A Remark on Vector Fields on Lens Spaces

Toshio Yoshida

(Received February 17, 1967)

§1. Introduction

Let M be a C^{∞}-manifold. The (continuous) vector field v on M is a crosssection of the tangent bundle of M, and k-field on M is a set of k vector fields v_{1}, \ldots, v_{k} such that the k vectors $v_{1}(x), \ldots, v_{k}(x)$ are linearly independent for each point $x \in M$. We denote by $\operatorname{span}(M)$ the maximal number of k where M admits a k-field.

In this note, it is remarked that $\operatorname{span}\left(L^{n}(p)\right)$, of the $(2 n+1)$-dimensional $\bmod p$ lens space $L^{n}(p)$, is given partially by the following

Proposition. Let $n+1=m 2^{t}(m$: odd $), t+1=c+4 d(0 \leqq c \leqq 3)$
(i) If $c=0$, then $2 t+1 \leqq \operatorname{span}\left(L^{n}(p)\right) \leqq 2 t+2\left(=\operatorname{span}\left(S^{2 n+1}\right)\right.$.
(ii) If $c=1,2$, then $\operatorname{span}\left(L^{n}(p)\right)=2 t+1\left(=\operatorname{span}\left(S^{2 n+1}\right)\right)$.
(iii) If $c=3$, then $2 t+1 \leqq \operatorname{span}\left(L^{n}(p)\right) \leqq 2 t+3\left(=\operatorname{span}\left(S^{2 n+1}\right)\right)$.

Here the lens space $L^{n}(p)(p>1)$ is the quotient space $S^{2 n+1} / \Gamma$ of the unit sphere $S^{2 n+1}$ by the topological transformation group $\Gamma=\left\{1, \gamma, \cdots, \gamma^{p-1}\right\}$ defined by

$$
\begin{aligned}
\gamma \cdot\left(z_{0}, z_{1}, \ldots, z_{n}\right)= & \left(e^{2 \pi i / \phi} z_{0}, e^{2 \pi i / \phi} z_{1}, \ldots, e^{2 \pi i / \phi} z_{n}\right) \\
& \left(\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in S^{2 n+1} \subset C^{n+1}\right)
\end{aligned}
$$

We notice that the above proposition holds in the following form for the case $p=2$:

$$
\operatorname{span}\left(L^{n}(2)\right)=\operatorname{span}\left(S^{2 n+1}\right) .
$$

This follows easily from the fact that $L^{n}(2)$ is the ($2 n+1$)-dimensional real projective space $R P^{2 n+1}$, and

$$
\operatorname{span}\left(R P^{n}\right)=\operatorname{span}\left(S^{n}\right)
$$

which is an immediate consequence of the fact that S^{n} has a linear k-field, $k=\operatorname{span}\left(S^{n}\right)$.

Also, we notice that there is a lens space such that

$$
\operatorname{span}\left(L^{n}(p)\right)<\operatorname{span}\left(S^{2 n+1}\right)
$$

since $\operatorname{span}\left(L^{3}(3)\right)=5\left(c f\right.$. §3) and $\operatorname{span}\left(S^{7}\right)=7$.

§2. Proofs of Proposition

Since a k-field on $L^{n}(p)$ defines clearly a k-field on $S^{2 n+1}$, we have $\operatorname{span}\left(L^{n}(p)\right) \leqq \operatorname{span}\left(S^{2 n+1}\right)$.

Also we have

$$
\operatorname{span}\left(L^{n}(p)\right) \geqq 2 t+1
$$

for the integer t of the proposition, and these and the results of $\operatorname{span}\left(S^{2 n+1}\right)$, determined by J. F. Adams [1], show the proposition.

The above relation means that $L^{n}(p)$ admits a ($2 t+1$)-field, and this is proved as the corollary of the results of B. Eckmann [2] as follows. By 6 of [2], it is shown that tehre exist $2 t+1$ unitary matrices $A_{1}, \ldots, A_{2 t+1} \in U(n+1)$ such that

$$
A_{k}^{2}=-E, A_{k} A_{l}+A_{l} A_{k}=0 \quad(k, l=1, \ldots, 2 t+1 ; k \neq l),
$$

where E is the unit matrix. For an arbitrary element $u \in S^{2 n+1} \subset C^{n+1}$, the first equation shows that

$$
<u, A_{k}(u)>=<A_{k}(u), A_{k}^{2}(u)>=<A_{k}(u),-u>=-\overline{<u, A_{k}(u)>}
$$

and so the real part of the inner product $\left\langle u, A_{k}(u)\right\rangle$ is zero. Hence $A_{k}(u)$ ($u \in S^{2 n+1}$) is a vector field on $S^{2 n+1}$, and this defines a vector field on $L^{n}(p)$ since $A_{k}(\gamma \cdot u)=\gamma \cdot A_{k}(u)$.

Also, the second equation shows that the real part of $\left\langle A_{l}(u), A_{k}(u)\right\rangle$ ($k \neq l$) is zero for any $u \in S^{2 n+1}$, and so $A_{1}, \cdots, A_{2 t+1}$ define a ($2 t+1$)-field on $L^{n}(p)$.

§3. Remarks

(a) $\operatorname{span}\left(L^{3}(3)\right)=5$ is proved as follows. By (iii) of the proposition, we have $5 \leqq \operatorname{span}\left(L^{3}(3)\right) \leqq 7$. Assume that $\operatorname{span}\left(L^{3}(3)\right) \geqq 6$, then $L^{3}(3)$ admits a 7 -field since $L^{3}(3)$ is an orientable 7 -manifold. This means that $L^{3}(3)$ is parallelizable and so is immersible in the real 8 -space R^{8}. But it is shown that $L^{3}(3)$ is not immersible in R^{9} by Theorem 6 of [3], we have $\operatorname{span}\left(L^{3}(3)\right)=5$.
(b) In relation to the above, it is known that $\operatorname{span}\left(L^{11}(p)\right) \geqq 6$ (p : odd) by Corollary 1.4 of [4].
(c) For the lens space $L\left(p ; l_{1}, \ldots, l_{n}\right)=S^{2 n+1} / \Gamma^{\prime}$ such that Γ^{\prime} is generated by γ^{\prime} :
$\gamma^{\prime} \cdot\left(z_{0}, z_{1}, \ldots, z_{n}\right)=\left(e^{2 \pi i \mid t} z_{0}, e^{2 \pi i l_{1} / t} z_{1}, \ldots, e^{2 \pi i I_{n} / \phi} z_{n}\right)$, the above proposition
holds if $1=l_{1}=\ldots=l_{2^{t}-1}, l_{2^{t}}=\ldots=l_{2.2^{t}-1}, \ldots, l_{(m-1) \cdot 2^{t}}=\ldots=l_{m .2^{t-1}}$, where m is the integer in the proposition. This is easily seen from the form of the above A_{k}.

References

[1] J. F. Adams: Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
[2] B. Eckmann: Gruppentheoretischer Beweis des Satzes von Hurewitz-Radon über die Komposition quadratischer Formen, Comment. Math. Helv., 15 (1942), 358-366.
[3] T. Kobayashi: Non-immersion theorems for lens spaces, Math. Kyoto Univ., 6 (1966), 91-108.
[4] E. Thomas: Postnikov invariants and higher order cohomology operations, to appear.
Department of Mathematics,
Faculty of Science, Hiroshima University

