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Introduction

In the previous paper [4 ], we have given an estimate for the dimension-
ality of the derivation algebra of a Lie algebra L satisfying the condition that
(ad x)* =0 for x € L implies ad x=0. Such a Lie algebra will be referred to
as an (A,)-algebra in this paper according to the definition given in Jodichi
[ 2], which investigates the (A,)-algebras, k=2, with intention to obtain the
analogues to the (A)-algebras. He showed that the (A,)-algebras have a
different situation from the other classes of (A,)-algebras, k=>3. But the
problem of characterizing the (A,)-algebras remains unsolved. The purpose
of this paper is to make a detailed study of this class of Lie algebras.

It is known [37] that every semisimple Lie algebra over the field of com-
plex numbers contains no non-zero element x with (ad x)’=0. We shall show
that every Lie algebra over a field @ of characteristic #=2 whose Killing form
is non-degenerate has the same property. By making use of this result we
shall show that, when the basic field @ is of characteristic 0, L is an (A,)-
algebra if and only if every element x of the nil radical N such that (ad x)?=0
belongs to the center Z(L), and if and only if L is either reductive, or
LDONDZ(N)=Z(L)=2N*+(0) and (ad x)*=~0 for any xe N\ Z(L). This charac-
terization will be used in classifying certain types of solvable (A,)-algebras.
A solvable (A,)-algebra is not generally abelian. We shall show that if @ is
an algebraically closed field of characteristic 0, then every solvable (A.)-
algebra over a field @ is abelian. The latter half of the paper will be devoted
to the study of solvable (A;)-algebras, in particular, to the study of solvable
(Ay)-algebras L such that dim N/Z(L)is 2 or 3 and of solvable (A;)-algebras of
low dimensionalities.

§1.

Throughout this paper we denote by L a finite dimensional Lie algebra
over a field @ and denote by R, N and Z(L) the radical, the nil radical and the
center of L respectively. ‘

Following the terminology employed in [ 2], we call L to be an (A,)-algebra
provided that it satisfies the following condition:

(Az) Ewvery element x of L such that (ad x)*=0 satisfies ad x =0, that s,
belongs to Z(L).

We first quote a result shown in Theorem 1 in [ 2] as the following
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Lemma 1. Let L be an (Ay)-algebra over a field of arbitrary characteristic.
Then L is nilpotent 1 f and only 1f L is abelian.

By making use of the lemma, we show a necessary condition for L to be
an (A,)-algebra in the following

Prorosition 1. Let L be an (Ay)-algebra over o field of arbitrary charac-
teristic. Then either R=Z(L) or

LONDZN)= Z(L)2N*(0).

Proor. Let L be a non-abelian (A;)-algebra. Then by Lemma 1 L is
not nilpotent, that is, L= N. For every x € Z(N), we have [ x, [ x, L]]<[x, N ]
=(0). From the condition (A,) it follows that x € Z(L). Hence Z(N)SZ(L)
and therefore Z(N)=Z(L).

In the case where N=Z(L), if R=(0), choose an integer n such that
R™=(0) but R""Y=£(0). Suppose n>2. Since RV is an abelian ideal of
L, we have R" V< N. It follows that (R”2)*=(0). Hence R™? is a nil-
potent ideal of L and therefore R”"?<N. It follows that R” Y=(0), which
contradicts the choice of n. Thus R™=(0) and therefore R=N=Z(L).

In the case where N==Z(L), we have N*=~(0), for if N?=(0) then N=Z(N)
=Z(L). The fact that N*=(0) can be shown as in the proof of Theorem 2 in
[2]. It follows that N*>=Z(N)=Z(L). Thus the proof is complete.

We shall next show a sufficient condition for L to be an (A,)-algebra. It
has been observed in [ 3] that every semisimple Lie algebra over the field of
complex numbers contains no non-zero element x with (ad x)?’=0. We prove
this assertion for a more general class of Lie algebras in the following

Lemma 2. Let L be a Lie algebra over a field of characteristic =2 and
assume that the Killing form of L/R is non-degenerate. If (ad x)*=0 for xcL,
then x € R.

Proor. We first consider the case where L is semisimple. Suppose that
(ad x)’=0 for x € L. This means that [x, [x, y]]=0 for every yc L. Put-
ting X=ad x and Y=ad y, we have X*=0and [ X, [ X, Y]]=0. Since

[X,[X, Y]]=X*Y—2XYX+ VX2

it follows that XYX=0. Hence (XY )’=0. Denoting by B the Killing bili-
near form of L, we see that B(x, y)=0 for every yc L. Since B is non-
degenerate by our hypothesis, we have x =0.

We now consider the general case. Suppose that (adx)*=0 for x € L.
Put L=L/R and denote by z the element of L corresponding to x. Then
(ad %)?=0. Since L is semisimple, we have x=0 as shown in the first case.
This means that x ¢ R, completing the proof.

Prorosition 2. Let L be a Lie algebra over a field of characteristic ==2.
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If L is the direct sum of an ideal which has the non-degenerate Killing form
and of the center, then L is an (As)-algebra.

Proor. If L is such a direct sum, then the radical coincides with the
center. Hence by Lemma 2 L is an (A,)-algebra.

Now we restrict the basic field @ to a field of characteristic 0. Then we
can derive the following characterizations of (A.)-algebras from the above
results.

TuroreMm 1. Let L be a Lie algebra over a field @ of characteristic 0. Then
the following statements are equivalent:

(1) L is an (Ay)-algebra.

(2) Ewvery element x of N such that (ad; x)?=0 belongs to Z(L).

(8) L 1s either reductive, or

LONDZN)= Z(L)2N*+(0)
and (ad; x)*==0 for every x ¢ N\ Z(L).

Proor. Since the basic field @ is of characteristic 0, IV is the set of x ¢ R
such that ad; » is nilpotent. Hence Lemma 2 tells us that if (ad x)’=0 for
x € Lthen x € N. Therefore (1) and (2) are equivalent. From this equivalence
and Proposition 2 it follows that (3) implies (1). The assertion that (1) im-
plies (8) is a consequence of Proposition 1.

CororLARY 1. Let L be a Lie algebra over a field of characteristic 0 and
assume that Z(L)=Z(R). If R is an (A,)-algebra, then L is an (A)-algebra.

Proor. The statement is immediate from the equivalence of (1) and (2)
in Theorem 1 and the fact that the nil radicals of L and R are identical.

CoroLrLARY 2. Let L be a non-nilpotent Lie algebra over a field @ of charac-
teristic 0 such that

N=(x1, y1, -5 &ny yn)+ (L),
0+ Lxi, yile Z(L),
Cas, ;)= Lo, 3] =Ly 3:1=0
Sfor all isj.

