Note on Kishi's Theorem for Capacitability

Maretsugu YAMASAKI (Received September 20, 1966)

1. Let \mathcal{Q} be a locally compact Hausdorff space and $\boldsymbol{\varPhi}(x, y)$ be a kernel on \mathcal{Q} , i.e. a lower semicontinuous function on $\mathcal{Q} \times \mathcal{Q}$ with values in $[0, +\infty]$. A measure μ will be always a non-negative Radon measure on \mathcal{Q} . The potential of μ is defined by $\boldsymbol{\varPhi}(x, \mu) = \int \boldsymbol{\varPhi}(x, y) d\mu(y)$ and the mutual energy of μ and ν is defined by $(\nu, \mu) = \int \boldsymbol{\varPhi}(x, \mu) d\nu(x)$. We call (μ, μ) simply the energy of μ . Let \mathscr{E} be the class of all measures with finite energy and \mathscr{E}_A be the class of all measures of \mathscr{E} whose supports are compact and contained in the given set \mathcal{A} . The support of μ will be denoted by $S\mu$. For a compact set K, we define

$$e(K) = \sup \{ 2\mu(K) - (\mu, \mu); \mu \in \mathscr{E}_K \}$$
 if $\mathscr{E}_K \neq \{ 0 \}$

and

$$e(K)=0 \qquad \qquad \text{if } \mathscr{E}_K=\{0\}.$$

For any set A, we define an inner quantity and an outer quantity as follows:

 $e_i(A) = \sup \{e(K); K \text{ is compact and } K \subset A\}$

and

 $e_0(A) = \inf \{e_i(G); G \text{ is open and } G \supset A\}.$

The problem of capacitability is to discuss when $e_i(A)$ coincides with $e_0(A)$.

M. Kishi [4] proved the equality $e_i(A) = e_0(A)$ for every analytic set A (Theorem 13 in [4]) under the hypotheses that \mathcal{Q} is a locally compact separable metric space, that $\boldsymbol{\emptyset} > 0$ and that $\boldsymbol{\emptyset}$ is of positive type (§3) and satisfies the continuity principle (footnote 6), condition (*) (§4) and a regularity condition (§7).

The object of this note is to improve his theorem. Namely, we shall show that Kishi's regularity condition, the condition $\emptyset > 0$ and a restriction on Ω can be omitted. The reasoning is analogous to that of B. Fuglede [3] and the author [7], but our quantities are different from theirs (footnote 14).

Our problem was also studied by B. Fuglede [2] and M. Ohtsuka [6] under different additional conditions. The differences will be illustrated in §8.

2. We recall the quantities related to the capacity which were intro-

duced by Ohtsuka [6]. For a measure $\mu \neq 0$, we put $V(\mu) = \sup \{ \boldsymbol{\theta}(x, \mu); x \in S\mu \}$. We define $V_i(A)$ by $\inf \{ V(\mu); \mu \in \mathcal{U}_A \}$ if $A \neq \phi$ and set $V_i(\phi) = \infty$, where ϕ denotes the empty set and $\mathcal{U}_A = \{\mu; S\mu \text{ is compact}, S\mu \subset A \text{ and } \mu(\mathcal{Q}) = 1 \}$. We define also $V_e(A) = \sup \{ V_i(G); G \text{ is open and } G \supset A \}$. We shall say that a property holds nearly everywhere or n.e. (quasi everywhere or q.e. resp.) on A if the V_i -value (V_e -value resp.) of the exceptional set in A is infinite.

The following propositions, which will be often used later, were obtained by Ohtsuka.

PROPOSITION 1.¹⁾ Let $\{B_n\}$ be a sequence of sets which are measurable for every measure on Ω and A be an arbitrary set. Then we have $V_i(\bigcup A \cap B_n)^{-1} \leq \sum V_i(A \cap B_n)^{-1}$.

PROPOSITION 2.²⁾ Let $\{A_n\}$ be a sequence of arbitrary sets. Then we have

$$V_e(\bigcup_n A_n)^{-1} \leq \sum_n V_e(A_n)^{-1}.$$

As an immediate consequence of this, we have

COROLLARY. Let A_1 and A_2 be arbitrary sets. If $V_e(A_2) = \infty$, then $V_e(A_1 - A_2) = V_e(A_1) = V_e(A_1 \cup A_2)$.

PROPOSITION 3.³⁾ For any compact set K, we have $V_i(K) = V_e(K)$.

3. We assume hereafter that the kernel $\boldsymbol{\varphi}$ is of positive type, i.e. $\boldsymbol{\varphi}(x, y) = \boldsymbol{\varphi}(y, x)$ for all $x, y \in \boldsymbol{\Omega}$ and $(\mu, \mu) + (\nu, \nu) - 2(\nu, \mu) \ge 0$ for all $\mu, \nu \in \mathscr{E}$. The following theorem is well-known.

