alpha_{1}\alpha_{j}\right)\right)\right)\cdots\right).$$

In the same way as the above, taking into account to two α_i 's at the both ends of $((\alpha_i \cdots \alpha_{i+1} \cdots \alpha_i))$, if we use the Bol-Moufang condition on the right side of this equation, we have

$$((\alpha_i \cdots \alpha_{l+1} \cdots \alpha_i)) (\alpha_1 \cdots (\alpha_1 (\alpha_2 (\alpha_1 \alpha_j))) \cdots)$$

= $\alpha_i \{((\alpha_1 \cdots \alpha_{l+1} \cdots \alpha_1)) (\alpha_i (\alpha_1 \cdots (\alpha_2 (\alpha_1 \alpha_j)) \cdots))\}.$

Further, if we use again the Bol-Moufang condition for the part $\{((\alpha_1 \dots \alpha_{l+1} \dots \alpha_1)) (\alpha_i (\alpha_1 \dots (\alpha_1 \alpha_j)) \dots)\}$ on the right side of the above, we obtain

$$\alpha_i \{ \alpha_1 \{ ((\alpha_2 \cdots \alpha_{l+1} \cdots \alpha_2)) (\alpha_1 (\alpha_i (\alpha_1 (\cdots (\alpha_2 (\alpha_1 \alpha_j)) \cdots)))) \} \}.$$

Hence we have the required result by repeating the same processes.

Case 4: $j=i, l \ge i+1$: We may prove this case in the same way as that of the case 3.

Case 5: $i+1 \leq j < l$: We show that when we rewrite β_i by α_k 's the arrangement of the letters in $[\beta_j \dots \beta_l \dots \beta_j]$ coincides with that of α_k 's in $[\alpha_i \cdots \alpha_{j+1} \cdots \alpha_{l+1} \cdots \alpha_{j+1} \cdots \alpha_i]$. It is sufficient to prove it about the left half product. Since $\beta_k(k=i+1, i+2, \dots, j)$ contains only one $\alpha_{k+1}(k=i+1, i+2, \dots, j)$ respectively, only one α_j appears between α_{j+1} and α_{l+1} and only one α_{j-1} appears between α_{j+1} and α_j , and between α_j and α_{l+1} respectively in the sequence of $\beta_i, \beta_j, \beta_{j-1}, \dots, \beta_{i+1}$ in the course of the construction of the product $[\beta_j \cdots \beta_l]$. Continuing the same considerations we may see that the arrangement and numbers of $\alpha_{l+1}, \alpha_{j+1}, \alpha_j, \dots, \alpha_{l+2}$ in $[\beta_j \dots \beta_l]$ coincide with those of them in the part $\alpha_{j+1} \cdots \alpha_{l+1}$ of $[\alpha_i \cdots \alpha_{j+1} \cdots \alpha_{l+1}]$. Since each of $\beta_l, \beta_j, \cdots, \beta_{i+1}$ does not contain α_{i+1} , when we put $\beta_i = \alpha_{i+1}$ in the middle of each adjacent pair of letters in the sequence constructed by $\beta_i, \beta_j, \dots, \beta_{i+1}$, only one α_{i+1} appears in the middle of each adjacent pair of letters in the sequence of α_{l+1} , $\alpha_{j+1}, \alpha_j, \dots, \alpha_{i+2}$ in $[\beta_j \dots \beta_i]$. Further, since each of $\beta_i, \beta_j, \dots, \beta_{i+1}$ contains α_i 's on both ends and each of $\beta_{i-1}, \beta_{i-2}, \dots, \beta_1$ does not contain α_i , the arrangement of $\alpha_{l+1}, \alpha_{j+1}, \dots, \alpha_i$ in $[\beta_j \dots \beta_l]$ is the same as that of $\alpha_{l+1}, \alpha_{j+1}, \dots, \alpha_i$ in $[\alpha_i \cdots \alpha_{j+1} \cdots \alpha_{l+1}]$. Moreover, since $\beta_{i-1} = \alpha_{i-1}, \cdots, \beta_1 = \alpha_1$ and the arrangement of α_k 's in each of $\beta_l, \dots, \beta_{i+1}$ is the same as that of α_k 's in the construction of $[\alpha_i \dots \alpha_{j+1} \dots \alpha_{l+1}]$, we may see that the arrangement of α_k 's in $[\beta_j \dots \beta_l]$ is the same as that of $[\alpha_i \dots \alpha_{j+1} \dots \alpha_{l+1}]$. Therefore the arrangement of α_k 's in $[\beta_j \dots \beta_l]$ is the same as that of α_k 's in $[\alpha_i \dots \alpha_{j+1} \dots \alpha_{l+1}]$.

