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Introduction

In the investigation of harmonic differentials on open Riemann surfaces,
L. Ahlfors introduced the method of orthogonal decomposition and proved its
effectiveness. In reality, it is by this method that he established the exis-
tence and uniqueness of a harmonic differential which has preassigned singula-
rities and periods and which is subject to a certain prescribed boundary
behavior.

In the classical case of closed Riemann surfaces, one of the main prob-
lems is to construct harmonic differentials with given periods and singulari-
ties. When we try to generalize the classical results to open surfaces in a
non-trivial manner, it becomes necessary to add some restrictive conditions.
Our restrictions will not be imposed on the surfaces, but merely on the diffe-
rentials that are brought under consideration. In fact, it seems natural to
make restrictions on differentials so that they behave mildly near the ideal
boundary.

L. Ahlfors introduced the following mode of boundary behavior:
"A harmonic differential ω whose only singularities are harmonic poles

is said to be distinguished if
(1) there exist differentials ωhmeThm ωeOeΓeOΓ\Γι such that ω = ωhm + ωeo

outside of a compact set,
(2) ω* has vanishing periods along all dividing cycles which lie outside

of a sufficiently large compact set."
On the other hand, in order to describe the boundary behavior of harmo-

nic functions, L. Sario introduced the linear operators (P)Lι and Lo, which
he called principal operators. He established the existence and uniqueness
of a harmonic function which has preassigned singularities and the boundary
behavior described by one of principal operators.

In L. Ahlfors and L. Sario Q4], the above two methods, namely the method
of orthogonal decomposition and the method of linear operators are described
quite separately, and the relation between them is not touched. In this paper
we shall show that the former method yields also the result obtained by the
latter as stated above.

In order to prescribe boundary behavior of harmonic functions and diffe-
rentials, we choose an arbitrary closed linear subspace Γ% of Yhe. The proofs
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of our existence theorems depend solely on the following orthogonal decom-
position :

where Γ^ is the orthogonal complement of Γx in ΓΛ.
As for the notation and terminology, we follow L. Ahlfors and L. Sario

[4]. In §0 some basic notions on differentials are briefly reviewed. In §1
we introduce the notion of Tχ-behavior and establish the existence and uni-
queness of a harmonic function with preassigned singularities and Γ%-
behavior. Defining Γ%-functions after Sario's principal functions, we express
the reproducing kernels for periods or derivatives in some subspaces of Γh in
terms of Γ%-functions and state the extremal properties of these kernels.
For these investigations we are indebted to B. Rodin [10]. §2 is devoted to
investigations of harmonic differentials having Γ%-behavior. In §3 we es-
tablish a correspondence between the subspaces of The and the canonical ope-
rators due to H. Yamaguchi [12], and we show, in particular, that Sario's
principal operator method is included in our orthogonal decomposition me-
thod.

Finally in §4 we give generalizations of the Riemann-Roch theorem and
AbeVs theorem of Kusunoki type [_5; 6; 7; 8]; cf. H10] too. We require that
only the real parts of meromorphic functions and differentials have Γ%-
behavior. We could restrict both real and imaginary parts to have Γ%-
behavior and generalize the Riemann-Roch theorem as in H. Royden Ell] and
B. Rodin [10] and AbeΓs theorem as in L. Ahlfors Q2]. However, since this
condition seems to limit too strongly the class of surfaces on which the theory
is meaningful, we shall not be concerned with such generalizations. See R.
Accola [1] in this connection.

The author wishes to express his deepest appreciation to Professor M.
Ohtsuka who introduced him in this field and gave him unceasing encourage-
ment, and to Professor Y. Kusunoki at Kyoto University who gave him en-
couragement and valuable comments on the Riemann-Roch theorem.

The author's deepest gratitude goes also to Mr. H. Yamaguchi, formerly
at Hiroshima University and now at Kyoto University, with whom the author
had many valuable discussions. In particular, Mr. Yamaguchi suggested an
important extension lemma (our Lemma 1) for closed differentials and a
method of constructing a canonical operator which corresponds to any given
subspace of The.

§0. Preliminaries

0.1 The space Γ(JF)
Let W be a Riemann surface, compact or not. Suppose that a differential

ω of the first order on W has a local representation ω = αdx + bdγ. Then the
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conjugate <x>* of ω is defined by α)*= — bdx + adγ. Note that α)** = —ω.
To say that ω is square integrable means that the local coefficients a and

b are Lebesgue measurable and that

ωΛω*=\ (\a\2-\-\b\2)dxdy<oo.

The non-negative square root of this integral is called the Dirichlet norm of
ω and is denoted by \\ω\\.

For a pair of square integrable differentials ωι = a1dx + bιdγ, ω2 = a2dx
J

rb2dy, the inner product (ωί> ω2) is defined by

+ bίb2)dxdγ.
Jw Jw

Note that (α)f, ωf) = (α)l3 ^2)-
Two differentials are identified if their coefficients differ only on a set

of measure zero in each local coordinate. With this convention, the space
of all real (resp. complex) differentials with finite norm becomes a separable
Hubert space, which we denote by T(W) (resp. Λ(ΪF)).

If A is a subset of Γ, then A* indicates the set of differentials whose con-
jugates are in A.

0.2 WeyΓs lemma

First we list below some important subspaces of Γ.

Γ°°: C°°-diff erentials.

Γ7 (resp. Γ*): exact (resp. closed) ^-differentials.

Ye (resp. I\) : the closure in Γ of Γ; (resp. 17).

The relations ΓeΓ\Γ°° = Γ~ and ΓCΛΓ°° = Γ7 are valid, but require non-trivial
proofs.

J where/ is a C"-function with compact support.

Γ e 0 : the closure in Γ of Γ70.

Γh: harmonic differentials.

Now, WeyΓs lemma: ΓCΛΓ* = ΓΛ, together with the well-known ortho-
gonal decomposition: Γ = ΓC + Γ*O = Γ* + Γ,O, implies the following important
orthogonal decompositions:

0.3 Some important subspaces of Th

Γhse: semi-exact harmonic differentials; these are differentials whose
periods along dividing cycles are all zero.
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Tkm: the orthogonal complement in Th of Γ%se.

More generally, we define for an arbitrary regular partition P of the ideal
boundary of W. (L. Ahlfors and L. Sario [4], Ch. V, 15G)

(P)Thse: harmonic differentials whose periods along P-dividing cycles are
all zero.

(P)Thm: the orthogonal complement in Th of (P)Γfse.

Among regular partitions, the identical partition I and the canonical parti-
tion Q are the most important. Note that Thsβ = (Q)Thsβ and Γhm=(Q)Γhm.

Γhe: exact harmonic differentials.

On account of the decomposition Γc = ΓΛ + Γe0, we have

ΓΛ 0: the orthogonal complement in Th of Γ^e.

By definition we have the following orthogonal decompositions:

•p — "p i Γ1* "P* 4- V

Γ Λ β CΓ Λ s e implies ΓΛ 0DΓΛ m. On the other hand, the inclusion relation ΓA

ΓΛβ(4=»ΓΛsβ DΓΛ0) is well-known. Hence.