THEOREM 1. For any compact set K, we have $e(K) = V_i(K)^{-1}$. In case $V_i(K) > 0$, there is a measure $\mu_K \in \mathscr{E}_K$ which minimizes $I(\nu) = (\nu, \nu) - 2\nu(K)$ for $\nu \in \mathscr{E}_K$. This measure μ_K has the following properties: (1) $\mathfrak{O}(x, \mu_K) \leq 1$ on $S\mu_K$, (2) $\mathfrak{O}(x, \mu_K) \geq 1$ n.e. on K and (3) $\mu_K(\Omega) = (\mu_K, \mu_K) = e(K)$.

COROLLARY 1. For any set A, it holds that

 $e_i(A) = V_i(A)^{-1}$ and $e_0(A) = V_e(A)^{-1}$.

Consequently we see that $e_0(K) = e_i(K) = e(K)$ for any compact set K and that $e_0(A) = 0$ is equivalent to $V_e(A) = \infty$.

COROLLARY 2. If $V_e(N) = \infty$, then $e_0(A-N) = e_0(A \cup N)$ for any set A.

For an arbitrary set A, we introduce two classes of measures:

^{1) [6],} Proposition 1, p. 139.

^{2) [6],} Proposition 2, p. 140.

^{3) [6],} Theorem 1.14, p. 207.

Note on Kishi's Theorem for Capacitability

$$\Gamma_A^i = \{ \nu \in \mathscr{E}; \ \mathbf{0}(x, \nu) \ge 1 \text{ n.e. on } A \}$$

and

$$\Gamma_A^e = \{ \nu \in \mathscr{E}; \ \varPhi(x, \nu) \ge 1 \text{ q.e. on } A \}$$

In case $\Gamma_A^i \neq \phi$, we define $c^i(A)$ by $\inf \{(\nu, \nu); \nu \in \Gamma_A^i\}$, and in case $\Gamma_K^i = \phi$, we set $c^i(A) = \infty$. For the class Γ_A^e , $c^e(A)$ is defined in the same way.⁴⁾

These quantities $c^i(A)$ and $c^e(A)$ are increasing set functions of A and it holds in general that $c^i(A) \leq c^e(A)$ for any set A. In case A is a compact set K, we have

THEOREM 2. $c^i(K) = c^e(K)$.

PROOF. It is enough to show $\Gamma_{K}^{i} = \Gamma_{K}^{e}$. This follows from Propositions 2 and 3.

In case $c^i(A)(e_i(A) \text{ resp.})$ coincides with $c^e(A)(e_0(A) \text{ resp.})$, we denote by c(A)(e(A) resp.) the common value. We observe that this e(K) is equal to the original e(K) in §1 and $c^i(K) = c^e(K) = c(K)$ for any compact set K and $e_i(G) = e_0(G) = e(G)$ for any open set G. The relation between c(K) and e(K) is given by

THEOREM 3.⁵⁾ e(K) = c(K) for any compact set K.

PROOF. Let $\nu \in \Gamma_K^i$ and $\mu \in \mathscr{E}_K$. Then it follows that $(\nu, \mu) \ge \mu(K)$ and

$$(\nu, \nu) + (\mu, \mu) - 2\mu(K) \ge (\nu, \nu) + (\mu, \mu) - 2(\nu, \mu) \ge 0.$$

Therefore $c(K) \ge e(K)$.

The converse inequality is led by Theorem 1. In fact, in case $e(K) < \infty$, the measure μ_K belongs to Γ_K^i .

COROLLARY. $e_i(A) \leq c_i(A)$ for any set A.

4. Now we assume in the sequel that the kernel $\boldsymbol{\varphi}$ satisfies the continuity principle.⁶⁾ In case $\boldsymbol{\Omega}$ is not compact, we further assume that the kernel $\boldsymbol{\varphi}$ fulfils the following condition (*) of Kishi: for any compact set K and any positive number ε , there is a compact set K_{ε} such that $\boldsymbol{\varphi}(x, y) < \varepsilon$ on $K \times (\boldsymbol{\Omega} - K_{\varepsilon})$.

Kishi proved in [4]

LEMMA 1. Suppose that a sequence $\{\mu_n\}$ of measures converges vaguely to

⁴⁾ Fuglede considered Γ_A^i , Γ_A^e , $c^i(A)$ and $c^e(A)$ in [2]. Kishi introduded a family of measures similar to Γ_A^e , but the meaning of "q.e." was different. Kishi defined that a set A is \mathscr{E} -polar if and only if there is a measure $\nu \in \mathscr{E}$ such that $\Phi(x, \nu) = \infty$ on A. He said that a property holds q.e. on A if the exceptional set in A is \mathscr{E} -polar.

^{5) [4],} p. 107.

⁶⁾ Continuity principle: If the potential $\Phi(x, \mu)$ of a measure μ with compact support S_{μ} is finite and continuous as a function on S_{μ} , then $\Phi(x, \mu)$ is continuous in Ω .

