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Note on F-operators in Locally Convex Spaces
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The theory of F-operators in Banach spaces has been developed by several
authors (cf. the references in [ΊΓ], IΓC)- According to [5J, SL closed, normally
solvable, linear mapping with finite ^-characteristic is called an F-operator. It
is the purpose of this paper to generalize this notion of F-operator to locally
convex spaces so that we may maintain a number of the basic results known
in the case of Banach spaces. For the continuous F-operators, such an attempt
has been made by H. Schaefer [9] and then by A. Deprit [4]. Our main
concern here is the discussion of a general theory of F-operators: characteriza-
tion of F-operators, the index theorem for a product, and so on.

§ 1. Let E and F be locally convex Hausdorff spaces (denoted by LCS).
Let u be a linear mapping with domain Φ« in E and rang ?HU in F. We denote
by 3lu the null space of M. If u is closed, %lu is a closed subspace of E. iι is
called open if u(A) is an open subset of 3ΐw for each open subset A of S)«.

A linear mapping k of E into F is called compact if there is a neighbourhood
U of 0 in E such that the set k (U) is relatively compact.

We shall say that u is an F-operator when (i) %t and F/diu are finite
dimensional (ii) $ϊu is closed (iii) u is open. Moreover if u is continuous and
3)»=2?, we shall say that u is a continuous F-operator of E into F (According to
[9], u is called a σ-homomorphism). The index of u is defined as ind u =
dim ?ίu—codim diu.

We understand by £)„ the space ®M with the weakest locally convex
topology which makes the identical mapping S)a-»2)a and the mapping u
continuous. Then u becomes a continuous mapping of ®« into F which we
shall denote by ύ. As shown by F. E. Browder (Q3], p. 66), u is open if and
only if u is open. Therefore u is an F-operator if and only if ϊί is an F-operator.
With this in mind, we can show

PROPOSITION 1 (Q6J, Prop. 2.1.). Let u be a closed mapping with dense
domain such that the injections %U->E and %U,^»F' are compact. Then u is
an F-operator.

PROOF. We have only to show that u is an F-operator. Let v, k be the
mappings of S« into ExF defined by v(e)={e, u(e)} and k(e)={e, 0}. Then
v is a monomorphism with closed range and, by assumption, k is compact.
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Owing to a theorem of L. Schwartz ([10], A-16, p. 197), the mapping v — k:
e-+ {0, u(e)} is an open mapping with closed range and with finite dimensional
null space. Similarly, -Jî , is finite dimensional. Consequently, u is an F-
operator. The proof is complete.

REMARK 1. Any open linear mapping u with closed range and finite
dimensional null space is closed. Consequently an F-operator is closed. Indeed,
let uι be the restriction of u to a topological supplement Ex of %, in ®M. Then
uι is one-to-one and open. Hence the inverse mapping uΐι of 3lu onto Eλ is
continuous. Now the graph ®u of u can be written as

Since u^1 is continuous and 9ϊu is closed, the subset {(u^if), f); f e?Ru} is
closed in ExF. It is known that if M is a closed linear subspace of an LCS G
and N is a finite dimensional subspace of G, then M+N is closed in G (Q2],
p. 28). Therefore it follows that Qfru is closed.

We note that if E and F are Banach spaces, owing to the closed graph
theorem the notion of F-operator coincides with the one defined by I. C.
Gohberg and M. G. Krein in [5] (p. 195).

For our later purpose we need the following lemma (cf. [4] and [8J). The
proof goes along the same line with modifications as in the corresponding proof
given in A. P. Robertson and W. Robertson ([8], p. 144).

For two mappings u l 5 zz2, we shall use the notation uι<,u2 if u2 is an
extension of ui.

LEMMA 1. Let E and F be LCS's. Suppose that u is a closed linear map-
ping with domain in E and range in F, that v is a continuous linear mapping
of F into E and that k is a compact linear mapping of E into itself such that

where IE denotes the identity mapping of E.
Then (i) !ϊϊ« is finite dimensional (ii) u is open (iii) 9ΪM is closed in F.