0.4 Extension lemma for closed differentials

The following lemma, which is substantially due to H. Yamaguchi, plays

an important role later.

LEMMA 1. Let W be a Riemann surface and Ω be a regularly imbedded
connected subregion of W such that the relative boundary dfl is compact. Set

V— W—TΪ. Let σ be a closed C°°-differential on a neighborhood of V. Then,
in order that 6 \ V can be extended to a closed C°°-differential ΰ on W such that

(Supp <τ)ΠΩ is compact, it is necessary and sufficient that

PROOF. The necessity is obvious. To show the sufficiency we proceed by
n

induction on the number of the contours of Ω. Set 9Ω = Σ ck, where ck are
k = l *

mutually disjoint analytic Jordan curves.
In case 71 = 1, take a C°°-function u such that du — ΰ in a neighborhood of
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ci. Extend u to Ω so that u e C"(Ω) and (Suppu)ΠΩ is compact. Then de-
fine d as follows:

6 = ΰ on V, d = du on Ω.

In case n ^ 2, take a quadrilateral subregion i? of Ω such that one pair
of opposite sides consists of subarcs of cn-\ and cn, and that the other pair of
opposite sides consists of arcs in Ω. In a neighborhood of R, take a C~-func-
tion u such that du — ΰ in a neighborhood of dRΓλdVί. Set Ωi = Ω — R, V\=W

— Ωi and define β\ on V\ as follows:

<Ti = 6 on F, (Ti = du on /£.

Then the number of contours of Ωi is n — 1, and

Γ ( (
\ Gi= \ 0— \ du = 0.
Ja^j JΘΩ JdR

We have thus completed the reduction process and consequently our proof.

0.5 Definition

By a neighborhood of the ideal boundary of W, we understand the com-
plement of a compact subset of W. Consider a neighborhood V of the ideal
boundary of W, which satisfies the following conditions:

(i) V is regularly imbedded,

(ii) each component of V is not relatively compact,

(iii) W— V is non-empty and connected.

We shall denote the set of all such F's by <§( W\
Finally we introduce a standard notation. Let ω be a (^-differential of

the first order defined in a neighborhood of the ideal boundary of W. Let Ω
denote a generic, relatively compact, regularly imbedded subregion of W. In
the case that

lim\ σ
Ω t W J3Ω

exists, we denote this limit by \ ω. Here β stands for "the ideal boundary"

of W.

0.6 The space Γx

We choose an arbitrary closed linear subspace of Yhe{W) once for all and
denote it by Tx throughout this paper. We denote by Γ£ the orthogonal com-
plement in ΓΛ of Γλ. Note the implications:
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and orthogonal decompositions:

It will be convenient to introduce three more spaces as follows:

HX(W) = {ue HD(JF): ducΓx}, D™(W) = {u e

= {u 6 C~(W)\ du e Te0}.

Naturally HXι(W)CH%2(W) if Γ % 1 C Γ X ,
It should be noted that the orthogonal decomposition Γ~ = Γ

or equivalently D~(W) = HD(W) + DQ(W) is a special case of the so-called
Royden decomposition.

§1. Harmonic functions

1.1 Γx-behavior

DEFINITION. Let u be a single-valued real harmonic function defined in a
neighborhood of the ideal boundary of W. Suppose that u and (du)* admit the
following representations in a neighborhood of the ideal boundary of W\

u = ux+ue0, where uxeHx(W) and ueQ e

(du)* — ω^±-\-ωe0, where ωx±- c Γ^ and ωe0 c Te0.

Then we say that u has Yx-behavior.

REMARK. In the above representations, the component ux is uniquely
determined up to an additive constant. On the contrary, the component ω* i
is determined only modulo a subspace (not necessarily closed) of ΓΛ0.

PROPOSITION 1. Let V c <S( W) and let ubea C™-function in a neighborhood
of V. Then the following two statements are equivalent.

(1) u is Dirichlet finite in V and

uω* = 0 (φ̂ > (du, ω)v = \ wo*)

for all ω c Γ£.
(2) There exist ux 6 HX(W) and ue0 c DQ(H7) such that u is represented on

V as follows:

u = ux+ueQ.

PROOF. (1)=Φ(2). Extend u \ V to W to be a C°°-ίunction. We shall de-
note the extension by ύ. Let ύ = uι + ueo be the Royden decomposition of
ύ. Then by assumption, we have
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0 = \ ua)* = (duiΛ- dueo, ω) = (duu o))
Jβ

for all ω e Γ£. Hence, dux e Γ%.
The converse part (2)=Φ(1) is trivial.

PROPOSITION 2. Let Ve &(W) and let ω be a C°°-differential in a neigh-
borhood of V. Then the following two statements are equivalent.

(1) ω is closed and sguare integrable in V and

(<=>(dυ, ω*)v = — \ vω)
JdV

for all v e Hx.
(2) There exist ωx±. e Γ^ and ωeQ e Γe0 such that ω is represented on V as

follows:

ω = ω^ e 0

PROOF. (1)=Φ(2). Since 1 e Hx, the assumption implies 0= \ ω= — \ ω.
Jβ JdV

Hence, in virtue of Lemma 1, we can extend ω \ V to W to be a closed C~-
difFerential. We denote this extension by ω. Since ω is square integrable
near the ideal boundary, ω c Γ~(W). Here we use the orthogonal decomposi-
tion Γc = Th^-Te0 to obtain

ω = a>ι + ωe0 w i t h ωx c Γ Λ , ωeQ a Te0.

Then, by assumption,

0 = \ vώ=\ v(Λ>i + ίΰβ0) = (dv5 — u>ΐ — ω* 0 )= —(dυ, ωf)
Jβ Jβ

for all dv e Γχ. Hence, ωf e Γ%.
The converse part (2)=Φ(1) is trivial.
As an immediate consequence of Propositions 1 and 2, we obtain the

following notable

COROLLARY. Let V a <§( JF). Suppose u is harmonic on V and has Γ%-

behavior. Then u and (du)* admit such representations on V as stated in the

Definition.

PROPOSITION 3. Constant functions have Γ\-behavior\ If u has Γx-be-
havior, then

[ ( )
Jβ

More generally, if both u\ and u2 have Tx-behavior, then
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Uι(du2)* = 0.
β

PROOF. Since uλ and (du2)* are represented in the forms

near the ideal boundary, we have, for a sufficiently large regular subregion

of r,

\ u1(du2T =\ (ux + ueQ)(ω^± + ωe0)

= (dux+du
e0,

The last term tends to (dux + due0, ωx± — ω*0)w = 0 as Ω f JF.
From this proposition we obtain

UNIQUENESS THEOREM. // a harmonic function on W has Tχ-behavior, it is
constant

1.2 Harmonic functions with preassigned singularities and Γ% -behavior

First we prove

LEMMA 2. Let Kbea compact subset of W and ubea C"-function in W—K
which vanishes identically near the ideal boundary of W. Suppose there is a
closed C°°-differential ω in W—K such that Jw + ω* vanishes identically near K
and near the ideal boundary of W. Then there exists a harmonic function ύ
in W—K with Tx-behavior such that ύ — u is Dirichlet finite.

