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Introduction

In the previous paper [T], we have given an estimate for the dimension-
ality of the derivation algebra of a Lie algebra L satisfying the condition that
(ad x)2 = 0 for x e L implies ad x = 0. Such a Lie algebra will be referred to
as an (A2)-algebra in this paper according to the definition given in Jδichi
pΓ|, which investigates the (A^)-algebras, k I> 2, with intention to obtain the
analogues to the (A)-algebras. He showed that the (A2)-algebras have a
different situation from the other classes of (A^)-algebras, k 2>3. But the
problem of characterizing the (A2)-algebras remains unsolved. The purpose
of this paper is to make a detailed study of this class of Lie algebras.

It is known [3] that every semisimple Lie algebra over the field of com-
plex numbers contains no non-zero element x with (ad x)2 = 0. We shall show
that every Lie algebra over a field Φ of characteristic Φ 2 whose Killing form
is non-degenerate has the same property. By making use of this result we
shall show that, when the basic field Φ is of characteristic 0, L is an (A2>
algebra if and only if every element x of the nil radical iVsuch that (ad#)2 = 0
belongs to the center Z(L), and if and only if L is either reductive, or
L^N^Z(N)=Z(L)^N2φ(0) and (ad #)SM) for any xeN\Z(L). This charac-
terization will be used in classifying certain types of solvable (A2)-algebras.
A solvable (A2)-algebra is not generally abelian. We shall show that if Φ is
an algebraically closed field of characteristic 0, then every solvable (A2>
algebra over a field Φ is abelian. The latter half of the paper will be devoted
to the study of solvable (A2)-algebras, in particular, to the study of solvable
(A2)-algebras L such that dim N/Z(L) is 2 or 3 and of solvable (A2)-algebras of
low dimensionalities.

§1.

Throughout this paper we denote by L a finite dimensional Lie algebra
over a field Φ and denote by R, N and Z(L) the radical, the nil radical and the
center of L respectively.

Following the terminology employed in pΓ], we call L to be an (A2)-algebra
provided that it satisfies the following condition:

(A2) Every element x of L such that (ad^)2 = 0 satisfies ad# = 0, that is,
belongs to Z(L).

We first quote a result shown in Theorem 1 in [2] as the following
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LEMMA 1. Let L be an (A2)-algebra over a field of arbitrary characteristic.
Then L is nilpotent if and only if L is abelian.

By making use of the lemma, we show a necessary condition for L to be
an (A2)-algebra in the following

PROPOSITION 1. Let L be an (A2)-algebra over a field of arbitrary charac-
teristic. Then either R = Z(L) or

PROOF. Let I be a non-abelian (A2)-algebra. Then by Lemma 1 I is
not nilpotent, that is, LφN. For every x e Z(N\ we have [>, [_x, 2ΓQ£D&> ^
= (0). From the condition (A2) it follows that x e Z(L). Hence Z(iV)£Z(£)
and therefore Z(N)=Z(L).

In the case where N=Z(L), if RΦ(0\ choose an integer n such that
jR<»> = (0) but R^-VφiO). Suppose n^2. Since &»-» is an abelian ideal of
L, we have R^^N. It follows that (R(n~2ψ = (0). Hence R(n~2) is a nil-
potent ideal of L and therefore R(n~2)^N. It follows that R(n-ι) = (0\ which
contradicts the choice of n. Thus R(1) = (0) and therefore R = N=Z(L).

In the case where NφZ(L\ we have N2φ(0\ for if N2 = (0) then N=Z(N)
— Z{L). The fact that N3 = (0) can be shown as in the proof of Theorem 2 in
[2]. It follows that N2^Z(N)=Z(L). Thus the proof is complete.

We shall next show a sufficient condition for L to be an (A2)-algebra. It
has been observed in [3] that every semisimple Lie algebra over the field of
complex numbers contains no non-zero element x with (ad#)2 = 0. We prove
this assertion for a more general class of Lie algebras in the following

LEMMA 2. Let L be a Lie algebra over a field of characteristic Φ 2 and
assume that the Killing form of L/R is non-degenerate. If (ad x)2 = 0 for xcL,
then x e R.

PROOF. We first consider the case where L is semisimple. Suppose that
(ad#)2 = 0 for x e L. This means that [>, [>, j J ] = 0 for every yc L. Put-
ting X=ad* and F=ad j , we have X2 = Q and [X, [X, YJ] = 0. Since

[X, [X, YJ] = X2F-2XFX+ 7X2,

it follows that XFX-0. Hence (XY)2 = 0. Denoting by B the Killing bili-
near form of Z,, we see that B(x, y)=0 for every γc L. Since B is non-
degenerate by our hypothesis, we have x = 0.

We now consider the general case. Suppose that (ad^)2 = 0 for x e L.
Put L = L/R and denote by x the element of I corresponding to x. Then
(ad^)2 = 0. Since I is semisimple, we have ^ = 0 as shown in t}ie first case.
This means that x c R, completing the proof.

PROPOSITION 2. Let L be a Lie algebra over a field of characteristic Φ 2.
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// L is the direct sum of an ideal which has the non-degenerate Killing form
and of the center, then L is an (A2)-algebra.

PROOF. If L is such a direct sum, then the radical coincides with the
center. Hence by Lemma 2 L is an (A2)-algebra.

Now we restrict the basic field Φ to a field of characteristic 0. Then we
can derive the following characterizations of (A2)-algebras from the above
results.

THEOREM 1. Let Lbea Lie algebra over a field Φ of characteristic 0. Then
the following statements are equivalent:

(1) L is an {A2)-algebra.
(2) Every element x of N such that (adz, χ)2 = 0 belongs to Z(L).
(3) L is either reductive, or

and (ad/, x)2φ0 for every x c N\Z(L).

PROOF. Since the basic field Φ is of characteristic 0, N is the set of x e R
such that adz.# is nilpotent. Hence Lemma 2 tells us that if (ad#)2 = 0 for
x c L then x e N. Therefore (1) and (2) are equivalent. From this equivalence
and Proposition 2 it follows that (3) implies (1). The assertion that (1) im-
plies (3) is a consequence of Proposition 1.