PROOF. Since k is compact, there exist a disked neighbourhood U of 0 in
E and a compact set K of E such that k (U) C K.

(i) If e e Ur\Wu, v (u(e)) = 0 and so e = k (e) ek(U)C K. Hence UΓΛ9ΐM C K.
Thus 9ΐa has a precompact neighbourhood and so is finite dimensional (pΓ|,
p. 30).

(ii) We shall consider the continuous linear mapping u of ®M into F. Now
it is sufficient to show that U is open. If w is not open, there exists some disked
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neighbourhood W of 0 in 2)M, which we may clearly suppose contained in Z7,
such that U(W) is not a neighbourhood of 0 in ΪRU. Let 09 be a base of disked
neighbourhoods of 0 for 3t«. Then each F e 09 meets ?Hu\u(lF) = u(^)u\(ΪF +
SJΪ«)); if e is a common element, there is a λ with 0<Λ<;i and λe e u(2W)\u(W).
Putting A = 2W\(W + %ί)9 V also meets ϊί(A). Let 3 be an ultraίilter on ® a

containing the sets AΓ\ΰr\V\ V e 09. The set 4̂ belongs to 9- and 2(9) =

a (5) >0. Now A (3) contains k(A)Ck(2W)C2K, hence converges in £ to

an element e0c2K. Since IE = k + vou on ®«, 9- >eo-h^(O) = eo. Since u is

closed, we see that e0 e ®«, u(eo) = O and 3- >e0. But 4̂ e 3 and so e0 6 ̂ 4,

the closure of 4̂ under the topology of Sα. Thus e0 6 ςJίM and so e0 6 ̂ JΪ^Πyί.
But (%lu-\-W)r\A= 0, and this contradiction proves that 2 is open.

(iii) If /o e3ίM, the sets 3t«n(/ 0 + ϊF) with F e OS form the base of a
Cauchy filter on 9ίκ, where OS is a base of disked neighbourhoods of 0 for F.
Since u(U) is a neighbourhood of 0 in 9ίw, there exists an element e0 such that

for each ΪΓ 6 09. Let ^ be an ultrafilter on ®M

F
containing the sets (e o+ U)r\u~\fQ + W) with W e 09. Then n(ff) = u(® >/0.
Now k(φ contains k(e0 + U)Ck(eo)

JrK, a compact set in E, and so

converges in E to an element eλ ek(eo)-\-K. Since IE = k + voϊί on
βi + t;(/o). It follows since u is closed that ei + v(f0) e S)M and
/o e 9tα. Therefore 9ΐκ is closed. This proves the lemma.

Now we shall show a theorem concerning the characterizations of F-

operator, which is a generalization of the corresponding result of F. V. Atkinson

([1], P. 4).

THEOREM 1. Let E and F be LCS's and u be a linear mapping with
domain in E and range in F. Then the following statements on u are equi-
valent :

(i) u is an F-operator
(ii) u is closed and there exist a continuous linear mapping v of F into E

and compact linear mappings kλ and k2 of E and of F into themselves respec-
tively satisfying the relations:

(iii) there exist a continuous linear mapping υ of F into ®M and compact
linear mappings kι and k2 of S)M and of F into themselves respectively satisfy-
ing the relations:
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PROOF. (i)=>(ii). Let Ex be a topological supplement of yiu in E. We put
uι = u\(EιΓ\(S)u), the restriction of u to £ΊΛ®«, which is open and one-to-one
and so that v1 = u^1 is a continuous linear mapping of 3ΐM onto £ΊΛ®«. By ί
and/? we denote the injection of £ΊπS)« into E and a continuous projection of
F onto 3Ϊ« respectively. We put v = iovιop, a continuous linear mapping of F
into E. Since 9ΐM is finite dimensional, the projection kι with kι(Eι) = 0 of F
onto ϊiM is of finite rank and so compact. An arbitrary element e in ®M can be
written uniquely in the form: e — ei + e2, eie£ΊΓ\®«, e 2eϊί«. Thus we have
for any e e S κ

Ϊ O U (e) = z o & ( β l -f e2) = ι>i° ̂ 1 (ei) = ei = IE (e) — hi (e).