Assume that for every i=1,2..., n, there exists an element u; of L\ N satisfying
the following conditions:

Luiy 2 ]= yi, [ui yil= dixi,
Luiy x5y [ui yil€ Z(L)  forany j+1i,

where 1; 1s not a square element in @. Then L is an (As)-algebra.
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Proor. Suppose that x € N and (ad; x)’=0. Then x is expressed as
x = l_gl((x,-x,-—kﬁ,-y,-)—l— z, z€Z(L).
By using our assumption we obtain

Lo, [, w;]]= @87 —alx;, ;1= 0

and therefore 2;52=a? for j=1,2, ..., n. Since Z; is not a square element in
@, we have 3,=0 and therefore «;=0. Hence x ¢ Z(L). Thus L satisfies the
condition (2) in Theorem 1. By Theorem 1 L is an (A,)-algebra, completing
the proof.

We note that the examples of solvable (A,)-algebras shown in [2]and [4]
are those of the (A,)-algebras formulated in Corollary 2.

§2.

L is called split [1] provided that it has a splitting Cartan subalgebra,
that is, a Cartan subalgebra H such that the characteristic roots of every
ad v, x € H, are in the basic field @#. It is known that every Lie algebra over
an algebraically closed field is split. For split (A,)-algebras we first show
the following

Lemma 8. Let L be a split (Ay)-algebra over a field @ of characteristic #2.
Then L? is nilpotent 1f and only if L 1s abelian.

Proor. Assume that L? is nilpotent but L is not abelian. Then L is not
nilpotent by Lemma 1. Since L? is a nilpotent ideal of L, we have L*SN.
Let H be a splitting Cartan subalgebra and let L=H+ L, be the decomposi-

tion of L to the root spaces. Then it is immediate that L, L*< N for every
root «==0. Choose a non-zero root 8 and let & be an integer such that 28
is a root but 2153 is not a root. Put y=2%4% and choose a non-zero element x
of L,. Then

[, L, L1 =[x, L2, H])+[#, Lx, 2 La]]
S[Ly, L]+ N

We have N*=(0) by Proposition 1 and [L,, L,]=(0) since 2y is not a root.
Hence (ad x)*=0. Since L is an (A,)-algebra, it follows that x € Z(L) and
therefore x € H, which contradicts the choice of x. Thus we conclude that if
L? is nilpotent then L is abelian.

In virtue of Lemma 3, we have now the following characterization of
split (A,)-algebras.

TuaeoreM 2. Let L be a split Lie algebra over a field @ of characteristic 0.
Then L is an (Ay)-algebra if and only if L is either reductive, or
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LOR2NDZ(N)= Z(L)= N*+(0)
and (ad x)*=~=0 for every x € N\ Z(L).

Proor. In the case where the basic field is of characteristic 0, Lemma 3
says that a split (A;)-algebra is solvable if and only if it is abelian. There-
fore if L is a split (A,)-algebra over a field @, then we have the statement (3)
in Theorem 1, in the second case of which L is not solvable. Thus the theorem
follows from Theorem 1.

§3.

In this and the next sections we shall study the solvable (A.)-algebras
over a field @ of characteristic 0 as an application of Theorem 1. As seen
from Theorem 2, if @ is algebraically closed, then every solvable (A,)-algebra
is abelian. Hence, throughout these sections, we shall assume that the basic
field @ is of characteristic 0 and not algebraically closed unless otherwise
specified.

This section is devoted to the study of solvable (A,)-algebras L such that
dim N/Z(L)=2 or 8. First we prove the following

Lemva 4. Let L be a non-abelian solvable (Aj)-algebra. If [u, x]¢ Z(L)
for uc Land x € N, then [u, [ u, x]]¢ Z(L).

Proor. Assume that [u, [u, xJJe€ Z(L) for uc L and x€ N. Put y=
[u, x]. Then by using the fact that N Z(L), for every v ¢ L we have

(ad y)*v =y, [y, xJ, v]]
=Ly, Lu, Lo, vJJJ+Lys [Lu, 0], 27]
=Ly, wl, Lo, v 1]+ [, Ly, [, v T4y, (L, v, 277
€[u, N ]+ N?
= (0).

Thus (ad y)*=0 and therefore by the condition (A;) ye Z(L). This completes
the proof.

Prorosition 8. The solvable (A,)-algebras L over a field @ of characteristic
0 such that dim N/Z(L)=2 are the following Lie algebras:

L= (uy, ug, -y u)+ N, N=(x, y)+2ZL),
Lui, u;] € Z(L),

Lui x]=y, [ui, y]=2x,

0#[x, yle ZL)  for i,j=1,2,..,n
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where n=dim L/N and 2 is not a square element in 0.

Proor. Since NDZ(L) by Theorem 1, we choose x in N\ Z(L). Then
(adx)’5~0 and therefore there exists u; € L such that (adx)’u,;=0. By
Theorem 1 we see that u, ¢ N. Put y=[u,, x] and z=[x, y]. Then ye N,
y ¢ (x)+Z(L) and 0=~z € Z(L). Therefore N=(x, y)+Z(L). By Lemma 4 we
have [u,, y] ¢ Z(L). Since

Exa [ula )f]] = [[xa ul]a y] = ["% y:] = 0:
it follows that
Luy, yl=2Ax+2', 2" € Z(L) with 140.

Replaéing x by x+2"12/, we see that
Luy, )=y, [uy, y1=2x, [, y]=z
with 0s£ze€ Z(L) and 21%0.
If dimL/N>2, choose u; € L, ¢ (u1)+N. And we write
Cus, ] =awx+Bry+ 2z,
[us y] = aex+B2y+ 23
Luy, uz]= asx +PB3y+ zs,

where z;¢ Z(L) for i=1, 2, 3. Then from [[ui, uz], x|+ [[us x ], ui |+
([, ui], us J=0 it follows that z.=p;z, @;=48, and a;=48;. From the above
formula with x replaced by y it follows that z;=—2"'azz. From [[us, 57, ¥
=[[us, y], x] it follows that a;+3,=0 and therefore a;=p8.=0. Hence we
obtain by changing the notations

Lus, 6] = toy+n12,
Lus, v = Atax +v2z,
Luy, us]= —x+vy+ 2, 2 € Z(L).
Replacing u; by us—vsx+4v;y, we have
Lusz )= tay, [us, y]= Az,
Lu, us] € Z(L).

We continue this procedure to choose us, uy, -, u, with n=dimL/N in such
a way that

L=C(ui, ugy -+, uy)+N,

[uia x:|=/tiy, [ui, _’)’]: Adix,
(u, ujeZ(L) for i=2,8,..,n.
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Now we have [, [ui, v;]]=[1v, [us, u;]]=0 for i, j=1,2, ..., n, from which
it follows that [u;, u;] ¢ Z(N)=2Z(L). Since (adu,)*=0, it follows that x; =0
for i=2,3,..., n. Hence we replace u; by x«;'u; to obtain

Luip )=y, [ui,y]=2x for i=1,2, ..., n.

