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0. Introduction

In this paper, all rings considered are assumed to be commutative rings
with an identity element. It is known that an integral domain D may contain
an idempotent proper ideal A. But when this occurs, A is not finitely gener-
ated [21, p. 215], so that D is not Noetherian. Also, it is easy to show that
for any positive integer k there exists a ring R which is not a domain and
such that R contains an ideal A with the property that A^)A2^) •-•^)Ak =
Ak+1=. .. Whether an integral domain R with this property exists is a
heretofore open question which we answer affirmatively in §2.

Nakano in [16] has considered the problem of determining when an ideal
of D is idempotent, where D is the integral closure of Z, the domain of ordin-
ary integers, in an infinite algebraic number field. In fact, the paper [16] is
one of a series of papers which Nakano has written concerning the ideal struc-
ture of D. In [18], Ohm has generalized and simplified many of Nakano's
results from [16] and [17], showing that as far as the structure of the set of
primary ideals of D is concerned, the assumption that D is the integral closure
of Z in an algebraic number field is superfluous the essential requirement on
D being that it is a Prύfer domain according to the following definition: The
integral domain / is a Prϋfer domain if for each proper prime ideal P of /, JP

is a valuation ring; equivalently, / is a Prϋfer domain if each nonzero finitely
generated ideal of / is invertible [10, p. 554].

Following Ohm's example, we show in §3 that most of Nakano's results
in [16] carry over to the case when D is the integral closure of a fixed Prϋfer
domain Do in an algebraic extension of the quotient field of Do.

If / is an integral domain with quotient field K, a domain /0 between /
and K will be called an overrίng of /. In case /0 is a valuation ring, we call
/o a valuation overring of /. We say that / is an almost Dedekind domain if
for each maximal ideal M of /, JM is a rank one discrete valuation ring [5],

in

1. Preliminary results on Prΐifer domains.

We list in this section some results in the theory of Prϋfer domains
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which we shall use frequently in the remainder of this paper.
In [18, pp. 1025-1027] Ohm, generalizing the results of Nakano in

[17], proved this result concerning the structure of the set of primary ideals
of a Prϋfer domain.

THEOREM 1.1. Suppose P is a prime ideal of the Prύfer domain D, let
d = {Qa}aeA be the set of P-primary ideals of D, and let Q, Qu Q2 be fixed ele-
ments of d.

(a) d is closed under multiplication.
(b) If Qn = Qn+1 for some positive integer n, then Q=Q2 = P.

(c) UQ^QCP, then Qλ contains a power of Q. Thus r\ aeAQa = f\n=i Qn

= P0, and Po is a prime ideal. There are no prime ideals of D properly be-
tween Po and P.

(d) If PφP\ then d = {P1}"^.
(e) If QCP, thenρ2C(λP.
(f) If Q1C <?2 and if Qx: Q2=Qu then Q=P= P\

If / i s an integral domain having quotient field K and if {Va}aeA is the
family of valuation overrings of /, an ideal B of / is called a valuation ideal
of /i f there exists an element a of A and an ideal Ba of Va such that B =
BaΓ\J; in this case we necessarily have B = BVar\J [22, p. 340]. If N is a
/-submodule of K, the completion of N, denoted by iV, is defined to be r\aeANVa.
If iV=7V, we say that N is complete. In case N is an ideal of /, N is an ideal
of /, the integral closure of /. In [7, p. 238], Gilmer and Ohm established
this result:

THEOREM 1.2. In an integral domain D, these conditions are equivalent:
(a) D is a Prϋfer domain.
(b) Each ideal of D is complete.
(c) Each ideal of D is an intersection of valuation ideals.

The final result we state concerns Prϋfer domains under integral exten-
sions, (a) was proved by Gilmer in [6, Cor 2]. The "if" part of (b) is due
to Prϋfer [20, p. 31]. (c) and the "only if" part of (b) are due to Heinzer [8,
Thm. 1, Cor. 2]. Butts and Phillips proved (d) in [1, p. 270]. (e) is easily
shown and we list it here merely as a matter of convenience.

THEOREM 1.3. Let D be an integral domain with quotient field K and let J
be a domain integral over D such that J has quotient field L.

(a) // D is Prύfer and if B is an ideal of D, there is an ideal C of J such
that Cr\D = B. In particular, B = BJr\D.

If J is the integral closure of D in L, then
(b) / is Prϋfer if and only if D is Prϋfer.
(c) // / is almost Dedekivd, D is almost Dedekind.
(d) / / D is almost Dedekind and [_L: K~}< oo5 then J is almost Dedekind.
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(e) // D is Prufer, if P is a prime ideal of D, and if M is a prime ideal
of /, then Mr\Ό — P if and only if JMΓ\K=DF.

