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Introduction

In the investigation of harmonic differentials on open Riemann surfaces,
L. Ahlfors introduced the method of orthogonal decomposition and proved its
effectiveness. In reality, it is by this method that he established the exis-
tence and uniqueness of a harmonic differential which has preassigned singula-
rities and periods and which is subject to a certain prescribed boundary
behavior.

In the classical case of closed Riemann surfaces, one of the main prob-
lems is to construct harmonic differentials with given periods and singulari-
ties. When we try to generalize the classical results to open surfaces in a
non-trivial manner, it becomes necessary to add some restrictive conditions.
Our restrictions will not be imposed on the surfaces, but merely on the diffe-
rentials that are brought under consideration. In fact, it seems natural to
make restrictions on differentials so that they behave mildly near the ideal
boundary.

L. Ahlfors introduced the following mode of boundary behavior:

“A harmonic differential » whose only singularities are harmonic poles
is said to be distinguished if

(1) there exist differentials wj, € Tim, w.0€ TooN\T* such that o= wg,+ v,
outside of a compact set,

(2) o* has vanishing periods along all dividing cycles which lie outside
of a sufficiently large compact set.”

On the other hand, in order to describe the boundary behavior of harmo-
nic functions, L. Sario introduced the linear operators (P)L, and L,, which
he called principal operators. He established the existence and uniqueness
of a harmonic function which has preassigned singularities and the boundary
behavior described by one of principal operators.

In L. Ahlfors and L. Sario [47], the above two methods, namely the method
of orthogonal decomposition and the method of linear operators are described
quite separately, and the relation between them is not touched. In this paper
we shall show that the former method yields also the result obtained by the
latter as stated above.

In order to prescribe boundary behavior of harmonic functions and diffe-
rentials, we choose an arbitrary closed linear subspace T'x of T's,. The proofs
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of our existence theorems depend solely on the following orthogonal decom-
position:

P=Tx+Ty+T,,+17%

where I'y is the orthogonal complement of T'y in T,.

As for the notation and terminology, we follow L. Ahlfors and L. Sario
[4]. In §0 some basic notions on differentials are briefly reviewed. In §1
we introduce the notion of I'y-behavior and establish the existence and uni-
queness of a harmonic function with preassigned singularities and T'y-
behavior. Defining I'y-functions after Sario’s principal functions, we express
the reproducing kernels for periods or derivatives in some subspaces of T', in
terms of TI'y-functions and state the extremal properties of these kernels.
For these investigations we are indebted to B. Rodin [10]. §2 is devoted to
investigations of harmonic differentials having T'x-behavior. In §3 we es-
tablish a correspondence between the subspaces of T, and the canonical ope-
rators due to H. Yamaguchi [127], and we show, in particular, that Sario’s
principal operator method is included in our orthogonal decomposition me-
thod.

Finally in §4 we give generalizations of the Riemann-Roch theorem and
Abel’s theorem of Kusunoki type [5;6; 7; 8]; cf. [10] too. We require that
only the real parts of meromorphic functions and differentials have I'y-
behavior. We could restrict both real and imaginary parts to have T'y-
behavior and generalize the Riemann-Roch theorem as in H. Royden [ 117] and
B. Rodin [10] and Abel’s theorem as in L. Ahlfors [2]. However, since this
condition seems to limit too strongly the class of surfaces on which the theory
is meaningful, we shall not be concerned with such generalizations. See R.
Accola [17] in this connection.

The author wishes to express his deepest appreciation to Professor M.
Ohtsuka who intreduced him in this field and gave him unceasing encourage-
ment, and to Professor Y. Kusunoki at Kyoto University who gave him en-
couragement and valuable comments on the Riemann-Roch theorem.

The author’s deepest gratitude goes also to Mr. H. Yamaguchi, formerly
at Hiroshima University and now at Kyoto University, with whom the author
had many valuable discussions. In particular, Mr. Yamaguchi suggested an
important extension lemma (our Lemma 1) for closed differentials and a
method of constructing a canonical operator which corresponds to any given
subspace of T'..

§0. Preliminaries

0.1 The space T'(W)
Let 7 be a Riemann surface, compact or not. Suppose that a differential
o of the first order on W has a local representation w=adx+bdy. Then the
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conjugate w* of w is defined by w*= —bdx+ady. Note that v**=—w.
To say that » is square integrable means that the local coefficients « and
b are Lebesgue measurable and that

Sww/\(b* - SW(|a|2+ 1612 dxd y< oo.

The non-negative square root of this integral is called the Dirichlet norm of
o and is denoted by ||w]|.

For a pair of square integrable differentials w;=a,dx+b:1dy, w;=asdx
+b.d y, the inner product {w;, w,) is defined by

(0, 0y) = gwwm@k - SW(aldz—l-bll-)z)dxdy.

Note that (oF, 0})={(w,, v,).

Two differentials are identified if their coefficients differ only on a set
of measure zero in each local coordinate. With this convention, the space
of all real {resp. complex) differentials with finite norm becomes a separable
Hilbert space, which we denote by I'(W) (resp. A{W)).

If A is a subset of T", then 4* indicates the set of differentials whose con-
jugates are in A.

0.2 Weyl’s lemma
First we list below some important subspaces of T'.

I'=: C~-differentials.

T's (resp. I'?): exact (resp. closed) C~-differentials.

T, (resp. T",): the closure in T" of T'7 (resp. I').
The relations ', "\T'"=I'7 and T',\T""=T7 are valid, but require non-trivial
proofs.

"0t 1df }, where f is a € -function with compact support.

T',,: the closure in T of T'%,.

T;: harmonic differentials.

Now, Weyl’s lemma: ' \T'¥=T",, together with the well-known ortho-

gonal decomposition: T'=T,+T% =T7+1,,, implies the following important
orthogonal decompositions:

P=1+T,0+T% I.=I+I,.

0.8 Some important subspaces of T,

Tyee: semi-exact harmonic differentials; these are differentials whose
periods along dividing cycles are all zero.
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T, the orthogonal complement in T', of T'},.

More generally, we define for an arbitrary regular partition P of the ideal
boundary of W. (L. Ahlfors and L. Sario [4], Ch. V, 15G)

(P)T's.: harmonic differentials whose periods along P-dividing cycles are
all zero.

(P)T,,,: the orthogonal complement in T', of (P)T},,.

Among regular partitions, the identical partition 7 and the canonical parti-
tion Q are the most important. Note that T, =(Q) s, and T'yp=(Q)Tjn.

T';.: exact harmonic differentials.
On account of the decomposition I', =T+ Ty, we have
T.=T%.+T..
I'}o: the orthogonal complement in T, of T'}..
By definition we have the following orthogonal decompositions:
I,=T,+T5H=TF4+T),
=T, +TF, =T+ 1T)...

Ty C Ty implies Ty DTy On the other hand, the inclusion relation I'y, C
Th.(T s OT) is well-known. Hence.

Tium CThe N T po.

0.4 Extension lemma for closed differentials

The following lemma, which is substantially due to H. Yamaguchi, plays
an important role later.