We prove that $[\beta_j \dots \beta_l \dots \beta_j] = [\alpha_i \dots \alpha_{j+1} \dots \alpha_{l+1} \dots \alpha_{j+1} \dots \alpha_i]$ in the Bol-Moufang loop Γ . First, in the same way as the case 3, we have that $[\beta_{i+1} \dots \beta_j]$ at the right end of $[\beta_j \dots \beta_l \dots \beta_j]$ is equal to $[\alpha_i \dots \alpha_{i+2} \dots \alpha_{j+1} \dots \alpha_i]$. Next, we can prove $[\beta_{i+2} \dots \beta_j] = [\alpha_i \dots \alpha_{i+3} \dots \alpha_{j+1} \dots \alpha_i]$, where $[\beta_{i+2} \dots \beta_j]$ is the part of the right end of $[\beta_j \dots \beta_l \dots \beta_j]$. Continuing these processes as often as β_s $(s \ge i+1)$ appears, we obtain $[\beta_j \dots \beta_l \dots \beta_j] = [\alpha_i \dots \alpha_{j+1} \dots \alpha_{l+1} \dots \alpha_{l+1} \dots \alpha_{l+1} \dots \alpha_i]$.

In the same way as the above, we may prove that the following lemma.

LEMMA 2. If we denote $\alpha_1, \alpha_2, ..., \alpha_{i-1}, [\alpha_i \cdots \alpha_{i+1} \cdots \alpha_i], \alpha_{i+2}, \alpha_{i+3}, ..., \alpha_{n+1}$ by $\beta_1, \beta_2, ..., \beta_n$ respectively, then it holds that

$$\begin{bmatrix} \beta_{j} \dots \beta_{l} \dots \beta_{j} \end{bmatrix} = \begin{cases} \begin{bmatrix} \alpha_{j} \dots \alpha_{l} \dots \alpha_{j} \end{bmatrix} & (j < l < i \leq n), \\ \begin{bmatrix} \alpha_{j} \dots \alpha_{i} \dots \alpha_{i+1} \dots \alpha_{i} \dots \alpha_{j} \end{bmatrix} & (j < i, l = i < n), \\ \begin{bmatrix} \alpha_{j} \dots \alpha_{l+1} \dots \alpha_{j} \end{bmatrix} & (j < i, i+1 \leq l < n), \\ \begin{bmatrix} \alpha_{i} \dots \alpha_{i+1} \dots \alpha_{l+1} \dots \alpha_{i+1} \dots \alpha_{i} \end{bmatrix} & (j = i, i+1 \leq l < n), \\ \begin{bmatrix} \alpha_{j+1} \dots \alpha_{l+1} \dots \alpha_{j+1} \end{bmatrix} & (i+1 \leq j < l < n). \end{cases}$$

NOTE. By the method of the above proof, we may see that the similar lemmas, concerning the half product $[\beta_j \dots \beta_n]$ as the lemmas 1 and 2, hold.

Under these preparations, we shall construct the *M*-cohomology group of a Bol-Moufang loop Γ over an abelian group *G*.

In the following, we shall prove the theorem:

THEOREM 1. If f is any cochain, then $\partial(\partial f)=0$.

PROOF. In the case where n=0 and n=1, we may prove this by simple calculations. So, we assume $n \ge 2$. If f is an n-dimensional cochain, then $\partial(\partial f)$ is an (n+2)-dimensional cochain. When we express $\partial(\partial f)(\alpha_1, \alpha_2, \dots, \alpha_{n+2})$ in terms of the values of ∂f , using the definition (1), we obtain

$$\partial(\partial f) (\alpha_1, \alpha_2, \dots, \alpha_{n+2}) = u(\partial f; \alpha_1, \alpha_2, \dots, \alpha_{n+2}) - u(\partial f; \alpha_1, \alpha_2, \dots, \alpha_{n+1}, \varepsilon) \tilde{\alpha}_{n+2}$$