If 2=’ in @, then (adax+ y)’=0. Therefore 1 is not equal to any square
element in 0.

Conversely, let L be such a Lie algebra as indicated in the statement.
Assume that v € N and (adv)*=0. Then v is expressed as v=ax+By+7,
z € Z(L). From (adv)’u,=0, it follows that 13*=a’. Therefore =0 and
a=0. Hence v € Z(L). Thus by Theorem 1 L is an (A,)-algebra. The proof
is complete.

In the remainder of this section we shall show that there is no solvable
(Ap)-algebra L such that dim N/Z(L)=3.

Lemva 5. Let L be a solvable Lie algebra such that
N=(x1, 23, x3)+Z(L), ue€L\N,
(u, x1]=x2, [u, 2o ]=a’%, [u,xs]=axs+z,
(o1, x2] =21, [%1, x3]=22, [%s ¥3]= —az
where z, z1, z2 € Z(L) and a=0. Then L is not an (A,)-algebra.

Proor. Assume that L is an (A.)-algebra. For every ve L, ¢ (u)+N,
we write

3
Lo, 1] = Zlaixi+w1,
=

3
[v, x5 ] = ‘z_\:‘lﬁixrf-wz,

where wy, ws€ Z(L). From [[u, v], %1 ]+ [[v, 1], u]+[[ %, u], v]=0 it
follows that
= ay=p and aaz=/f;.
Then
(ad — ax, + x2)?v = [ —ax; + 29, (@a; —B1)x1 + (@ —B2)x2 ]
= —alaas—B2)z1—(aay — B1)z1
=0.

Since it is immediate that (ad—ax;+ x2)*u=0, we have (ad—ax,+ x,)*=0,
which contradicts the condition (A;). Therefore L is not an (A;)-algebra,
completing the proof.
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Prorosrrion 4. Let L be a solvable (As)-algebra over a field @ of charac-
teristic 0. Then dimN/Z(L)=8. In particular, 1f dimZ(L)=1, then
dim N/Z(L) is not odd.

Proor. Assume that there exists a solvable (A,)-algebra L such that
dimN/Z(L)=38. Take x, ¢ N\ Z(L) and choose u ¢ L such that (adx,)’u 0.
Then uw¢ N. Put xy=[u, x,] and z; =[x, o |. Then x,¢ (x)+2Z(L) and
0=~z € Z(L). By Lemma 4 we see that [ u, x, ] ¢ Z(L).

Now suppose that [u, x2 ] ¢ (x5, x2)+ Z(L). Putting x3=[u, x, ], we have
N=(x1, x2, x3)+ Z(L). It follows that

(21, v3]=[x1, [u, x2]]
=[Lxw, wly 2]+ [u, Lo, 22]]
=0.
By using this fact we obtain
e =, 000, 2]

=[Lu, x3], x1]+[u, [x1, 45]]

€ [x1, N]+[u, N*]

= (21).

Put [ %, x3]=az and x';=x3+ax;. Then we have [ x,, 2’3 ]=0, from which
it follows that x'; € Z(W)=Z(L) and therefore x; € (x,)+ Z(L). This contra-
dicts our supposition.

We have thus [u, xs]€ (x1, x2)+Z(L). Choose a basis of Z(L) so that
Z(L)=(z1, z2, -+, zm). Since [ x1, [ u, x5 ]]=0, it follows that

[(u, xs]=Ax1+ % HiZi with 2=£0.
=1

Replacing x; by »,+27! % Mz, We have
i=1

Tu, 1 ]= 22, [u, xs]=2x1, [x1, ¥2]= 2.

We now choose x3 ¢ N, ¢ (x1, x5)+Z(N). Then N=(xi, x3, x3)+ Z(L). Put
3 mn
[:u, xgj = Z aix;+ Z a’izi,
i=1 i=1
]:xly .’XI3] = ~;131"31'7

m
Loz, 5] = ZthZi-
i=
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Then it follows from [[u, x5, x; |=[[ u, x; ], x3 ] for i=1, 2 that
C(l—lﬂl—as.')'l = 0, CK2+C¥331+T1 = O)
Bi= —asr, —asBi=7; for i=2.

Replacing x3 by x3+7111— B4, Wwe have

m
[ua 9C3:| = azx3+ Zlaf[izia
iz
m
(@1, 23]= Zzﬁ’izu
i=

m
L2 ¥3]= —a3 Zzﬁizf
i=

and 18;=aip; for i=>=2. If 2s~a}, then 3,=0 for all i=>2. Hence [ x3 N ]
=(0) and therefore x; ¢ Z(N)=Z(L), which contradicts the choice of x, If
A=a3, then a;=~0. Hence L satisfies the hypothesis of Lemma 5 and there-
fore L is not an (A,)-algebra, which contradicts our assumption. Thus the
first part is proved.

We now consider the special case where dim Z(L)=1. Choose x,e N\ Z(L).
Since dimN/Z(L)=>2 and x;, ¢ Z(N), there exists x»,c¢ N\ Z(L) such that
[x1, #2]5#0. Put[«xy, x2]=2 Then Z(L)=(z). Assume that we have al-
ready chosen xi, x2, -, x2, in N which are linearly independent over & and
such that

[Xon-1, Xop | = 2 for h=1,2, ...k,
L 2;]=0 for all other i<

~and furthermore assume that dim N/Z(L)>2k  Then choose yc N,
¢ (xh X2y vy ka)+Z<L) and put

wop1 = yt(—aexvitaiwe)+ o+ (—Quxa 1+ Qo 1%22)

where «; is such that [y, »;|= a;z. It follows that [xz:,1, x;]=0 for i=1,
2, ..., 2k. Since xz,.1 ¢ Z(N), we have dim N/Z(L)>2k+1 and there exists
X912 € N such that [ 24,1, 22,2 ]=2. Replacing xs;,, by a sum of x,,., and
a suitable linear combination of x,, x2, .-, 42, as above, we may suppose that
[%2r42, x; |=0 for i=1, 2, ..., 2k. Hence by using induction we can conclude
that dim N/Z(L) is not odd.

Thus the proof is complete.

§4.

Throughout this section we use the following notations for a Lie algebra
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ni=dimL/N, n,=dimN/Z(L) and n;=dimZ(L).

We shall then call L to be of type (ni, nz, n3). Owing to Theorem 1 we see
that for every non-reductive (A,)-algebra L n,>>1, n,=2 and n;>1. Hence
every 1 dimensional and 2 dimensional (A,)-algebra is abelian and every 3
dimensional (A,)-algebra is abelian or simple. By making use of the pro-
positions in the preceding section, we shall study the structures of the 4, 5
and 6 dimensional solvable (A;)-algebras.