Lemva 1. Let W be a Riemann surface and Q be a regularly imbedded
connected subregion of W such that the relative boundary 0 ts compact. Set

V=W—Q. Letc be a closed C>-differential on a meighborhood of V. Then,
an order that o|V can be extended to a closed C>-differential 6 on W such that

(Supp $)N\Q is compact, it is necessary and sufficient that

Saea =0

Proor. The necessity is obvious. To show the sufficiency we proceed by
induction on the number of the contours of Q. Set Q= f} ¢, Where ¢, are
k=1

mutually disjoint analytic Jordan curves.
In case n=1, take a C~-function u such that du=¢ in a neighborhood of
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¢;. Extend u to Q so that z € C*(Q) and (Suppu)N\Q is compact. Then de-
fine ¢ as follows:

6=0 on 7, 0=du on Q.

In case n =2, take a quadrilateral subregion R of Q such that one pair
of opposite sides consists of subares of ¢,_; and ¢,, and that the other pair of
opposite sides consists of arcs in Q. In a neighborhood of R, take a C*-func-
tion u such that du=0c in a neighborhood of 9RN0Q. Set Q1=Q—R, V1=W

—0, and define ¢; on 7; as follows:
g,=0¢ on 7V, 6,=du on R.

Then the number of contours of Q, is n—1, and

S 0= S 0—8- du = O
29, EJe) 9R

We have thus completed the reduction process and consequently our proof.

0.5 Definition

By a neighborhood of the ideal boundary of W, we understand the com-
plement of a compact subset of . Consider a neighborhood 7 of the ideal
boundary of W, which satisfies the following conditions:

i)  V is regularly imbedded,
(ii) each component of V is mot relatively compact,
(iii) W —V is non-empty and connected.

We shall denote the set of all such ¥’s by & ).

Finally we introduce a standard notation. Let » be a C!-differential of
the first order defined in a neighborhood of the ideal boundary of W. Let Q
denote a generic, relatively compact, regularly imbedded subregion of #. In
the case that

limS o
QTwJoQ

exists, we denote this limit by Sﬂw. Here 8 stands for “the ideal boundary”
of W.

0.6 The space I',

We choose an arbitrary closed linear subspace of I',,( W) once for all and
denote it by I'y throughout this paper. We denote by I'y the orthogonal com-
plement in 1", of T'y. Note the implications:
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ryCTr,, © TsDTF & TE*DOT,,
and orthogonal decompositions:
[, =Ty+T%, T=T,+T%+T,,+T%.
It will be convenient to introduce three more spaces as follows:
H{(W)={ue HD(W): du e Ty}, D*(W)={ue€ C>(W); due€T},
Ds(W)={u€C*(W): du € T,,}.

Naturally Hy (W)C Hy, (W) if T'x, CTx,.

It should be noted that the orthogonal decomposition I';=T",, 4+ (T,,\T""),
or equivalently D*(W)=HD(W )+ Dy(W) is a special case of the so-called
Royden decomposition.

§1. Harmonic functions

1.1 T'x-behavior

DEerinTION.  Let u be a single-valued real harmonic function defined in a
netghborhood of the ideal boundary of W. Suppose that u and (du)* admit the
following representations in a neighborhood of the ideal boundary of W:

U= uy+u,q where uy€ H(W) and u,,€ D5(W),
(du)* = w¥r+w,, where wy- €Ty and w,, €T,
Then we say that u has T'x-behavior.

Remark. In the above representations, the component u, is uniquely
determined up to an additive constant. On the contrary, the component w¥:
is determined only modulo a subspace (not necessarily closed) of T',.

ProrosiTioN 1. Let V¢ &(W) and let u be a C*-function in a neighborhood
of V. Then the following two statements are equivalent.
(1) u is Dirichlet finite in V and

* — - W
Sﬁuw =0 (e (du, w)V_SaVU) )

Sfor all w e T5.
(2) There exist uy€ H(W) and u,, ¢ Dy(IV") such that u is represented on
V as follows:

U= Uyt U,

Proor. (1)=(2). Extend u|7 to W to be a C~-function. We shall de-
note the extension by 2. Let &#=u,+u., be the Royden decomposition of

~

i. Then by assumption, we have
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0= g uw* = (du;+ du,o, ) = (dui, o)
s

for all w € T'¥. Hence, du, € T,.
The converse part (2)= (1) is trivial.

ProrosiTion 2. Let Ve & W) and let w be a C>-differential in a meigh-
borhood of V. Then the following two statements are equivalent.
(1) o 1s closed and sguare integrable in V and

Sﬂva) =0 (&(dv, 0*)y = — Sav v0)

Sor all v € Hy.
(2) There exist vy € T3 and o,, € I',, such that o is represented on V as
Sollows:

0= 0¥ +0,,

Proor. (1)=>(2). Since 1 ¢ Hy, the assumption implies 0:3 0= —S o
B ]

Hence, in virtue of Lemma 1, we can extend w|V to W to be a closed C™-
differential. We denote this extension by ®». Since w is square integrable
near the ideal boundary, @ ¢ T'>(#). Here we use the orthogonal decomposi-
tion ', =T, +TI'., to obtain

w= W1+ Weo with w1 € Ty weq € Ty

Then, by assumption,
0= vo={ v, +0.0)=(do, —of =0l = —(dv, 0D)
B

for all dv e I'y. Hence, o} € T'y.

The converse part (2)= (1) is trivial.

As an immediate consequence of Propositions 1 and 2, we obtain the
following notable

Cororrary. Let Ve &(W). Suppose u 18 harmonic on V and has T'x-
behavior. Then u and (du)* admit such representations on V as stated in the

Definition.

Proposition 3. Constant functions have I'x-behavior. If u has y-be-
hawvior, then

Sﬁ(dw* ~0.

More generally, if both uw, and u, have T'x-behavior, then
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S wy(dus)* = 0.
B

Proor. Since u; and (du,)* are represented in the forms
u, = ux+ue0, (duz)*=w§L+weo
near the ideal boundary, we have, for a sufficiently large regular subregion Q
of W,
[, mau = tuo@s+oo
oQ oQ

= (dux+ du g, Oxt—0%)o.

The last term tends to (duy+ du,q, wxr—of)w=0as Q1 W.
From this proposition we obtain

UniQuengess THEOREM.  If a harmonic function on W has T'x-behavior, it is
constant.

1.2 Harmonic functions with preassigned singularities and I'y-behavior
First we prove

Lemmva 2. Let K be a compact subset of W and u be a C -function in W—K
which vanishes identically near the ideal boundary of W. Suppose there is a
closed C=-differential o in W—K such that du+ o* vanishes identically near K
and near the ideal boundary of W. Then there exists a harmonic function i
wn W— K with T'y-behavior such that it — u is Dirichlet finite.

Proor. Extend du+w* to W by 0 on K. Then du+ow*c (W) We
use the orthogonal decomposition

D=Ty+ T+l +T%
to obtain
du~+0* = oy+ oy + oY+ 0%,
On rewriting the equation in the form
du—wy— o) = — 0¥+ oy + 0,

we find that the differential on the left is closed and the differential on the
right is coclosed in W—K. Hence du—ow,—oS) is harmonic in W —K. Set
ox=duy, 0\Y=du,, and i=u—uy—u,,, Now it is obvious that & has the re-
quired properties.

