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Let K be a compact Hausdorff space and #(x, y) be an extended real-
valued lower semicontinuous function on K x K which does not assume the
value —co. We denote by #x the class of non-negative unit Radon measures
on K, and by S, the support of a measure .. The potentials

Jot, Ddn)  and {00, Wduy

will be denoted by @(x, ) and @ (u, x) respectively. Our aim in this paper is
to prove

TueoreMm. It holds that

¢)) inf sup®(x, )= 1inf sup @(x, x)
HKEUR TESp HEUK xESpu
and
(2) sup inf @(x, )= sup inf @(x, x).
HEUR XESp HEXK xESpu

Remark. The reciprocal of the value in (1) is taken as the definition of
capacity in the Newtonian case, namely, when @(x, y)=|x— y|~" in the
Euclidean space E;. In this case both sides of (2) are always equal to oo and
hence (2) is trivially true. In case @(x, y) is (finite-valued) continuous on
K x K, either one of (1) and (2) follows from the other because

g P, ) _ (=@ (x, p))
Sup inf ()= 7, IBE SUP () ).

Proor or THE THroreEM. We.may assume @>0 without loss of generality.
We shall denote the left and the right hand sides of (1) by « and 3 respectively.
First we consider the case where @ is finite-valued and K consists of a finite
number of points by induction. The case when K consists of one point is
trivial. Suppose that (1) is true when K contains exactly n points, and let us
consider the case where K consists of n+1 points. We can express € #x by
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its masses at these points or by a vector (&), .-, £,.1), where &, ..., £,,,=>0
and & +...4+&,,1=1. We shall say that p is non-degenerate if all & are
positive. For any fixed p€ g, @(x, ;) attains its maximum at some point of
K. The maximum value is then a continuous function of (¢, ..., &) on
4,08, 6,20 and & +...4+§,<1. Hence inf sup @(x, ) is attained by

HKEUR xEK

some x,€K and o€ Uk:

inf sup D (%, 1) =D (%0, o).

KEUR XxEK

We shall denote this value by «,.;. It may not be equal to a because the
supremum is considered on K instead on S,. So we denote by #{ the class of
measures of #x for which &=0 (1<i<n+1), and set

o2, = inf sup @(x, ).
’ME%(KI'> xESu

By our assumption on induction we have

i) = inf sup @ (x, )= inf sup(/)(// x) >0,

’“e%(lé) xESu #Eq/(é XESu
Since

—mi > d
a=min (an+13 a/'gzl-“—ls T agtn++11 )a

it will suffice to show «,.,—=/ in case a,.1=a. Let us prove @ (x, po)=p.
If S,,#K, @(xo, jr0) == sup p(x, o) =i}, for some i and hence @ (x,, 1)
2ES po

—ai?, =B. Therefore we assume that we can not find x, with S, K. This
implies that o=(§", ..., £2,) is non-degenerate: £, ..., £2,>0. We shall
interprete the situation in geometrical terms. For a fixed » € K, the graph of
D(x, W) =W(x, (1, - Eny L—E1—-..—&,)) as a function of &, ..., £, on 4, is the
part above 4, of a hyperplane in the (n+1)- d1mens1onal space E,.i, so that
the graph of sglp &(%, ) as a function of &, ..., £, on 4, is the upper envelope

of the n+1 hyperplanes above 4, and hence is a convex surface. The fact
that 1o must be non-degenerate implies that the point Po=(&{, .., &2, «,41)

in E,., is the lowest extreme point of the convex surface, which hes above an
interior point of 4,. We shall show that

@ (%0, jro) = sup inf & (x, ).

rEUK xEK
Suppose that

sup inf (fl(x /1) (/)(x*, /1~*)>(/)(x0, /1~0)

HEUR x€K
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for x*€ K and p*=(&¥F, .-, £¥,.))€,. Denote the point (£}, ..., £F, @(x*, u*))
in E,.; by P*. Consider the points where the straight line, connecting P, and
P* intersects the wall of the vertical cylinder having 4, as its base. The
height of one of them, say of P, is less than @ (ux,, o) on account of the
inequality @ (xo, o) <@ (x*, u*). Since all the hyperplanes considered above
pass through or lie below P, and they either pass through or lie above P*,

they either pass through or lie below P. This means that

inf sup @ (x, ;1) < the height of P<® (x, uo)= inf sup @(x, ),

reug x€K reug x€K

which is impossible. In virtue of the minimax theorem in the theory of games
we obtain

B <inf sup(/l(u, )= sup 1nf!/1(x, ) < 1 =«

VYEUR yE KEUK xE

Thus a«=p3 is true in all cases. Since the discussion is symmetric, we have
a <A and hence a=g.