Further, we express each term in $u(\partial f; \alpha_1, \alpha_2, \dots, \alpha_{n+2})$ and $u(\partial f; \alpha_1, \dots, \alpha_{n+1}, \varepsilon)$ in terms of the values of f, we have:

$$\hat{\partial}(\hat{\partial}f) (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n+2})$$

$$= \sum_{i=1}^{2(n+1)} \{ u(f; \beta_{i1}, \beta_{i2}, \dots, \beta_{i-n+1}) - u(f; \beta_{i1}, \beta_{i2}, \dots, \beta_{in}, \varepsilon) \bar{\beta}_{i-n+1} \}$$

$$- \sum_{i=1}^{2(n+1)} \{ u(f; \beta_{i1}, \beta_{i2}, \dots, \beta_{in}, \beta'_{i-n+1}) \bar{\alpha}_{n+2} - u(f; \beta_{i1}, \beta_{i2}, \dots, \beta_{in}, \varepsilon) \bar{\beta}'_{i-n+1} \bar{\alpha}_{n+2} \},$$

where $u(f; \beta_{i1}, \beta_{i2}, \dots, \beta_{i n+1}) - u(f; \beta_{i1}, \dots, \beta_{in}, \varepsilon)\bar{\beta}_{i n+1}$ is the expression obtained by expressing the *i* term of $u(\partial f; \alpha_1, \dots, \alpha_{n+2})$ in terms of the values of *f* and $\beta'_{i n+1}$ is the argument obtained by putting $\alpha_{n+2} = \varepsilon$ in $\beta_{i n+1}$. If we combine each of the terms in $\sum_{i=1}^{2(n+1)} u(f; \beta_{i1}, \dots, \beta_{i n+1})$ and $\sum_{i=1}^{2(n+1)} u(f; \beta_{i1}, \dots, \beta_{in}, \beta'_{i n+1})$ with the other whose sign only differs from each other as we did in [5], we obtain that $\sum_{i=1}^{2(n+1)} u(f; \beta_{i1}, \dots, \beta_{i n+1}) = 0$ and $\sum_{i=1}^{2(n+1)} u(f; \beta_{i1}, \dots, \beta_{in}, \beta'_{i n+1}) = 0$ (cf. [5], pp. 156– 158). Further, from $\bar{\beta}'_{in+1}\bar{\alpha}_{n+2} = \bar{\beta}_{in+1}$, it follows that $\sum_{i=1}^{2(n+1)} u(f; \beta_{i1}, \beta_{i2}, \dots, \beta_{in}, \varepsilon)\bar{\beta}_{in+1}$ $+ \sum_{i=1}^{2(n+1)} u(f; \beta_{i1}, \dots, \beta_{in}, \varepsilon)\bar{\beta}'_{i n+1}\bar{\alpha}_{n+2} = 0$. Therefore we obtain $\partial(\partial f) = 0$.

We call an *n*-dimensional cochain f an *n*-dimensional *M*-cocycle if $\partial f = 0$. All *n*-dimensional *M*-cocycles form a subgroup of $C^n(\Gamma, G)$, which we denote by $Z^{*n}(\Gamma, G)$. For n > 0 the *n*-dimensional cochains that are *M*-coboundaries of some (n-1)-dimensional cochains form also a subgroup of $C^n(\Gamma, G)$, which we denote by $B^{*n}(\Gamma, G)$. Since $\partial(\partial f) = 0$, we have $B^{*n}(\Gamma, G) \subset Z^{*n}(\Gamma, G)$. The factor group $H^{*n}(\Gamma, G) = Z^{*n}(\Gamma, G)/B^{*n}(\Gamma, G)$ is called the *n*-th *M*-cohomology group of a Bol-Moufang loop Γ over an abelian group G.

In the following, we assume that $C^1(\Gamma, G)$ and $C^2(\Gamma, G)$ are the groups of the normalized cochains f, that is, $f(\varepsilon)=0$ and $f(\alpha, \varepsilon)=0=f(\varepsilon, \beta)$.

§ 2. Extensions of a group by a Bol-Moufang loop

We shall proceed to classify all *BM*-extensions of a group G by a Bol-Moufang loop Γ by making use of the 2nd and 3rd *M*-cohomology groups constructed in §1.