PROOF. Extend du + ω* to W by 0 on K. Then du + ω* c Γ~(ΪΓ). We
use the orthogonal decomposition

to obtain

d u + α>* = ωx + ωx± + ω ^ e ^

On rewriting the equation in the form

du-ωx- ω^ = - a)* + ωx± + ωc

eψ,

we find that the differential on the left is closed and the differential on the
right is coclosed in W—K. Hence du — ωx — ω^ is harmonic in W—K Set
ωx—dux^ ω^=dueQ and ύ = u — ux—uc0. Now it is obvious that ύ has the re-
quired properties.

Now we establish

THEOREM 1. Suppose that at a finite number of points pj c W there are
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given harmonic singularities of the form

where aj is real and ZJ is a local parameter near pj such that Zj(pf)=0. Then,
in order that there exist a function u with Tχ-behavior uhich is harmonic en W
except at {pj} and for which u — Sj is harmonic at pj for each 7, it is necessary
and sufficient that

The function u is uniquely determined up to an additiτe constant.

PROOF. The necessity is obvious. To show the sufficiency, choose r > 0

so small that

converges in the punctured disk: {0< \ZJ\ <2r} for every j and closed disks

A/: {ky l^r} are mutually disjoint. Set V=\JΔJ and define a singularity
function s on Vbγ setting s = Sj on Δy. Extend s to W so that the extension
is infinitely different!able except at {pj} and vanishes in a connected neigh-
borhood V of the ideal boundary. Denote this extension by s.

On the other hand, by our assumption we have

dV

Hence, in virtue of Lemma 1, we can extend (ds)* to W so that the extension
is a closed C"-differential on W— {pj} and the closure in W of its support is
compact. Denote this extension by σ.

Then ds + σ* is identically zero on V and near the ideal boundary. Lem-
ma 2 is now applied and the existence of u is shown. Since u — Sj is harmonic
except at p, and square integrable, pj is a removable singularity for u — sj.
By the uniqueness theorem in 1.1, u is unique up to an additive constant.

DEFINITION. We shall say that u has singularity Sj at pJΛ A function
which is harmonic on W except for a finite number of isolated singularities
such as {?j} and has Yx-behavior will be called a Γ%-function.

1.3 The functions PχtPlip2 and P%>fi

Let ph y = l, 2, be two distinct points of W and let zj be a local parameter
near pj such that Zj(pj)=0. We denote by Pχ,Pl,p2 a Γ%-function which has
singularity ( — l) y log| *, | at/?,-, 7 = 1, 2. In case r κ = { 0 } , we write Po,Pl,p2 for
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Let p c W and z be a local parameter near p such that z(p)=0. Denote
by P^l a Γ%-function which has Re(l/*w) as singularity at /?, where n is a na-
tural number. We note that Px^p depends on the particular choice of a local
parameter at/?. In case Γ χ = {0}, we write Po

(^ for P $ .
We shall write simply P£o), P£o) for P0,Pl,p2, Pχ,Pi,P2 respectively, and also

Pc

o

n\ P^ for P $ , P ^ } respectively.

THEOREM 2. It holds that

P^-P^eHx (τι = 0,l, )

2π dn

/or aiί u e .fiΓχ.

The function P=P^—P^0' (resp. P=P^ύ—P^n\ n^>l) minimizes the func-
tional

\\du\\2-4,π{u(p2)-u(pι)} (

on the space Hx. The minimum is — ||<iP||2, and the deviation from the mini-
mum is \\du— dP\\2.

PROOF. Let ε>0 be so small that parametric disks Δ, : {| zj |<e} , ; = 15 2,
are disjoint. Let u c Hx. Then, by Proposition 1, we have

^ ) * - \og\z2\(du)*

asε|0,

and, by Proposition 2,

-(du,

= —\ ^ ί i a r g ^ i + l ud&rgz2 + O(e)-^2π{u(p2)— u(pι)} as ε j 0.
JdA1 JdA2

By addition we obtain (du, d(Pc

o

o)-Px

o)))=2π{u(p2)-u(pι)}.
To prove the second equality, let Δ be a parametric disk {|*| <ε}. Let

u e Hx. Then, for n ^ 1,

(du9 dPf V - Λ = - [ Pc

o

nXdu)*={

and
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By addition

(du, d(P^-

dA

( n - 1 ) ! dxnX

In the following corollaries, n = 0,1, ••

as ε | 0 .

COROLLARY 1. Let pi be an arbitrary point of W. If pi runs through all
points near pλ (in case n = 0) or if p runs through all points of a non-empty
open subset of W (in case n 2> 1), then

span Γ%.

PROOF. Assume

This assumption does not depend on the choice of a parameter with respect
to which a singularity is given. First consider the case n = 0. By Theorem
2 u is constant near pi and hence in W. Therefore du = Q, and it is shown
that d(P^-P^) span Γ%.

Next let n [> 1. Suppose p runs through all points of a disk Δ: {| z \ <r}.
By Theorem 2 dnu/dxn — 0 in Δ. Let v be a conjugate harmonic function of u
in Δ and set / = u + iv. Develop / into

f(z) = ao + aιz-\— in Δ.

Since dnf/dzn = dnu/dxn + ίdnv/dxn = ίdnv/dxn in Δ and hence is constant, /(*)
has the form

The same is true for any other local parameter. If amφ0 for rcι^>l, consider
the parameter ζ defined by z = ζ + ζn+ι. For a sufficiently small positive ε,
this defines a one-to-one conformal mapping of Aζ: {\ζ\ <ε} into Δ. We have

in
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This is impossible because degf=m(n + l)>n. Therefore / and hence u is
constant. It follows that d(P^—P£w)) span Γ%.

COROLLARY 2. Let Γ%1 and Y%2 be closed linear subspaces of Γhe. If Pxf
= Pχf for all such pairs (pu p2) as described in Corollary 1 (in case n = 0) or

for all p in a non-empty open subset of W (in case n 2> 1), then Γ%1 = Γ%2.
In particular, if any function with T%i-behavior has Tχ2-behavior, then

COROLLARY 3. Let Γ%1 C Γ%2 be two closed linear subspaces of The. Then

poo_poo 6 Hx

L

ii\H%2

and

2π{u(p2)—u(pι)} (n = 0)

—^—^(O) ( =1 2 5̂
' (n-l)idx^ } KU ' ' *" ;

for all u e Hi-λΓ\HX2.
The function P^f — Pxf has an extremal property similar to the one in the

theorem.

1.4 The functions QχιC and QLfy

Let c be a simple arc on W and put dc=p2—px. Take a parametric disk
Δ: {|*|<1} which contains c. Set ζj = z(pj), y = l, 2. Consider the function

in Δ — c, and extend it to W—c to obtain a C~-function which is identically
zero outside a concentric compact disk. We denote the extension by v. Then
dv is a C"-differential on W—{pι,p2}.