COROLLARY 1. Let L be a Lie algebra over a field of characteristic 0 and
assume that Z(L)=Z(R). If R is an (A2)-algebra, then L is an (A2)-algebra.

PROOF. The statement is immediate from the equivalence of (1) and (2)
in Theorem 1 and the fact that the nil radicals of L and R are identical.

COROLLARY 2. Let Lbea non-nilpotent Lie algebra over a field Φ of charac-
teristic 0 such that

[_xh XjJ = [>,-, yi] = [y, , yy] = 0

for all ίφj.

Assume that for every i = l,2---,n, there exists an element u{ of L\Nsatisfying
the following conditions:

[_m, XiJ = yi9 [>, , yi] = λiXi,

[uu xy], Of, jy] a Z(L) for any jφi,

where λ{ is not a square element in Φ. Then L is an (A2)-algebra.
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PROOF. Suppose that x e N and (adz, χ)2 = 0. Then % is expressed as

x = ΣiaiXi + fayd + z, z e Z(L).
i = 1

By using our assumption we obtain

[>, [>, ujJl = (λjfi-aήKxj, yβ = 0

and therefore λjβ
2

j = a2

j for y = l, 2, ..., n. Since λj is not a square element in
Φ, we have βj = O and therefore <Xj = 0. Hence # 6 Z(L). Thus Z satisfies the
condition (2) in Theorem 1. By Theorem 1 I is an (A2)-algebra, completing
the proof.

We note that the examples of solvable (A2)-algebras shown in [2] and [4]
are those of the (A2)-algebras formulated in Corollary 2.

§2.

L is called split \ΛΓ\ provided that it has a splitting Cartan subalgebra,
that is, a Cartan subalgebra H such that the characteristic roots of every
ad A;, x 6 H, are in the basic field Φ. It is known that every Lie algebra over
an algebraically closed field is split. For split (A2)-algebras we first show
the following

LEMMA 3. Let L be a split (A2)-algebra over a field Φ of characteristic Φ2.
Then L2 is nilpotent if and only if L is abelian.

PROOF. Assume that L2 is nilpotent but L is not abelian. Then L is not
nilpotent by Lemma 1. Since L2 is a nilpotent ideal of L, we have L2(^N.
Let H be a splitting Cartan subalgebra and let L=H+ ΣiLa be the decomposi-

a

tion of L to the root spaces. Then it is immediate that La^L2<^N for every
root aφO. Choose a non-zero root β and let k be an integer such that 2kβ
is a root but 2k+1β is not a root. Put γ—2kβ and choose a non-zero element x
of Zγ. Then

We have 7V3 = (O) by Proposition 1 and [_LΎ, L 7] = (0) since 2γ is not a root.
Hence (adx)2 = 0. Since L is an (A2)-algebra, it follows that x e Z(L) and
therefore x e H, which contradicts the choice of x. Thus we conclude that if
L2 is nilpotent then L is abelian.

In virtue of Lemma 3, we have now the following characterization of
split (A2)-algebras.

THEOREM 2. Let L be a split Lie algebra over a field Φ of characteristic 0.
Then L is an (A2)-algebra if and only if L is either reductive, or
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IOΛ ^ N^Z(N) = Z(L)^N

and (ad Λ;)2 φ 0 /or ever?/ # e N\Z(L).

PROOF. In the case where the basic field is of characteristic 0, Lemma 3
says that a split (A2)-algebra is solvable if and only if it is abelian. There-
fore if L is a split (A2)-algebra over a field Φ, then we have the statement (3)
in Theorem 1, in the second case of which L is not solvable. Thus the theorem
follows from Theorem 1.

§3.

In this and the next sections we shall study the solvable (A2)-algebras
over a field Φ of characteristic 0 as an application of Theorem 1. As seen
from Theorem 2, if Φ is algebraically closed, then every solvable (A2)-algebra
is abelian. Hence, throughout these sections, we shall assume that the basic
field Φ is of characteristic 0 and not algebraically closed unless otherwise
specified.

This section is devoted to the study of solvable (A2)-algebras L such that
dim N/Z(L) = 2 or 3. First we prove the following

LEMMA 4. Let L be a non-abelίan solvable (A2)-algebra. If [_u, xj $ Z(L)
for u c L and % e TV, then [>, £u, x~J] $ Z(L).

PROOF. Assume that [>, [_uy χ~J] e Z(L) for u a L and x e N. Put y=

x ~]. Then by using the fact that 7V2^Z(L), for every v e L we have

(ad yfυ = [j, [[>, xj, vj]

= [ j , [u, lx, vJJl + ly, \Σu, vΊ, x

= (0).

Thus (ady)2 = 0 and therefore by the condition (A2) ye Z(L). This completes
the proof.

PROPOSITION 3. The solvable (A.2)-algebras L over a field Φ of characteristic
0 such that dimN/Z(L) = 2 are the following Lie algebras:

uh χ^\ = y, [ui, y] = λx,

for i , / = l , 2 , . . , Λ
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where n = dimL/Nand λ is not a square element in Φ.

PROOF. Since NZ)Z(L) by Theorem 1, we choose % in N\Z(L). Then
(adxf φ§ and therefore there exists uxeL such that (ad^) 2 wi^0. By
Theorem 1 we see that m i N. Put y=[_uu x~] and z = [_x, y}. Then ye TV,
γt(x) + Z(L) and Oφze Z(L). Therefore N= (x9 y) + Z(L). By Lemma 4 we
have [uι, y] § Z(L). Since

[>, [>i, j ] ] = [£x, u{], y] = [ - j , y] = 0,

it follows that

Oi, yl = λx + z\ z 6 Z(L) with

Replacing Λ; by x-\-λ~ιz, we see that

O i , x~] = y, [_uu y] = AΛ;5 [Λ;, J ] = z

with 0 ^ 2 6Z(I) and λφO.