2. Idempotent ideals of an integral domain

In [16], Nakano determines conditions under which a fixed ideal A of
the integral closure Z' of Z in an infinite algebraic number field is idempotent.
Nakano's major results in this area are contained in his Satze 9-11. We first
show in Theorems 2.1, 2.3 that the results of Nakano are valid in any Prufer
domain. Then we turn to a study of idempotent ideals of an arbitrary in-
tegral domain. In particular, we show that for any positive integer k there
is an integral domain Dk and a maximal ideal Mk of Dk such that Mk D M% Z>

Before proving Theorem 2.1, we introduce some terminology due origin-
ally to Krull. If A is an ideal of the ring R and if 5 is a multiplicative sys-
tem in R, the ideal As = {χ e R\χs e A for some s e 5} is called the isolated
component ideal (i.K.I) of A with respect to S. Hence if "e" and " c " denote
extension and contraction of ideals of R with respect to the ring Rs (see [21,
pp. 218—227]]), then As — Aec. In case S is the complement of a prime ideal
P in R, we use the notation AP instead of AR_P. If P is a minimal prime of
A, then Ae has radical Pe in RP, and Pe is maximal in RP. Hence AP is P-
primary in this case, AQAP, and each P-primary ideal containing A contains
AP. We call AP the isolated primary P-component of A [18, p. 1024].

THEOREM 2.1. Suppose D is a Prufer domain and A is an idempotent
ideal of D. If P is a prime ideal of D containing A, then AP is an idempotent
prime ideal. In particular, each minimal prime of A is an isolated primary
component of A and is idempotent.

PROOF. In the proof, we use strongly the result, established in [4, p.
248], that an idempotent ideal of a valuation ring is prime.

Thus, since A —A2, ADP={_ADff and DP is a valuation ring since D is a
Prufer domain. Consequently, ADP is prime in DP: ADP=QDP for some prime
ideal Q of D containing A. We have Q2DP= A2DP= ADP=QDP, and by Theo-
rem 1.1, Q2 is (^-primary. Hence AP=ADPr\D=Q=QDPr\D=Q2 = Q2DPΓ\D,
and AP is an idempotent prime ideal, as we wished to show. Q.E.D.

LEMMA 2.2. Suppose V is a valuation ring and that P is a proper idem-
potent prime ideal of V. If A is an ideal of V with radical P and if AφP,
there is a P-primary ideal Q such that AQ

PROOF. By [4, Proposition 1.10, p. 249], P2 = P is generated by {p2 \pe P}.
Hence there is an element x of P such that x2 <r A. Therefore, AC(χ2)CP
If Q is the i.K.I. of O2)with respect to P, it follows that Q is P-primary and
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that AC(χ2)^QC(χ)CP. Q.E.D.

THEOREM 2.3. // A is an ideal of the Prύfer domain D such that each
isolated primary component of A is idempotent^ then A is idempotent.

PROOF. TO show that A = A2, it suffices to show that ADM = A2DM for
each maximal ideal M of D containing A [22, p. 94].

Thus, if P is the minimal prime of A contained in M, then PDM is the
radical of ADM> Since AP\$ P-primary and is idempotent, Theorem 1.1 shows
that AP = P. Hence PDM is the only PD^-primary ideal of DM containing
ADM. Since PDM is idempotent, Lemma 2.2 shows that ADM = PDM More-
over, A2DM = (PDM)2 = PDM = ADM and our proof is complete. Q.E.D.

THEOREM 2.4. Suppose A is a finitely generated ideal \of the Prύfer do-
main D, that {Pa} is the set of minimal primes of A and for each a, N(Pa) is
the intersection of the set of Pa-primary ideals. Then f\~=ιA

n — f\N(Pa)
a

PROOF. We first observe that since each Pa is a minimal prime of the
finitely generated ideal A9 N(Pa)CPa for each a [7, Theorem 4.3].

We choose an element x of f\N(Pa). To show x e An for a given positive

integer n> it suffices to show that x e AnDM for an arbitrary maximal ideal M
of D containing An. Hence, let Pa be the minimal prime of A contained in M.
We complete our proof by observing that x e N(Pa)DM^AnDM' The contain-
ment N(Pa)DM £ AnDM follows in this case since AnDM has radical PDM, so
t h a t AnDM

(tzN{Pa)DM C PaDM We conclude t h a t

Conversely, if yd fX^A", then for any α, ya (Γ\ζ=ιA
2nDPa)Γ\D. How-

ever, A2Dpa is a PaDpa-primary ideal distinct from PaDpa so that f\~=ι(A2DPa)
n

is the intersection of the set of PαDFα-primary ideals of DPa [4, Theorem 1.7].
That is, fXA2nDP=N(Pa)Dpa. It then follows that yd N(Pa)DPar\D=N(Pa),
so that fX^An = f\N(Pa) as*we wished to show. * Q.E.D.

REMARK 2.5. Theorem 2.4. was proved by Ohm [19, Corollary 1.5] in case
A is a principal ideal. Our notation in Theorem 2.4 is that of Ohm, and our
method of proof is not essentially different.

