Proof of Ohtsuka's Theorem on the Value of Matrix Games^(*)

Hukukane Nikaido

(Received September 22, 1965)

We shall give a simple proof to Ohtsuka's theorem in the preceding paper (**) in the finite dimensional case.

Formula (1) in (**) for the finite dimensional case can be put in the following form:

Set

- v(A)=the value of the zero-sum game with a real matrix A as its pay-off matrix in which the maximizing player controls the rows and the minizing player controls the columns;
- $\alpha(A) = \min v(B)$ over all principal minor matrices B of a square matrix A.

Then, we have, if we denote by A' the transpose of A,

$$\alpha(A) = \alpha(A').$$

PROOF. It suffices to see $\alpha(A) \ge \alpha(A')$ for any A. We shall proceed by induction on n.

The case n=1 is trivial. Assume the truth of the theorem for A of order lower than n, and consider the case of A of order n. Noting that $\alpha(A) \leq \alpha(B)$ for any principal minor matrix B of A, we divide the discussion into two cases:

Case (I). $\alpha(A) = \alpha(B)$ for some proper principal minor matrix B of A. In this case, $\alpha(B) \ge \alpha(B')$ by the assumed inductive hypothesis. Hence $\alpha(A) = \alpha(B) \ge \alpha(A')$, so that $\alpha(A) \ge \alpha(A')$.

Case (II). $\alpha(A) < \alpha(B)$ for any proper principal minor matrix B of A. Then $\alpha(A) = v(A)$. Let $x' = (x_1, \dots, x_n)$ and $y' = (y_1, \dots, y_n)$ be optimal strategies of the maximizing player and the minimizing player, respectively, in the game with the pay-off matrix A. Then, if v = v(A), we have by definition

(1) $\sum_{j=1}^{n} a_{ij} y_j \leq v \qquad (i=1, \ldots, n),$

(2)
$$y_j \ge 0, \quad \sum_{j=1}^n y_j = 1 \qquad (j=1, ..., n),$$

^(*) The author acknowledges with appreciation informal correspondences with Professor Ohtsuka, on which this note is based.

^(**) An application of the minimax theorem to the theory of capacity, this Journal.

Hukukane NIKAIDO

(3)
$$\sum_{i=1}^{n} a_{ij} x_i \geq v \qquad (j=1, \ldots, n),$$

(4)
$$x_i \ge 0, \quad \sum_{i=1}^n x_i = 1 \quad (i=1, ..., n).$$

It will be seen that $y_j > 0$ (j=1, ..., n). If we assume the contrary, then $J = \{j \mid y_j > 0\}$ is a non-empty proper subset of $\{1, ..., n\}$. Let $B = (a_{ij})(i, j \in J)$, which is a proper principal minor matrix. Then,

$$\alpha(B) \leq v(B) \leq \max_{i \in J} \sum_{j \in J} a_{ij} y_j \leq \max_{1 \leq i \leq n} \sum_{j \in J} a_{ij} y_j \leq v = v(A) = \alpha(A)$$

by (1), which contradicts the basic assumption of case (II). Hence $y_j > 0$ (j=1, ..., n), so that equality holds in all the relations of (3); that is

$$\sum_{i=1}^{n} a_{ij} x_i = v \qquad (j = 1, ..., n),$$

whence

$$v(A') \leq \max_{1 \leq j \leq n} \sum_{i=1}^{n} a_{ij} x_i = v = v(A),$$

which proves $v(A) \ge v(A')$. Hence $\alpha(A) = v(A) \ge v(A') \ge \alpha(A')$. Therefore in both cases (I), (II) we have $\alpha(A) \ge \alpha(A')$, Q.E.D.

> The Institute of Social and Economic Research, Osaka University

224