Next consider the function

in Δ— {pup2}, and extend it to W— {pu p2} to obtain a C-function which
vanishes identically near the ideal boundary. We denote the extension by ύ.

Then dv-(dύ)* vanishes identically in Δ and near the ideal boundary.
By Lemma 2 we obtain a differential ω in W— {pi, p2} which has the follow-
ing properties:

(i) ω is harmonic on W—{pup2} and ω—dv is square integrable in Δ,

(ii) ω is the differential of a harmonic function in W—c with Γ%-
behavior.

We shall denote the harmonic function in (ii) by Qx>c and ω by dQx>c.
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By (i) and (ii) Qx> c is uniquely determined up to an additive constant. Qx> c

does not depend on the choice of a parameter z9 and dQx>c depends merely
on the homotopy class of c with fixed end points px and p2.

Let/? e W and let z b e a local parameter near p such that z(p) = 0. We
denote by Qf£>p a iγfunction which has lmz~n as singularity. Here n is a
natural number. It should be noted that Qfg?p depends on the particular choice
of a local parameter at p. In case Tx= {0}, we write Q^p for Qx

n?p.
Writing simply ^ 0

0 )

? QX

Q\ $f>, Qx

n\ τ ι ^ l , for QOtC, Qx>c, (&% Q^p respec-
tively, we derive

T H E O R E M 4. (rc = 0, 1, •••)

and

2π\ ω

2π

/or αϊί a) 6 Γχ*, where ω — du near p.

PROOF. Draw two sufficiently small disks Δ, : {| z — ζj \ <ε} ? / = 1, 2. Con-
sider a component of c Λ ( Δ - Δ i — Δ2) which connects Δi and Δ2, and denote
it by cε. Then for any ω e Γx *5 we have by Proposition 1

as e j 0.Qx

ωω->2π
2

It was already shown in the proof of Theorem 1 that

as ε i 0

for any ω e Th. The first equality follows immediately.
To prove the second equality, let Δ denote the parametric disk {| z | <ε}.

Then

(a), dP

= \ u*dPc

0"
}+\ u
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2π 9 ^ ( 0 ) as e | 0 .
(n-ΐ)ldx*κ '

COROLLARY 1. If c runs through all arcs in Δ which have pi as the initial
point (in case n = 0) or if p runs through all points of a non-empty open subset
of W (in case n >̂ 1), then

span

COROLLARY 2. Let Γ%1 and I \ 2 be closed linear subspaces of Yhe. If
QSc^—QSc? for all arcs c as described in Corollary 1 (in case n = 0) or all points
p in an non-empty open subset of W (in case n 2> 1), then Γ%1 = I\ 2 .

COROLLARY 3. Let Γ%1 and Y%2 be closed linear subspaces of Yhe such that
Γ%1CΓ^2*. Then

and

ω

2π dnu,
(n-l)\dxn^ v " *'~' J

for all ω a Γ^ΛΓ^f, where ω=du(z) near p.

REMARK. We have considered only "ΓVfunctions" with simple singulari-
ties. However, it should be noted that [4], Ch. Ill, Theorem 9E (Sario's main
theorem for principal functions) can be similarly generalized.

§2. Harmonic differentials

2.1 Γx-behavior

A differential will be said to have Γ%-behavior if it coincides with du in
a neighborhood of the ideal boundary, where u is a real harmonic function
with Γ%-behavior.

UNIQUENESS THEOREM. In case Yx^)Yhm (^Γ^*CΓ Λ 5 e ) , if ω c Yhe(W) has
Yx-behavior, then ω is identically zero.

PROOF. Let ω = ωx+ω^ and ω* = ω%± + ω^ with ωx c Γ%, ω^ a Y^ and
>cΛ\ ωCe2o c Γe 0. Since ω, ωx and ω^ are exact, we can set ω=du, <%= dux and
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ft>βo)= due0. Set v = u — uχ—ue0. Take a sufficiently large regular subregin Ω
of W. Then v is constant in each component of W—Ω.

If Γχ Z> ΓΛw, ω* is semi-exact. Hence

\

Thus

* = 0, i.e., \

( ω , o ) ) Q = \ a ω * = ( f t ) χ + ω ^ ί O χ - i - ^ 2

0

} * ) Q -• 0 a s Ω f r
J Θ Ω

In case Γ% If) ΓΛm the uniqueness theorem does not hold. This will be
shown in 2.2.

2.2 Period reproducing differentials

THEOREM 4. Let c be a cycle on W. Then, there exists a unique differen-
tial 6x(c) 6 Γ^ such that

(α>,σχ(c)*)=\ ω

for all ω e Γ^*. It has the following properties :

(i) (Tχ(c) has rx-behavior,

(ii) \ (ϊχ(c) = cx d for any cycle d, where ex d indicates the intersection
J d

number of c and d, i.e., the number of times that d crosses c from left to right.
In particular, in case c is a dividing cycle, (X%(c) is exact,

(iii) if c runs through all cycles, then (Jx(c) span ΓχΓ\Cl(Γx-\-Tho).

PROOE. Since ω-+\ ω (ω e Γ^*) is a continuous linear functional on
J c

the existence and uniqueness of ax(c) follow from an elementary theorem of
Hubert space theory. However, the properties (i) and (ii) of dx(c) do not
seem to be immediate consequences of the defining property of <J%(c). There-
fore, in order to show that <τx(c) has the properties (i) and (ii), we shall have
to construct Gχ(c) in a direct way.

In 1.4 we have constructed the function Qx>c for an arc c. We can extend
dQχ,c to any 1-chain c, in particular to any cycle c, by the linearity in c. In
case c is a cycle, Theorem 3 shows

<ϊχίc)=dQχtC.

Hence, (i) and (ii) follow immediately from the method of construction for

Qx,c

However, in case c is a cycle, we can construct dQx>c more easily. In
fact, it suffices to treat the case where c is an oriented analytic Jordan curve.
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Take a relatively compact ring domain R which contains c. Define the func-
tion v o n i ? - c a s follows:

I I on the left side of c,

0 on the right side of c.

Extend v to W— c so that it becomes a C°°-function with support relatively
compact in W. Denote the extension by v. Then dv c T~(W). Now we use
the orthogonal decomposition

to obtain

dv =

Then it is obvious that

(i) ωx± has Γ%-behavior,

(ii) \ ύ)χi = cx c? for all cycle d.
Jd

Moreover we have, for any ω c Γ^*,

ι ; ί ι ) = ( α ) .
J

Thus α)χ-L has the reproducing property and coincides with tf%(c).
As an application of the above theorem we shall show the existence of a

non-zero ω 6 Γhe (W) with Γ%-behavior in the case Γ χ J>ΓΛm. Since Γ^*cf Thsβ9

there exist ω0 e Γ^* and a dividing cycle c such that \ ωQφΰ. Then σ%(c) has
J c

Γ%-behavior and (α>0, σ%(c))=\ ω o ^O. This implies σ%

From the defining property of σ%(c):

(β>, (Γx(c)*) = \ o) for any

it follows that

^ ( c f K Γ f Λ Γ J , i.e,

Hence, by making use of the orthogonal decomposition

Yk = (Γ^ Γ\Yt)+ {Γ

we find that σ%(c) span Γ^ΛCZ(Γ%+ΓΛ0).
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REMARK. If Γ χ={0}, Γ^* = ΓΛ and Γ ^ C / ( Γ X + Γ M ) = Γ M . If ϊ\=Γhm,
= ΓΛ s e and ΓΪΓ\Cl(Γx + ΓM)=Γ?,tr\ΓM. If Γ % =Γ Λ , , Γ^* = ΓA0 and Γ^Λ

ci(rx+rho)=rtor\ci(rh.+rΛ0).