Now we establish

Turorem 1. Suppose that at a finite number of points p; € W there are
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given harmonic singularities of the form

~o c(j)

5= Re( ) »;;-)wj log |z
n= i

where a; 18 real and z; is a local parameter near p; such that z{p;)=0. Then,

wn order that there exist a function u with T'x-behavior which is harmonic on W

except at {p;} and for which u—s; is harmonic at p; for each j, it is necessary

and sufficient that

Za,- =0.
The function v 1s uniquely determined up to an additive constant.

Proor. The necessity is obvious. To show the sufficiency, chcose r >0
so small that

converges in the punctured disk: {0< |z;| <2r} for every ; and closed disks
Aj: {|z;]<r} are mutually disjoint. Set V=\A; and define a singularity
function s on 7 by setting s=s; on A;. Extend s to 7 so that the extension
is infinitely differentiable except at {p;} and vanishes in a connected neigh-
borhood ¥V of the ideal boundary. Denote this extension by 3.

On the other hand, by our assumption we have

gav(ds)* — 275 a;=0.

Hence, in virtue of Lemma 1, we can extend (ds)* to W so that the extension
is a closed C~-differential on W — {p,;} and the closure in W of its support is
compact. Denote this extension by o.

Then ds-+o* is identically zero on 7 and near the ideal boundary. Lem-
ma 2 is now applied and the existence of « is shown. Since uz—s; is harmonic
except at p; and square integrable, p;, is a removable singularity for u—s;.
By the uniqueness theorem in 1.1, z is unique up to an additive constant.

Dzrrartion.  We shall say that v has singularity s; at p,. A function
which is harmonic on W except for a finite number of 1isolated singularities
such as {s;} and has Ty-behavior will be called a Ty-function.

1.3 The functions Py, ,;, and P¥)

Let p;, j=1, 2, be two distinct points of # and let z; be a local parameter
near p; such that zi(p;)=0. We denote by Py, , ,, a I'x-function which has
singularity (—1)’log|z;| at p;, j=1, 2. In case I'y={0}, we write P, ,, for
PX,{J],PZ'
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Let p ¢ W and z be a local parameter near p such that z(p)=0. Denote
by Py, a I'x-function which has Re(1/z*) as singularity at p, where = is a na-
tural number. We note that P{”} depends on the particular choice of a local
parameter at p. In case I'y={0}, we write P§") for Py,

We shall write simply P{®, P for P, .., Px.5,.,, Tespectively, and also
P, Px® for P§"), Py") respectively.

TueoreM 2. It holds that
PP—PyeH, (n=0,1,.)

and
2n{u(p2)—u(p1)} (n=0)
(du, dPP—PEN =1 o o
Toniar®  (=L2 )

Sor all u ¢ Hy.
The function P=P{®— P® (resp. P=P{®»— Py, n=1) minimizes the func-
tional

2r  0"u

2_ s _ 1 2 _aer Y
”du” 47Zlu’(P2) u(Pl))’ <reSp‘ ||duH (n_1>| ox"

)

on the space Hy. The minimum is —||dP||?, and the deviation from the mini-
mum 18 ||du— dP||%

Proor. Let ¢>0 be so small that parametric disks A;: {|z;| <e}, j=1, 2,
are disjoint. Let u ¢ Hx. Then, by Proposition 1, we have

(duy dPOws,5, = log|arl(duy~ | log|z|(du)*+0@
I A,
=0(e)—0 ase | 0,
and, by Proposition 2,

—(du, dP{)y a, s, = Sa u(dp>(<°))*+ga u(dP{OY*
L3 A,

=—ga udargz1+§a wdarg z,+0(6) - 2n{ul(p)—u(p)}  as €l 0.
Ay A,

By addition we obtain (du, d(P§®— P5»))=2r{u(p2)— u(p1)}.
To prove the second equality, let A be a parametric disk {]z|<e¢}. Let
u € Hy. Then, for n>1,

1

zn

(du, dPw s = = Ppauyc = wrappr={ wrd(Re L )+0)
oA : oA oA

and
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—(du, dPY s = SM u<dp,gn>)* - SSA wd(Tm L )+0@.
By addition
(du, d(P{— Py))y_s = gaA{u*d(Re_zl,;)Jr wd(Im j IRRLO
- ImgaA(u +iund( : )+0

- Im[(— n ?g{g;’f,(on A O} [+0©

2r  0"u

"‘*“mw(o) as ELO.

In the following corollaries, n=0, 1, ---.

CoroLLarY 1. Let p; be an arbitrary point of W. If p, runs through all
points near p, (in case n=0) or 1f p rums through all points of a non-empty
open subset of W (in case n =1), then

d(P§™— Py?)

span T'y.

Proor. Assume

(du, d(P§»— Py)) = 0.

This assumption does not depend on the choice of a parameter with respect
to which a singularity is given. First consider the case n=0. By Theorem
2 u is constant near p; and hence in W. Therefore du=0, and it is shown
that d(P§?— P5%) span T'y.

Next let n—=1. Suppose p runs through all points of a disk A: {|z| <r}.

By Theorem 2 9"u/0x"=0 in A. Let v be a conjugate harmonic function of «
in A and set f=u+iv. Develop f into

f(2)=aotaiz+ - in A.

Since d"f/dz"=0"u/0x"+1i0"v/0x"=10"v/0x" in A and hence is constant, f(z)
has the form

(@) =ao+ - +anz”, 0<<m<n.

The same is true for any other local parameter. If a, 0 for m =1, consider
the parameter ¢ defined by z=&+¢""'. For a sufficiently small positive e,
this defines a one-to-one conformal mapping of A;: {|¢| <e} into A. We have

S+ =ao+ - +agm"D in A,
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This is impossible because deg f=m(n+1)>n. Therefore f and hence u is
constant. It follows that d(P§”— P¢”) span T'y.

CoroLrary 2. Let T'x, and T'x, be closed linear subspaces of T';,. If Py
=P for all such pairs (pi, pz) as described in Corollary 1 (in case n=0) or
Sfor all p in a non-empty open subset of W (in case n =1), then I'x, =Tx,.

In particular, if any function with T -behavior has Tx,-behavior, then
Px T - Fx 5

CororrLary 3. Let 'y, CT'x, be two closed linear subspaces of Ty.. Then

Py — Py € HiiNHy,
and

2r{u(p)—u(p)y  (n=0)
(du, d(Pyw—Pi»)) = l 9% 9"y
(

—ma;ﬁ(o) (n=1,2, )

Sfor all uw € H{ NHy,.
The function Py”—Py® has an extremal property szmzlar to the one in the
theorem.

1.4 The functions Qx,, and Q')

Let ¢ be a simple arc on # and put dc=p,—p,. Take a parametric disk
A: {]z| <1} which contains c. Set {;=z(p;), j=1,2. Consider the function

v(z) =arg(z—¥&;)—arg(z—&)

in A—c, and extend it to W —c to obtain a C”-function which is identically
zero outside a concentric compact disk. We denote the extension by 4. Then
dv is a C~-differential on W — {p1, p.}.