If dimL/iV^2? choose w2 6 L, ί (wi) + 7V. And we write

25 y] =

where Zi e Z(L) for i = l ? 2? 3. Then from [[u 1 ? u2~\, ΛJ] + [[W 2 ) Λ;]5 MIU +
[[Λ;? M J , W2H = 0 it follows that z2 = βzz, ax=β2 and α 2 = A/9i. From the above
formula with # replaced by y it follows that * i = — ̂ " ^ ^ From [[ι^2, ^H, j ]
= [[u 2 , j ] , x ] it follows that αi + /?2 = 0 and therefore <Xι=β2 = 0. Hence we
obtain by changing the notations

2, y] =

[_uι, uf}= —λ»ιx + v2y+z\ z 6 Z(L).

Replacing u2 by u2—v2χ + »ιy, we have

[>2, y] = λβ2x,

uf\ e Z(L).

We continue this procedure to choose u39 uA, ..., un with n = &\mL/N in such
a way that

I, ui] e Z(L) for i = 2, 3, ..., n.
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Now we have [>, [>/, Uj~J] = J[_y, \jn, uj~J] = 0 for i, / '=1, 2, • ••, n, from which
it follows that [> f , uf] c Z(N) = Z(L). Since ( a d ^ ) 2 ^ 0 , it follows that /aΦO
for i = 2, 3, , n. Hence we replace u{ by βJιUi to obtain

[.UiixJ=y9 Lui,χ] = λx for ί = l, 2, •-, n.

lί λ = a2 in 0, then (ad ax + j ) 2 = 0. Therefore A is not equal to any square
element in Φ.

Conversely, let L be such a Lie algebra as indicated in the statement.
Assume that v e N and (adi;)2 = 0. Then v is expressed as v = aχ + βy+z',
z' eZ(L). From (&dυ)2

Ul = 0, it follows that λβ2 = a2. Therefore ^ = 0 and
a=0. Hence v e Z(L). Thus by Theorem 1 L is an (A2)-algebra. The proof
is complete.

In the remainder of this section we shall show that there is no solvable
(A2)-algebra L such that dim iV/Z(L) = 3.

LEMMA 5. Let L be a solvable Lie algebra such that

N= (*i, X2, x3) + Z(L\ u e L\N,

= -2T2,

where z, zu z2 c Z(Z) αrwi α=^=0. Then L is not an (A2)-algebra.

PROOF. Assume that L is an (A2>algebra. For every v c. L,
we write

3

[>, x{]= ΣcXiXi
ί

i - l

where wi, w2eZ(L). From [[u, ι;], Λ J + ^ I ; , Λ J , W] + Q > I 5 ^ ] , v] = 0 it
follows that

oti = β2, a2a2 = βι and

Then

(ad —

= 0.

Since it is immediate that (ad — aχι + χ2)
2u = Q, we have (ad —

which contradicts the condition (A2). Therefore L is not an (A2)-algebra,
completing the proof.



62 Shigeaki TOGO

PROPOSITION 4. Let L be a solvable (A2)-algebra over a field Φ of charac-
teristic 0. Then dim N/Z(L)Φ 3. In particular, if dimZ(Z,) = l, then
dim N/Z(L) is not odd.

PROOF. Assume t h a t there exists a solvable (A2)-algebra L such t h a t
dimiV/Z(L) = 3. Take x1eN\Z(L) and choose uβL such t h a t (ad^ i ) 2 ^=^0.
Then u$N. Put #2 = [>, * J and zλ = [_xu xf\. Then x2 4 (xi) + Z(L) and
Oφzie Z(L). By Lemma 4 we see that O, Λ;2] ? Z(L).

Now suppose that [_u, χ2j i (χi, χ2) + Z(L). Putting x3 = [_u, xf\, we have
N=(xu χ2, x3) + Z(L). It follows that

x3j = [_xu [u, x2~J]

- 0 .

By using this fact we obtain

I, x3j]

Put [>2, Λ;3U = «^i and ^3 = ^3 + ^ 1 . Then we have [ΛJ2, ^ D ^ O , from which
it follows that x3 e Z(N)=Z(L) and therefore #3 e 0&i) + Z(Z,). This contra-
dicts our supposition.

We have thus [_u, xf\e(xu x2) + Z(L). Choose a basis of Z(L) so that
= (zu z2, ..., 2τm). Since [ > b [w, 2̂1111 = 0, it follows that

m

[_u9 xf] = λxι+ Σ βiZi with A7^0.
/ = 1

Replacing xx by xλ + λ~ 1Σ Ui*h we have

We now choose x3 c N, (f (xu x2) + Z(N). Then N=(xu x2, x3) + Z(L). Put

3 m

Lu, x3~] = Σ α^ίH- Σ a'iZi,
i=l i=1

^ Σ Λ^/?

= Σ ϊiZi-
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Then it follows from [£u, x3j, x[} = \J_u, x[}, x{] for i = l, 2 that

oil - λβi — a3n = 0, a2 + a3βι + n = 0,

λβi = - a3γh - a3βi = γ{ for ί I> 2.

Replacing #3 by χ3 + ϊιχ\ — βιχ2> we have

[_u, x3j = a3x3 + Σx°ί'iZb

and λβ — alHi for ί ^ 2 . If A^α^, then ^f. = 0 for all i ^ 2 . Hence [>3, ΛΓ]

= (0) and therefore x3c Z(N) = Z(L\ which contradicts the choice of x3. If

λ = ctl, then α3=^=0. Hence L satisfies the hypothesis of Lemma 5 and there-

fore L is not an (A2)-algebra, which contradicts our assumption. Thus the

first part is proved.

We now consider the special case where dimZ(L) = l. Choose x1eN\Z(L).

Since dimiV/Z(Z:)^2 and xλiZ(N\ there exists x2cN\Z(L) such that

[ i i , x2^\φ0. Put Oi, x{] = z. Then Z(L) = (z). Assume that we have al-

ready chosen xu x2, , χ2k in N which are linearly independent over Φ and

such that

z for λ = l , 2, . . . , A,

[_Xi, xf] — 0 for all other ί<j

and furthermore assume that dim N/Z(L) > 2 k. Then choose ycN,

and put

where a{ is such that [ j 5 xϊ] = aiz. It follows that [_χ2k+ι, Xi2 = 0 for £ = 1,

25 ..., 2i. Since X2k+ιt Z{N\ we have dimN/Z(L)>2& + 1 and there exists

#2*-t-2 c TV such that [^2^fi, ^2^2] = ^. Replacing ΛJ2̂ +2 by a sum of Λ;2*+2 and

a suitable linear combination of χu χ2, , χ2k as above, we may suppose that

Hx2k+2, Xi~] = 0 for i = l, 2, ••-, 2A. Hence by using induction we can conclude

that dimiV/Z(L) is not odd.