COROLLARY. If Γ£r\Cl(Γx+Γk0)CΓχ*, then

(ΰχ{cι), σx(c2)*) = a x c2

for any cycles ci and c2.

REMARK. Note the implications:

2.3 A special Riemann's bilinear relation

Let {Ajy Bj} be a canonical homology basis of W modulo dividing cycles.
It has the following intersection property:

Ai x Aj = Bi x Bj = 0, Ai x Bj = d{j for all ί, j .

Let ω e Γh(W) have Γ%-behavior and denote Ah 5 rperiods of ω by xh yj. Then
except for a finite number of /, xj and j ; are zero. The differential

Σ { - Xj(?χ(Bj) + yjβxiAj)} (a finite sum)
y

has the same Ah 5 rperiods as ω.
Now assume YxZ)Thm. Then by the uniqueness theorem in 2.1 we have

ω = Σ { - ^x(Sy) + yMAj)}.
y

Hence, for any α)χ c Γ^*, we obtain by the reproducing property of σx

2.4 Differentials with preassigned singularities, periods and Γλ-behavior

We shall return to the general case where Γ% is an arbitrary closed linear

subspace of Yhe (W).

THEOREM 5. Suppose that at a finite number of points pj c W there are
given singularities of the form

Γ / °° c ( y ) \ Ί
L \ » = l Znj ) J J Jj

where ZJ is a local parameter near pj such that Zj(p/) = 0. Choose a canonical
homology basis {Aki Bk} of W modulo dividing cycles such that none of Ak, Bk

passes through any pj. Give a sequence of pairs {xk, yk} of real numbers such
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that, except for a finite number of k, xk and yk are zero.
Then, in order that there exist a harmonic differential ω on W, which has

preassigned singularities ΰj, has xk, yk as Ak, Bk-periods and has Tx-behavior,
it is necessary and sufficient that

In case Tx 2) Thm the differential ω is uniquely determined.

PROOF. The necessity is obvious. To prove the sufficiency, assume Σα,
= Σbj = O. Let u be a function obtained in Theorem 1 corresponding to the
singularities

/ - cux

Connect pi and pj (j ^ 2) by a simple arc ch and set

Let χ'k, y'k be Λk, jδ^-periods of ωλ. Since ωι has Γ%-behavior, only a finite
number of x'k and y'k are different from zero. Then the differential

ω= du + ω1+Σk{-{xk-x'k)σ1iBk) + {yk-y'k)σjiAk)} (a finite sum)
k

has the required properties. The uniqueness of ω in case Tx D Thm follows
from the uniqueness theorem in 2.1.

§3. Canonical operators

In this section we shall bring forth the notion of canonical operators in-
troduced by H. Yamaguchi [12].

3.1 Normal operators

It seems instructive to compare Yamaguchi's canonical operators with
Sario's normal operators. So we begin with reviewing normal operators.

Let W be an open Riemann surface and let V be an element of &(W)
(defined in 0.5). By Cω (dV) we denote the linear space which consists of all
real analytic functions on d V, and by H( V) we denote the linear space which
consists of all real harmonic functions on V.

Consider a linear mapping

L: Cω(dV)-+H(V).

L is called normal if it satisfies the following conditions:

(1) Lf = f on dV,
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(2) Ll = l,
(3) Lf^O if /^0,

(4) [(dLf)* = 0.
dV

Conditions (2) and (3) are equivalent to the validity of the maximum-
minimum principle:

m <,f<;M implies m<^Lf<,M.

3.2 Canonical operators

Consider a mapping

L: (

which satisfies the following conditions:

(1) Lf=f on dV,
(2) LI = 1,
(30 \\dLf\\v<oo9

(40 (dLf, dLg)v = [ f{dLgY for all /, ge C\dV).

The linearity of L follows from these conditions. Note that (4) follows from
(2) and (4'). In this connection, we remark that it is an open question whe-
ther normal operators have the property (30 or not.

H. Yamaguchi called such an operator L canonical. Sario's principal
operators (P)L1 and LQ are canonical as well as normal.

3.3 Correspondence between canonical operators and closed linear sub-
spaces of Yhe

Denote by Lv the set of all canonical operators defined with respect to V
and by Yhe the set of all closed linear subspaces of Γhe(W). We shall es-
tablish

THEOREM 6. There exists a one-to-one correspondence between Lv and The

such that, for any u c H( V\ the following conditions (i) and (ii) are equivalent
to each other :

(i) u — Lu on V, where L belongs to Lv,
(ii) u has TL-behavior, where TL e The corresponds to L.

PROOF. We shall first establish the mapping L-+ΓL. To this end, let
/ e Cω(βV) and extend/ to be a complex-valued analytic function in a neigh-
borhood of d V. Its real part is a harmonic extension of /, which will be
also denoted by /. Since Lf—f is harmonic on the left side oίdV and vanishes
on d V, it can be and hence Lf can be extended harmonically across d V. There-
fore we can extend Lf to W to be of class C\W\ and use the orthogonal
decomposition
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D™(W) = HD( W) + Do( W)

to obtain

Lf=uf + vf on V with ufeHD(W) and vfe

Here, the component uf is uniquely determined by /, up to an additive con-
stant.

On the other hand, L satisfies \ (dLf)* = 0. Hence, in virtue of lemma

1 we can extend (dLf)* to W so that the extension is of class Γ~(ΪF). We
use the orthogonal decomposition

to obtain

(dLf)* = σf + ωf on V with σf e ΓΛ( W) and ωf c Γe0( W).

The component σf is uniquely determined by / modulo a certain subspace of

rΛ 0(r).

With this notation we assert that

duf±σg*

for all/, g c Cω(dV). This fact follows from condition (40 as follows:

Therefore, if we set

ΓL = Cl{duf:f€Cω(dV)},

we have

σf c Γί*.

Thus for such Γz, (i) implies (ii).
In order to see that conversely (ii) implies (i), suppose (ii) holds. Then

by the Corollary stated after Proposition 2, we have

u =

(du)* = ωf± + ωe0 on V.