Next consider the function

u(z) =log|z—&,;| —log|z—¢1 |

in A—{p1, p2}, and extend it to W —{p,, p.} to obtain a C~-function which
vanishes identically near the ideal boundary. We denote the extension by i.

Then dd—(d@)* vanishes identically in A and near the ideal boundary.
By Lemma 2 we obtain a differential @ in W — {pi, p-} which has the follow-
ing properties:

(i) o is harmonic on W — {pi, p-} and w—dv is square integrable in A,
(ii) w is the differential of a harmonic function in W—c¢ with T'y-
behavior.

We shall denote the harmonic function in (ii) by Qx . and w by dQx,..
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By (i) and (ii) Qx, . is uniquely determined up to an additive constant. Qx .
does not depend on the choice of a parameter z, and dQx . depends merely
on the homotopy class of ¢ with fixed end points p; and p..

Let p € W and let z be a local parameter near p such that z(p)=0. We
denote by Q%) a T'y-function which has Imz~" as singularity. Here n is a
natural number. It should be noted that Q%) depends on the particular choice
of a local parameter at p. In case I'y={0}, we write Q" for Qi,.

Writing simply Qf”, Q’, 0%, Q%, n=1, for Q,,., Qx.., 0}, Q% respec-
tively, we derive

TaEOREM 4. AP+ (dQ)* € Ty * (n=0,1, )
and
/ 27rgca) (n=0)
(0, AP+ (dQP)*) = .
— T e (=12

Jor all w € T'5*, where w=du near p.

Proor. Draw two sufficiently small disks A;: {|z—¢;| <e}, j=1,2. Con-
sider a component of ¢ N\(A—A;—A;) which connects A; and A,, and denote
it by c.. Then for any w € I';*, we have by Proposition 1

(wa (dQ%O))*)W—A,—AZ = —(d()&"),w*)wwalﬂz

Q&O)w—>27rg w as ¢4 0.

gc++c~~a.x,~aa2 ¢

& &
It was already shown in the proof of Theorem 1 that
(0, dP§")w_a,-2,—0 as ¢l 0

for any w € T';. The first equality follows immediately.
To prove the second equality, let A denote the parametric disk {|z| <e}.
Then

(0, AP+ (dQY )w-s = (0, dP)w s+ (0¥, —dQP)w s
— S P(()n)w* _ S Pén)w* + S QSCMCO—‘ S QS(")U)
B AN B 2a

—{ wrarg| waow
A 2A

- SaA u*d<Re 1 )+Swud<1m j,,>+0(e)

zﬂ

—Im SaA(u + iu*)d< L )—I—O(a)

z
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_ Im[<_n>%i{g%(o>+i%—;‘;m)}]w(s)

2r  0"u

ﬁ—mw(O) as ¢l0.

Cororrary 1. If ¢ runs through all arcs in A which have p, as the initial
point (in case n=0) or if p runs through all points of a non-empty open subset
of W (im case n=1), then

APy +(dOY)*
span T3E*,

CoroLrLary 2. Let Ty, and T'x, be closed linear subspaces of T'p. If
Q=0 for all arcs c as described in Corollary 1 (in case n=0) or all points
P 1 an non-empty open subset of W (in case n =1), then I'y, =Tx,.

CoroLrary 3. Let Ty, and T'x, be closed linear subspaces of T'. such that
Ty, CTx*. Then

dP{P+(dQY)* € T, NT'E¥,

and

/27rgca) (n=0)

(0, AP +(dQE)) =
2r  0"u

SJor all w ¢ T{ NTx*, where w=du(z) near p.

Remark. We have considered only “I"y-functions” with simple singulari-
ties. However, it should be noted that [4], Ch. III, Theorem 9E (Sario’s main
theorem for principal functions) can be similarly generalized.

§2. Harmonic differentials

2.1 T',-behavior

A differential will be said to have I'y-behavior if it coincides with du in
a neighborhood of the ideal boundary, where » is a real harmonic function
with I'y-behavior.

UniQueness THEOREM. In case Ty D Uiy (S T5* C Tise), 0f 0 € The(W) has
Tx-behavior, then w ts identically zero.

Proor. Let o =owy+0) and o*=o0%.+w with w,c Ty, wic Ty and
iy, 03 e T',,. Since w, v, and o} are exact, we can set w=du, wy=du, and
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oW=du,,, Setv=u—uy—u,,. Take a sufficiently large regular subregin Q
of W. Then v is constant in each component of 7 —Q.
If Tx DT 4w, 0* is semi-exact. Hence

g vo* =0, ie, g uw*=g (ux+ uco)o*.
20 o0 oQ

Thus
(o, w>g=§ wo* = (g + 000 — 03N >0 as Q1 W,
oQ

In case T'x D I'y, the uniqueness theorem does not hold. This will be
shown in 2.2.

2.2 Period reproducing differentials

TuroreMm 4. Let ¢ be a cycle on W. Then, there exists a unique differen-
tial 0,(c) € T5 such that

(0, Tx(c)*) = S o

for all w e Ty*. It has the following properties:
(i) ox(c) has T'x-behavior,
(i) Sdffx(c):c x d for any cycle d, where c x d indicates the intersection

number of c and d, i.e., the number of times that d crosses c from left to right.
In particular, in case c is a dividing cycle, 0x(c) s exact,
(iil) 2f ¢ runs through all cycles, then dx(c) span Ty NCI(Tx—+ Tp,).

Prooe. Since w—»S o (w € T5*) is a continuous linear functional on I'y *,
c

the existence and uniqueness of 0,(c) follow from an elementary theorem of
Hilbert space theory. However, the properties (i) and (ii) of ox(c¢) do not
seem to be immediate consequences of the defining property of 6x(c). There-
fore, in order to show that gx(c) has the properties (i) and (ii), we shall have
to construct ox(c) in a direct way.

In 1.4 we have constructed the function Qy . for an arc c. We can extend
dQy,. to any 1-chain c, in particular to any cycle ¢, by the linearity in ¢. In
case c is a cycle, Theorem 3 shows

O'x(C) - de,C.

Hence, (i) and (ii) follow immediately from the method of construction for
QX,C'

However, in case ¢ is a cycle, we can construct dQx,. more easily. In
fact, it suffices to treat the case where c is an oriented analytic Jordan curve.
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Take a relatively compact ring domain R which contains ¢. Define the func-
tion v on R—c as follows:
1 on the left side of ¢,
1] =
0 on the right side of c.

Extend v to W —c so that it becomes a C~-function with support relatively
compact in 7. Denote the extension by 9. Then dd ¢ T'S(W). Now we use
the orthogonal decomposition

' =T,+T,,=Tx+Tx+T,,
to obtain
d = ox+ oxL+ 0.0.
Then it is obvious that

(i)  wx+ has I'y-behavior,
(ii) gdwazc x d for all eycle d.

