Proof of Ohtsuka's Theorem on the Value of Matrix Games ${ }^{(*)}$

Hukukane Nikaido

(Received September 22, 1965)

We shall give a simple proof to Ohtsuka's theorem in the preceding paper (**) in the finite dimensional case.

Formula (1) in (**) for the finite dimensional case can be put in the following form:

Set
$v(A)=$ the value of the zero-sum game with a real matrix A as its pay-off matrix in which the maximizing player controls the rows and the minizing player controls the columns;
$\alpha(A)=\min v(B)$ over all principal minor matrices B of a square matrix A.
Then, we have, if we denote by A^{\prime} the transpose of A,

$$
\alpha(A)=\alpha\left(A^{\prime}\right) .
$$

Proof. It suffices to see $\alpha(A) \geqq \alpha\left(A^{\prime}\right)$ for any A. We shall proceed by induction on n.

The case $n=1$ is trivial. Assume the truth of the theorem for A of order lower than n, and consider the case of A of order n. Noting that $\alpha(A) \leqq \alpha(B)$ for any principal minor matrix B of A, we divide the discussion into two cases:

Case (I). $\quad \alpha(A)=\alpha(B)$ for some proper principal minor matrix B of A. In this case, $\alpha(B) \geqq \alpha\left(B^{\prime}\right)$ by the assumed inductive hypothesis. Hence $\alpha(A)=$ $\alpha(B) \geqq \alpha\left(B^{\prime}\right) \geqq \alpha\left(A^{\prime}\right)$, so that $\alpha(A) \geqq \alpha\left(A^{\prime}\right)$.

Case (II). $\alpha(A)<\alpha(B)$ for any proper principal minor matrix B of A. Then $\alpha(A)=v(A)$. Let $x^{\prime}=\left(x_{1}, \ldots, x_{n}\right)$ and $y^{\prime}=\left(y_{1}, \ldots, y_{n}\right)$ be optimal strategies of the maximizing player and the minimizing player, respectively, in the game with the pay-off matrix A. Then, if $v=v(A)$, we have by definition

$$
\begin{array}{ll}
\sum_{j=1}^{n} a_{i j} y_{j} \leqq v & (i=1, \cdots, n), \\
y_{j} \geqq 0, \quad \sum_{j=1}^{n} y_{j}=1 & (j=1, \cdots, n), \tag{2}
\end{array}
$$

[^0]\[

$$
\begin{array}{ll}
\sum_{i=1}^{n} a_{i j} x_{i} \geqq v & (j=1, \cdots, n), \\
x_{i} \geqq 0, \quad \sum_{i=1}^{n} x_{i}=1 & (i=1, \cdots, n) . \tag{4}
\end{array}
$$
\]

It will be seen that $y_{j}>0(j=1, \ldots, n)$. If we assume the contrary, then $J=\left\{j \mid y_{j}>0\right\}$ is a non-empty proper subset of $\{1, \cdots, n\}$. Let $B=\left(a_{i j}\right)(i, j \in J)$, which is a proper principal minor matrix. Then,

$$
\alpha(B) \leqq v(B) \leqq \max _{i \in J} \sum_{j \in J} a_{i j} y_{j} \leqq \max _{1 \leqq i \leqq n} \sum_{j \in J} a_{i j} y_{j} \leqq v=v(A)=\alpha(A)
$$

by (1), which contradicts the basic assumption of case (II). Hence $y_{j}>0$ ($j=1, \ldots, n$), so that equality holds in all the relations of (3); that is

$$
\sum_{i=1}^{n} a_{i j} x_{i}=v \quad(j=1, \cdots, n)
$$

whence

$$
v\left(A^{\prime}\right) \leqq \max _{1 \leqq j \leqq n} \sum_{i=1}^{n} a_{i j} x_{i}=v=v(A)
$$

which proves $v(A) \geqq v\left(A^{\prime}\right)$. Hence $\alpha(A)=v(A) \geqq v\left(A^{\prime}\right) \geqq \alpha\left(A^{\prime}\right)$.
Therefore in both cases (I), (II) we have $\alpha(A) \geqq \alpha\left(A^{\prime}\right)$, Q.E.D.

> The Institute of Social and
> Economic Research, Osaka University

[^0]: (*) The author acknowledges with appreciation informal correspondences with Professor Ohtsuka, on which this note is based.
 (**) An application of the minimax theorem to the theory of capacity, this Journal.