Then by the definition of TL, Lu and (dLu)* admit similar representation as
u and (du)*. Since u = Lu on dV,

\\d(u-Lu)\\2

v = [ (u-Lu){d(u-Lu)}* = 0
Jβ
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proving that u = Lu on V.
We shall next establish a mapping of The into Lv. For all YxeYhe and

fc Cω{dV\ we denote by H(Γx,f) the set of functions u defined on Vwhich
satisfy the following conditions:

<1> u is harmonic in V and Dv(u)<^o,
<2> u=f on dV,
<3> there exist ux c HX(W) and ve0 c D™(W) such that u = ux + ve0 on F,

In order to see that H(TX, / ) is non-empty, let υ be the Dirichlet solution
with respect to V with boundary values/ on dV and 0 on the ideal boundary

0 of W. It is evident that v satisfies conditions <1>, <2> and <3>. If \ (dv)*

, then W $OG. In this case, let v\ be the harmonic measure of β with

respect to V. Then \ (dvi)*Φ0. It is easily seen that
JdV

Finally we shall show that H(Γx,f) is complete with respect to the Dirich-
let norm. To see this, consider a finite number of ring regions {Dj} on W
such that \jDjZ)dV,f is extended harmonically to \JDJ and each Dj can be
mapped conformally onto l / r< \z\ <r so that \z\ = 1 corresponds to dVΓ\Dj.
Set G—\jDj\jV. Then every function of H(Γx,f) has a harmonic extension
to G. Let {HΛ} be a Cauchy sequence in H(Γχ,f), i.e.,

\\d(um—Un)\\v^>0 aS 771, ft—•oo.

Since

αw converges in G to a function & in norm and locally uniformly. It is ob-
vious that u satisfies conditions <1>, <2> and <4>. To see that u satisfies <3>,
we have only to recall Proposition 1 in 1.1.

Since #(Γ%, / ) is convex, there exists a unique function in H(YX, / ) whose
differential has the smallest norm in V. We denote this function by Lxf.
Then

dLxf±dH(Γx,0) in Th(V).

We want to establish

<5> \ w{dLxfY = 0 for any w a Hx( W).

To see this, take any wλ c H({0}, w). On account of <4> one can apply Lemma
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1 and extend (dLχf)* to a differential ω e Γ r. Since w1 is equal to a member
ve0 of D Γ(ίF) on Γ and Γ β 0 ± Γ * ,

Obviously w — wx a H(ΓX, 0) and hence

0 = (d(w — Wι), dLxf)v — \ (w — wι)(dLχf)* = \ w(dLxf)*.

Now it is clear that Lx is canonical. Let us see that, for any u β H( V\
the following conditions (i') and (ii') are equivalent to each other:

(i') u = Lxu on F,
(ii') u has ΓVbehavior.

The implication (i') =Φ (ii') follows from <3>, <5> and Proposition 2 in 1.1. Con-
versely, assume (ii') and take any v e H(ΓX, u). Since u e H(ΓX, u\ u — v a
H(YX, 0). Express u — v = wx + we0 with ιvxe HX(W) and weOe D~(W\ and
(du)* = ωx

iχJrωe0 with ωx± e Γ^ and ωe0 e Γβ 0. We have

(du — dv, du)v = \ (z£ — v)(du)* = (dwx-\- dweQ, ωx±- — 0)%) = 0.

Therefore, 0<,\\du — dv\\^=\\dv\\^ — \\du\\\ and hence u = Lxu.
Finally we shall show that TLi = TL2 means Lλ = L2 and that LXl — L%2 im-

plies ΓX l = Γχ2. Suppose first that ΓZ l=Γz, 2. For a n y / e C ω ( δ T ) it holds
that Lι(L\f) = Lιf on V. Since (i) implies (ii), Lif has I \ ^behavior which is
equal to Γ£2-behavior. We apply (ii)=»(i) and conclude L1f=L2(Lϊf) = L2f on
V. This shows Lι — L2.

Next suppose that LXi = LXί. Let Pxyp(j = l, 2) be a function obtained in
1.3 ίor p <T V. On account of the equivalence (i')<=Kii')> w e have PX]\ = PX]^P.
From Corollary 2 of Theorem 2 it follows that Γ%1 = Γ%2.

3.4 Sario's principal operators

We shall show that the canonical operator which corresponds to the sub-
space (P)Thm (resp. The) in the sense of Theorem 6 is Sario's principal operator
(P)£i (resp. Zo)

For the sake of simplicity, we will take up only Thm. Let V e &( W) and
denote by Lhm the operator which is defined with respect to V and corresponds
to Γhm. F o r / c Cω(dV\ put u = Lhmf. Since u has ΓΛw-behavior,

(a) u = uhm+ue0 on V, where duhme Yhm and due0 € Γ e 0,

(b) (du)* = ωhse + ωeQ on V, where ωΛ 5 e e ΓΛ 5 e and α)e0 e Γ e 0.

On account of Proposition 1 in 1.1, (a) is equivalent to
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(a') \ uω = 0, or equivalently (du, ω)v=\ uω for any ω e Thse.
Jβ JdV

Let us show that (b) is equivalent to

(bθ [ (du)* = Q for any dividing cycle γC V.

It is evident that (b) implies (b') Assume (bO Since \ (du)* = 0, (du)*

can be extended to a closed C°°-differential ΰ on W by Lemma 1. We apply
the decomposition Γc = ΓΛ + Γe 0 and write σ=ωh + ωe0. Condition (b') implies

that \ ωh = 0 for all dividing cycles c. Hence ωh is semi-exact. Thus (b)
J c

follows.
We know that u — Lhmf is characterized by (a), (b) and the boundary con-

dition u—f on dV. On the other hand, it is known (cf. [β'J) that Lλf satisfies
(a') and (b')? where Lx is a Sario's principal operator. Hence, Lhm = L1,

In this connection, we remark that a differential harmonic on W save for
a finite number of isolated singularities is distinguished in the Ahlfors' sense
( M , Ch, V, 21D) if and only if it has Γ ̂ -behavior in our sense in 2.1. It is
now seen that Kusunoki's semi-exact canonical differentials in [6] are identi-
cal with meromorphic differentials with distinguished real parts.

We next consider the operator which is defined with respect to V and
corresponds to The(W). We denote it by Lhe. For f e C\dV), set u = Lhef.
Then

(a) u = uhe + ue0 on F, where uhe c HD{ W) and ue0 e D%(W\

0?) (du)* = ωho + ωeo on V, where ωh0 e Th0 and ωe0 6 Γ e 0 .

However, (a) is superfluous, because any square integrable harmonic function
on V admits such a representation. On account of Proposition 2 in 1.1, 09) is
equivalent to

(/SO \ v(du)* = 0, or equivalently (dυ, du) = \ v(du)* for any vcHD(JF).
Jβ JdV

Hence u — Lhef is characterized by 0?0 and the boundary condition u—f
on dV. It is known (cf. [9]) that Lof satisfies (/SO, where Lo is a Sario's
principal operator. Therefore Lo coincides with our Lhe.

Now we see that our Theorems 2, 3, 4 are generalizations of B. Rodin
[10], Theorems 1, 2 and L. Ahlfors and L. Sario [4], Ch. Ill, Theorem 10F.

§4. Riemann Roch theorem

Throughout this section we assume Γ Ό Γ Λ m , or equivalently Γ^*CΓ Λ s e .
The regular analytic differentials on W whose real parts have Γ%-behavior
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along the ideal boundary of W form a linear space over the real number field.
We denote this space by Λ%( JF).