As for the 4 dimensional (A;)-algebras we have the following

Prorostrion 5. The 4 dimensional non-reductive (A,)-algebras over a field
O of characteristic 0 are the following Lie algebras:
Ly,=(x1, x2, x3, x4) With the multiplication table

[x1, x2]=x3, [x1, x3]= Axz,
I:xza x3:|: X4y [xb x4:|=0
for 1=1,2,3

where 1 1s not a square element in 0.
Ly, and Ly, are isomorphic if and only if 142~ is a square element in 0.
When @ is the field of real numbers, every L, ts 1somorphic to L_.

1

Proor. Let L be a 4 dimensional non-reductive (A;)-algebra. Then L is
obviously of type (1, 2, 1). By Proposition 3 we see that L is equal to L, with
some A.

Assume that f is an isomorphism of L, onto L,,. Then f sends the nil
radical and the center of L, onto those of L,, respectively. Hence, denoting
Ly,=(y1, y2, ¥s, y1), We have

flx)= élauyf,

4
f(xt)z Zaijyj for i=2, 3,
ji=2

f(x4) = Q)4
Since the rank of f is 4, we have

22 Q23 =£0

o4
a11a44‘
3z Q330

From [ f(x1), f(x2)]1=f(xs) and [ f(x1), f(xs)]=21f(x2), it follows that

10ty = Aott11 (a3
A1ty = Q11 Ulap
Q33 = Aal11 23

(33 = 1122,
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Hence we have
(A —A08,) =0
Ay5(4 — Ayat,) = 0.

Since we cannot have ay,=a33=0, it follows that 1, =2,a%,.
Conversely, assume that for L, and L, , 1,4;'=a? with « € @&. Then a=0.
Define a linear transformation f of L, into L,, in such a way that

Sflx) =ay,
S(w2) = s,

Sflxs) = ays,
Sf(x) = ays

Then it is easy to see that f is an isomorphism of L, onto L,,.

When 0 is the field of real numbers, if 2 is not a square element then
2<0. Therefore every L, is isomorphic to L_;, and the proof is complete.

As for the 5 dimensional (A,)-algebras we have the following

Prorosition 6.  The 5 dimensional non-reductive (A,)-algebras over a field
O of characteristic 0 are the following Lie algebras:
1) The direct sum of a 4 dimensional non-reductive (Az)-algebra and the

1 dimensional Lie algebra.
(@2) L. ,=(x1, x2, x3, %1, x5) with the multiplication table

[xl, JC2] == lx5,
[xh xsj = [xz, xs:l = X4,
Loty 24]=[ %3, x4 ] = pxs,
[x3> x4] = Xs,
[xi, x5j =0 fO’I‘ l=1, 2, 3, 4
where u 1s not a square element in 0.
Ly, .., and Ly, ,, are isomorphic if and only if both A, and 2, are 0 or +0
at the same time and u,u;' 18 a square element in 0.

When 0 is the field of real numbers, every L, , is isomorphic to one of the
non-isomorphic (Az)-algebras Ly 1 and Ly, 1.

Proor. Let L be a 5 dimensional (A,)-algebra. Then by Proposition 4
L is either of type (1, 2, 2) or of type (2, 2,1). In the first case, by Proposi-
tion 3 we see that L is a Lie algebra in (1) of the statement. In the second
case, by Proposition 3 we see that L is one of L, , in (2) of the statement.
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Assume that f is an isomorphism of L, , onto L,,,,, where we write
Ly, =(15 72 ¥3, ¥4, ¥5). Since f sends the nil radical and the center of L, ,,
onto those of L,, ,, respectively, we can express f in the following form:

Zs}aijyj for i=1,2
i=1

flw) = jiaij y;  for i=3,4

s5 s for i= 5,
where

oy aaa! lass a34
(an azzl [0443 a44’

From [ f(x1), f(x3)]=f(x4) it follows that
as(Qtry + o12) = gy
H20t34(0011 + Q12) = Qus.
From [ f(x1), f(x4)]= 11 f(x3) it follows that
sy = pa0tau(@n+ iz)
11035 = tys(@y1+ Aa2).
Therefore we have
sz { 11—ty + 12)’} =0
s { 11— p(ctny + a12)’t =0.
Since 33 and a4 cannot be equal to 0 at the same time, it follows that
1= to(a +aaz).

By this equality together with #; =0, we see that a;, +a;:50. On the other
hand, from [ f(x1), f(x2)]= 41 f(xs), it follows that

azs(an + az) — (@ +Az2) = 0
(@ + i) — g +azz) = 0
Ao(Q11020 — Qt12031) + (130028 — Q14a3) = hiiss.
Therefore from the first two equations above we obtain
Q1324 — Q14023 = 0.
Then the last equation above becomes

Qiass = Aa(Qt110tan — t120l21).
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This shows that 1;,=0 if and only if 1,=0.

Conversely, assume that for L, , and L,, ,, both 1; and 2, are 0 or 0
at the same time and 4;x;'=a® with @ € @. 1In the case where 1,=1,=0, we
define a linear transformation of L, , into L,,,, in such a way that

f(x)=an
flx)=ay
S(x3)= y3t y
S(xg) = alu2ys+ v1)
S(xs) = a(l— ) ys.

Then the rank of f is 5, since the coefficient matrix of f has the determinant
a'(1—pu2)?*=~0. In the case where 1,50 and 1,=~0, we define a linear trans-
formation of L, , into L, ,, in such a way that

Jlay=an

fx)=Aa— 443" A — )} 1+ 2445 A —12) y2
f(x3) = y3+m

S(xa) = auays+ ya)

f(xs) = a(l—ﬂz)yr;.

Then the rank of f is 5, since the coefficient matrix of f has the determinant
a®l 23 (1 —p,)*=~0. In each case, it is easy to see that f preserves the multi-
plication and therefore f is an isomorphism of L, , onto L,, ,,.

If @ is the field of real numbers, then it is immediate that every L, , is
isomorphic to one of L, _; and L, _; which are not isomorphic.

Thus the proof is complete.

Finally we shall clarify the structure of the 6 dimensional (A,)-algebras
by restricting the basic field @ to the field of real numbers. We first show
the following

Lemma 6. The 6 dimensional (Aj)-algebras of type (2, 2, 2) over a field @
of characteristic 0 are the following Lie algebras:

(1) The direct sum of a 5 dimensional (A,)-algebra of type (2, 2,1) and
the 1 dimensional Lie algebra.

(2) Ly=(x1, %2, ---, x6) With the multiplication table

L1, %2] = x5,

[w1, 23] =[ 22, x35]= x4,
[x1, 24 |=[ %2, 24 | = Axs,
Lx3, %4 ]= x5,

[xs %;]=0 Sfor all other i<j,

where 1 is not a square element in 0.
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Ly, and L, are isomorphic if and only if 2,2;" is a square element in 0.
When @ s the field of real numbers, every L, s tsomorphic to L_;.