Next we shall consider the case when K is a general compact Hausdorff
space and @(x, y) is continuous on Kx K. We can divide K into a finite
number of mutually disjoint Borel sets B, ..., By such that |&(x, y)—
?(x, y'")| <1/m for all x whenever y’ and y’ belong to the same one of {BY}
and |&(x', y)—@(x", y)|<1/m for all y whenever x’ and x”’ belong to the
same one of {BY’}. We define #,, on KxK by

Dn(x, )= inf @(x,y) if x€B™ and yc B

(m) (m)
B; XBj

It holds that 0 <@ (x, y»)—®,(x, y)<2/m. We know that

inf sup @,,(x, )= inf sup @, (u, x) for every m.
HKEURK xESp KEUR xESpu

Observing that
0.0, 10— (o, ) < (O, )~ On(, P} () = 2 forall ,
we have

= inf sup @ («, 1r) < 72> + inf sup @, (x, w)

HKEUR xESp PEUK xESp

—%4— inf sup @,,(u, x)§—+ inf sup @ (-, x)~ 2 + 8.

HEUK xESpu HEUK XESpu



220 Makoto OHTSUK A

By letting m —>oco we obtain «<B. Similarly «=A3 and hence a«=g3 is
concluded.

We remark that there are y, € #x and x,€ S, such that @(x¢, po)=a. In
fact, we choose a directed set {ux.;c¢€l} in % such that sup @(x, ,) tends

€S,

to a along I. We may assume that {x,} converges vaguely to a measure
mEUgx. Takeany x€S,. Wefind {x,} such that »,€S, and x,—>x. It
follows that &(x, o) =lim (ﬁ(xt, 7)) <lim sup ¢(x, H)=a. Hence a < sup @(x, o)

XES po

<« This shows sup @(x, po)=a. It 1s easy to find x,€S,, satisfying

2ES po
(/’(xo, /'l‘O)=a~
Now we are concerned with the final case that @(x, y) is lower semi-

continuous on Kx K. We denote by H the family, directed by the relation
<, of non-negative continuous functions A <_® on Kx K. For each he H, let

wn €Uk give

sup h(x, pp)= inf sup h(x, ).

xESpy HrEUK XESp
Let us prove
3) inf sup @ (x, W= sup inf sup h(x, w).
HKEUE xESp h€EH peEUg xESp

Take any h'€H. For any x and he€ H such that A1=>A" we have h'(x, py) <
h(x, p). Since #y is compact with respect to the vague topology, there is a
value o of accumulation of the mapping h—y, along H. We may suppose
that u, converges to u vaguely. Let x belong to S, . There are points {x,}
such that x,€S,, and x,—x along H. It holds that

R (x, po)= hmh (%, ph)ﬁsup inf sup h(x, p),

h€EH pEUR xESp

and that
@ (%, po) <sup inf sup h(x, w.

h€EH prEUg xESpu
Since x €S, is arbitrary,

inf sup @ (x, )< sup (/)(x, jo) <sup inf sup h(x, p).

HEWUK XESp hEH pEag xESp

Now (3) follows because inf sup h(x, x) < inf sup @(x, ) for all he H.

HKEUK xESp KEURK XxESp
The equality «=g£ is an immediate consequence of (3). Actually

inf sup @(x, p)=sup inf sup h(x, x)=sup inf sup Ay, x)= inf sup &(x, x).

HEXK XESp hEH FEUK xESp hEH pEwK xESu HEUK TESp
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To establish (2) it will be sufficient to show

4) sup inf @(x, p)=sup sup inf A(x, p).

HEXK XESp h€EH prEUK xESp

Take any €%y Since @ (x, x) is lower semicontinuous on S,, given any
m<inf @ (x, 1), we can find h € H such that A(x, x)>m for all x€S,. Hence,

XESu

for this A,

m < inf h(x, p) << sup inf A(x, v)<sup sup inf i(x, v).

XESu VEUK xESy h€EH vExg xESy

We obtain (4) because m may be arbitrarily close to inf @(x, ) and €k is

2ESu
arbitrary. Our theorem is now completely proved.
At the end we give bibliographical remarks. In [4] the author denoted «
and 3 by V(K) and V(K) respectively. He proved there V(K)—m<<2(V(K)—m)
with mzli{an @ (x, y) and raised the question whether or not it is possible to

improve the coefficient 2 (2.2 of open questions at p. 284 of [4]). This question
is now settled by the result in the present paper. In the above discussion we
applied the minimax theorem. The first application of this theorem to the
theory of capacity was made in [1].) Usefulnesses in potential theory of
some other techniques in the theory of games or in the theory of linear
programming are found also in [27] and [ 3]].
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