REMARK 2.6. In Theorem 2.4, the hypothesis that A is finitely generated
is necessary. For example, if A is the maximal ideal of a rank one non-
discrete valuation ring, f\~=ιA

n = A, but the intersection of the set of A-
primary ideals is (0). However, it is true that for any ideal A of a Prϋfer
domain f\^xA

n is an intersection of prime ideals (In the terminology of Krull
£12], an ideal C of a commutative ring T is semi-prime if C=\IC equivalent-
ly, C is semi-prime if C may be expressed as an intersection of prime ideals
of T.) This statement follows from the fact that the radical of an ideal B of
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a ring R is the intersection of the set of prime ideals of R which contain B,
[21, p. 151], and from Theorem 2.7.

THEOREM 2.7. // A is an ideal of the Prύfer domain D and if B = f\ζ=ιAn,
then B = \IB .

PROOF. Let u e \IB '• uk e B. We show, for n a positive integer, that
u 6 An. Hence, if M is a maximal ideal of D containing A9 uk e Ank implies
uk e AnkDM=(AnDM)k. Since DM is a valuation ring, it follows that u e AnDM

[7. Lemma 2.8]. Consequently, u e An, and u e Γ\~=ιA
n = B. Q.E.D.

We turn now to a consideration of idempotent ideals of an integral domain
/ which is not assumed to be Prufer.

THEOREM 2.8. Suppose A is an idempotent ideal of the domain J. The
completion A of A is a semi-prime ideal of /, the integral closure of J.

PROOF. Let {Va} be the family of valuation overrings of /. By defini-
tion, A — [\AVa — Γ\(AVaΓ\J). For any α, AVa is idempotent in Va-> so that

a a

AVa is prime in Va. Consequently, A=f\(AVaΓ\J) is semi-prime in /.
Q.E.D.

COROLLARY 2.9. // A is an idempotent ideal of the domain J such that A
is an intersection of valuation ideals of /, then A is semi-prime.

PROOF. By Theorem 2.8 A, the completion of A, is semi-prime in /, the
integral closure of /. But since A is an intersection of valuation ideals of /,
A — AΓ\J. It then follows that A is semi-prime in /. Q.E.D.

COROLLARY 2.10. Suppose A is an ideal of a domain J such that Ak = Ak+1

for some positive integer k. If Ak is an intersection of valuation ideals of /,
then A is idempotent and is semi-prime.

PROOF. By Corollary 2.9, Ak is semi-prime. And since AQ\lAk, A^Ak.

Hence A = Ak = Ak+1. In particular, A = A2 and A is semi-prime. Q.E.D.

COROLLARY 2.11. // A is an ideal of the Prufer domain D such that
Ak = Ak+1 for some positive integer k, then A is idempotent and semi-prime.

PROOF. Since each ideal of a Prufer domain is complete, Corollary 2.11
follows immediately from Corollary 2.10. Q.E.D.

COROLLARY 2.12. // A is an idempotent ideal of an integrally closed
domain /, then the completion of A coincides with the radical of A.

PROOF. The completion of an ideal of an integrally closed domain is
always contained in the radical of that ideal [22, p. 350]. But Theorem 2.8
shows that A=s]AΏ\jA. Hence A—^A as we wished to show. Q.E.D.
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From Corollary 2.11, questions naturally arise concerning the existence
of idempotent ideals of an integral domain which are not semi-prime, as well
as the existence of non-idempotent ideals A such that Ak = Ak+1 for some posi-
tive integer k. Theorem 2.13 relates to these questions.

THEOREM 2.13. In a domain /, these conditions are equivalent:
(1) There is an idempotent ideal of J which is not semi-prime.
(2) There is an ideal A of J such that A D A2 = A3 = .

PROOF. If (1) holds in /, there is an ideal B of / such that B = B2 and
BC^JB. Hence there is an element x of sjB — B such that x2 e B. If A =
B + (x\ then BCA. But A2=B2 + Bx + (x2)=B. Therefore, A~^A2 = A3= ..,
and (2) is valid. And if (2) holds, the ideal A2 is idempotent but is not semi-
prime.

We proceed to given an example of a domain in which condition (2) of
Theorem 2.13 holds. We prove, in fact, the following stronger statement:

If k is a positive integer, there is a domain Dk and a maximal ideal Mk

of Dk such that Mk^M£^ ...^Mk

k = Mk

k

+1= ....
To obtain such a domain Dk, we consider a field F and indeterminates X

and Y over F. There is a unique rank one nondiscrete valuation v on F(X, Y)
such that υ is trivial on F, v(X)=l, and t>(Γ)=V~2~. Let V be the valuation
ring of v and let M be the maximal ideal of V; M is idempotent in this case.
We let Θ = ksJX and Dk= V[_θJ Dk is a domain with identity and {1, θ, , θk~1}
is a free module basis for Dk over V. The ideal

)= {mo+ dφAr ... + d^β1"1 \mo€M, d{ e V}

is maximal in Dk and Dk/Mk~V/M. Further, if l<ί<k — 1, then

= {τnQ+ • • .+mi-1θ
i-1 + diθ

i+. • • + dk^dk-1 \ πij e Λf, dj e V}.