Thus the proof is complete.

§4.

Throughout this section we use the following notations for a Lie algebra

L:
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, n2 = aim N/Z(L) and

We shall then call L to be of type (nu n2, n3). Owing to Theorem 1 we see
that for every non-reductive (A2)-algebra L 7&î >l, n2^>2 and n3^>l. Hence
every 1 dimensional and 2 dimensional (A2)-algebra is abelian and every 3
dimensional (A2)-algebra is abelian or simple. By making use of the pro-
positions in the preceding section, we shall study the structures of the 4, 5
and 6 dimensional solvable (A2)-algebras.

As for the 4 dimensional (A2)-algebras we have the following

PROPOSITION 5. The 4 dimensional non-reductive (A2)-algebras over a field
Φ of characteristic 0 are the following Lie algebras:

Lλ = (χu x2, χ3, XA) with the multiplication table

[>i, xf\ = x3, [>i, x3j = λx2,

for i = l ,2, 3

where λ is not a square element in Φ.
LXλ and Lχ2 are isomorphic if and only if λ\λ2~

ι is a square element in Φ.
When Φ is the field of real numbers, every Lx is isomorphic to Z_i.

PROOF. Let L be a 4 dimensional non-reductive (A2)-algebra. Then L is
obviously of type (1, 2, 1). By Proposition 3 we see that L is equal to Lλ with
some λ.

Assume t h a t / is an isomorphism of Lλι onto Lλ2. Then / sends the nil
radical and the center of Lλl onto those of Lλ2 respectively. Hence, denoting
Lλ2 = (yu y2, y3, 74), we have

4

/(*i) = Σ aλjyhy=i

4
f(xi) = Σ ocijyj for i = 2, 3,

j 2

Since the rank of / is 4, we have

i ^ 2 2 ^ 2 3

oc32 a33 ^~

From [/(χi)?/(^2)] =/(*3) and [/(ΛI),/(Λ3)] = ^1/(̂ 2), it follows that

λχ<x23 = ana32

oc32 =
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Hence we have

Since we cannot have a22 = a23 = 0, it follows that λ1 = λ2ali.
Conversely, assume that for Lλl and Lχ2, λλλ2

ι = u2 with ae Φ. Then aφQ.
Define a linear transformation / of LXl into Lλ2 in such a way that

= J2,

Then it is easy to see t h a t / is an isomorphism of Lλi onto Lχ2.
When Φ is the field of real numbers, if λ is not a square element then

λ<0. Therefore every Lλ is isomorphic to L_1? and the proof is complete.
As for the 5 dimensional (A2)-algebras we have the following

PROPOSITION 6. The 5 dimensional non-reductive (A2)-algebras over a field
Φ of characteristic 0 are the following Lie algebras:

(1) The direct sum of a 4 dimensional non-reductive (A2)-algebra and the
1 dimensional Lie algebra.

(2) Lχtμ=(xu x2, #3, X4, x5) with the multiplication table

lxh χ 5 ] = 0 /or £ = 1,2,3,4

where μ is not a square element in Φ.
Lχ1>μi and Lλ2>μ2 are isomorphic if and only if both λi and λ2 are 0 or

at the same time and μλμ2

ι is a square element in Φ.
When Φ is the field of real numbers^ every Lx>μ is isomorphic to one of the

non-isomorphic (A2)-algebras Z0,-i and Li,_i.

PROOF. Let L be a 5 dimensional (A2)-algebra. Then by Proposition 4
L is either of type (1, 2, 2) or of type (2, 2, 1). In the first case, by Proposi-
tion 3 we see that L is a Lie algebra in (1) of the statement. In the second
case, by Proposition 3 we see that L is one of Lλ>μ in (2) of the statement.
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Assume tha t/ i s an isomorphism of Lλl>μi onto Lλitμi, where we write
L\2,μ2 = (yu 72, j3, j4, 75). Since/ sends the nil radical and the center of Lλί>μi

onto those of Lλ2,μ2 respectively, we can express/ in the following form:

for i = l, 2

for i = 3, 4

for i = 5,

Σ
y=3

where

! ! < ¥=0.

it follows that

o: 2i o: 2 21 10:43 0:44

From [/(*i),/(*3)D=/(*4) it follows that

From [_f(χι),f(χ4)J = j

Therefore we have

= 0

=0.

Since α33 and au cannot be equal to 0 at the same time, it follows that

By this equality together with μiΦO, we see that
hand, from C/(#i)>/(*2)H = λif(χs\ it follows that

= 0

= 0

A 2(o:no: 22 — 0:120:21) + (0:130:24 — 0:140:23) =

Therefore from the first two equations above we obtain

0:130:24 — 0:140:23 = 0.

Then the last equation above becomes

Λ I O : 5 5 = ^2(0:110:22- 0:120:21).

. On the other
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This shows that /i = 0 if and only if λ2 = 0.
Conversely, assume that for LXitμi and Lχ2>μ2 both λi and λ2 are 0 or ^ 0

at the same time and β^^ — ά1 with a ζ Φ. In the case where Λi = Λ2 = 0, we
define a linear transformation of Lλl>μi into Lλ2>μ2 in such a way that

f(Xl) =

Then the rank of / is 5, since the coefficient matrix of / has the determinant
α 4(l — ju2)

2ΦO' In the case where λiΦO and λ2φ0, we define a linear trans-
formation of Lλl>μi into Lλ2>μz in such a way that

f(x2) = {a-λ1

f(x3) = 73 + 74

Then the rank of / is 5, since the coefficient matrix of / has the determinant
a^λ^^il — ju2)

3φθ. In each case, it is easy to see t h a t / preserves the multi-
plication and therefore/ is an isomorphism of LXl>μi onto Lχ2tμ2.