 μ_0 and that the total masses $\mu_n(\Omega)$ are bounded. Let ν be a measure which has a compact support and whose potential is finite and continuous in Ω . Then we have $\lim (\nu, \mu_n) = (\nu, \mu_0)$.

We shall consider a quantity $I_A^i = \inf\{(\nu, \nu) - 2\nu(\mathcal{Q}); \nu \in \mathscr{E}_A\}$ for the class of measures $\mathscr{E}_A = \{\nu \in \mathscr{E}; S\nu \text{ is compact and } S\nu \subset A\}$. By the obvious relations $I_K^i = -e(K)$ for any compact set K and $I_A^i = \inf\{I_K^i; K \text{ is compact and } K \subset A\}$, we have

THEOREM 4. $I_A^i = -e_i(A)$ for any set A.

The relation between $e_i(A)$ and $c^i(A)$ is given by

THEOREM 5.7) $e_i(A) = c^i(A)$ for any set A. If $e_i(A)$ is finite, then there is a measure μ_0 supported by \overline{A} (the closure of A) such that $\Phi(x, \mu_0) \ge 1$ n.e. on $A, \Phi(x, \mu_0) \le 1$ on $S\mu_0$ and $\mu_0(\Omega) = (\mu_0, \mu_0) = e_i(A)$.

PROOF. On account of Corollary to Theorem 3, we may assume that $e_i(A)$ is finite. In this case $V_i(K) \ge V_i(A) > 0$ for any compact set $K \subset A$. Let $\{K_n\}$ be an increasing sequence of compact sets contained in A such that $I_{K_n}^i$ tends to I_A^i . For each n, let μ_n be the measure μ_{K_n} obtained in Theorem 1. Then $\mu_n(\mathcal{Q}) = (\mu_n, \mu_n)$ tends to $-I_A^i = e_i(A)$ (Theorem 4), $\varPhi(x, \mu_n) \ge 1$ n.e. on K_n and $\varPhi(x, \mu_n) \le 1$ on $S\mu_n$. Since the total masses $\mu_n(\mathcal{Q})$ are bounded, we can find a vaguely convergent subsequence of $\{\mu_n\}$. Denote it by $\{\mu_n\}$ again and let μ_0 be the vague limit. Naturally, it is suppoted by \overline{A} . We set $N = \{x \in A; \varPhi(x, \mu_0) < 1\}$ and prove $V_i(N) = \infty$. If we deny this, then there would be a unit measure $\nu \in \mathscr{E}_N \subset \mathscr{E}_A$ such that $\varPhi(x, \nu)$ is finite and continuous in \mathcal{Q} by the continuity principle; see for instance [6], for the proof of Lemma 1.4, p. 190. Obviously we have $(\nu, \mu_0) < 1$. Since $\mu_n + t\nu \in \mathscr{E}_A$ for any positive number t, it holds that

$$\begin{split} I_A^i &\leq (\mu_n + t\nu, \ \mu_n + t\nu) - 2(\mu_n + t\nu)(\mathcal{Q}) \\ &= (\mu_n, \ \mu_n) - 2\mu_n(\mathcal{Q}) + 2t(\mu_n, \ \nu) + t^2(\nu, \ \nu) - 2t\nu(\mathcal{Q}). \end{split}$$

Letting $n \rightarrow \infty$, we have by Lemma 1

$$I_A^i \leq I_A^i + 2t(\nu, \mu_0) + t^2(\nu, \nu) - 2t.$$

Cancelling I_A^i , dividing the rest by t and letting $t \to 0$, we obtain $(\nu, \mu_0) \ge 1$. This is a contradiction. Hence $\varPhi(x, \mu_0) \ge 1$ n.e. on A and $(\mu_0, \mu_0) \le \lim_{n \to \infty} (\mu_n, \mu_n) = e_i(A)$. Consequently $\mu_0 \in \Gamma_A^i$ and $c^i(A) \le (\mu_0, \mu_0) \le e_i(A)$. Therefore $(\mu_0, \mu_0) = e_i(A) = c^i(A)$.

Let x_0 be any point of $S\mu_0$, and \mathscr{N} be the directed set of neighborhoods of x_0 . For every couple (U, n) of $U \in \mathscr{N}$ and n, we select any point x(U, n) in $U \cap S\mu_{n'}$, where n' is the smallest integer satisfying $n' \ge n$ and $U \cap S\mu_{n'} \neq \phi$.

⁷⁾ cf. [4], Lemma 12, p. 107 and [2], Theorem 4.1, p. 175.