Moreover,

It then follows that

3. Idempotent ideals in the union of a net of Prΐifer domains

In this section, we use the following notation: Do is a Prϋfer domain
with quotient field Ko. K is an algebraic extension field of Ko which may be
expressed as the union of a net {Ka}aeA of finite algebraic extension fields
over Ko. By a net, we mean here that for a, β e A, there is an element γ of
A such that Ka and Kβ are subfields of K7. We also assume that Ko e {Ka}.
(The assumption that K be expressible as the union of such a net is not res-
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trictive; the family of all subfields of K which are finite extensions of Ko is a
net whose union is K. We shall not assume, however, that {Ka} is the family
of all subfields of K which are finite extensions of Ko.) For each a e A, we
denote by Da the integral closure of Do in Ka. By Theorem 1.3, each Da is a
Prufer domain. And we set D = \Ja€ADa; D is the integral closure of Do in
K, Dr\Ka = Da for each a in A, and D is also a Prufer domain.

Suppose Po is a prime ideal of Do and P is a prime of D lying over Po.
We consider here the problems of determining when a given P, or when each
such P, is not idempotent. The results we obtain generalize Nakano's results
obtained in case D0 = Z and {Ka} is a chain. The additional generality of our
approach, however, seems to clarify the results obtained, for the question of
idempotency of a prime P of D is unextricably connected to the structure of
the valuation ring DP, when considered as an extension of the valuation ring

Finally, we consider in this section the problems of determining when
D is almost Dedekind or when D is a Dedekind domain. Our first two theo-
rems are basic results which will be used throughout the remainder of this
section.

THEOREM 3.1. Suppose Jis a Prύfer domain with quotient field F, that L
is an algebraic extension field of F, and that J is the integral closure of J in L.
If P is an idempotent prime ideal of /, then each prime ideal of J lying over P
is also idempotent.

PROOF. Because / is Prufer, / is also Prufer. and since / is integral over
/ and / is integrally closed, the prime ideals of / lying over P are the minimal
primes of PJ [11, Satz 9]. Because P is idempotent, PJ is also idempotent.
Theorem 2.1 then shows that each minimal prime of PJ is idempotent. Q.E.D.

THEOREM 3.2. Suppose J is an integrally closed domain with quotient
field F, L is a finite algebraic extention field of F, and J is the integral closure
of J in L. If P is a prime ideal of /, the number of primes of J lying over
P is finite and is <[_L: FJS. If J is Prufer and P is not idempotent, then no
prime of J lying over P is idempotent.

PROOF. We let V be a valuation overring of / associated with a valua-
tion v such that v has center P on /. The number of extensions of v to L is
finite and is not greater than [_L : FJS [22, p. 29]. But if Q is any prime ideal
of / lying over P, there is an extension v* of v to L such that Q is the center
of v* on / Q22, p. 31]. It then follows that the set of primes of / lying over
P is finite and is not greater than [_L : F~]s.

In case / is a Prufer domain, we consider a normal closure 2? of L over F.
E is a finite extension of F and the integral closure /* of / in E is Prufer.
The prime ideals of /* lying over P are conjugate under elements of the
Galois group of E over F [15, p. 31]. It follows that either each prime of /*
lying over P is idempotent or no prime of /* lying over P is idempotent. The
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prime ideals of /* lying over P are the minimal primes of P/* in /*. Fur-
ther, their number is finite—say {Pi, ..., Pt} is the set of minimal primes of
P/*. Then sJPJ^^P^ r\Pt = PiP2 Pt and by Theorem 4 of [3], (PιP2- -PtT
c p / * for some integer n. If each Pt were idempotent, we would then have
pλp2.. .p,cpj*cP λP 2 . . Pt so that PJ" = P1P2..Pt and P/* is idempotent. But
part (a) of Theorem 1.3 shows that P 2 / * A / = P 2 = P / * n / = P , which contra-
dicts the assumption that P is not idempotent. We conclude that no prime
of /* lying over P is idempotent.

We consider a prime ideal M of / lying over P. Each prime of / * lying
over M in J lies over P in /, and hence is not idempotent. By Theorem 3.1,
this implies that M is not idempotent. Q.E.D.

We return now to the notation introduced in the beginning of this sec-
tion in order to prove our next results.

LEMMA 3.3. Suppose C is an ideal of D and a is a fixed element of A. We
let B={βe A\KaQKβ}. For β e B, we let Cβ=CίλDβ.

(1) If k is a positive integer, Ck=\JβeBC
k

β.
(2) If for any β e B, there is a γ in B such that Cβ^C%, then C is idem-

potent.

PROOF. The containment WβeβCk

β c Ck is clear. The reverse containment
follows from the fact that if x e Ck, then x e Ek for some finitely generated
ideal E contained in C. (2) follows immediately from (1).

In order that a prime ideal P of D fail to be idempotent, Theorem 3.1
shows that it is necessary that Po not be idempotent, where P0 = Pr\D0. The-
orem 3.4 concerns the converse of this statement.