If Φ is the field of real numbers, then it is immediate that every LXφ is
isomorphic to one of £0,-1 and Zα.-i which are not isomorphic.

Thus the proof is complete.
Finally we shall clarify the structure of the 6 dimensional (A2)-algebras

by restricting the basic field Φ to the field of real numbers. We first show
the following

LEMMA 6. The 6 dimensional (A2)-algebras of type (2, 2, 2) over a field Φ
of characteristic 0 are the following Lie algebras:

(1) The direct sum of a 5 dimensional (A2)-algebra of type (2, 2, 1) and
the 1 dimensional Lie algebra,

(2) Lx = (xl9 χ2, ••', xβ) with the multiplication table

[[#,-, XJ2 = 0 /or αϊi other ί<j\

where λ is not a square element in Φ.
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Zλl and Lχ2 are isomorphic if and only if λλλ2

ι is a square element in Φ.
When Φ is the field of real numbers, every Lx is isomorphic to Z,_i.

PROOF. Let L be a 6 dimensional (A2)-algebra of type (2, 2, 2). Then L
is solvable. Hence by Proposition 3 L is described by a basis xu x2, , χ& in
such a way that

[_xiy XJ~] = 0 for all other ί <j

where λ is not a square element in Φ. If β=0, then L is the Lie algebra of
the type indicated in (1) of the statement. If βΦO, then we can take α^5 +
βx6 as new x6 and L becomes the Lie algebra indicated in (2) of the statement.

Assume that/ is an isomorphism of LXl onto Zλ2. Writing LXi = (yu j 2 ,
..., γ&\f can be expressed in the following form:

/(*/)=

3 = 1

y=3

6

Since the rank of / is 6, we have

From

for i = l, 2

avyj for i = 3, 4

for ΐ = 5, 6.

=£0.
^ 2 1 ^ 2 2

•
^ 3 3 CX34

CZ43 Cίu
•

= / ( Λ 4 ) it follows that

From

Hence we obtain

^20:34(0:11 + ί Z l 2 ) = <Z43.

hf(x*) it follows that

= ^44(0:11 + 0:12)

= 0:43(0:11 + 0:12).

0:33 {λi — λ2(an + a12)
2} = 0,

= 0.
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Since α33 φ 0 or <xu Φ 0, it follows that

Conversely, assume that for LXl and Zλ 2, λ1λ2

1 = a2 with a e Φ. Then we
define a linear transformation / of Lλl into Lχ2 in such a way that

f(xi) =

The coefficient matrix of / has the determinant a6(l — λ2)
2φ0 and it is im-

mediate that / preserves the multiplication. Hence/ is an isomorphism of
Lλi onto Z v

When Φ is in particular the field of real numbers, every Lλ is obviously
isomorphic to L_γ. Thus the proof is complete.

LEMMA 7. The solvable (A2)-algebras of type (3, 2, 1) over a field Φ of
characteristic 0 are the following Lie algebras:

Lχ,μ = (xι, X2, •••, xβ) with the multiplication table

[ > 1 , X2~] = λx6, [_Xl, ^3U = [>2, Xz] = 0,

= X6,

Zχi9xel = 0 for i = l, 2, ...,5

where ju is not a square element in Φ.
L\ltμi and Lχ2>μ2 are isomorphic if and only if both λι and λ2 are 0 or

at the same time and jUγju^1 is a square element in Φ.
When Φ is the field of real numbers, every LXjμ is isomorphic to one of the

non-isomorphic (A2)-algebras Z0,-

PROOF. Let L be a solvable (A2)-algebra of type (3, 2, 1). Then by Pro-
position 3 L can be described by a basis xu x2, , χQ in such a way that

u xf\ =

xJ = [ΛJ2, Λ J = [>

O4, ^ 5 ] = ^ 6 , ixhx6~] = 0 for ί = l, 2, ..., 5
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if aφO

if

if

where μ is not a square element in Φ.
First assume that a—β + γ=O. Then we assert that a=β—γ=0. In

fact, we put

X3-\-a~1γχι—(x~1βx2 if <xφθ

y= X2-β-ιγxi-aβ-1x3 if βφϋ

Then ly, x{]=Zy, X2~]=ly, χ3J=0,

Ly, χ*l =

and similarly [y, χ5J = 0. Hence γe Z(L) and therefore dimZ(L)^2, which
contradicts the hypothesis that L is of type (3, 2, 1). Therefore <χ=β=γ=0,
as was asserted.

Next assume that a — β + γ φ 0. If α φ 0, put

Then

Then

Then ^ ί , Λ;2H=E^ί? ^D^O? Ĉ ί> 4̂H = Λ;5 a n d E ί̂? χ{}=βχ^ Thus, in any
case, we can change a basis so that two of a, β and γ are 0. Finally by rear-
ranging #1, #2, #3 if necessary, we obtain β=γ=0. Therefore L is one of
the Lλjμ. Thus the first statement is proved.

Assume that/ i s an isomorphism of Lλl>μi onto Lλ2>μ2. Writing Lλ2>μ2 =
(ji5 j2j •••> jβ), we can express/ in the following form:

Σa{,y, for i = l,2,3

for i = 6.

*3 = a(a—

X'3J = [_X2, Λ?O = 0, [^3, Λ ; 4 ] = Λ ; 5 and [>£, Λ;5H = AΛ;4. If /9^0, put

xf

2 =

= *5 and [>£, ^ 5] = ^ 4 . If r^O, put

Since the rank of / is 6, we have



On a Class of Lie Algebras 71

# 6 6

#11 #12 #13

#21 #22 #23
# 4 5

#31 #32 #33

From [/(*;),/(*4)]=/(*5) for i = l, 2, 3, it follows that

#44(#Π + #*2 + #/3) = #55

/^2#45v#/l + #/2 + r^i3)~= #54 IOΓ I =z 1 ? Z, O.

From [/(*;),/(Λ; 5 )] = AI/(Λ;4) for i = l, 2, 3, it follows that

: A2#5δ(#ί 1 + #ί 2 + #/3)

5 = α54(#/i + #/2 + #/s) for i = 1, 2, 3.