We remark that, for the interior W of a compact bordered Riemann sur-
face, there exist infinitely many closed linear subspaces between Thm( W) and
The(W). This follows from the fact that the dimension of Thm(W) is finite
while the dimension of Γhe (JF) is infinite.

4.1 Periods and singularities

The validity of the following existence and uniqueness assertions will be
readily seen by virtue of the results obtained in §§1, 2.

Let p e W, and give an analytic singularity at p:

where z is a local parameter nearp such that z(p) = 0. Then there exists an
analytic function (multi-valued in general) which has s as its singularity and
whose real part is single-valued and has Γ%-behavior. This function is uni-
quely determined up to an additive constant. We denote by Ψs one of them.

[II] For any cycle c there exists a unique differential φ{c) e Λ% such
that

Re \ φ(c) = c x d for any cycle d.
d

[ΠΓ] Let c be an arbitrary arc on W, and put dc=p2—pi. Let λ be a
complex number. Then there exists an analytic differential which has simple
poles at pj with residues ( — l)jλ, y = l, 2 and whose real part is exact in W— c
and has Γχ-behavior. This differential is uniquely determined by λ and c
(more precisely the homotopy class of c with fixed end points pi and p2). We
denote this differential by φx(c). By the linearity in c we extend the defini-
tion of φλ(c) to the case where c is an arbitrary 1-chain.

4.2 Riemann-Roch theorem

We shall now establish Riemann-Roch theorem of Kusunoki type. Our
proof will be similar to that in Y. Kusunoki [5 6]. First we give a lemma
which plays a fundamental role in our proof.

Let ψ and ψ be analytic differentials on W which have only isolated sin-
gularities and whose real parts have Γ%-behavior. Assume further that ψ
has no non-zero residues. Take a canonical homology basis {Ah Bj} of W
modulo dividing cycles so that the following conditions are satisfied:

(i) Any one of Ah Bj does not pass through any singularity of ψ and 0,
(ii) Aj and Bj are oriented analytic Jordan curves such that AjΓ\Ak =

BjΓ\Bk = φ for any /, k, AjίλBk = φ for jφk and AjΓλBj consists of one point.
Cut W along Ah Bj and denote by WQ the resulting planar surface. Since
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the real part of φ has Γ%-behavior, \τaφ is expressed by ω%j- + ωe0 in some neigh-

borhood V of the ideal boundary. By our assumption Γ A s e DΓ^*, \ Im<ρ = 0

for any dividing cycle γ in V and hence for any dividing cycle γ in W. This,
together with the fact that ΪF0 is planar and φ has no singularities with non-
zero residues, implies that φ is exact in Wo. Hence, we can set φ = df on Wo.

Now we state

LEMMA 3. (Kusunoki) For differentials φ, φ and a basis {Aj, Bj} just
explained, we have

Re(Σ Res/0) = - ^ Σ I m | f <p[ φ-[ φ[ φ\ (a finite sum).
Δπ [jAj JBj JBj JAj )

PROOF. Let Ω be a relatively compact subregion of W such that each

component of W—VL is not compact and has only one analytic contour in com-

mon with Ω. Suppose that Ω contains all singularities of φ and those of φ.

Suppose moreover that dΩ, intersects none of Ah Bj. Then, integrating fφ

along contours of ίl Γ\ W§, we have

2;ri L Res/0 = - Σ {( ψ\ φΛ ψ\ φ\ + \ fΦ
Aj,BjCQUAj JBJ JBj JAJ J JdΩ^

On the other hand we have

(Reφ =
and

(im φ = ω^

outside of a compact subset of W. Hence, for a sufficiently large Ω, we have

Im \ fφ — (<ox + ω̂ V, ωXd. — ω^^Q + (ωj.i + ωc

ef, — ωχ* — io(/o

}*)Q.

Since Γ%, Γ^, Γβ 0 and Γf0 are pairwise orthogonal, it follows from the above
equality that

_ /r \
Im( \ fφ)-^O as Ω t W.

\JdΩ J

We need also the following well-known algebraic fact.

LEMMA 4. Let X and Y be two linear spaces over a field K, and consider a
bilinear form (x, y) defined over Xx Y. Denote the left kernel {x e X: O, y)
= 0 for all yβY}by Xo and the right kernel {ye Y: (x, y)=0 for all x £ X}
by Yo. If the quotient space X/Xo is finite dimensional, then there is an iso-
morphism

PROOF. Let (ξ, rj) be the bilinear form induced by (x, γ) on (X/Xo) x
(Y/Yo\ i.e., (£, τf)=(χ, γ) where x e ξ and ye-η. Each η e Y/Yo determines a
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linear form on X/Xo: $-+($> τj\ which we denote by l(τj). Since the form (?, rj)
is non-degenerate, I is an isomorphism from Y/Yo into the dual space (X/Xo)*
of X/Xo. There is a similar isomorphism from X/Xo into the dual space
(Γ/Fo)*. Hence, dim(Γ/F0) < dim(X/X0)* and dim(X/X0) <; dim(T/F0)*.
Since dim(X/X0) is finite by assumption, (X/Xo)* has the same dimension as
X/Xo. It follows from the inequalities obtained above that four spaces X/Xo,
(X/Xo)*, Y/Yo, and (Γ/Ύo)* have the same dimension.

Next let D be a finite divisor on W. We introduce two linear spaces
Mχ\_Ώ~\ and KX\^D~] over the real number field as follows:

Mx\jy\={f\f is a single-valued meromorphic function on W such that
the real part of / has IVbehavior and that

KX\ΊΓ\ = {α: α: is a meromorphic differential on W such that the real part
of a has IVbehavior and that (

Here (/) and (a) denote the divisors of / and a respectively, and (/)>Z)
means that (f) — D is non-negative.

With this notation we state

THEOREM 7. Let D be a divisor on TF, and set D = B — Λ where A and B are
disjoint non-negative divisors. Then we have

(1) dimM£-2λ]=2{deg£ + l-mm(l, deg^)}-dim(Λ%[-^/

Incase W has finite genus g, dimΛ%Q — AJ = 2{g+ degA— min(l,
and the above equality (1) is simplified into the following form:

PROOF. Choose a canonical homology basis {Ah Bj} of W modulo divid-
ing cycles so that none of Ah Bj intersects D. Consider a meromorphic
function on W whose real part is single-valued and has IVbehavior. In case

we assume furthermore that a branch of the function vanishes at
e A. Cut W along Ah Bj and denote the resulting surface by Wo. In case

consider the branch which vanishes at a\. As shown before Lemma 3
any branch is single-valued on Wo.

The meromorphic functions / on Wo, which are obtained in the manner
described just above and have the property: (/)>- —ΰ, form a real linear
space, which will be denoted by M( — B).