A loop L is called a BM-extension of G by Γ if it satisfies the following conditions: (i) L is a Bol-Moufang loop, (ii) L contains a normal subgroup G' which is isomorphic to G, (iii) $L/G'\cong\Gamma$, (iv) G' is contained in the nucleus of L, where the nucleus is a subgroup consisted of elements a which satisfies the conditions: (ax)y=a(xy), (xa)y=x(ay) and (xy)a=x(ya). (Usually we identify G' with G). Further, we define the equivalence of two BM-extensions of G by Γ exactly as in the case Γ is a group (cf. [5], pp. 153). Then we can prove the following propositions by the same methods as those where Γ is a group (cf. [5], pp. 152-154). PROPOSITION 1. For a given BM-extension of a group G by a Bol-Moufang loop Γ , there exists a system of elements $f(\alpha, \beta)$ of G and a system of automorphisms T_{α} which satisfy the conditions:

$$aT_{\alpha}T_{\beta} = aT_{\alpha\beta}T_{f(\alpha,\beta)} \qquad a \in G,$$
$$f(\alpha, \lceil \beta \alpha \gamma \rceil)f(\beta, \alpha \gamma)f(\alpha, \gamma) = f(\lceil \alpha \beta \alpha \rceil, \gamma) (f(\alpha, \beta \alpha)T_{\gamma}) (f(\beta, \alpha)T_{\gamma}),$$
$$f(\alpha, \varepsilon) = e = f(\varepsilon, \beta).$$

Conversely, to every system of elements $f(\alpha, \beta)$ and every system of automorphisms T_{α} of G which satisfy the above conditions, there corresponds a BM-extension of G by Γ .

A set of elements $f(\alpha, \beta)$ of G which satisfy the above conditions is called a *M*-factor set.

PROPOSITION 2. Two BM-extensions L and L' of a group G by a Bol-Moufang loop Γ which are given by the M-factor sets $f(\alpha, \beta)$ and $f'(\alpha, \beta)$, and automorphisms T_{α} and T'_{α} respectively, are equivalent if and only if every element α of Γ can be associated with an element $c_{\alpha}(c_{\varepsilon}=e)$ of G in such a way that the following conditions are satisfied:

$$f'(\alpha, \beta) = c_{\alpha\beta}^{-1} f(\alpha, \beta) (c_{\alpha} T_{\beta}) c_{\beta},$$
$$T'_{\alpha} = T_{\alpha} T_{c_{\alpha}}.$$

We prepare some lemmas to investigate the set of all *BM*-extensions of G by Γ . In the same way as in the previous paper, for a given *BM*-extension L of G by Γ there exists a homomorphism θ on Γ into Aut G/In G defined by $\alpha \to T_{\alpha}(\text{In } G)$, which is called the homomorphism associated with this *BM*-extension L.

Let now G, Γ and a homomorphism $\theta: \Gamma \to \operatorname{Aut} G/\operatorname{In} G$ be given. Then the homomorphism θ induces a homomorphism $\theta_0: \Gamma \to \operatorname{Aut} C$. So, we may regard Γ as an operator set of the center C of G. Therefore, we may construct the *M*-cohomology group $H^{*n}(\Gamma, C)$, using the methods in §1. If in every coset $\theta(\alpha)$ of In G in Aut G, we choose a representative φ_{α} , where φ_{ε} is the identity automorphism, then there exist the elements $h(\alpha, \beta)$ of G such that $\varphi_{\alpha}\varphi_{\beta} = \varphi_{\alpha\beta}T_{h(\alpha,\beta)}$, where $h(\alpha, \varepsilon) = e = h(\varepsilon, \beta)$. Using the Bol-Moufang condition to the representatives $\varphi_{\alpha}, \varphi_{\beta}$ and φ_{γ} and taking into account that for $a \in G, \ \varphi \in \operatorname{Aut} G$ it holds that $\varphi^{-1}T_a\varphi = T_{(a\varphi)}$, we can see that there exists an element $z^*(\alpha, \beta, \gamma)$ of C such that

(2)
$$h(\alpha, [\beta\alpha\gamma])h(\beta, \alpha\gamma)h(\alpha, \gamma) = z^*(\alpha, \beta, \gamma)h([\alpha\beta\alpha], \gamma) (\{h(\alpha, \beta\alpha)h(\beta, \alpha)\}\varphi_{\gamma}).$$

So, for given G, Γ and θ , there exists an element $z^*(\alpha, \beta, \gamma)$ of $C^3(\Gamma, C)$. We can prove that in the case where Γ is a Bol-Moufang loop, the following lemmas concerning $z^*(\alpha, \beta, \gamma)$, which are similar to those in the previous paper, also hold.