Hence we have

#44 {AI — A2(#Π + #ί2 + #/3)2} = 0

#45 {AI — A2(#zl + #/2 + #/3)2} — 0

for ί = l, 2, 3.

Since α 4 4 Φ 0 or α 4 5 7^ 0, it follows that

Mi = Man + ai2 + #;3)
2, ί = l, 2, 3.

We have also

#44 {(#11+ #12 +#is) — (#21+ #22+ #2S)} = 0

#44 {(#11+ #12+ #is) — (#31+ #32+ #3S)} = 0

#45 {(#11+ #12+ #13) — (#21+ #22+ #23)} = 0

#45 {(#11 + #12 + #is) - (#31 + #32 + #33)} = 0.

From these and the fact that α 4 4 α 5 5 —α 4 5 a5iφ0, it follows that

#11 + #12 + #13 = #21 + #22 + #23 = #31 + #32 + #33-

From [f(χi),f(χ2)Ί = λ1f(χ6) and [_f(χi\ f(χs)3 = Lf(χ2), f(χ3)1 = 0, it follows
that

#24(#11 + #12 + #13) — #u(#21 + #22 + #2s) = 0

#2s(#ll + #12 + #is) — #lδ(#21 + #22 + #23) = 0

#34(#11 + #12 + #is) — #u(#31 + #32 + #3s) = 0

#3S(#11 + #12 + #is) — #lδ(#31 + #32 + #3s) = 0

#34(#21 + #22 + #23) - #24(#31 + #32 + #3s) = 0
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0:35(0:21 + α 2 2 + CX23) — 0:25(0:31 + #32 + o:3 3) = 0

Since

and therefore

If we denote

λ2(aua32 — ^i2α: 3i) + (αi4α 35 — α i 5 α 3 4 ) = 0

^2(0:210:32- o : 2 2 o: 3 i ) + (0:24^35 — ^25^34) = 0.

for ί = l, 2, 3, it follows that

0^140:35-0:15^24 = 0

0:140:35-0:150:34 = 0

0:240:35 — 0:250:34 = 0

^2(0:110:22 —0:120:21) =

^2(0:110:32 — o : i 2 o : 3 i ) = 0

^2(0:210:32 — 0:220:31) = 0.

! an OC12 a131

D = \ a2χ a22 a 2 3

: ,

! o:3i o:3 2 o : 3 3 !

then

D =

+ (ct2ιa32-a22a3i)}.

It follows that

Since ctββDφO, we conclude that Λi = 0 if and only if Λ2 = 0.
Conversely, assume that for Lλltflί and Lχ2>fl2 both λι and λ2 are 0 or

at the same time and ju1jU21 = a2 with a c Φ. In the case where Λ^/^^O, we
define a linear transformation/ of LXltMl into Lχ2Φ2 in such a way that

f(Xi)= 74+

y4+ y5)
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The rank of / is 6, since the coefficient matrix of / has the determinant
a%l-ju2)

2φθ.
In the case where λι φ 0 and λ2 φ 0, we define a linear transformation /

of Lλi>μi into Lχ2tfl2 in such a way that

f(Xi)= J4+ J5

y5)

The rank of / is 6, since the coefficient matrix of / has the determinant

2

l(l — β2)
3ΦQ. It is easy to see that in any case / preserves the multi-

plication. Therefore/ is an isomorphism of Lλl>μi onto Lλz>μ2.
When Φ is in particular the field of real numbers, it is immediate that

every Lλ<μ is isomorphic to one of the (A2)-algebras Z0,-i and £1,-1, which are
not isomorphic.

Thus the proof is complete.

LEMMA 8. The (A2)-algebras of type (1, 4,1) over the field Φ of real numbers
are the following Lie algebras:

(1) Lλtμ = (xo, xiy, x5) with the multiplication table

l2= X2,

xf\ = λxu

xi, xi} = 0 for all other ί <j

where λ<0 and

(2) Lx>μ>li = (x0, xu ..., x5) with the multiplication table

[>o, XlΊ = X2,

[_X0, X±] =

LXU X2~] = X5, C^3 ? Xi] = VX5,

[_Xi, χj~] = 0 for all other ί<j
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where λ<0, ju<0 and 0<v<λβ.

PROOF. Let L be an (A2)-algebra of type (1, 4, 1). Take xx e N\Z(L)

Then there exists xoe L\N such that [>i> D&i, ôZJH=τ̂ O. Put X2 = {_XQ->

and * 5 = [>i, X2~} Then x2 e N\Z(L) and Z(L)=(x5).

Case I. [>o, X2] £ Oi, #2, Λ?5): We write

Then from [CΛ;O5 ^2], Λ?II]=CC^O, Λ?I1 ^2] it follows that ju=0. If Λ=05 then

(ad^2)2 = 0. Therefore ^=^=0. Replacing xx by xi + λ^vxs, we may suppose

that

Take ye N\(xu x2, χs) When [_y, xι2=aιx5 and [ j , χ2~l = ct2X5, we put

Then [Λ;3, ^ I ] = [ ^ 3 , ^ = 0. Put # 4 = [>o, ^3]. Since [Λ;3, [> 3 , Λ ; 0 ] ] ¥ = 0 ? we
have Λ;4 e iVand [Λ;3, ΛJ4] = ^ ^ 5 with aφO. It follows that JV=(Λ;1 5 χ2, ••-, Λ5).
We infer

= 0

and similarly [#4, Λ;2H
:::=0. We write

5

[>0, Λ4J = Σ OCiXi.
i = \

Then from [£χ0, χ±~}, Xi2 = [£xo, ^/D, χ*2 f ° r ί = l? 2, 35 it follows that aι = a2

= ct4 = 0. Since E#4, C*4> ^oHH^O, we see that a3Φ0. Replacing x3 by
^3 + 0:3 ^5^5 and a3 by ,«, we have

|>o, ^4] = A^s with

Thus the structure of L is described by a basis #0, #1, , χ$ as follows:

_xh xf] = 0 for all other ί<j
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where a φ 0, λ φ 0 and βφO.
\

Furthermore we have λ<0 and β<0, for if λ>0 then (adA xλ + x2)
2 = 0

and if β>0 then (ad/* Λ;3 + Λ;4)
2 = 0. If α<0, then

(ad(-α)

Hence a must be >0. Now we may take a = l, since by replacing x3 and x^

by aΓ*x3 and α~2Λj4 respectively we have the same multiplication table with
the exception that [>3, xf\ = χ5- Thus L has the form indicated in (1) of the
statement.