Proor. Let L be a 6 dimensional (A;)-algebra of type (2, 2,2). Then L
is solvable. Hence by Proposition 8 L is described by a basis x,, x2, ---, 26 in
such a way that

(%1, 22 ] = x5+ Bxs,

L1, 23] =22, x3]= x4,

[x1, 4] =[%2, 24]= A3,

[x3, %4 ]= x5,

(% x;,]=0 for all other i<;

where 1 is not a square element in @. If =0, then L is the Lie algebra of
the type indicated in (1) of the statement. If 3=~0, then we can take axs+
Bxs as new xg and L becomes the Lie algebra indicated in (2) of the statement.

Assume that f is an isomorphism of L, onto L., Writing L,,=(y1, y2,
-+, %), f can be expressed in the following form:

6
2 i Y for i=1,2
i=1

(=2}

f<x1>= Zal]y] fOI‘ 1:3, 4

ji=3

26 a,,y] for i=5, 6.
=5

Since the rank of f is 6, we have

la Qg | | sz Q] . |Qs5 Qs |
Qa1 Q22| Q43 a44) Qs aes‘

From [ f(x1), f(x3)]= f(x,) it follows that

ass(an +anz) = aus
Zottsa(a +az) = aus.

From [ f(x1), f(x4)]= 41 f(x3) it follows that

Mzs = Aataa(@11 + o)
hagy = ags(a + age).
Hence we obtain
as3{h —Ao(an +aiz)’} =0,
za{d— Ao(an +az)’} = 0.
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Since a335=0 or as, 7~ 0, it follows that
A = Ao+ ae)’

Conversely, assume that for L, and L,,, 2,4;'=a? with @ € @. Then we
define a linear transformation f of L,, into L,, in such a way that

fx)=«a N

fx)=ay,

f(xs) = y3+ v

Slx) =a(lays+ y1)

f(xs) =a(l —lz)ys

fxe) = ys.
The coefficient matrix of f has the determinant a®1—2,)*s~0 and it is im-
mediate that f preserves the multiplication. Hence f is an isomorphism of
L, onto L,,.

When @ is in particular the field of real numbers, every L, is obviously
isomorphic to L_;. Thus the proof is complete.

Lemma 7. The solvable (A.)-algebras of type (3,2,1) over a field @ of
characteristic 0 are the following Lie algebras:
L, = (%1, %2, ---, x6) with the multiplication table

[ %1, 22 ] = Ax6, [ X1, x3]=[%2 x3]=0,
Exh x4:| = Exz, x4] = [xs, x4] = Xs,
[x1, x5 ] =[x, x5 ] = [ x3, x5 ] = 24,
[ x4, x5 ] = %6,
[x;, 26 ]=0 for i=1,2 ...,5
where u is not a square element in 0.
Ly, ., and Ly, ., are isomorphic 1f and only ©1f both A, and 2, are 0 or 0
at the same time and u,u5' 1s a square element in O.

When 0 is the field of real numbers, every L, , is isomorphic to one of the
non-isomorphic (Az)-algebras Ly, and Ly ;.

Proor. Let L be a solvable (A,)-algebra of type (3,2,1). Then by Pro-
position 3 L can be described by a basis xi, x3, ---, x¢ in such a way that
Co1, 22 ] = aws, [21, ¥3]=Pxs, [x2, 23] =725,
(21, %40 =[ 22, 4] =[w3, 24] = x5,
(w1, 25 ]=[x9, x5]=[23, ¥5] = px4,
[x4, 25 | = %6, [ x4 26]=0 for i=1,2,...,5
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where # is not a square element in @.
First assume that «—p3-+7y=0. Then we assert that a=pF=y=0. In
fact, we put

x3talrxi—aBx; if a=0
y=1{ xz—F a1 —aB a3 if B0
x1—Br xstarlxs if r=~0.
Then [y, x:1]=Ly, x2]=[2, x3]=0,
aHa—B+7)xs=0 if a0
Ly, wal=( =B N a—B+1)xs=0 if B0
T a—B+1)xs=0  if 75~0,

and similarly [y, x5 ]=0. Hence ye€ Z(L) and therefore dim Z(L)>2, which
contradicts the hypothesis that L is of type (8, 2, 1). Therefore a=p=7y=0,
as was asserted.

Next assume that a—p+7+0. If a=~0, put

xi=ala—B+7r) Wxs+a lrx, —a 'Bx,).
Then [y, x5 =[x, x5]=0, (%}, x4 ]=x5 and [ x4, x5 J=ux, If f=~0, put
xy=—Bla—B+7) W (x,—B Yrx;—aBf 1xy).
Then [x,, x5 =[x}, x; ]=0, (x5, x, ]J=x5 and [ x}, x5 |=ux,. If y=~0, put
x1=r(@—=B+7)" (v, —Br 1wyt ar T xy).

Then [xi, x, |=[x1, x5]=0, [ %1, v, |=x; and [x{, x5 |=4x,. Thus, in any
case, we can change a basis so that two of «, 8 and y are 0. Finally by rear-
ranging x;, x,, x3 if necessary, we obtain #=y=0. Therefore L is one of
the L, ,. Thus the first statement is proved.

Assume that f is an isomorphism of L, , onto L,, ,. Writing L,, , =
(y1, ¥2 ---» %), We can express f in the following form:

Zejaijgfj for i=1,2,3
ji=1

f(x,)= Zelac,yyj for i=4, 5
/=4

Qs Yo for i=6.

Since the rank of f is 6, we have
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lan 12 A3 | Clag Qs
Qe | (21 a2 (K23 ‘a54 Qss #+0.
[asl Q32 Qs

From [ f(x;), f(x4)]=f(x5) for i=1, 2, 3, it follows that
i+ i+ ais)=ass
Ha0ys(atin + i+ aiz) = sy for i=1,2, 3.
From [ f(«)), f(xs)]=u1f(x4) for i=1, 2, 3, it follows that
1104 = po0lss(i1 + iz + lis)
mogs= s+ i+ aia) for i=1,2,3.
Hence we have
st — oo+ apn+as)’y =0
Aus{tm— pain+ i+ ais)’t =0
for i=1,2,3.
Since a4, =~0 or ays=~0, it follows that
1= o+ st ais)?, i=1,2,3.
We have also
au{(an+an+ais)— (@ +ae+as)} =0
auf{lan+antais)— (@ +a+ass)}t =0
a45{(a11+a12—|—a13)—(a21—|-a22+a23)} =0
ags{(an +a+ais)— (s +ass+ass)t = 0.
From these and the fact that aus ass—aus ass==0, it follows that

Q1+ Az i3 = Qo+ Qe+ Aoz = 31+ A3z + Ass.