THEOREM 3.4. Suppose P is a prime ideal of D lying over the prime ideal
Po of Do and suppose that Po >̂ P0

2. Then P is idempotent if and only if the
following condition, which we label as (*), holds:

(*) For any a in A, there is an element β of A such that Ka c Kβ and such
that PaQP%> where Pa = PΓ\Da for any ae A.

PROOF. Part (2) of Lemma 3.3 shows that if condition (*) holds, P is
idempotent. To prove the converse, we suppose that condition (*) fails and
we show that P is not idempotent. Hence there is an element a of A such
that if B = {β e A \ Ka c Kβ}, then for any β e B, Pa<£Pl By part (1) of Lemma
3.3, P2=\JβeBPl To show P^)P\ it therefore suffices to show there is a
fixed element of Pa which belongs to no PJ for any β e B. By Theorem 3.2,
Pa is not idempotent. Therefore PaDpa is principal and is generated by any
element x of Pa—P%. Since Pβ lies over Pα, DPβ extends DPa to Kβ. Further,
Pβ is not idempotent and Pa<£Pβ Consequently, Pa(Da)pa(Dβ)pβ = Pa(Dβ)PβΦ

P2

β(Dβ)Pβ. I t follows t h a t Pa(Dβ)Pβ=x(Dβ)Pβ = Pβ(Dβ)Pβ. Hence x * P2

β(Dβ)Pβ

so that x <r Pj. We conclude that x c P— P2 and that P is not idempotent.
Q.E.D.
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Before proving Theorem 3.5, we introduce some new notation. We fix a
prime ideal Po of DQ and we consider collections {Pa}aeA satisfying these two
properties:

(a) Pa is prime in Da and Pa lies over Po.
(b) For a, β e A with Ka c Kβ, Pβ lies over Pa.

With each Pa we associate a positive integer ea defined as follows: Since Pa

lies over Po, Pa is a minimal prime of PoDa. Thus if Va = (Da)Pa, P0DaVa=
P0Va is primary for the maximal ideal PaVa of Va. Because Pa lies over Po

and Po is not idempotent, Pa is not idempotent. Consequently, PaVa is not
idempotent. Theorem 1.1 then shows that PoVa is a power of PaVa : PoVa =
(PaVaγ«. We note that if KaQKβ, Pβ lies over Pα so that F^ extends Va.
Therefore, ea<eβ if KaQKβ. Hence with each collection {Pa}aeA satisfying
(a) and (b), we obtain the set {ea}a€A- In terms of the sets {ea} we state
Theorem 3.5.

THEOREM 3.5. In order that no prime of D lying over Po be idempotent, it
is necessary and sufficient that each collection {ea}aeA obtained as described in
the preceding paragraph be bounded.

PROOF. If the prime ideal P of D lies over Po and if P is idempotent,
then if Pa = PίλDa for each a in A, {Pa}aeA satisfies conditions (a) and (b).
Further, Theorem 3.4 shows that there is a sequence {αw}~=i of elements of A
such that Ka.CKa.+i for each ί and such that eaι+ι~>2eat for each i. It
follows that {ea}i, and hence {βα}, is not bounded.

On the other hand, if no prime of D lying over Po is idempotent, then
given a collection {Pa}aeA satisfying (a) and (b), P=VJa6APa is a prime ideal
of D lying over Pa in Da for any α e l Since P is not idempotent, Theorem
3.4 shows that there is an element a e A such that for any β e A with Ka c= Kβ>
Pa^LPl- As we have previously observed, this implies that PaVβ—PβVβ.
Hence P|«Vβ = Pa

eaVβ = Pα

e«VaVβ = PoΓαVβ = P0Vβ. It follows that ea = eβ for
any /? 6 A such that KaQKβ. Now if 7* is any element of A^ there is an ele-
ment β oί A such that K7yjKa<^Kβ. Hence eΎ<eβ=ea. It follows that
{e7}ΎeA is bounded by ea. Q.E.D.

We turn now to the problem of determining when D is almost Dedekind
or when D is Dedekind. By Theorem 1.3, if D is almost Dedekind, so is Do,
and if D is a Dedekind domain, DQ is also a Dedekind domain. Hence our
question may be posed in this way: Suppose Do is almost Dedekind (respec-
tively, Dedekind). Under what conditions is D almost Dedekind (resp., De-
dekind)? Under either hypothesis, Do is one-dimensional Prϋfer so that D is
also one-dimensional and is Prϋfer. Therefore, D is almost Dedekind if and
only if D contains no idempotent maximal ideals Ql, p. 270], and D is a De-
dekind domain if and only if D is Noetherian. Hence, under the assumption
that Do is almost Dedekind, we consider the problem of determining when D
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contains no idempotent maximal ideals, and under the assumption that Do is
Dedekind, we seek to determine necessary and sufficient conditions in order
that D be Noetherian. Theorem 3.5 immediately yields one set of necessary
and sufficient conditions in answer to the first question:

COROLLARY 3.6. Suppose Do is an almost Dedekind domain. In order that
D be almost Dedekind it is necessary and sufficient that for any maximal ideal Po

of Do and any collection {Pa}aeA satisfying (a) and (b), the set {ea} is bounded.