Case II. [_x0, x2~] ί (χι, χ2, xs)- Put γ=[_χo, χ{] Then it is immediate
that [ j 5 x{] = 0. We put [y, X2] = λχ5 and Λ;3= J — λxi. Then we obtain

[^3, Λ; J = [ > 3 , Λ;2H = 0.

We next put Xi = [_x0, x{}. Then Γ>3, Λ J^VΛ S with v^O. It is immediate
that

Now let us write

5

T
ί = 1

Then from [[>0, Λ J , ^/J = [[^O5 Λ;,-], X±] for ΐ = l, 2, 3 it follows that βχ = v
and iff2 = î 4 = 0. Since [x4? [̂ 4, ^oDD^O, it follows that /93^O. After replac-
ing x0 by χo — β5v~1χ3, we change the notations to see that L is described by a
b a s i s #oj xu •••? ^5 a s f o l l o w s :

[_xι, xβ = 0 for all other ί<j

where λ Φ 0, β Φ 0 and v Φ 0.

Furthermore we have λ<0 and /^<0? for if λ>0 then (adA

and if β>0 then (ad β2χ3 + XA)2 = 0. Since Z, is an (A2)-algebra, (αi, α2, α3, α4)
44

implies (ad^α^f^O, that is,
/ = 1

a\
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Put f(a2, <%4)= —λa\ — 2va1aί,—βva\. If/ (a29 #4) 2^0 for some (α2,
we take a,\ and a3 so that

<xx = (-f(a2, α4))* and a3 = 0.

Then we obtain (α l 5 α2, ocz, a4)φ0 and a\ + val+f(<X2, 0:4)=0. Hence we have
/(α2, α4) > 0 for every (α2, α )̂ Φ 0, that is, / is positive definite. It follows that

—μv>Q and λμv—v2>0,

and therefore 0 < v < ^ . Thus L has the structure indicated in (2) of the
statement.

Conversely, if L is LKμ or LKμtV9 then it is easy to see that L is an (A2>
algebra.

Thus the proof is complete.

LEMMA 9. Under the notations in Lemma 8, every (A2)-algebra Lλtfl is
isomorphic to one of the non-isomorphic (A2)-algebras L^ltθ where — 1<Ξ

PROOF. Assume t h a t / is an isomorphism of Lλl>μi onto Lλ2>μ2. We here
write Lλ2>μ2 = (γ0, yu ..., j 5 ) . Since/sends the nil radical and the center of
Lχ1>μi onto those of Lχ2}fl2 respectively, we can express / in the following form:

f(xd=tcciJyj for 1 = 1,2,3,4
j — 1

From C/(Λ;O),/(Λ;I)]=/(Λ;2) it follows that

0C21 =

Ωί 2 2 = OCQQOCU

0^23 =

From [/(Λ;0), /(*2)] = ̂ 1/(̂ 1) it follows that

= CZ00OC2I

Hence we have
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a14(λ1-β2a
2

00) = 0.

In a similar way, from Γ/(*o),/(*3)]=/(*4) and [/(*o),/(*4)] = Ai/(*3), it
follows that

#41 = ^2#00#32

#42 = #00#31

#43 = #2#00#34

#44 = #00#33

and also

= 0.

If λ1 — λ2a
2

)0Φ0 and λ1 — β2aloφθy it follows that aλl — al2 = a13 = a14 = 0.
If λλ — λ2a

2

QQφO and β1 — λ2al0Φ0y it follows that aιλ = aι2 = a3l = a^2 = 0 and
therefore a2l — a22 — a41 — α 4 2 = 0. If λ1 — β2al0Φ0 and βλ — β2aloφθ, it
follows that αi3:=#i4 = #33=:#34 = 0 and therefore α23 = α24 = α43 = #44 = 0. If
βι — λ2aloφθ and μλ — β2al0Φ0, it follows that α3i = α 3 2 = #33=::#34:=0. Thus
in any case we see that

I #11 #12 #13 #14 I
ί #21 #22 #23 #24

ί #31 #32 #33 #34

! #41 #42 #43 #44

and therefore the determinant of the coefficient matrix of / equals 0, which
is impossible since/ is an isomorphism. Hence, if λ1 — λ2al0Φ0 or βλ — β2^
Φ09 we have necessarily λx — β2a\^ = 0 and ju1 — λ2a

2

)0 = Q. Thus we obtain

= β,-β9aL = 0, or

Since aooφθ, it follows that λ^^ — β^1 or λίju27
1 = λ2

1β1.
Conversely, assume t h a t for Lλl>μi and Lλ2>μ2 we have λ1λ2

1 = julJu2

1 or
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λlJU21 = ^21Mi' I n "the case where λ1λ2l = βιβ2~
1, we put a = (λ1λ2:

iy. Then λι =
ct2λ2 and jUι = a2ft2- Define a linear transformation / of LXlt/ll into Lχ2jμ2 in
such a way that

Jl + C-Al) J2

a{λ2(- βS Ji

Then the coefficient matrix of / has the determinant ai(l + λιβ2)
3>0, and it

is easy to see that / preserves the multiplication. Therefore / is an isomor-
p h i s m of L λ l > μ i o n t o L λ 2 > μ 2 .

-I
In the case where λ^1 — ^21/jίu w e Pu"t a~ U1A2x) Then Λx = α2/^2 and

β1 = a2λ2. Define a linear transformation/ of LXltfll into ^x2J/i2 in such a way
that

f(xo) = α jo

)= ϊi + i-hϊ Ϊ2

S y2}

Then it is easy to see t h a t / is an isomorphism of Lλi>μi onto Lλ2>μ2.
Thus in order that LXlιμi and Lλ2>μ2 are isomorphic it is necessary and

sufficient that λιλ2=β\β2 or λιβ2 = λ2βi.
We now see that Lλ>μ is isomorphic to Z_i_λ/i-i if A^/^ and to L-ιt-λ-iμ

if /^<A. Hence every LKμ is isomorphic to one of L^1>θ with — 1 ^ ^ < 0 . It
is immediate that L-ιtθ with — 1 ^ ^ < 0 are not isomorphic for different θ.