Consequently, vo
Let Fi be a topological supplement of 9ΐw in F. Fλ is finite dimensional.

Let k2 be a continuous projection of F onto JF\ such that A2(9t«) = 0. A:2 is of
finite rank and so compact. An arbitrary element / in F can be written
uniquely as the sum of fλ c ΪRU and f2 e Fλ. Thus we have for any f e F

which means that uoV = IF — k2.
Since an F-operator is closed, (i) implies (ii).
(i)=»(iii). Now, if u is an F-operator, as remarked already, ΐί is also an

F-operator of %u into F. Therefore we can infer in a similar way as in the
above proof that (i) implies (iii).

(ii)=Φ(i). By virtue of Lemma 1, it follows from vou<^IE — kι that SSlu is
finite dimensional, ?ίiu is closed and u is open. Therefore we have only to show
that F/ίRu is finite dimensional. Since uoV=IF — k2, it follows that 9ΐM^)9ΐ/F_^2.
But it is known that F/<3i/F^k2 is finite dimensional (H8], P 144). Therefore
F/9ϊu is finite dimensional. Consequently, u is an F-operator. Hence (ii)
implies (i).

The implication (iii) =4> (i) may be proved in a similar manner as in the case
(ii)=^(i). The proof is omitted.

Thus the proof of the theorem is complete.

REMARK 2 ([1], Theorem 1). Theorem 1 remains true if we assume that
jfci and k2 are of finite rank. In fact, a continuous mapping of finite rank is
compact and ku k2 constructed in the proof of (i)=>(ii) are of finite rank.
v being continuous, so it is known that v is also continuous when we impose on
E and F another topology such as weak topology, or Mackey topology. There-
fore if u is an F-operator, then u is also an F-operator in weak topology or in
Mackey topology.

REMARK 3 (C1H, Theorem 1). Let u be a closed linear mapping with
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domain in E and range in F. Then u is an F-operator if and only if there
exist continuous linear mappings υ\ and v2 of F into G and of H into E
respectively such that v^u and u°v2 are F-operators. In fact, the proof of
"only if" part is a direct consequence of Theorem 1. Conversely, suppose Vi°u
and uov2 are F-operators. By Theorem 1, there exist continuous linear
mappings wλ and w2 of G into E and of F into H respectively such that

where ku k2 are compact. Similar arguments used in the proof of (ii)=>(i)
show that u is an F-operator.

As an application of Theorem 1, we show

PROPOSITION 2. Let E and F be LCS's. Let u be a closed liner mapping
with dense domain in E and range in F. Then u is an F-operator if u is an
F-operator. If F, F have ΐ-topology and if u as a mapping with domain in
F'c and range in E'c is an F-operator, then u is also an F-operator. In any case,
ind u — — ind u'.

PROOF. From Remark 2 after Theorem 1, there exists a continuous linear
mapping v of F into E such that

where kγ and k2 are of finite rank. Then we have for any f e ®«, and any

<υΌu'(f'\ f> = </', uoυ(f)> = <f\ (IF-k2) (/)> - <{IF,-k'2)f\

which means that v°u<^IF, — k2. Putting /'' = v'(e') for any e e E\ we have
for any e e ®M

= <(/^-Ai) (e), e'> = <e, (IE>-k[) (e')>.

Hence we see that u'(f') = (IE, — k'i) (er) and so u'ov' = IE, — k[. Now, k[ and
k2 are also of finite rank and u is closed. Therefore by Theorem 1 it follows
that u is an F-operator. Moreover, ind u = dim 3lu—codim sJiκ = dim QΆU>Y —
codimOJ^y^codim^/ — dimςJΪM/= — ind u. As made in Remark 2, u is also
an F-operator if we impose on E\ Fr the topology of uniform convergence on
compact disks.

To prove the second part of the proposition, let u be an F-operator in the
indicated sense, then u" — u becomes an F-operator from the preceding discus-



248 Shigeaki TOGO and Risai SHIRAISHI

sion. The proof is complete.