Moreover we have, for any o ¢ T'y*,

(wa w;ckj‘) = (a)’ (dz’>>*—~w§<~wj¢0

w={ o
- c

= (0, (a0 =

ct+e

Thus wx+ has the reproducing property and coincides with ox(c).
As an application of the above theorem we shall show the existence of a
non-zero o € I'y, (W) with T'x-behavior in the case I'y bT,,. Since I'i*{ T,

there exist v, € I's* and a dividing cycle ¢ such that S wo5=0. Then gx(c) has

T'x-behavior and (w,, o‘x(c))zg wo=*0. This implies ox(c)=~0.
From the defining property of gx(c):

(0, 0x(c)*) = g w for any we Iy*
it follows that
o) L(Tx*NTy,), e, dx(c) L. (DxNTH,).
Hence, by making use of the orthogonal decomposition:
F% = (F%f\r;zke)‘i‘ {FimCZ(Fx"{‘ Fho)}

we find that o,(c) span Tx NCI(Tx+T).
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Remark. If Ty={0}, I‘XL*:F,, and TiNCUT x4+ T,0)=T - If I'v=T,.,
P;CL*=F,,” and F%ﬂCl(FX—I-F,,O):l",j“se/\F,,O. If Ty=T,,, I‘%*ZF,,O and THN
CZ(FX+Fh0)=Fz<OmCZ(Fhe+Fho)-

Cororrary. If T3NCI(Tyx+T,) CTi*, then
(x(c1), ox(c2)*) = c1% ca
for any cycles c, and c,.
Remark. Note the implications:
Ty C = Ty LTy F = (T + T) CT* = TR N CUT 4 T,) C T
2.3 A special Riemann’s bilinear relation

Let {4;, B;} be a canonical homology basis of # modulo dividing cycles.
It has the following intersection property:

Aix A;=B;xB; =0, A;xB;=0;; for all i, ;.

Let w € T',(W) have I'y-behavior and denote 4;, B;-periods of w by x;, 3, Then
except for a finite number of j, x; and y; are zero. The differential

21— x;0x(Bj)+ yiox(4;)} (a finite sum)
J

has the same A4;, B;-periods as .
Now assume I'y DT;,. Then by the uniqueness theorem in 2.1 we have

0= 21{—x;0:{B;)+ y;0(4,)}.
7

Hence, for any o, ¢ T'; *, we obtain by the reproducing property of oy
(0, 0f) = Z(S wg wl—g “’S w1>.
j AJ B./ BJ AJ

2.4 Differentials with preassigned singularities, periods and I'y-behavior
We shall return to the general case where T'y is an arbitrary closed linear
subspace of T, (W).

Turorem 5.  Suppose that at a finite number of points p;c W there are
given singularities of the form

o 7>
0;= d(Re( > %)—l—a,- log|z;| +b;arg z]}
L n=1 7
where z; 18 a local parameter near p; such that z;(p;))=0. Choose a canonical
homology basis {A;, By} of W modulo dividing cycles such that none of A,, B,
passes through any p;. Give a sequence of pairs {x., y:} of real numbers such
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that, except for a finite number of k, x, and vy, are zero.

Then, in order that there exist a harmonic differential v on W, which has
preassigned singularities 0, has x;, y, as A, Bi-periods and has T'x-behavior,
it 18 necessary and sufficient that

2ia;=2b;=0.
In case T'x DTy, the differential w s uniquely determined.

Proor. The necessity is obvious. To prove the sufficiency, assume }a;
=2.0;=0. Let u be a function obtained in Theorem 1 corresponding to the
singularities

= o)
s,-=Re<Z Cz”n )—l—a,-log]zjl.

n=1 7

Connect p; and p; (j =2) by a simple are c;, and set
wy = Z bdeXacj .
jz2

Let x;, y, be 4,, B,-periods of w,. Since », has I'y-behavior, only a finite
number of x; and y, are different from zero. Then the differential

w=du+w,+ ;{‘(xk_x1;>0'x(3k)+(yk‘ yi)ox(A} (a finite sum)

has the required properties. The uniqueness of w in case I'y DT, follows
from the uniqueness theorem in 2.1.

§3. Canonical operators

In this section we shall bring forth the notion of canonical operators in-
troduced by H. Yamaguchi [127].

8.1 Normal operators

It seems instructive to compare Yamaguchi’s canonical operators with
Sario’s normal operators. So we begin with reviewing normal operators.

Let W be an open Riemann surface and let 7 be an element of &(W)
(defined in 0.5). By C“® (07) we denote the linear space which consists of all
real analytic functions on 87, and by H(V) we denote the linear space which
consists of all real harmonic functions on 7.

Consider a linear mapping

L: C°@V)— H(V).
L is called normal if it satisfies the following conditions:

(1) Lf=f on a7,
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@ IL1=1,
3) LF=0 if f=0,

@) Sav(de)* —0.

Conditions (2) and (8) are equivalent to the validity of the maximum-
minimum principle:

m=f<M implies m<Lf<=M.

3.2 Canonical operators

Consider a mapping
L: C°@V)—>H(V)
which satisfies the following conditions:

(1) Lf=f on 0oV,
2 Ll=1,
3D dLfly <o,

(&) (dLf, dLg)y = gav f(dLg)* forall f, gcC*0V).

The linearity of L follows from these conditions. Note that (4) follows from
(2) and (4'). In this connection, we remark that it is an open question whe-
ther normal operators have the property (3’) or not.

H. Yamaguchi called such an operator L canonical. Sario’s prinecipal
operators (P)L, and L, are canonical as well as normal.

3.3 Correspondence between canonical operators and closed linear sub-
spaces of 1',

Denote by Ly the set of all canonical operators defined with respect to 7
and by T, the set of all closed linear subspaces of I',.(W). We shall es-
tablish

Turorem 6.  There exists a one-to-one correspondence betuween Ly and T,
such that, for any u ¢ H(V), the following conditions (i) and (ii) are equivalent
to each other:

(i) u=Lu on V, where L belongs to Ly,

(i) u has T -behavior, where T'; € Ty, corresponds to L.

Proor. We shall first establish the mapping L—T';. To this end, let
f € C0V) and extend f to be a complex-valued analytic function in a neigh-
borhood of 0F. Its real part is a harmonic extension of f, which will be
also denoted by f. Since Lf— f is harmonic on the left side of ?7 and vanishes
on @V, it can be and hence Lf can be extended harmonically across 7. There-
fore we can extend Lf to W to be of class C*(W ), and use the orthogonal
decomposition
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D=(W)=HD(W)+Dg(W)
to obtain
Lf =u;+v; on V with wu,e HD(W) and wv;e D5(W).

Here, the component u; is uniquely determined by f, up to an additive con-
stant.

On the other hand, L satisfies S V(de Y*=0. Hence, in virtue of lemma
Cl

1 we can extend (dLf)* to W so that the extension is of class T';(#). We
use the orthogonal decomposition

Fc = Ph+Fe0
to obtain
(dLf* =07+ w0y on Vwith o,eTy(W) and ;e T.o(W).

The component ¢, is uniquely determined by f modulo a certain subspace of
1-‘hO( W)'
With this notation we assert that

dlLf_L(Tg*

for all f, gc C*(@V). This fact follows from condition (4") as follows:

0= @nHLer = @+opG,+o)

Therefore, if we set

T, = Cl{duy: f € C°(OV )},
we have
o,cp*

Thus for such I';, (i) implies (ii).
In order to see that conversely (ii) implies (i), suppose (ii) holds. Then
by the Corollary stated after Proposition 2, we have

U=1ur+9v,0,
(du)* =owfi+o,, on V.