In case Do is almost Dedekind, the integer ea may be related to the fac-
torization of PoDa in Da. To see this we first prove.

LEMMA 3.7. If J is an almost Dedekind domain and if B is a proper ideal
of J which is contained in only finitely many maximal ideals Mu Λf2, •••, Mn9

then B may be expressed as a finite product of members of the set {Mu • • , Mn}.

PROOF. We have B = ΓΛ^^BJM^J), where for each i, BJM.r\J is Mt-
primary. But in an almost Dekekind domain, primary ideals are prime
powers [5, p. 813]. Hence there is a set {ku • , kn} of positive integers such
that BJMiΓ\J=Mks for each i between 1 and n. Finally, because the ΛfJ 's
are pairwise comaximal we have JB= Λ7=1ΛfJi = Π?=iΛίJ<. Q.E.D.

In case Do is almost Dedekind and Po is a maximal ideal of DQ, then for
any cte A, Da is almost Dedekind, and by Theorem 3.2, there are only finitely
many maximal ideals Mu • •-, Mn of Da lying over Po. Hence {Mu ..., Mn} is
the set of maximal ideals of Da containing P0Da. By Lemma 3.7, P0Da =
TIni=ιMfι for some set {&,-}?=! of positive integers. But since, for any j be-
tween 1 and 7i, Π?=iMj4 extends to [M;(Z>α)MJ^ in (Da)Mp it follows that the
positive integer β; associated with any Mj is &y, the power to which Mj occurs
in the prime factorization of P0Da. In case Ka is a normal extension of Ko,
the ideals Mu •-, Mn are conjugate under elements of the Galois group of Ka

over Ko. Hence if Ka is normal over Ko, kι = k2=-=kn. This observation
allows us to state Lemma 3.7 in a much more convenient form in terms
of a normal closure L of K over Ko. Thus for ae A, we let La be a
normal closure of Ka over Ko in L. {La}aeA is a net of subfields of L,
L=yJaeALa, and each La is a finite normal extension of Ko. If Ea is the in-
tegral closure of Do in La for each a and if E is the integral closure of Do in
Z,, then E= KJaeAEa and each Ea is almost Dedekind. Using this notation we
state Theorem 3.8.

THEOREM 3.8. In case Do is almost Dedekind and L is a normal extension
of K, these statements are equivalent:

(i) D is almost Dedekind.
(ii) E is almost Dedekind.
(iii) For each maximal ideal Po of DQ, there is an element a0 of A, de-
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pending on Po, such that each maximal ideal of EaQ lying over Po is unramified
with respect to E—that is, no maximal ideal of EaQ lying over Po is contained
in the square of a maximal ideal of E.

(iv) For any maximal ideal Po of Do, there is an element a0 of A such
that each maximal ideal of EUϋ lying over Po is unramified with respect to Eβ

for any β in A such that LUQ C: Lβ.

PROOF. (i)-Kii): By Theorem 1.3.
(ii)->(iii): If Po is a maximal ideal of Do we consider a maximal ideal P

of E lying over Po. If Pa = PΓ\Ea for each a in A, and if ea is the exponent
to which Pa occurs as a factor of P0Ea, Corollary 3.6 shows that the set {ea}
is bounded. We choose βe A such that e ^ > e α for each a a A. We show
that no maximal ideal of Eβ lying over Po is contained in the square of a
maximal ideal of E. We first show that Pβ is contained in the square of no
maximal ideal of E. If C={γ e A\Eβ^EΎ}9 then P2=\JΎ€CPI Hence by
choice of eβ and from the fact that Pβ(Dβ)Pβ is principal, it is clear that
Pβ^P2- If M is any maximal ideal of E lying over Pβ, then since L is normal
over Lβ, there is an element of the Galois group of L over Lβ sending M onto
P. Since PβΦP2, it therefore follows that Pβ<£M2. We have proved that Pβ

is contained in the square of no maximal ideal of E. If Hβ is any maximal
ideal of Eβ lying over Po, there is a K0-automorphism σ of Lβ such that
a{Hβ) — Pβ. Further, 6 can be extended to a i^o-automorphism <r* of L since
L is normal over Ko (compare [9, Vol III p. 42]). It follows that if Hβ were
contained in the square of a maximal ideal of E, Pβ would also be contained
in the square of a maximal ideal of E. Consequently, Hβ is not contained in
the square of a maximal ideal of E, and (iii) holds.

(iii)->(ii) : This is immediate from Corollary 3.6.
(iii)o(iv): Trivial Q.E.D.

We conclude this section by considering the case when Do is a Dedekind
domain. As we have previously remarked, D will be Dedekind in this case if
and only if D is Noetherian. Further, D is Noetherian if and only if each
prime ideal of D is finitely generated [2, p. 29]. And because D is one-
dimensional, we are therefore led to the problem of determining when each
maximal ideal of D is finitely generated. In Lemma 3.9 and 3.10 we need
only assume that Do is a Prϋfer domain. That is, we do not require that Do

is Noetherian.