From [ f(x), f(x2)]=f(xs) and [ f(x1), fx)]=[f(x2), f(x)]=0, it follows
that

(a1 + 12+ aas) — ar(aar + o+ aas) = 0
Aas(ar + a2+ ars)—aas(@or + Aaa+as) = 0
gl +an+ais)—au(as +as+ass) =0
azs(o+ae+ans) —ars(as s +ass) =0

a34(Ql21 4 Aoz + Aa3) — Aau(as1 + sz +t33) = 0
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ass(Cta1 + o+ o) — atas(@ar + sz + atss) = 0
Ao @110z — 120a1) + (145 — Q1sQ24) = A1Cls
Ao(0110t32 — A12031) + (Q1a0tas — A150se) = 0
Aa(a10t35 — Clza0ts1) + (QXzalss — 2slas) = 0.
Since a;; + s +a;3==0 for i=1, 2, 3, it follows that
Q14025 — Q150 = 0
Q14035 — X153y = 0
Q24035 — 2534 = 0
and therefore
Ao(@11@as — Q120la1) = Ailes
Ao(@t10t3 — ct12t31) = 0
Ao(Q1t3p — Qlzptsy) = 0.
If we denote
jaﬁu Q1p 13
D= amn az axs',
|31 A3z (33|
then
D = (a1 + s+ arg){(@n ez — a1o0z) — (@102 — Q12Qa1)
+ (210032 — Xa2t31)} .
It follows that
Aies = Ao(a1 + a2+ ais) ' D.

Since ag6D == 0, we conclude that 1;,=0 if and only if 1,=0.

Conversely, assume that for L, , and L,,,, both 4, and 1, are 0 or <0
at the same time and x,4;'=a® with a ¢ @. In the case where 1,=2,=0, we
define a linear transformation f of L, ,, into L,, ,, in such a way that

fla)=an
f(xz) =Qay
Sflxs) = ays

(@)= yit+ ys
S(xs) = a2 ya+ ys)
f(xe) = a(l—ﬂz)ye.
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The rank of f is 6, since the coefficient matrix of f has the determinant
a’(1— p2)* 0.

In the case where 1,0 and 2,0, we define a linear transformation f
of L,, ,, into L,, ,, in such a way that

S(x) = 2425 A=)+ {a— 2,25 A — n2)} v,
flaa)=ay,

flxs)=ays

S =yt ys

S(xs) = alp2ys+ ys)

Sflxe) = a(l—u2) ¥.

The rank of f is 6, since the coefficient matrix of f has the determinant
a'l A3 (1—p,)3 0. It is easy to see that in any case f preserves the multi-
plication. Therefore f is an isomorphism of L, , onto L,,,,.

When @ is in particular the field of real numbers, it is immediate that
every L, , is isomorphic to one of the (A;)-algebras L, _; and L; _;, which are
not isomorphiec.

Thus the proof is complete.

Lemma 8. The (Ay)-algebras of type (1, 4, 1) over the field @ of real numbers
are the following Lie algebras:
1) Ly,,=(x0, %1, -, x5) With the multiplication table
Loy %1] = 2,
[x0, X2 | = Ax1,
[0, 23] = 24,
(%0, %4 | = Uxs,
L1, x2]=[x3, x4] = ws,
(% 2;]=0 Sfor all other i<j
where 1<0 and 1 <0.
(2) Ly,.=(x0 x1, -, x5) with the multiplication table
Loy #1]= 23,
(20, ¥2]= Aw1+ a3,
Lo, %3] = 4,
[wo, 4] =va1+ pxs,

I:xl, xz:l = X5, [x39 x4:| = VXs,

[xi, 2, ]=0  forall other i<j
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where 2<0, £<0 and 0<y<au.

Proor. Let L be an (A,)-algebra of type (1, 4,1). Take x, € N\ Z(L).
Then there exists xo€ L\ N such that [ x;, (%1, x0]]5=0. Put x:=[xo, x1]
and xs=[x;, x2 . Then x, € N\ Z(L) and Z(L)=(xs).

Case I. [ xo, x2] € (%1, 22, x5): We write

[wo, %2 ] = Ax1+ 422+ Vx5,

Then from [[xo, 2], 21 ]=[[ %0, %1, x2 ] it follows that #«=0. If 1=0, then
(ad x3)?=0. Therefore A=0. Replacing x; by x,+1 'vxs, we may suppose
that

[x0, 22 ] = A%1.
Take ye N\ (x1, 2, x5). When [y, x1 |=a1xs and [y, x2 |=asxs, we put
X3 = y—ale—l—alxz.

Then [xs, x1:|= [xs, x2:|= 0. Put x4=[x0, x;;]. Since Exg, I:xg, xojj#(), we
have x4 € N and [ x3, x4 |=axs with «=~0. It follows that N=(xy, %3, ---, xs).
We infer

[x4, x1]=[[x0, %3], 1]
=[Lwo, 1], #3]+[wo, L3, %1]]
=[xz, 23]
=0

and similarly [ x4, 2 ]=0. We write
5
[x0, x4 ]= glaix;.

Then from [[ xo, x4 ], x; |=[[ %0, xi ), x4 for i=1, 2, 3, it follows that a;=a»
=ay,=0. Since [ x4, [ x4, x0]]7#0, we see that a;5<0. Replacing x; by
x;+aztasxs and a; by 4, we have

[x0, x4 | = ttx3 with #=~0.
Thus the structure of L is described by a basis xo, x1, ---, x5 as follows:
[x0, 21 ]= %2, [0, %2 ]= A271,
[xo0, 23] = %4, [ X0, X4 ] = Ux3,

[x1, 22 ] = x5, [ %3, x4]= aws,

(i, %, ]=0 for all other i<;
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where «=~0, 10 and x=~0.
Furthermore we have 1<0 and #<0, for if 2>0 then (ad Lwy+ %22 =0
and if £>0 then (ad s x3-+x4)*=0. If <0, then

(ad (—a) x1+(an) v+ xs +(_,1)"’x4)2= 0.
Hence « must be >0. Now we may take a=1, since by replacing x; and x

by a_%xg and ac_%x4 respectively we have the same multiplication table with
the exception that [ xs, x4 ]J=xs5. Thus L has the form indicated in (1) of the
statement.

Case II. [ o, 2] ¢ (x1, %2, x5): Put y=[xo, x2]. Then it is immediate
that [y, x;]=0. We put [y, xo]=24x5 and x3= y—2x:. Then we obtain

[x0, 2= Ax1+ x5, A5~0,
[x3, x1]=[x3, x2]=0.

We next put xs=[x¢, x3]. Then [ x3, x4 |[=vxs with v=~0. It is immediate
that

[x4, 21 |=[ 24, 22 |= 0.