Then by the definition of I';, Lu and (dLu)* admit similar representation as
v and (du)*. Since u=Lu on 0V,

ldw—Lw)lp = | (u—Lu}{du—Luw}*=0
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proving that u=Lu on V.

We shall next establish a mapping of T, into Ly. For all T'y e T',, and
f€C0V), we denote by H(Tx, f) the set of functions u defined on ¥ which
satisfy the following conditions:

<1> w is harmonic in ¥ and Dy(u)< oo,
2> u=fonadV,
¢8> there exist uy ¢ H{W) and v,, ¢ Dy(W) such that u=ux+v,, on V,

N Sav(du)*zo.

In order to see that H(T'y, /) is non-empty, let v be the Dirichlet solution
with respect to 7 with boundary values f on 7 and 0 on the ideal boundary

g of W. It is evident that v satisfies conditions <1>, <2> and <8)>. If Sav(dv)*
=0, then W ¢ Og. In this case, let v; be the harmonic measure of 5 with

respect to V. Then Sav(dul)*#_o. It is easily seen that

p— {Sav(dv)* /Sav(dvl)*}vl ¢ H({0}, £)C H(T'x, f).

Finally we shall show that H{(I'y, /) is complete with respect to the Dirich-
let norm. To see this, consider a finite number of ring regions {D;} on W
such that \UD; DoV, f is extended harmonically to \UD; and each D; can be
mapped conformally onto 1/r<|z| <r so that |z|=1 corresponds to a4V "\ D,.
Set G=UD;UV. Then every function of H(T'y, f) has a harmonic extension
to G. Let {u,} be a Cauchy sequence in H(I'y, f), i.e.,

Hd(um_un)HV_)O as m, n—> oo,
Since
Hd(um_ un)”G gznd(um_ an)Hv,

u, converges in G to a function z in norm and locally uniformly. It is ob-
vious that v» satisfies conditions <1>, <2> and <4>. To see that u satisfies <3),
we have only to recall Proposition 1 in 1.1.

Since H(T'x, f) is convex, there exists a unique function in H(I'y, /) whose
differential has the smallest norm in V. We denote this function by Lyf.
Then

dLyf 1L dH(Ty, 0) in Ty(V).
We want to establish

6 Sﬁw(def)* =0 for any we Hx(W).

To see this, take any w, ¢ H({0}, w). On account of <4)> one can apply Lemma
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1 and extend (dLyxf)* to a differential w ¢ I'7. Since w, is equal to a member
v, 0f D§(W)on V and T, LT,

S,e““(dL" Y= —(dveo, 0*) = 0.
Obviously w—w, € H(T'x, 0) and hence
0 = (dw—1wy), dLxf)y = gﬁ(w——wl)(dl,x = Sﬁw(de %,

Now it is clear that Ly is canonical. Let us see that, for any u ¢ H(V),
the following conditions (i) and (ii’) are equivalent to each other:

(i) u=Lxu on V,
(ii") u has I'yx-behavior.

The implication (i")= (ii’) follows from <¢38), <56 and Proposition 2in 1.1. Con-
versely, assume (ii’) and-take any v € H(Ty, u). Since u € HTy, u), u—v €
H(Ty, 0). Express u—v=wx+w, with wye H(W) and w,, € D5(W), and
(du)*=0¥1+w,, with wy: € T4 and w,, € T',,. We have

(du—dv, du)y, = | (u—0)(du)* = (duxt duo,0, 03— 07) = 0.

Therefore, 0 <||du— dvl||; =||dv||3 —||dul|} and hence u=L,u.

Finally we shall show that I';, =T";, means L,=L, and that Ly, =Ly, im-
plies T'y,=T%,. Suppose first that I'; =T;,. For any f e C°(@V) it holds
that Li(Lif)=L,f on V. Since (i) implies (ii), L; f has I'; -behavior which is
equal to I'; -behavior. We apply (ii)= (i) and conclude L, f=Ly(L,f)=L,f on
V. This shows L,=L,.

Next suppose that Ly, =L,,. Let Py’(j=1, 2) be a function obtained in
1.3 for p ¢ V. On account of the equivalence (i)« {ii"), we have Py, =Pl
From Corollary 2 of Theorem 2 it follows that I'y, =T'x,.

8.4 Sario’s principal operators

We shall show that the canonical operator which corresponds to the sub-
space (P)T';,, (resp. T';,.) in the sense of Theorem 6 is Sario’s principal operator
(P)L, (resp. Ly).

For the sake of simplicity, we will take up only T,. Let Ve &(W) and
denote by L, the operator which is defined with respect to 7 and corresponds
to T'ym. For fe C°(0V), put u=L;,f. Since u has I';,-behavior,

(@) u=upyt+u,on ¥V, where duyy, € Ty, and du,o € Ty,
(b) (du)*=wps.+weo on ¥V, where wps, € Ths, and w,o € T .

On account of Proposition 1 in 1.1, (a) is equivalent to
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(a”) S uw=0, or equivalently (du, w)y = gav uw for any w € T';,.
B
Let us show that (b) is equivalent to

(b") S (du)*=0 for any dividing cycle r C V.
bs

It is evident that (b) implies (b'). Assume (b). Since Sav(du)*zO, (du)*

can be extended to a closed C~-differential ¢ on W by Lemma 1. We apply
the decomposition I',=T";,+ I,y and write 6=w;+w.,. Condition (b’) implies

that g w,=0 for all dividing cycles ¢. Hence w, is semi-exact. Thus (b)

follows.

We know that u=L.f is characterized by (a), (b) and the boundary con-
dition u=f on 8¥. On the other hand, it is known (cf.[97])) that L, f satisfies
(a") and (b"), where L, is a Sario’s principal operator. Hence, L;,=L,.

In this connection, we remark that a differential harmonic on W save for
a finite number of isolated singularities is distinguished in the Ahlfors’ sense
([47, Ch, V, 21D) if and only if it has I'y,-behavior in our sense in 2.1. It is
now seen that Kusunoki’s semi-exact canonical differentials in [ 6] are identi-
cal with meromorphic differentials with distinguished real parts.

We next consider the operator which is defined with respect to 7 and
corresponds to I';.(W). We denote it by L,.. For fe C0OV), set u=L,,f.
Then

(@) u=uy,+u,onV, where u,, ¢ HD(W) and u,, € DF(W),
(B) (du)*=wp+w,0 on ¥V, where wpo € Ty and w,o € T.

However, («) is superfluous, because any square integrable harmonic function
on 7 admits such a representation. On account of Proposition 2 in 1.1, (8) is
equivalent to

©) | o(duyr=0, or equivalently (dv, du)=| o(du)* for any vcHD().

Hence u=L,,f is characterized by (8’) and the boundary condition u=f
on dV. Itis known (cf. [9]) that L,f satisfies (8"), where L, is a Sario’s
principal operator. Therefore L, coincides with our Lj,.

Now we see that our Theorems 2, 3, 4 are generalizations of B. Rodin
[107], Theorems 1, 2 and L. Ahlfors and L. Sario [47], Ch. III, Theorem 10F.