Set A=Σx

v

j=ιmjaj and B^Σl^nφ^ We consider the bilinear form

defined on the product space M( — 5)xΛ%[-A~}. Let us show that the left
kernel
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{fcM(-By. (/, ά) = 0 for all a e Axi-AJf

is equal to Mx[_ — D] and the right kernel

{aeA£-AJ:(f,a) = 0 for all feM(-B)}

is equal to ΛχΓZΓ]. Since the real part of / is single-valued on W by assump-
tion, the formula in Lemma 3 is written in the following form:

(2) R

Suppose f <s M( — B) satisfies (/, a) = 0 for all a c Ax[_ — A~]. We replace

a by φ(Aj) (resp. φ(Bj)) in (2) and find that Imί df^=0 (resp. Imί df=0).
J Aj J B j

Hence,/ is single-valued on W. In case AΦO, denote the degree of / at αy

by m'j. Since/(αi) = 0, m[7>l. Take a local parameter z near αx such that
) = 0. Let

Suppose m[<ml and replace a in (2) by dΨs, where s = λ/zmΊ. Then (/, α) =
— m{λλφθ, which is a contradiction. We have thus shown m'γ^im^ Next
we shall show rπj^mj (y^2) . Suppose mj<πij. In case mj;>l, the same
reasoning as above leads to a contradiction. In case raj = 0, draw an arc c in
fFo such that δ c = α; —αχ Replace α in (2) by φλ(c) where λ=f(aj)Φ0. Then

0 = Re(ΣRes f l < //α)=/(α y)/(α y)^0. This is impossible. Hence / c M % [ - D ] .
Conversely/c M%[ —i)J implies (/, a) = 0 for all α e Λ λ[ — J ] .

Suppose there is α in the right kernel such that a = (anz
n-\-an+izn+l+ -..)dz

with n<nk and anφQ, where z is a local parameter near bk such that (̂6̂ .)
= 0. Choose a n / e Λf(-(71 + 1)6*) CM(-JB) such that

Then 0 = (/, α) = anάn φ 0. This is impossible. Hence a c Λ%ΓZΓ] Conversely,
if α 6 Λ χ [ f l ] , then (/, a) = 0 for all fcM(-B). Thus the right kernel is
equal to AX[_DJ.

Now to find the dimension of M( — B) we take a local parameter zk near
δβ such that zk(bk) = 0. Then a basis of M( — B) is given by

Ψ β ί p , Ψ ? 4 p ( I ^ P ^ Λ * , l ^ A ^ i " ) where sΛfP = lAJ, sktP = ί

and constant functions 1, ί in case 4̂ = 0; and by

ΨSk p and Ψ?Λ p normalized so that Ψ(a1) = 0 in case AφO.

Thus we find
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(2(degB + l) if A = 0,
dimM(-B) = \

[2degB if AφO.

Since M( — B) is finite dimensional, we apply Lemma 4 and obtain an iso-
morphism

M{ - B)/Mx[_ - D] ̂  Λ%[ - ΛyAxtDJ

Equating the dimensions of both sides, we obtain (1).
Finally suppose W has finite genus g. Let {Au Bι}f=1 be a canonical

homology basis of W modulo dividing cycles. Let zj be a local parameter
near αy such that z/a,) = 0. Then a basis of AX[_ — AJ is given by the follow-
ing differentials:

(/ = 1,2, .-., g\

dΨSj}p with sj,p = l/z*,

dΨsj)P with sjtP = i/zpj ( l<;p<!wi/- l , ! . < ; / < » and

0λ(c; ) (λ = l, i; 2 < / ^ v ) where c, is an arc such that dcj=aj—aι.

If 4̂ = 0, a basis consists only of {φ(Aι)} and {φ(Bι)} and dimΛ%[[ — A^ = 2g. If

Thus dimΛ x[ — J ] = 2{^+deg^ —min(l, deg A)}.

10.

4.3 Abel's theorem

The following theorem is a generalization of Y. Kusunoki [6], Theorem

THEOREM 8. Let D be a divisor on W such that deg D = 0. Then, in order
that there exist a meromorphic function f on W such that Re (log/) has Γ%-
behavίor and (f) = D9 it is necessary and sufficient that

Re( φ(Aj\ Re[ φ(Bj)
J c J c

are all integers, where c is an arbitrary chain such that dc — Ώ.
Such a function f is determined up to a non-zero constant factor.

PROOF. TO prove the necessity, suppose that there exists a function /
such that Re (log/) has Γ%-behavior and (/) = /> and choose a canonical homo-
logy basis {Ah Bj} of W modulo dividing cycles so that none of Ah Bj inter-
sects D. Cut W along Ah Bj and denote the resulting surface by JF0. Since

= 0, we can take a chain c0 in Wo such that dco = D. We may consider
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co instead of c because, c — c0 being a cycle, both Re\ φ(A/) and Re\ φ(Bj)
J c-co J c-Co

are integers.
Let φ e Λχ and let Φ be an integral of φ in W§, i.e., dΦ = φ. We infer

that Φ is single-valued for the same reason as before. By Lemma 3 we have

2τrRe(ΣResΦ£Zlog/)= -

Substitute φ(Ak) for φ. The right hand side of the equality is then equal to

\ darg/ which is a multiple of 2π. If D is expressed as Σmpbp— Σιnqaq

with πip, ra^X), then

[b [a = [ φ(Ak).
Ό

Hence Re\ φ(Ak) is an integer. If φ is replaced by φ(Bk\ then it is concluded

that Re \ φ(Bk) is an integer.

Conversely suppose Re \ φ(Ak) and Re\ φ(Bk) are all integers. We con-
JCQ JC0

sider the differential ψ = φi(c0). For ψ c Ax we have

= - Σ{(R eL/X I mL/)-(R eL/X I mL/
where Φ is an integral of φ in WQ. We replace φ by φ(Ak) and observe that

Σ ResΦ0= \ φ(Ak). The right hand side of the equality is equal to Im\ φ.
JcQ JAk

Therefore, this is equal to a multiple of 2π. We see that the same is true for
Γ /(• \

Im\ 0. Hence expί \ψ) is single-valued and has the required properties.)Bk

Finally suppose there are two functions /i and / 2 with the properties
stated in the theorem. Then Re(log(/i//2)) is harmonic on W and has Γ%-
behavior. Hence it is a constant on account of the uniqueness theorem in 1.1.
It follows that /1//2 is a constant on W. Therefore a function / in the theo-
rem has the form

/' = ae* * c , where a is a non-zero constant.

REMARK. We assume that W has finite genus g in this remark. The
following two statements are equivalent to each other.

1) There exists a chain c such that dc — Ώ and Re\ <p(Aj\ Re\ <p(Bj) are
J c

all integers.
2) There exists a chain cλ such that dcι = D and that
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Re \ φ = 0

for all φ e Λλ.
To see that 1) implies 2), we only have to set ci =

where πij = Ue\ φ(Aj), rcy = Re\ φ(Bj). Conversely 2) implies 1) trivially.
J c J c

If We OAD, i e., if Γhm = Yhe, then there exists only one Γ% such that ThmC
Γ%CΓΛe. In this case, Aχ coincides with the set of all semi-exact square
integrable analytic differentials. Therefore 2) is equivalent to the following
classical statement.

3) D can be written in the form dci where cγ has the property that

for all semi-exact square integrable analytic differentials.
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