We regard the set of all couples W = (U, n) as a directed set in a natural manner and denote it by D. Let $\lambda_W = \varepsilon_{x(U,n)} \times \mu_{n'}$ correspond to W = (U, n), where ε_x represents the unit point measure at x in general. Thus $\{\lambda_W; W \in D\}$ is a net, and converges vaguely to $\varepsilon_{x_0} \times \mu_0$. We have

$$\begin{split} \boldsymbol{\varPhi}(x_0, \, \mu_0) = & \int \boldsymbol{\varPhi} d(\boldsymbol{\varepsilon}_{x_0} \times \mu_0) \leq \underline{\lim}_{\overline{D}} \int \boldsymbol{\varPhi} d\lambda_W \\ = & \underline{\lim}_{\overline{D}} \int \boldsymbol{\varPhi}(x(U, \, n), \, y) d\mu_{n'}(y) \leq 1 \end{split}$$

By the arbitrariness of $x_0 \in S\mu_0$, we conclude $\varPhi(x, \mu_0) \leq 1$ on $S\mu_0$. Hence $e_i(A) = (\mu_0, \mu_0) \leq \mu_0(\mathcal{Q})$. On the other hand, $\mu_0(\mathcal{Q}) \leq \lim_{n \to \infty} \mu_n(\mathcal{Q}) = e_i(A)$ and hence $\mu_0(\mathcal{Q}) = e_i(A)$. This completes the proof.

5. In this section, we shall establish the equality $e_0(A) = c^e(A)$. First we shall prove

THEOREM 6.⁸⁾ $e_0(A) \leq c^e(A)$ for any set A.

PROOF. We may assume $c^{e}(A) < \infty$. Given $\varepsilon > 0$, there is a measure ν such that $(\nu, \nu) < c^{e}(A) + \varepsilon$ and $\varPhi(x, \nu) \ge 1$ q.e. on A. For any positive number t < 1, put $G_t = \{x \in \Omega; \varPhi(x, \nu) > t\}$ and $N = \{x \in A; \varPhi(x, \nu) < 1\}$. Then G_t is open and contains A - N. Since ν/t beings to $\Gamma_{G_t}^i$ and $V_e(N) = \infty$, we have $e_0(A) = e_0(A - N) \le e_i(G_t) = c^i(G_t) \le (\nu, \nu)/t^2 < [c^e(A) + \varepsilon]/t^2$ by Theorem 5 and Corollary 2 to Theorem 1. Letting $t \to 1$, we have $e_0(A) \le c^e(A) + \varepsilon$ and hence obtain the inequality.

Our problem is to see the converse inequality. In what follows, if we assume that any open set in Ω is a K_{σ} -set, then our reasoning becomes simplier. However, we do not assume this and we follow the method of Fuglede [3], making use of quasi topology but without referring to this terminology explicitly (cf. [7]). We shall prepare several lemmas, which were proved for $V_i^*(A)^{-1}$ and $V_e^*(A)^{-1}$ in [3] (see footnote 14). We have

LEMMA 2. Assume that a set A has the following property: for any $\varepsilon > 0$, there is a set B_{ε} such that $e_i(B_{\varepsilon}) = e_0(B_{\varepsilon})$, $e_0(A - B_{\varepsilon}) < \varepsilon$ and $e_0(B_{\varepsilon} - A) < \varepsilon$. Then it holds that $e_i(A) = e_0(A)$.

PROOF. This is an immediate consequence of Proposition 2 and the inequality $e_i(A \cup B) \leq e_i(A) + e_0(B)$.

LEMMA 3.⁹⁾ Take $A \subseteq \Omega$ and $\mu, \nu \in \mathscr{E}$. If $\mathfrak{O}(x, \mu) \ge \mathfrak{O}(x, \nu) + t$ on A for a positive number t, then we have $V_i(A) \ge t^2 ||\mu - \nu||^{-2}$, where $||\mu - \nu|| = [(\mu, \mu) + (\nu, \nu) - 2(\mu, \nu)]^{1/2}$.

⁸⁾ cf. [4], Lemma 13, p. 108 and [2], Lemma 4.3.2, p. 181.

^{9) [6],} Lemma 3.4, p. 298.

LEMMA 4.¹⁰⁾ Let $\mu \in \mathscr{E}$. Given $\varepsilon > 0$, there exists a compact set K_{ε} such that the potential of μ_{ε} , the restriction of μ to K_{ε} , is finite and continuous in Ω and $\|\mu - \mu_{\varepsilon}\| < \varepsilon$.

Like in [4] and [6], by using Lemmas 3 and 4 we can prove

LEMMA 5.¹¹⁾ The potential of a measure with finite energy is quasi continuous, i.e. for any $\varepsilon > 0$, there is an open set G_{ε} such that $V_i(G_{\varepsilon}) > 1/\varepsilon$ and the potential is finite and continuous as a function on $\Omega - G_{\varepsilon}$

LEMMA 6. Let G be an open set and ν be a measure with finite energy. Then $\Phi(x, \nu) \ge 1$ n.e. on G implies $\Phi(x, \nu) \ge 1$ q.e. on G.