§4. Riemann-Roch theorem

Throughout this section we assume I'y DT, or equivalently I's*CT,,,.
The regular analytic differentials on 7 whose real parts have I'y-behavior
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along the ideal boundary of W form a linear space over the real number field.
We denote this space by Ax(W).

We remark that, for the interior W of a compact bordered Riemann sur-
face, there exist infinitely many closed linear subspaces between T, (W) and
Ty (W). This follows from the fact that the dimension of T;,(#) is finite
while the dimension of T';, (W) is infinite.

4.1 Periods and singularities

The validity of the following existence and uniqueness assertions will be
readily seen by virtue of the results obtained in §§1, 2.
[1] Let pe W, and give an analytic singularity at p:

oo

s= j:,
n=1 2%
where z is a local parameter near p such that z(p)=0. Then there exists an
analytic function (multi-valued in general) which has s as its singularity and
whose real part is single-valued and has I'y-behavior. This function is uni-
quely determined up to an additive constant. We denote by ¥, one of them.

[II'] For any cycle ¢ there exists a unique differential ¢(c) € Ax such
that

Re Sdgo(c) =cxd for any cycle d.

[IIT] Let ¢ be an arbitrary arc on W, and put dc=p,—p;. Let 2 be a
complex number. Then there exists an analytic differential which has simple
poles at p; with residues (—1)’4, j=1, 2 and whose real part is exact in W —c
and has I'y-behavior. This differential is uniquely determined by 2 and ¢
(more precisely the homotopy class of ¢ with fixed end points p, and p,). We
denote this differential by ¢,(c). By the linearity in ¢ we extend the defini-
tion of ¢,(c) to the case where c is an arbitrary 1-chain.

4.2 Riemann-Roch theorem

We shall now establish Riemann-Roch theorem of Kusunoki type. Our
proof will be similar to that in Y. Kusunoki [5;6]. First we give a lemma
which plays a fundamental role in our proof.

Let ¢ and ¢ be analytic differentials on # which have only isolated sin-
gularities and whose real parts have I'y-behavior. Assume further that ¢
has no non-zero residues. Take a canonical homology basis {4;, B;} of W
modulo dividing cycles so that the following conditions are satisfied:

(i) Any one of A4;, B; does not pass through any singularity of ¢ and ¢,

(ii) 4; and B; are oriented analytic Jordan curves such that 4,N4,=
B;N\B,=¢ for any j, k, A;N\B,=¢ for j=k and 4;\ B; consists of one point.

Cut W along A;, B; and denote by W, the resulting planar surface. Since
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the real part of ¢ has I'xy-behavior, Im¢ is expressed by w¥%.+ w,, in some neigh-
borhood ¥ of the ideal boundary. By our assumption I';,, DT5*, g Imp=20
Y

for any dividing cycle 7 in 7 and hence for any dividing cycle 7 in W. This,

together with the fact that W, is planar and ¢ has no singularities with non-

zero residues, implies that ¢ is exact in W,. Hence, we can set ¢=df on W,.
Now we state

Lemma 3. (Kusunoki) For differentials ¢, ¢ and a basis {4;, B;} just
explained, we have

\ _ 1 _ .
Re(2] Res f¢) = o x Im{gquogngb gquo SAj;b} (a finite sum).
Proor. Let Q be a relatively compact subregion of # such that each

component of W —Q is not compact and has only one analytic contour in com-

mon with Q. Suppose that Q contains all singularities of ¢ and those of ¢.
Suppose moreover that dQ intersects none of 4;, B;. Then, integrating f¢
along contours of QN W, we have

ziResfo=— % N of o=, ], of+{ r0
On the other hand we have
Reg = wy+oly Re¢ = v+ o'y
and {

(2)

Imgp =¥+ Im¢ = o F+ 0ty

outside of a compact subset of #. Hence, for a sufficiently large Q, we have
Im{ 9= @t o, 0fs— 0 at0F +0if, —of*— oM
Q

Since T'y, Tx, T',, and I'}, are pairwise orthogonal, it follows from the above
equality that

Im(Sagfgb)—»O as Q1 W.

We need also the following well-known algebraic fact.

Lemma 4. Let X and Y be two linear spaces over a field K, and consider a
bilinear form (x, y) defined over Xx Y. Denote the left kernel {x € X: (x, y)
=0 for all ye Y} by X, and the right kernel {ye Y: (x, y)=0 for all x ¢ X}
by Y,. If the quotient space X/ X, 1is finite dimensional, then there is an iso-
morphism X/ Xo~=Y/Y,.

Proor. Let (&, 7) be the bilinear form induced by (x, ) on (X/X;)x
(Y/Yy), i.e., (& 7)=(x, y) where x € & and ye7. Each 7€ Y/Y, determines a
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lineat form on X/X,: £—(¢, ), which we denote by /(y). Since the form (&, »)
is non-degenerate, [ is an isomorphism from Y/Y, into the dual space (X/Xy)*
of X/X,. There is a similar isomorphism from X/X, into the dual space
(Y/Y,)*. Hence, dim(Y/Y,) < dim(X/Xo)* and dim(X/X,) < dim(Y/Yo)*.
Since dim(X/X,) is finite by assumption, (X/X,)* has the same dimension as
X/X,. It follows from the inequalities obtained above that four spaces X/X,,
(X/Xo)*, Y/Yo, and (Y/Y,)* have the same dimension.

Next let D be a finite divisor on . We introduce two linear spaces
M,[ D] and Ax[ D] over the real number field as follows:

My[D]={f: f is a single-valued meromorphic function on W such that
the real part of f has I'x-behavior and that (/) > D},

Ax[D]={a: a is a meromorphic differential on W such that the real part
of « has T'y-behavior and that (a) > D}.

Here (f) and (a) denote the divisors of f and « respectively, and (f)>D
means that (f)— D is non-negative.
With this notation we state

Tueorem 7. Let D be a divisor on W, and set D= B— A where A and B are
disjoint non-negative divisors. Then we have

1) dim My[ —D]=2{deg B+1—min (1, deg 4)} —dim (A:[ — AT/A[D]).

In case W has finite genus g, dim Ax[ — A]=2{g+ deg 4— min(1, deg A)}
and the above equality (1) is simplified into the following form:

dim Mx[ — D] = 2(deg D— g+1)+dim Ay D].

Proor. Choose a canonical homology basis {4;, B;} of W modulo divid-
ing cycles so that none of A4;, B; intersects D. Consider a meromorphic
function on W whose real part is single-valued and has I'y-behavior. In case
A=+0 we assume furthermore that a branch of the function vanishes at
a, € A. Cut W along 4;, B; and denote the resulting surface by #,. In case
A=0 consider the branch which vanishes at ;. As shown before Lemma 3
any branch is single-valued on W,. 7

The meromorphic functions f on W,, which are obtained in the manner
described just above and have the property: (f)>—B, form a real linear
space, which will bé denoted by M(— B).