LEMMA 3.9. Let B be an ideal of D and for ac A, let Ba = Br\Da. If S
is a finite subset of B, S generates B in D if and only if there is an element
a a A such that for any β e A for which Ka c Kβ, S generates Bβ in Dβ.

PROOF. It is clear that if an a can be found in A satisfying the condition
described, then S generates B in D. And if B=SD, then because 5 is finite,
there is an a in A such that S^Da. If β e A and if Da^Dβ, then by Corol-
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lary 2 of [6] SDΓ\Dβ=SDβ since Dβ is a Prϋfer domain. But B = SD so that
SDr\Dβ=Bβ. It follows that 5 generates Bβ in Dβ for any β in A such that

LEMMA 3.10. Let B an ideal of D and for ae A, let Ba = BrλDa. B is
finitely generated if and only if there exists a in A such that Ba is finitely
generated and such that Bβ=BaDβfor any β in A such that DaQDβ.

PROOF. Lemma 3.10 is a mere restatement of Lemma 3.9.

THEOREM 3.11. Suppose Do is a Dedekind domain. These conditions are
equivalent:

(i) D is a Dedekind domain.
(ii) For each maximal ideal Po of Do, there exists an element a0 of A,

depending on Po> such that each maximal ideal of DaQ lying over Po is inertial
with respect to D.

(iii) For each maximal ideal Po of Do, there exists an element a0 of A,
depending on Po, such that each maximal ideal of Dao lying over Po is inertial
with respect to Dβ for any β in A such that DaQ £ Dβ.

PROOF. That (ii) and (iii) are equivalent is clear. To establish the equi-
valence of (i) and (iii) it suffices, in view of preceding remarks, to show that
(iii) is equivalent to the condition that each maximal ideal of D is finitely
generated. Hence if (i) holds and if Po is a maximal ideal of Do, there are
only finitely many maximal ideals Mh , Mr of D lying over Po (these are the
maximal ideals which occur in the prime factorization of P0D). Each M, is
generated by some finite set 5 t , and there is an element a of A such that
\jr

i=1Si <Ξ Όa. If for each ί between 1 and r, Hi = MiΓ\Dai our proof of Lemma
3.9 shows that S, generates Hi and H{ is inertial with respect to Dβ for any
β c A such that Da^Dβ. To establish (iii), we note that {Hi}

r

i=1 is the set of
maximal ideals of Da lying over Po. That this is true follows by choice of
the set {Mi, , Mr}.

If (iii) holds and if P is a maximal ideal of D, we let P0 = PrλD0. By
hypothesis, there is an element a0 in A such that each maximal ideal of DaQ

lying over Po is inertial with respect to D. Hence if Pao = Pr\Dao, PaQD is
maximal in D and is contained in P. Thus P=PaQD. But DaQ is the integral
closure of a Dedekind domain in KaQ, where [_KaQ: JEoH<°°. Consequently,
DUQ is Dedekind [22, p. 281], and PaQ is finitely generated. We conclude that
P is finitely generated so that (i) is valid. Q.E.D.

REMARK. 3.12. Exercise 10, page 83, of [0] may also be used to obtain
necessary and sufficient conditions in order that D be Dedekind. For it is
known that a Krull domain is a Dedekind domain if and only if it has dimen-
sion < 1 . [22, p. 84].
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4. Examples

Let D be a Dedekind domain with quotient field K. Under the assump-
tions that D/P is finite for each maximal ideal P of D and that the set of
maximal ideal of D is countable (the integral closure of Z, the ring of in-
tegers, in any finite algebraic number field is a Dedekind domain with this
property), we provide in this section a method for constructing an infinite
algebraic extension field L of K such that the integral closure D of D in L is
an almost Dedekind domain which is not Dedekind. For this construction
we need Lemmas 4.1-4.2.

LEMMA 4.1. Let R be a commutative ring with identity and let {Ai}
n

i^ι be
a collection of pairwise comaximal ideals of R (that is, R = Ai + Aj for ίφj).
If {fi\ni=ι is a finite subset of R[_XJ, where each f{ is monic of degree k, then
there exists f e R[_X~], f monic of degree k, such that f=fi (A^XJ), / — 1, 2, •, ra.

We omit the proof of Lemma 4.1 since it is essentially that of Theorem
31 (9) in [21, p. 177].

If F is a finite algebraic extension of K, then the integral closure D of D
in F is a Dedekind domain. Therefore, if P is a maximal ideal of D, PD is a
product of maximal ideals of D; we write PD = M{ι Me

g\ where the maximal
ideals M{ are all distinct. The integer e, is called the reduced ramification
index of Λf, over P, and the degree [7J/M, : D/Pj=f{ is called the relative
degree of Mi over P; Σf=ieifi<[_F: KJ, and in particular, D/M is finite for
each maximal ideal M of D [21, pp. 284-285]. If PD is maximal in D, we say
that P is inertial with respect to D; if g=l but β i> l , we say that P ramifies
with respect to D; and if g > l 5 we say that P decomposes with respect to D.
Using this notation and terminology, we state and prove Lemma 4.2.