LEMMA 3. A 3-dimensional cochain $z^*(\alpha, \beta, \gamma)$ is an element of $z^{*3}(\Gamma, C)$.

PROOF. We calculate the expression:

$$J = h(\alpha, [\beta \alpha \gamma \alpha \beta \alpha \delta])h(\beta, [\alpha \gamma \alpha \beta \alpha \delta])h(\alpha, [\gamma \alpha \beta \alpha \delta])h(\gamma, [\alpha \beta \alpha \delta]).$$
$$\cdot h(\alpha, [\beta \alpha \delta])h(\beta, \alpha \delta)h(\alpha, \delta)$$

in two ways. First, we begin with the calculations of the first three factors and the last three factors, using (2). Then we have:

$$\begin{split} J &= z^*(\alpha, \beta, [\tau \alpha \beta \alpha \delta]) z^*(\alpha, \beta, \delta) h([\alpha \beta \alpha], [\tau \alpha \beta \alpha \delta]) h(\tau, [\alpha \beta \alpha \delta]) h([\alpha \beta \alpha], \delta) \cdot \\ &\cdot ((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{[\gamma \alpha \beta \alpha \delta]} T_{h(\gamma, [\alpha \beta \alpha \delta]) h([\alpha \beta \alpha], \delta)}) ((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\delta}) \\ &= z^*(\alpha, \beta, [\tau \alpha \beta \alpha \delta]) z^*(\alpha, \beta, \delta) z^*([\alpha \beta \alpha], \tau, \delta) h([\alpha \beta \alpha \tau \alpha \beta \alpha], \delta) ((h[\alpha \beta \alpha], [\tau \alpha \beta \alpha]) \cdot \\ &\cdot h(\tau, [\alpha \beta \alpha])) \varphi_{\delta}) ((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\gamma} \varphi_{[\alpha \beta \alpha]} \varphi_{\delta}) ((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\delta}) \\ &= z^*(\alpha, \beta, [\tau \alpha \beta \alpha \delta]) z^*(\alpha, \beta, \delta) z^*([\alpha \beta \alpha], \tau, \delta) h([\alpha \beta \alpha \tau \alpha \beta \alpha], \delta) (h([\alpha \beta \alpha], [\tau \alpha \beta \alpha]) \varphi_{\delta}) \\ &\cdot (\{(h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{[\gamma \alpha \beta \alpha]}) h(\tau, [\alpha \beta \alpha])\} \varphi_{\delta}) ((h(\alpha, \beta \alpha) h(\beta, \alpha)) \varphi_{\delta}). \end{split}$$

Next, we begin with the calculation of the middle three factors by applying (2). Then we obtain:

$$\begin{aligned} J &= z^*(\alpha, \mathcal{I}, [\beta\alpha\delta])h(\alpha, [\beta\alpha\mathcal{I}\alpha\beta\alpha\delta])h(\beta, [\alpha\mathcal{I}\alpha\beta\alpha\delta])h([\alpha\mathcal{I}\alpha\mathcal{I}, [\beta\alpha\delta])h(\beta, \alpha\delta) \cdot \\ &\cdot ((h(\alpha, \mathcal{I}\alpha)h(\mathcal{I}, \alpha))\varphi_{\beta}\varphi_{\alpha\delta})h(\alpha, \delta) \end{aligned}$$

$$= z^*(\alpha, \tau, [\beta\alpha\delta])z^*(\beta, [\alpha\tau\alpha], \alpha\delta)h(\alpha, [\beta\alpha\tau\alpha\beta](\alpha\delta))h([\beta\alpha\tau\alpha\beta], \alpha\delta)h(\alpha, \delta)\cdot$$

$$\cdot (\{h(\beta, [\alpha \tau \alpha \beta])h([\alpha \tau \alpha], \beta)\} \varphi_{\alpha} \varphi_{\delta}) (\{h(\alpha, \tau \alpha)h(\tau, \alpha)\} \varphi_{\beta} \varphi_{\alpha} \varphi_{\delta})$$