Now let us write
5
[ %o, x4 ]= glﬂixi-

Then from [[ xo, x4 ], x; |=[[ %0, x: ), x4 ] for i=1, 2,3 it follows that 5,=v
and B;=R,=0. Since [ x4, [ %4, %050, it follows that 335~0. After replac-
ing x¢ by xo—Bsv lx3, we change the notations to see that L is described by a
basis xo, x1, ---, x5 as follows:

[ %o, 1] = %2, [ %0, x2] = Ax1+ x3,

[x0, x5 ]= x4, [ X0, x4 ]=vx1+ 153,

(o1, x2]= x5, [ 23, x4 ]=vas,

(2 2, ]1=0 for all other i<;
where 240, #==0 and y=~0.

Furthermore we have 1<0 and x<0, for if 2>0 then (adl§x1+x2)2=0
and if #>0 then (ad z# x;+x,)>=0. Since L is an (A,)-algebra, (a1, as, a3, as)

0 implies (ad 3 a;x:)2 == 0, that is,
i=1

a?+vai+(—ia— 2,0, — mai) 0.
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Put f(a,, a,) = —ia}—2va,a,—maj. If f (a, a,)<0 for some (asz, as)+0,
we take a; and a; so that
ar=(—fla, 6154))1z and a3;=0.

Then we obtain («;, a,, as, @) %0 and a?+vai+ f(a,, a,)=0. Hence we have
Sflaz, as)>0 for every (as, as)=~0, that is, f is positive definite. It follows that

—mw>0 and Auy—»*>0,

and therefore 0<y<Ax. Thus L has the structure indicated in (2) of the
statement.

Conversely, if L is L, , or L, , ,, then it is easy to see that L is an (A,)-
algebra.

Thus the proof is complete.

Lemma 9. Under the notations in Lemma 8, every (A)-algebra L, , 1s
1somorphic to one of the non-isomorphic (Az)-algebras L_; y where —1 <6<0.

Proor. Assume that f is an isomorphism of L, , onto L,,,.. We here
write Ly, ,,=(yo, y1, ---, ¥5). Since f sends the nil radical and the center of
L,, ., onto those of L,, ,, respectively, we can express f in the following form:

5

f(xo) = j;oafoj:yj

fla)=Nayy for i=1,23,4
i=1

S(xs5) = ass ys.
From [ f(x), f(x1)]=f(x2) it follows that
Qa1 = AaQgotlz
Q22 = QgoQl11
Qo3 = Uallool1s
Q24 = Qgot13.
From [ f(xo), f(x2)]= 21 f(x1) it follows that
At = AoQlgoiaz
A1t = Qooan
1013 = Haooti24
Q104 = Qolas.

Hence we have
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ay, (A, —Aak)=0
(A —2ak) =0
&y 5(Ay— pa8) =0
(A, — 0t ) = 0.

In a similar way, from [ f(wo), f(x3)]=Ff(xs) and [ f(xo), f(xs)]=p1f(x3), it
follows that

Ay = Agoolsy
Ay = Aoy
Q43 = Ualgolsy
gy = Agoll33
and also
o3 (U —Apa50) =0
A3yt — o) = 0
Qga(py— 1y050) = 0
gyt — Upde) = 0.

If A, —2,03,%<0 and 1, —pu,ad,#0, it follows that a;;, =a;,=a,;=a,, =0.
If 2, —2,a,5=0 and p, - 2,a3,=~0, it follows that «,,=a,,=a;,=a,,=0 and
therefore o, =a,,=a,, =a,=0. If 2, —u,ad,#0 and u,—u,ad,=~0, it
follows that a;;=ai=as;=a3=0 and therefore as=au=au=au=0. If
s— 2,08, 70 and u, — u,ak, =0, it follows that as=az=as;=a3=0. Thus
in any case we see that

[ Qpz A3 a14!
Qa1 Olap (a3 Qzg -0
(31 3z (X33 3y
f0y1 Oy Oz Olyy

and therefore the determinant of the coefficient matrix of f equals 0, which
is impossible since f is an isomorphism. Hence, if 1, —2,a,0 or u, —#,ad,
=0, we have necessarily 1, — u,a?, =0 and #, —,a?,=0. Thus we obtain

=gy = py—pfy =0, or
A= sty = 1y — Ay = 0.

Since «,, =0, it follows that 2,4, =, u;" or 2,43 =251 1,.
Conversely, assume that for L, , and L.,,, we have A,A;'=x ;' or
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ipuzt=2;'¢,. In the case where 1,4;'=u, 5", we put az(lllgl)?. Then 2;,=
a’l, and sy =a’y,. Define a linear transformation f of L, , into L,,,, in
such a way that

flxo)=ay,

Fa)= pt(—m) s
Flo) = aldol— 1) 31+ 32}
fwD = ot (1) 5
frd) = (=) iy yat 32}
Flws) = a(1+2,4) ys.

Then the coefficient matrix of f has the determinant a*(1+42,4,)°>0, and it
is easy to see that f preserves the multiplication. Therefore f is an isomor-
phism of L, , onto L,, ,,.

In the case where 1,4, = 1;'4,, we put az(llﬂgl)ﬁ. Then 2, = a’u, and
u,=a*l,. Define a linear transformation f of L, ,, into L,, ,, in such a way
that

fxo)=ay

Fa) = yot (=) 3
flwg) = (=) 3+ y2}
flag) = y1+(—/11)%y2

f(x4) = a{(—‘h)i}/{zyﬁ‘ yz}
f(xs) = a(l‘l‘hiz)ys-

Then it is easy to see that f is an isomorphism of L, , onto L, ,,.

Thus in order that L, , and L,,,, are isomorphic it is necessary and
sufficient that 2,1, =145 or Aypte= 241,

We now see that L, , is isomorphic to L_; _,,-1 if 2=# and to L_; -1,
if 2<<u. Hence every L, , is isomorphic to one of L ;, with —1<<6<0. It
is immediate that L_; , with —1 <6< 0 are not isomorphic for different 0.

Thus the proof is complete.

Lemma 10.  Under the notations in Lemma 8, every (A,)-algebra L, , , is
isomorphic to one of the (A,)-algebras L, ..

Proor. Let L,,, be an (A,)-algebra in the statement (2) of Lemma 8.
We consider the following equation:

Qu—v)x*+Q+uw)x+1=0.
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Since y>0, it is immediate that the equation has two different roots in @.
Since 1<0, #<0 and Az—y >0, their sum and product are both positive. Let
us denote by «? the larger one of them. Then by making use of the fact that
2<0 and 0<y<ax, we can show that a?2+1<0. Put 4,=-—1 and u,=
a’(A+u)+1. Then u#;<0. We have also ;. In fact, if 1,=px;, then
a*(2+ )= —2 and therefore a’4+1= —a?A—1. Hence

aly = (@2+1)(a®u+1)
= —(a®1+1)*
<0,

which contradicts the fact that y>0. By the definitions of 4, and x;, we have
obviously

aty = (@®2— ) (@Pu—1)
= —(a?2—2)(a*2— u1)
= (a®2— ) (@ u—m).