PROOF. It is enough to show that the e_0 -value of the exceptional set $N = \{x \in G; \ \emptyset(x, \nu) < 1\}$ is zero. Given $\varepsilon > 0$, by Lemma 5, there is an open set G_{ε} such that $e_i(G_{\varepsilon}) < \varepsilon$ and $\ \emptyset(x, \nu)$ is finite and continuous as a function on $\mathcal{Q}-G_{\varepsilon}$. Put $N_{\varepsilon} = \{x \in \mathcal{Q}-G_{\varepsilon}; \ \emptyset(x, \nu) < 1\}$ and $B_{\varepsilon} = (N_{\varepsilon} \cup G_{\varepsilon}) \cap G$. Then $N \subset B_{\varepsilon} \subset N \cup G_{\varepsilon}$ and $N_{\varepsilon} \cup G_{\varepsilon}$ is open. Therefore, it follows that B_{ε} is open, $e_0(N-B_{\varepsilon}) = e_0(\phi) = 0$ and $e_0(B_{\varepsilon}-N) \leq e_i(G_{\varepsilon}) < \varepsilon$. Obviously $e_i(B_{\varepsilon}) = e_0(B_{\varepsilon})$. We see by Lemma 2 that $e_0(N) = e_i(N) = 0$.

Remark. We need not condition (*) in Lemmas 2–6.

THEOREM 7.¹²⁾ $e_0(A) = c^e(A)$ for any set A.

PROOF. For any open set $G \supset A$, it holds by Lemma 6 and Theorem 5 that $c^{e}(A) \leq c^{e}(G) = c^{i}(G) = e_{i}(G)$. Thus we have $c^{e}(A) \leq e_{0}(A)$. The converse inequality was shown in Theorem 6.

Next, we shall give

LEMMA 7.¹³⁾ Let F be a closed set with $e_0(F) < \infty$. Then we have $e_i(F) = e_0(F)$.

PROOF. We may suppose $e_0(F) > 0$. On account of Lemma 2 and Proposition 3 it is enough to show that, for any $\varepsilon > 0$, we can find a compact set $F_{\varepsilon} \subset F$ such that $e_0(F - F_{\varepsilon}) < \varepsilon$. Take an open set G such that $G \supset F$ and $e_i(G) < \infty$. We can find, by Theorem 5, a measure μ such that $\mu(G) = (\mu, \mu) = e_i(G) > 0$ and $\varPhi(x, \mu) \ge 1$ n.e. on G. By Lemma 6 $\varPhi(x, \mu) \ge 1$ q.e. on G. Put $N = \{x \in G; \ \varPhi(x, \mu) < 1\}$ and $H = \{x \in \Omega; \ \varPhi(x, \mu) \ge 1\}$. Then $H \cup N \supset F$ and $e_0(N) = e_i(N) = 0$. Given $\varepsilon > 0$, there is a compact set K_{ε} such that $(\nu_{\varepsilon}, \nu_{\varepsilon}) < \varepsilon/4$, where $\nu_{\varepsilon} = \mu - \mu_{\varepsilon}$ and μ_{ε} is the restriction of μ to K_{ε} . On account of condition (*), there exists a compact set L_{ε} such that $\varPhi(x, y) \le 1/[2\mu(\Omega)]$ on $(\Omega - L_{\varepsilon}) \times K_{\varepsilon}$. Consequently $\varPhi(x, \mu_{\varepsilon}) \le 1/2$ for any $x \in \Omega - L_{\varepsilon}$ and $H \cap (\Omega - L_{\varepsilon}) \subset A_{\varepsilon} = \{x \in \Omega; \ \varPhi(x, \nu_{\varepsilon}) \ge 1/2\}$. Since $2\nu_{\varepsilon}$ belongs to $\Gamma_{A_{\varepsilon}}^{e}$, we have

^{10) [6],} Lemma 1.4, p. 190.

¹¹⁾ cf. [4], Lemma 10, p, 150 and [6], Theorem 1.13, p. 206.

¹²⁾ cf. [4], Lemma 13, p. 108.

^{13) [2],} Lemma 4.22, p. 179 and [3], Corollaire du Lemme 7.1, p. 81.

$$e_0(H\!-\!L_{arepsilon})\!\leq\!e_0(A_{arepsilon})\!=\!c^{\,e}(A_{arepsilon})\!\leq\!4(
u_{arepsilon},
u_{arepsilon})\!<\!arepsilon_{arepsilon}$$

Take $F_{\varepsilon} = F \cap L_{\varepsilon}$. Then F_{ε} is compact and $F - F_{\varepsilon} \subset (H - L_{\varepsilon}) \cup N$. It follows that $e_0(F - F_{\varepsilon}) \leq e_0(H - L_{\varepsilon}) + e_0(N) < \varepsilon$.

We use this fact in the following theorem.

THEOREM 8.¹⁴⁾ Suppose that a sequence $\{\mu_n\}$ of measures in \mathscr{E} converges vaguley to μ_0 and that the total masses $\mu_n(\Omega)$ are bounded. Then we have $\lim_{n \to \infty} \mathfrak{O}(x, \mu_n) \leq \mathfrak{O}(x, \mu_0)$ q.e. in Ω .