LEMMA 4.2. Let {P, }ί=i, {(?*•}f=i, and {Ui}
t

i=ι be finite collections of dis-
tinct maximal ideals of D. Then there exists a simple quadratic extension K(t)
of K such that each Pi is inertial with respect to D, each Q{ ramifies with res-
pect to D, and each V{ decomposes with respect to D here D denotes the integral
closure of D in K(t).

PROOF. For each ί between 1 and r, D/Pj is a finite field and D[X]/P Z [X]
2r (D/Pi)[X~]. Hence we can find fu , fr c D[_X^\, f> monic of degree 2, such
that // is irreducible modulo Pi[_XJ for each /. For each ί between 1 and 5,
let qt e Q{ — Q). Since the ideals {P{}Uu {QVίUu {#"fM=i are pairwise co-
maximal, there exists, by Lemma 4.1, an element / of D[XH, / monic of
degree 2, such that

l<ί<r

l<ί<s
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Let a be a root of / in an extension field of K. f is irreducible (since / is monic
and is irreducible modulo Pi[X]) so that K(a) is a quadratic extension of K.

From Theorem 5 [21, p. 260], it follows that {ge D[XJ\ g(a)=0}=(f),
the principal ideal of D[X] generated by /. Then from fundamental pro-
perties of ring isomorphisms we have, for any maximal ideal P of D,

where /(X) is the canonical image of f(X) in (D/P)£X~].
If P=Pi, l < i < r , then f(X)=fi(X) is irreducible; consequently P/[a]

is a maximal ideal of D[_a]. Further, since /*(X) has degree 2, [Z)[af]/P/[ar]:
D/Pι

r\ = 2. If P= C//, l '< i < ί, then /(X)=X(X+1) so there exist two distinct
maximal ideals of D\joΓ\ containing E/,£af). Finally, if P=Qi, l<i<s, then
/(X) = X2 so that <2 = (X)/(/(X)) is a maximal ideal of (£/<?*)[X]/(/(X)) such
that(?2 = (0). Therefore, (Qi\jof\, a) is a maximal ideal of D[oΓ\ such that
(ρ. M , α ) 2 c f t M C ( f t M , α). We show that (^-[α], α)2 = ρf M Thus
suppose f(X) = X2+PX+q. Since / ( I ) Ξ J 2 ( f t [ I ] ) and/(X)^X2 + ^(<??[X:)?

it follows that joeρ,- and qeQ{-Q2

iy l<ί<s. Then Q]CQ] + {q)^Qi a n d

since D is a Dedekind domain, ρ?+ (gθ = ρ, . But r̂= —a2—pa e (QJ[cf\, a)2 so
that Qi = Q2i + (q)^(Qi\j*l, a)2. Hence ? i [α]=()il)[α]c(() l (α] α)2, and con-
sequently, equality holds.

Since D is integral over D[_oΓ\, it now follows that there exist maximal
ideals {MfM=1, {Nt)Uu {H\»)Uuj=l, 2, such that P^Mh l<ί<r, Q^N},
l<i<s and Ui^H$j\ l<i<t, y=l, 2. For l < ι < r , the relative degree of
M; over P, is greater than or equal to 2 since \_Ώ/Mi\ D/P{] = \Ί)/Mi\ D^a~]/
PilaJI_D[_ayPila]\ D/Pi~] = 2lD/Mi\ Z>M/PιMII It now follows from
Theorem 21 of [21, p. 285] that PiD = Mh l < i < r , Q{D = Nf, l<i<s, and

Now let {P, }7=i be the collection of all the maximal ideals of D. Using
the method described in Lemma 2.4, we may construct a sequence KCK(aι)C
...CK(an)C' of simple algebraic extensions of K such that the following
properties hold:

(1) tK(ad : r ] = 2 and tK(ai+1): *(α, ) > 2 , ί = l, 2, ....
(2) If Z>w is the integral closure of D in K(an) and if {M^}, ..., M£J is

the set of maximal ideals of Dn lying over Pr, l < r < τ z + 2, then M^\)Dn+ι =
Af̂ \Afί\\2 and for any Tkf^^M^, ^ ; } is inertial with respect to Dn+ι.

For any positive integer n> no prime factor of PnDn ramifies with respect
to Dm for m>n. However, for any positive integer m, M^ is a prime factor
of P\Ώm which decomposes with respect to Dm+1. Therefore, by Corollary 3.6
and Theorem 3.11, if D is the integral closure of D in L= \j~=1K(aj)9 D is an
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almost Dedekind domain which is not Dedekind. Further, by Lemma 3.10,
M= W7=iAf/1

1) is the unique maximal ideal of D which is not finitely generated.
Similarly, using Lemma 4.2, L may be constructed in such a manner that

D is a Dedekind domain. This has been done for the case in which D=Z by
Maclane and Schilling in [13] by a similar method of construction. Also, if
D is not a local domain, L may be constructed so that D is not an almost De-
dekind domain. In fact, L may be constructed so that D contains a unique
maximal ideal which is idempotent.
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