Thus we can choose two non-zero real numbers 52 and y satisfying the condi-
tion

BHaA— 1) = —rH(a®A— py).

Writing L, ,..=(y, y1, -, ¥s), we define a linear transformation f of L, .,
into L, ,,, in such a way that

f(wo)=ayp

fx1) = a 2By Hay y1 — (a®A— 1) y3}

flx2) = a By Py y,— (a®A— 1) ya}

Sflxs) = a Py Hay y1 — (@2 — 1) ys}

flxo)=a ' Havy,—(@®2— ) yu}

fxs) = —a 8% (A — m1) (@PA— ) ys.

Then the coefficient matrix of this transformation has the determinant
—a B (A — )@ — ) #0.

Hence the rank of fis 6. We have to show that f preserves the multiplica-
tions. By making use of the product expressions of a’y and the equality de-
fining 8 and 7, we have the following equalities:
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Lf(x0), f(x1)]= a_lﬁl’_lfym CVZV}ﬁ—(az/I— ) ys]
=a By Hat y,—(@®2— A1) yi}
= f(x2),
[ f(x0), fla2) )= By yo, @’y — (@®2—20) 34 ]
=By Ha WAy + y3) —(@P2— )V y1+ 1 y)}
= a2y Py +aty ys— P (et — A1) s}
= a 2Py H{atAw y — (P — 1) 3}
=uf(x1),
Cf(xa)s flaa)]=a 'y 'L yo, &Py i —(@®2— 1) 3]
=a 'y Halyy—(@*A— ) yi}
= f(x4),
Lf(xo), f(xa)]= TV_I[}’O’ azvyz —(a?d— 41) ys ]
= Ha WAy + y3)— (@ 2— )y + 1 y3)}
= a Py ety i+ aty ys— P (e — ) ys}
= a Yy ol uw y — (oA — py) s}
= m1f(x3),
[ f(x0), fx)]=a B [a®vy1 —(@*A— A1) ys, @y ys—(@*2— A1) y4 ]
=a v Halvys+(aPd—40)7 ys}
= —a 3B (A — ) (@ 2A—2A) s
:f(xs),
Lf(x), f(x3)]=0,
[f(0), flan]=aBrv ey yn—(@®2— 1) ys, &’y yo—(@*2— 1) yu ]
=a By Haly ys+(@?2— ) (@2 — 1) ys}
=0,
[ f(w2), f(x3)]= a_sﬂTVz[anyz —(a®2— A1) Yy azuyl —(a’d— 21) Y3 ]
= —a By Hay ys + (@PA— L XA — 1) ys}
=0,
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[f(2), flx)]=0,
[ flws), f(x)] = @ 32 [Py — (@P— 1) ys, &%y, — (@PA— 111) 4]
=a v Hatvys +(@*d—m) ys}
= a7y (= m)(@*2— ) ys
= —a B (—m)(@PA— 1) ys
= f(xs),
LfCxa), fxs)]=0 for i=0,1, ..., 4.

Thus we conclude that f is an isomorphism of L, , onto L, , ..
The proof of the lemma is complete.

Remark. The multiplication tables of the (A)-algebras L, , and L, ,, in
Lemma 8 define (A,)-algebras over the field of rational numbers when A, u
and v are especially rational numbers. Let us denote them by L}, and L¥,,
respectively. We here note that, contrary to the assertion in Lemma 10, L} . ,
is not necessarily isomorphic to any one of the L¥ ..

Assume that there exists an isomorphism f of L, onto L*, ,,. Writ-
ing L*, ;=¥ ¥, --» ¥s), Wwe can express f in the following form:

5

S(xo)= Jgoaof'yf

fx)=Sayy for i=1,2 34
i=1

Sfxs) = ass ys.
From [ f(xo), f(x1)]=f(x;) it follows that
o1 = oo — 12+ 14)
Qa2 = Qo1
Qa3 = ool12— 20014)
Qg4 = Qo013
From [ f(xo), f(x2)]=4f(x1) it follows that
Aat; = oo — Aaz+ A2s)
A1y = Qoo
Aotz = Aoo(@ae — 20¢24)

A4 = Qpollas.
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Hence we obtain

a(A+ak)—ado, ;=0

a,(Atak)—ade,, =0

adoa,— o s(A+203) =0

adoot,— oty (A+2aky) = 0.
If any=a,=ai3=a1,=0, then the rank of f is not 6. Hence some of ai1, a1z,
ay3 and ay4 are not equal to 0. It follows that

A+at)A+2a3,)—ad,=0
and therefore
243ad,+ag, = 0.

It is however immediate that there are no rational numbers 1 and «,, satisfy-
ing the equality above, which is a contradiction. Thus L*; _,, is not iso-
morphic to any L§,.

Finally, by making use of the preceding propositions and lemmas, we
shall determine the structure of the 6 dimensional solvable (A,)-algebras over
the field of real numbers in the following

Prorosition 7. The 6 dimensional non-abelian solvable (A,)-algebras over
the field of real numbers are, up to isomorphism, the Lie algebras described by
a basts xy, x3, -, x5 With the following multiplication tables.

D): [y, x2]=2xs, [x1, 23] = — a2,

[xz, xs] = X4.

(2). [xl, x2:| = lx5,
Exl, x3:] = ExZa x3] = X4,
L1, 24] =[xz, x4]= — 3,

[x3, %4 | = %5 with 2=0, 1.
(3): Exb x2:| = X,

Exls x3:| = [xZ, x3:| = X4,
Exb x4] = Ex23 x4j = X3
Exs, x4] = Xs.
4): [x1, x2]= uxe,
Exly x4] = [xZ, x4:| = [x3) x4] = X5,

L1, x5]=[ 22, x5 = [23, ¥5]= — x4,

[ x4, x5 ]= %6 with ©=0, 1.
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(5>!' Exla xz:‘ = X3, [xh xS] = T X2,
[x1, #4]= x5, [ 21, ¥5]= vy,

(%3, x3]=[ x4, x5] = x¢ with —1<p<0.
Here in each of the tables [ x;, x,]=0 for all i <j if it is not in the table.

Proor. Let L be a 6 dimensional non-abelian solvable (A;)-algebra over
the field of real numbers. Then n,>1, n,=>2 and n;>1. By Proposition 4
we have the following cases:

1
2

n=38, ny=2, nz=1;
1, n:=4, ny=1

In the first case we have the table (1) by Propositions 3 and 5. In the second
case we have the tables (2) and (8) by Proposition 6 and Lemma 6. In the
third case we have the table (4) by Lemma 7. In the fourth case we have
the table (5) by Lemmas 8, 9 and 10. The proof is complete.
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