COROLLARY. // E and F are Banach spaces, a closed linear mapping with
dense domain in E and range in F is an F-operator if and only if u is an F-
operator.

PROOF. We have only to show that if u is an F-operator, then u is also
an F-operator. Then 3ΐ«/ is closed, so u is an open mapping with closed range
(C3H, P 57), and dim9ίίM/< + oo and codim9ΐMr< + oo imply that dim9ϊ«< + oo
and codim9ΐ«<-f°o. Consequently, u is an F-operator.

§ 2. Now we are in a position to prove the following theorem concerning
the product of F-operators ([ΊΓ], Theorem 2.1). For bounded operators in a
Banach space the theorem was first proved by F. V. Atkinson ( [ I ] , p. 8), and
for unbounded operators by I. C. Gohberg and M. G. Krein (cf. [ΊΓ], Theorem
2.1).

THEOREM 2. Let E, F and G be LCS's. If uγ and u2 are F-operators with
domain in E and range in F and with domain in F and range in G respectively,
then u2°uι is also an F-operator and

ind u2,

where the equality holds if and only if F=%ϊUi + ®«2. The condition is satisfied
if S«2 is dense in F.

PROOF. By Theorem 1 there exist continuous linear mappings vu v2, &i, k2

such that

where ®VιCF, 3tyiC®«1? 2>»2CG, ^v2CF and ku k2 are compact mappings of
®Ml and of F into themselves respectively. Then we have

u2oϊiι is closed since U\ is continuous and u2 is closed. Therefore by Lemma 1
we see that ϊϊ^o^ is finite dimensional, Sϊ^o^ is closed and u2°wi is open. On
account of the definition of Si, these properties are also enjoyed by u2°uι.

On the other hand, we have
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which implies that

(1) dim 9 ^ ^ = dim S^ + d i m ^ n a f t ^ )

and

(2) codim 9ϊ«2o«1 =codim 3ΐ«2 -fdim St^/St^o^,

where

(3) dim a t / a ^ o

-dim

=codim

Consequently, from the equations (1), (2) and (3) we see that codim ϋiUiOUl is
finite and

ind u2°z£il>ind ui + ind u2.

In view of the relations (3), ind u2ouι=ind ui + ind u2 holds if and only if
F=<i$)U2 + ίRUl. The last statement of the theorem is almost clear. Thus the
proof is complete.

REMARK 4. It is easy to verify that if, in the theorem 2, m and u2 have
dense domains, then u2°uι has also dense domain and {u2ou^f^=u[ou2.

A linear mapping k with domain 35* in E and range in F will be called
ii-compact if 3)* Z> 3)α and there exist two neighbourhoods U and V of 0 in 35«
and in ?RU respectively such that k maps Ur\u~λ(V) into a compact subset of F,
that is, the corresponding mapping k of ®α into F is compact.

We next prove the following

THEOREM 3. Let E and F be LCS's and u be an F-operator with domain
in-E and range in F. Let k be a u-compact linear mapping. Then u + k is an
F-operator and

= ind u.

PROOF. By Theorem 1, there exist a continuous linear mapping v of F
into %u and compact linear mappings k\ and k2 of %u and of F into themselves
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respectively such that

We now denote by k the restriction of k to 25«. By definition, k is compact.
We have

where kz = kλ — vok and kA = k2 — k°v. Taking into account that the mappings
k3 and h are compact, it follows from Theorem 1 that ΐl-\-k is an F-operator.
Thus we can easily conclude that u + k is also an F-operator.

Now we note that the mapping v is an F-operator. Applying Theorem 2
to the products wo v and (u + k)°v we have

(4) ind w + ind i; = i

(5) ind

According to Proposition 4 in \Ίf\ (p. 151), ind(IF — ̂ 2) = ind(/p — &4) = 0. There-
fore, from the equations (4) and (5) we obtain

( ) = ind u.

Consequently,

ind(u + k) = ind u.

Thus the proof is complete.
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