PROOF. If we put $h_n(x) = \inf \{ \mathcal{O}(x, \mu_k); k \ge n \}$, then $h_n(x)$ increases to $\lim_{n \to \infty} \mathcal{O}(x, \mu_n)$. Given $\varepsilon > 0$, we can find, by Lemma 5, an open set G_{ε} such that $e_i(G_{\varepsilon}) < \varepsilon$ and the restriction of $\mathcal{O}(x, \mu_n)$ to $\mathcal{Q} - G_{\varepsilon}$ is finite and continuous for each n $(n=1, 2, \ldots)$. For t > 0, we put

$$E_n(t) = \{ x \in \mathcal{Q}; h_n(x) - \boldsymbol{\varPhi}(x, \mu_0) \ge t \},\$$
$$E_n(\varepsilon, t) = \{ x \in \mathcal{Q} - G_{\varepsilon}; h_n(x) - \boldsymbol{\varPhi}(x, \mu_0) \ge t \}$$

and

$$A_n(t) = \{ x \in \mathcal{Q}; \boldsymbol{\varPhi}(x, \mu_n) \geq t \}.$$

Then since the restriction of $h_n(x)$ to $\mathcal{Q}-G_{\varepsilon}$ is upper semicontinuous, $E_n(\varepsilon, t)$ is a closed set in \mathcal{Q} . We observe that $E_n(\varepsilon, t) \subset A_n(t)$ and $e_0(E_n(\varepsilon, t)) \leq e_0(A_n(t)) = c^e(A_n(t)) \leq (\mu_n, \mu_n)/t^2 < \infty$. Consequently, by Lemma 7, $e_i(E_n(\varepsilon, t)) = e_0(E_n(\varepsilon, t))$. If $e_i(E_n(\varepsilon, t))$ were positive, we could find a unit measure ν such that S_{ν} is compact, $S_{\nu} \subset E_n(\varepsilon, t)$ and $\mathcal{O}(x, \nu)$ is finite and continuous in \mathcal{Q} on account of the continuity principle. It would follow that

$$t \leq \int [h_n(x) - \boldsymbol{\varrho}(x, \mu_0)] d\nu(x) = \int h_n(x) d\nu(x) - \int \boldsymbol{\varrho}(x, \mu_0) d\nu(x)$$
$$\leq \int \boldsymbol{\varrho}(x, \mu_k) d\nu(x) - \int \boldsymbol{\varrho}(x, \mu_0) d\nu(x)$$
$$= \int \boldsymbol{\varrho}(x, \nu) d\mu_k(x) - \int \boldsymbol{\varrho}(x, \nu) d\mu_0(x) \qquad (k \geq n),$$

and the right side tends to 0 as $k \to \infty$. This is a contradiction. Therefore $e_0(E_n(\varepsilon, t)) = e_i(E_n(\varepsilon, t)) = 0$. It follows that

¹⁴⁾ Ohtsuka [6] proved Theorem 8 in case Ω is compact. Kishi [4] and Fuglede [3] obtained similar results. However the latter two authors used the terminology "q.e." in a sense different from ours. Namely, set $V^*(\mu) = \sup\{\Phi(x, \mu); x \in \Omega\}, V^*_i(A) = \inf\{V^*(\mu); \mu \in \mathcal{U}_A\}$ if $A \neq \phi, V^*_i(\phi) = \infty$ and $V^*_e(A) = \sup\{V^*_i(G); G \text{ is open and } G \supset A\}$. Obviously $V_i(A) \leq V^*_i(A)$ and $V_e(A) \leq V^*_e(A)$. Fuglede said that a property holds n.e. (q.e. resp.) on A if the exceptional set in A has infinite V^*_i -value (V^*_e -value resp.).

$$0 \leq e_0(E_n(t)) \leq e_0(E_n(\varepsilon, t) \cup G_{\varepsilon})$$
$$\leq e_0(E_n(\varepsilon, t)) + e_0(G_{\varepsilon}) < \varepsilon$$

Thus $e_0(E_n(t)) = 0$. By the relation

$$N = \{x \in \mathcal{Q}; \lim_{n \to \infty} \boldsymbol{\varPhi}(x, \mu_n) - \boldsymbol{\varPhi}(x, \mu_0) > 0\} = \bigcup_k \bigcup_n E_n(1/k),$$

we see $e_0(N)=0$. Namely $\lim_{n\to\infty} \phi(x, \mu_n) \leq \phi(x, \mu_0)$ q.e. in Q.

Now we shall prove

THEOREM 9.¹⁵⁾ If $e_0(A)$ is finite, then there is a measure μ_0 such that $\varPhi(x, \mu_0) \ge 1$ q.e. on $A, \varPhi(x, \mu_0) \le 1$ on $S\mu_0$ and $\mu_0(\Omega) = (\mu_0, \mu_0) = e_0(A)$.