 $=z^{*}(\alpha, \mathcal{T}, [\beta\alpha\delta])z^{*}(\beta, [\alpha\mathcal{T}\alpha], \alpha\delta)z^{*}(\alpha, [\beta\alpha\mathcal{T}\alpha\beta], \delta)h([\alpha\beta\alpha\mathcal{T}\alpha\beta\alpha], \delta)\cdot$

$$\cdot (h(\alpha, [\beta\alpha \tau \alpha \beta \alpha])\varphi_{\delta}) (\{h(((\beta\alpha \tau \alpha \beta)), \alpha)(\{h(\beta, (\alpha(\tau \alpha))\beta)h([\alpha \tau \alpha], \beta)\}\varphi_{\alpha})\}\varphi_{\delta}) \cdot$$

 $\cdot (\{h(\alpha, \gamma \alpha)h(\gamma, \alpha)\} \varphi_{\beta} \varphi_{\alpha} \varphi_{\delta})$

$$= z^*(\alpha, \mathcal{I}, [\beta\alpha\delta])z^*(\beta, [\alpha\mathcal{I}\alpha], \alpha\delta)z^*(\alpha, [\beta\alpha\mathcal{I}\alpha\beta], \delta) \cdot$$

- $\cdot (z^{*-1}(\beta, [\alpha \tau \alpha], \alpha) \varphi_{\delta}) h([\alpha \beta \alpha \tau \alpha \beta \alpha], \delta) (\{h(\alpha, [\beta \alpha \tau \alpha \beta \alpha])h(\beta, [\alpha \tau \alpha \beta \alpha])\} \varphi_{\delta}) \cdot$
- $\cdot (\{h([\alpha \imath \alpha], \beta \alpha) ((h(\alpha, \imath \alpha)h(\imath, \alpha))\varphi_{\beta \alpha})\}\varphi_{\delta}) (h(\beta, \alpha)\varphi_{\delta})$

$$= z^{*}(\alpha, \gamma, [\beta\alpha\delta])z^{*}(\beta, [\alpha\gamma\alpha], \alpha\delta)z^{*}(\alpha, [\beta\alpha\gamma\alpha\beta], \delta) (z^{*-1}(\beta, [\alpha\gamma\alpha], \alpha)\varphi_{\delta}) \cdot (z^{*-1}(\alpha, \gamma, \beta\alpha)\varphi_{\delta})h([\alpha\beta\alpha\gamma\alpha\beta\alpha], \delta) (\{h(\alpha, [\beta\alpha\gamma\alpha\beta\alpha])h(\beta, [\alpha\gamma\alpha\beta\alpha]) \cdot h(\alpha, [\gamma\alpha\beta\alpha])h(\gamma, [\alpha\beta\alpha])h(\alpha, \beta\alpha)h(\beta, \alpha)\}\varphi_{\delta})$$
$$= z^{*}(\alpha, \gamma, [\beta\alpha\delta])z^{*}(\beta, [\alpha\gamma\alpha], \alpha\delta)z^{*}(\alpha, [\beta\alpha\gamma\alpha\beta], \delta) (z^{*-1}(\beta, [\alpha\gamma\alpha], \alpha)\varphi_{\delta}) \cdot (Z^{*-1}(\alpha, \gamma, \beta\alpha)\varphi_{\delta}) (z^{*}(\alpha, \beta, [\gamma\alpha\beta\alpha])\varphi_{\delta})h([\alpha\beta\alpha\gamma\alpha\beta\alpha], \delta) (\{h([\alpha\beta\alpha], [\gamma\alpha\beta\alpha]) \cdot ((h(\alpha, \beta\alpha)h(\beta, \alpha))\varphi_{[\gamma\alpha\beta\alpha]})h(\gamma, [\alpha\beta\alpha])\}\varphi_{\delta}) (\{h(\alpha, \beta\alpha)h(\beta, \alpha)\}\varphi_{\delta}).$$

Comparing the above two calculations, we have $\partial z^*(\alpha, \beta, \gamma, \delta) = 0$.

The *M*-cocycle $z^*(\alpha, \beta, \gamma)$ depends on the choice of the representatives φ_{α} and of the elements $h(\alpha, \beta)$. In the following we investigate the change of $z^*(\alpha, \beta, \gamma)$ for different choices of $h(\alpha, \beta)$ and φ_{α} . Taking into account that we must consider what order to multiply the letters in Γ as we did in the above lemma, we have the following lemmas by the same methods as used in the previous paper (cf. [5], pp. 161–162).