Set A=3;_m;a; and B=X%_,n,b,. We consider the bilinear form

(f, @)=Re( 5 Resfa)

defined on the product space M(—B)x Ax[ —A]. Let us show that the left
kernel



The Method of Orthogonal Decomposition 207

{feM(—B):(f,a)=0 forall aeA—A4]}
is equal to My[ — D7 and the right kernel
{a € Ax[—A]: (f,)=0 forall feM—B)}

is equal to Ax[D]. Since the real part of f is single-valued on W by assump-
tion, the formula in Lemma 8 is written in the following form:

@) Re( §" Res fa>: —7217{ Z{(ImSAj df><ReSBja>

— <Im SB _ df) <Re SA q)} —Re(é}%{:;sfa).

Suppose f € M(— B) satisfies (f, «)=0 for all @ ¢ Ay —A4]. We replace
a by ¢(4;) (resp. ¢(B))) in (2) and find that ImSA_df:() (resp. ImSB df=0).

Hence, f is single-valued on . In case 450, denote the degree of f at q;
by m}. Since f(a;)=0, m{—=1. Take a local parameter z near a; such that
z(a;)=0. Let

F=2z" 4, 20,

Suppose m;<m; and replace « in (2) by d¥,, where s:Z/z’"i. Then (f, a)=
—m{A2+0, which is a contradiction. We have thus shown m;=>m,. Next
we shall show m;—=m; (j=2). Suppose m;<m;. In case mj_=>1, the same
reasoning as above leads to a contradiction. In case m}=0, draw an arc c in
W, such that dc=a;—a;. Replace « in (2) by ¢,(c) where 2=f(a;)%0. Then
0=Re(2 Res,, fa)=f(a;)f(a;)#0. This is impossible. Hence /¢ My[ —D].
Conversely f ¢ My[ — D] implies (f, «)=0 for all & ¢ Ayx[ —A4].

Suppose there is « in the right kernel such that o =(a,z"+a,, 12"+ ...)dz
with n<n, and a,=0, where z is a local parameter near &, such that z(5;)
=0. Choose an f ¢ M(—(n+1)b,)C M(— B) such that

f=dn/z”“+-~~.

Then 0=(f, ®)=a,a,+0. This is impossible. Hence a« ¢ Ax[ D]. Conversely,
if e Ax[ D], then (f, a)=0 for all f¢ M(—B). Thus the right kernel is
equal to Ax[ D].

Now to find the dimension of M(— B) we take a local parameter z, near
b, such that z,(b,)=0. Then a basis of M(— B) is given by

N4 w (1 épg Ty 1 gké#) where Sle,/J:]-/zz’ gk,/):i/z27

Sk o2 Sk oo

and constant functions 1, i in case 4=0; and by

¥, , and ¥; , normalized so that W(a,)=0 in case 4=~0.

Sk.

Thus we find
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2(deg B+1) if 4=0,
dim M(— B) =
2deg B if A40.
Since M(— B) is finite dimensional, we apply Lemma 4 and obtain an iso-
morphism

M(—B)/ My —D]= A — A1/ A D]

Equating the dimensions of both sides, we obtain (1).

Finally suppose # has finite genus g. Let {4,, B;}%., be a canonical
homology basis of W modulo dividing cycles. Let z; be a local parameter
near a; such that z;(e;)=0. Then a basis of Ay —A] is given by the follow-
ing differentials:

¢(Al)) ¢(Bl) (1213 2) Tty g)>
dv

Sjse

dw;  with §;,=i/z8 (1<p<m;—1, 1<j<») and

with s;,=1/2%,

#(c;) A=1,1; 2<j=<v) where c; is an arc such that dc;=a;—a.

If 4=0, a basis consists only of {¢(4,)} and {¢(B,)} and dim Ay — 4 ]=2g. If
A=+0,

dimA [ —A4]=2{g+ _Zyll(mj—l)-l-(v—l)} =2(g+deg4—1).
=
Thus dim Ax[ — 4]=2{g+deg 4A—min(l, deg A)}.

4.3 Abel’s theorem

The following theorem is a generalization of Y. Kusunoki [67], Theorem
10.

Tueorem 8. Let D be a divisor on W such that deg D=0. Then, in order
that there exist a meromorphic function f on W such that Re(log f) has Tx-
behavior and (f)=D, it 1s necessary and sufficient that

Regc(p(Aj), Re{ ¢(8)

are all integers, where c is an arbitrary chain such that 6c=D.
Such a function f is determined up to a non-zero constant factor.

Proor. To prove the necessity, suppose that there exists a function f
such that Re(log /) has I'y-behavior and ( f)=D and choose a canonical homo-
logy basis {4;, B;} of W modulo dividing cycles so that none of 4;, B; inter-
sects D. Cut W along A;, B; and denote the resulting surface by W, Since
deg D=0, we can take a chain ¢, in W, such that dco=D. We may consider
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co instead of ¢ because, ¢ —c, being a cycle, both Reg @(A;) and Reg @(B;)

are integers.
Let ¢ € Ay and let ® be an integral of ¢ in W,, ie., dP=¢. We infer
that @ is single-valued for the same reason as before. By Lemma 3 we have

27Re(Y Res® dlogf) = — ¥ {(ReSquo)(SBj darg f)—(Regngp)(SAjdarg )

Substitute ¢(4;) for ¢. The right hand side of the equality is then equal to
SA darg f which is a multiple of 27. If D is expressed as X m,b,— 2in,a,
With my, ny>0, then

T Resbdlogf = 2 m{” 40~ §n,,gaq o= o).

Hence Reg ¢(Ay) is an integer. If ¢ is replaced by ¢(B.), then it is concluded

that Re g @(B;) is an integer.

Conversely suppose Reg o(Ay) and Reg o(B,) are all integers. We con-
sider the differential ¢ =¢,(cy). For ¢ ¢ Ax we have

2eRe(DRes®¢) = — D {(Re|, ¢)(Im{ ¢)~(Re|, ¢)(Im{, )}

J

where @ is an integral of ¢ in W,. We replace ¢ by ¢(A4;) and observe that
™ Rescbgb:S @(A;). The right hand side of the equality is equal to ImgA 0.

k

Therefore, this is equal to a multiple of 2z. We see that the same is true for
ImSB ¢. Hence exp(Sgb) is single-valued and has the required properties.
k

Finally suppose there are two functions f; and f, with the properties
stated in the theorem. Then Re(log(f1/f>)) is harmonic on W and has I'x-
behavior. Hence it is a constant on account of the uniqueness theorem in 1.1.
It follows that f1/f> is a constant on . Therefore a function f in the theo-
rem has the form

[0 .
f=ae , Where a is a non-zero constant.

Remark. We assume that W has finite genus g in this remark. The
following two statements are equivalent to each other.

1) There exists a chain ¢ such that dc=D and Reg o(4,), Reg o(B,) are

all integers.
2) There exists a chain ¢, such that 6c; =D and that
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Reg 0=0

¢

for all ¢ € A,.
To see that 1) implies 2), we only have to set ci=c+ 2 (—m;B;+n;4;)

where mj:Reg o(A)), njzReg @(B;). Conversely 2) implies 1) trivially.

If WeOap,ie., if T,=T,, then there exists only one T"y such that I';,, C
TyCTy.. In this case, Ay coincides with the set of all semi-exact square
integrable analytic differentials. Therefore 2) is equivalent to the following
classical statement.

3) D can be written in the form 0c; where ¢, has the property that

g a=0

for all semi-exact square integrable analytic differentials.
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