PROOF. We can find a sequence $\{G_n\}$ of open sets such that $e_i(G_n)$ is finite, $\lim_{n \to \infty} e_i(G_n) = e_0(A)$ and $G_n \supset G_{n+1} \supset A$. For each G_n , combining Theorem 5 with Lemma 6, we can find a measure μ_n such that $S\mu_n \subset G_n$, $\varPhi(x, \mu_n) \ge 1$ q.e. on $G_n \supset A$, $\varPhi(x, \mu_n) \le 1$ on $S\mu_n$ and $\mu_n(\mathcal{Q}) = (\mu_n, \mu_n) = e_i(G_n)$. Since the total masses $\mu_n(\mathcal{Q})$ are bounded, there is a subsequence $\{\mu_{n_j}\}$ which converges vaguely to some measure μ_0 . On account of Theorem 8, we see $\varPhi(x, \mu_0) \ge 1$ q.e. on A and $(\mu_0, \mu_0) \le \lim_{j \to \infty} (\mu_{n_j}, \mu_{n_j}) = e_0(A)$. Consequently μ_0 belongs to Γ_A^e and hence $(\mu_0, \mu_0) \ge c^e(A) = e_0(A)$ (Theorem 7). Thus $(\mu_0, \mu_0) = e_0(A)$. The rest of the proof is carried out in the same way as that of Theorem 5.

THEOREM 10. Let $\{A_n\}$ be an increasing sequence of arbitrary sets and $A = \bigcup_{n=1}^{\infty} A_n$. Then we have

$$e_0(A) = \lim_{n\to\infty} e_0(A_n).$$

PROOF. Since $e_0(A_n) \leq e_0(A_{n+1}) \leq e_0(A)$, it holds that $\lim_{n \to \infty} e_0(A_n) \leq e_0(A)$. It is enough to prove the converse inequality in case $\lim_{n \to \infty} e_0(A_n)$ is finite. For each *n*, we can find, by Theorem 9, a measure μ_n such that $\mu_n(\Omega) = (\mu_n, \mu_n) =$ $e_0(A_n) \leq \lim_{n \to \infty} e_0(A_n) < \infty$ and $\Phi(x, \mu_n) \geq 1$ q.e. on A_n . We may suppose that $\{\mu_n\}$ converges vaguely to a measure μ_0 by selecting a subsequence if necessary. Making use of Theorem 8, we see that μ_0 belongs to Γ_A^e and hence $e_0(A) =$ $c^e(A) \leq (\mu_0, \mu_0) \leq \lim_{n \to \infty} (\mu_n, \mu_n) = \lim_{n \to \infty} e_0(A_n)$. This completes the proof.

6. Because of Corollary 1 to Theorem 1 and Theorem 10 we can apply Choquet's theorem (Théorème 30.1 in [1]). Thus we have

THEOREM 11. It holds that $e_i(A) = e_0(A)$, or equivalently $V_i(A) = V_e(A)$, for every analytic set A.

224

¹⁵⁾ cf. [2], Theorem 4.3, p. 182.

7. We shall show that our Theorem 11 is a generalization of Kishi's theorem (Theorem 13 in [4]). Kishi postulated further that the kernel $\boldsymbol{\varphi}$ is strictly positive and regular, i.e. for any point x_0 and any neighborhood δ_{x_0} of x_0 , there is a positive constant t depending only on x_0 , and a unit measure μ such that $\mu \in \mathscr{E}$, $S\mu \subset \delta_{x_0}$, $\boldsymbol{\varphi}(x, \mu) \leq t \boldsymbol{\varphi}(x, x_0)$ in $\boldsymbol{\Omega}$.

We shall give a kernel which satisfies all our conditions except for this regularity.

EXAMPLE. Let \mathcal{Q} be the 3-dimensional Euclidean space, $f(x) = \inf(|x|, |x|^{-1/2})$ and $\mathcal{O}(x, y) = \frac{1}{|x-y|} + f(x)f(y)$. Then \mathcal{O} satisfies both the continuity principle and condition (*) and is of positive type. We observe that \mathcal{O} is not regular in the above sense.

In fact, if we take $x_0=0=$ the origin, then $\mathcal{O}(x, x_0)=1/|x|$. For any nonzero measure $\mu \in \mathscr{E}$, $\alpha_{\mu} = \int f(x)d\mu(x) > 0$. If there were a positive constant t, depending only on x_0 , such that

$$\Phi(x, \mu) \leq t \Phi(x, x_0) \quad \text{in } \Omega,$$

then we should have

$$\int \frac{1}{|x-y|} d\mu(y) + \alpha_{\mu} f(x) \leq \frac{t}{|x|} \qquad \text{in } \mathcal{Q}.$$

Namely $\alpha_{\mu}|x|f(x) \leq t < \infty$ in Ω . This is impossible because $|x|f(x) \rightarrow \infty$ as $|x| \rightarrow \infty$.