LEMMA 4. If the choice of $h(\alpha, \beta)$ is changed, then $z^*(\alpha, \beta, \gamma)$ is changed to a cohomologous M-cocycle. By suitably changing the choice of $h(\alpha, \beta)$, $z^*(\alpha, \beta, \gamma)$ may be changed to any M-cohomologous cocycle.

Using the expression

 $M = c([\alpha\beta\alpha\gamma])z^*(\alpha, \beta, \gamma)h'([\alpha\beta\alpha], \gamma)(\{h'(\alpha, \beta\alpha)h'(\beta, \alpha)\}\varphi'_{\gamma}),$

we have the following:

LEMMA 5. If the automorphisms φ_{α} are changed, then with a suitable new choice of $h(\alpha, \beta)$ the 3-dimensional M-cocycle $z^*(\alpha, \beta, \gamma)$ remains unchanged.

Thus, we have proved that only one element of $H^{*3}(\Gamma, C)$ corresponds to the given group G, the Bol-Moufang loop Γ and the homomorphism θ . After S. MacLane, we call a pair of a Bol-Moufang loop Γ and a group G together with a homomorphism $\theta: \Gamma \to \operatorname{Aut} G/\operatorname{In} G$ an *abstract kernel* and denote by (Γ, G, θ) . The unique element of $H^{*3}(\Gamma, C)$ determined by a given abstract kernel (Γ, G, θ) is called an obstraction of it and denoted by $\operatorname{Obs}(\Gamma, G, \theta)$.

Then, we have the following theorem in the similar way as that where Γ is a group (cf. [5] pp. 162–163).

THEOREM 2. The abstract kernel (Γ, G, θ) has a BM-extension if and only if $Obs(\Gamma, G, \theta)=0$.

We now give a survey of the non-equivalent BM-extensions of G by Γ .

In the case that Γ is a Bol-Moufang loop, we can obtain similar results to those in the case that Γ is a group.

When G is an abelian group and Γ is a Bol-Moufang loop, we have the following theorem:

THEOREM 3. If G, Γ and a homomorphism $\theta: \Gamma \rightarrow Aut G$ are given, there always exists a BM-extension of G by Γ and all non-equivalent BM-extensions correspond one-to-one to the elements of the second M-cohomology group $H^{*2}(\Gamma, G)$.

PROOF. Since G is an abelian group, the 3-dimensional M-cocycle $z^*(\alpha, \beta, \gamma)$ corresponding to the abstract kernel (Γ, G, θ) is an M-coboundary from the definition (2). Hence, from the theorem 2, there exists a BM-extension of G by Γ .

On account of the 2nd and 3rd conditions of the proposition 1, to a given *BM*-extension of *G* by Γ there corresponds a 2-dimensional *M*-cocycle, i.e., *M*-factor set. Conversely, for every 2-dimensional *M*-cocycle there exists a *BM*-extension of *G* by Γ from the proposition 1. Further, the proposition 2 shows that the two *M*-factor sets which correspond to two equivalent *BM*-extensions are cohomologous. Hence we have proved the theorem 3.

When G is a non-abelian group, taking into account the theorem 2, the following theorem is proved in the same way as that where Γ is a group (cf. [5], pp. 162–163).

THEOREM 4. Let a non-abelian group G with the center C, a Bol-Moufang loop Γ and a homomorphism $\theta: \Gamma \rightarrow Aut G/In G$ be given. If the obstraction of the abstract kernel (Γ, G, θ) is zero, there exists a BM-extension of G by Γ and all non-equivalent BM-extensions of G by Γ are in one-to-one correspondence with the elements of the second M-cohomology group $H^{*2}(\Gamma, C)$.

References

- [2] S. Eilenberg and S. MacLane, Cohomology theory in abstract groups. I, Ann. of Math., 48 (1947), 51-78.
- [3] _____, ____, II, ibid., 48 (1947), 326-341.
- [4] A. G. Kurosh, The theory of groups I and II, New York, 1956.
- N. Nishigôri, On loop extensions of groups and M-cohomology groups, J. Sci. Hiroshima Univ. Ser. A-I, 27 (1963), 151-165.

Shinonome Bunkô, Hiroshima University

R. H. Bruck, An extension theory for a certain class of loops, Bull. Amer. Math. Soc., 57 (1951), 11-26.