8. The quantities $e_i(A)$ and $e_0(A)$ were also studied by Fuglede [2] and Ohtsuka [6] under different conditions. We shall explain the differences. If $\boldsymbol{\vartheta}$ satisfies the continuity principle and condition (*) in case $\boldsymbol{\vartheta}$ is not compact, we denote $\boldsymbol{\vartheta} \in [K]^{16}$.

If the kernel is of positive type, the pseudo-norm $\|\mu-\nu\| = [(\mu, \mu)+(\nu, \nu) - 2(\nu, \mu)]^{1/2}$ defines the strong topology on \mathscr{E} . Fuglede called a kernel consistent if it is of positive type and any strong Cauchy net converging vaguely to a measure converges strongly to the same measure. If \mathscr{O} is consistent, we denote $\mathscr{O} \in [F]^{16}$.

If \mathscr{E} is strongly complete (i.e. complete with respect to the strong topology), we denote $\mathcal{Q} \in [O]^{16}$.

The range within which their theory is available will be illustrated by the following examples. For simplicity, we assume in what follows except in Example 3 that Ω is the 3-dimensional Euclidean space.

Example 1. $\mathbf{0} \in [K] \cup [F] \cup [O]$.

¹⁶⁾ The symbols K, F, O are after Kishi, Fuglede, Ohtsuka respectively.

Let f(x) be the characteristic function of $\{|x| < 1\}$ and $\varphi(x, y) = \frac{1}{|x-y|} + f(x)f(y)$. Fuglede observed $\varphi \in [F] \cup [O]$. Since this kernel does not satisfy the continity principle, $\varphi \in [K]$.

EXAMPLE 2. $\phi \in [K]$ and $\phi \notin [F] \cup [O]$.

Let $f(x) = \inf(1, |x|^{-1/4})$ and $\mathcal{O}(x, y) = \frac{1}{|x-y|} + f(x)f(y)$. It is clear that $\mathcal{O} \in [K]$. In order to show that $\mathcal{O} \notin [F] \cup [O]$, it is sufficient to prove that our kernel is not consistent. Let μ_n be the uniform measure on $\{|x|=n\}$ with $\mu_n(\mathcal{Q}) = n^{1/4}$. Then $\|\mu_n - \mu_m\|^2 \leq (n^{-1/4} + m^{-1/4})^2$. Therefore $\{\mu_n\}$ is a strong Cauchy sequence. It converges vaguely to 0. However $\|\mu_n\|^2 = n^{-1/4} + 1$ does not approach 0. Namely, \mathcal{O} is not consistent.

EXAMPLE 3. (Fuglede [2], p. 210) $\emptyset \in [F] \cap [K]$ and $\emptyset \notin [O]$. Let Ω be the interval [0, 1] in the real line and $\emptyset(x, y) = x y/(2-x y)$. Fuglede proved that $\emptyset \in [F]$ and $\emptyset \notin [O]$. It is obvious that $\emptyset \in [K]$.

EXAMPLE 4. $\emptyset \in [O]$ and $\emptyset \in [K] \cup [F]$. Let $\emptyset(x, y) \equiv 1$. Then our assertion is easily verified.

EXAMPLE 5. $\emptyset \in [K]$ and $\emptyset \in [F] \cap [O]$. See Ohtsuka's example (Example 2 in [5]).

EXAMPLE 6. $\emptyset \oplus [F]$ and $\emptyset \in [K] \cap [O]$. Let $f(x) = \inf(1, 1/|x|)$ and $\emptyset(x, y) = f(x)f(y)$.

Fuglede proved that \mathscr{E} is strongly complete if $\boldsymbol{\varPhi}$ is consistent and $\boldsymbol{\varPhi} > 0$ (Lemma 3.3.1 in [2], p. 167). Therefore we have $[F] \subset [O]$ if $\boldsymbol{\varPhi} > 0$.

In case \mathcal{Q} is a compact space, we see $[K] \subset [F]$. The author does not know a kernel such that $\mathcal{Q} \in [F]$ and $\mathcal{Q} \oplus [K] \cup [O]$.

References

- [1] G. Choquet: Theory of capacities, Ann. Inst. Fourier, 5 (1955), pp. 131-295.
- [2] B. Fuglede: On the theory of potentials in locally compact spaces, Acta Math., 103 (1960), pp. 139-215.
- B. Fuglede: Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier, 15 (1965), pp. 65-87.
- [4] M. Kishi: Capacitability of analytic sets, Nagoya Math. J., 16 (1960), pp. 91-109.
- [5] M. Ohtsuka: Some examples in potential theory, Japan. J. Math., 29 (1959), pp. 101-110.
- [6] M. Ohtsuka: On potentials in locally compact spaces, J. Sci. Hiroshima Univ. Ser. A-I Math., 25 (1961), pp. 135-352.
- [7] M. Yamasaki: On a capacitability problem raised in connection with linear programming, ibid., 30 (1966), pp. 57-73.

Department of Mathematics, Faculty of Science, Hiroshima University