Thus the proof is complete.

LEMMA 10. Under the notations in Lemma 8, every (A2)-algebra Lλ>μ>v is
isomorphic to one of the (A2yalgebras Lλ>μ.

PROOF. Let Lλ>μ>v be an (A2)-algebra in the statement (2) of Lemma 8.
We consider the following equation:
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Since v>0, it is immediate that the equation has two different roots in Φ.
Since Λ<0, β<0 and λβ — v>0, their sum and product are both positive. Let
us denote by a2 the larger one of them. Then by making use of the fact that
λ<0 and ΰ<v<λβ, we can show that a2λ + l<0. Put λχ= — 1 and βι =
a2(λ + β) + l. Then /*i<0. We have also λ^φβx. In fact, if Λi = /*i, then
a\λ + A) = — 2 and therefore α2/* +1 = — α2λ—1. Hence

which contradicts the fact that v>0. By the definitions of λι and βu we have
obviously

= -(a2λ-λ1)(a2λ-β1)

= (a2λ- βθ(a2β- βλ).

Thus we can choose two non-zero real numbers β and γ satisfying the condi-
tion

β\a2λ-λι)=-γ\a2λ-βι).

Writing Lλ>μ>v = (y0, yu ••, y5), we define a linear transformation/ of Lλl>μι

into LXt/lfV in such a way that

f(Xl) = a-

/(Λ;3) = a-2yv-γ{a2v yx-(pc2l-β^ y3}

f(x4) = a-ιγv-ι{a2vy2-(a2λ-βι)yA}

f(x5) = -a-3β2v-\λι-βι)(a2λ-λ1)y5.

Then the coefficient matrix of this transformation has the determinant

- αr4/?V V U - βι)\a2λ -

Hence the rank of / is 6. We have to show that / preserves the multiplica-
tions. By making use of the product expressions of aAv and the equality de-
fining β and τ% we have the following equalities:
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C/(*o), fixύl = α - > - ΐ j o , a2vyi-(c?λ-λί)y3l

= a-1βv-1{a2vy2-(a2λ-λ1)yi}

[_f(xo),f(x2)J = βv-'Lyo,

= a-2β»-1{a2λ1vy1-λ1(a2λ-λ1)y3}

= yv'1 {a2v{λy1+ y3) — {a2λ — βx){v yι + βy3)}

= a~2rv~1{a2βιvyι + a4vy3 — a.2β(a2λ — μi)y3

— <x~2yv~x {a2 βxv yγ — βχ(u2λ — βι)y3}

-λO2 y5}

= -a'3β2v^\λ1-β1){a2λ-λι)y,

=f(xs),

= a'3βrv-2ίa2

Vy1-(a2λ-λ1)y3, a2vy2-(a2λ-β1)yi]

= u-*βγv-ι{aivys + {a2λ-λι)(a2λ-βι)y5}

= 0,
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l-A)y3 ? a2vy2-{a2l-

-/ι1)
2 y5}

),/(*5)J = O for ί = 0,l, ...,4.

Thus we conclude t h a t / is an isomorphism of Lλi>μi onto LXt/ttV.
The proof of the lemma is complete.

REMARK. The multiplication tables of the (A2)-algebras Lλ>μ and LKμtV in
Lemma 8 define (A2)-algebras over the field of rational numbers when λ, μ
and v are especially rational numbers. Let us denote them by Lt,μ and Lt,μ,v

respectively. We here note that, contrary to the assertion in Lemma 10, Lt,μ,v

is not necessarily isomorphic to any one of the L$>μ.

Assume that there exists an isomorphism/ of L$>μ onto Z*1,_2,i. Writ-

ing iϊ 1,_ 2,i = (7θ5 Ji5 5 Jδλ w e c a n express/ in the following form:

f(xd=Σcto yj for ,- =

From Γ_f(χo),f(χι)~J=f(χ2) it follows that

OU24: —

From [_f{χQ\f{χ2Ϊ\ = λf{xι) it follows that

λaί2 =
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Hence we obtain

)—al0a13 = 0

a2

00)-a2

00au = 0

a2

ooal2-au(λ + 2a2

)O) = 0.

If ctu = ai2 = cti3=au = 0, then the rank of/ is not 6. Hence some of aΪU aί2,
aί3 and au are not equal to 0. It follows that

and therefore

It is however immediate that there are no rational numbers λ and a00 satisfy-
ing the equality above, which is a contradiction. Thus Zΐ1,_2)1 is not iso-
morphic to any L$t/ι.

Finally, by making use of the preceding propositions and lemmas, we
shall determine the structure of the 6 dimensional solvable (A2)-algebras over
the field of real numbers in the following

PROPOSITION 7. The 6 dimensional non-abelian solvable (A2)-algebras over
the field of real numbers are, up to isomorphism, the Lie algebras described by
a basis xu x2, •••, xe with the following multiplication tables.

(1): [>i, x2~] =

(2):

XΪ} = E^2, X4~\ = —X3,

[>3, X4] = x5 with λ = 0, 1.

(3):

(4) : [ > l 5 x2~]

O l , X{] = [_X2, Xf\ = [_XZ, X4J = X5,

LXU xf] — LX2, X5~] = [^3, xf] = —Xh

[>4, xί] = xβ with β = 0, 1.
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(5):

11*2? X{] = [Λ; 4 ? ^δH = X6

Here in each of the tables [xi9 xf] = Q for all ί<j if it is not in the table.

PROOF. Let L be a 6 dimensional non-abelian solvable (A2)-algebra over
the field of real numbers. Then rcii>l, n2^2 and ra3^>l. By Proposition 4
we have the following cases:

7 l i = l , 712 = 4 , 713 = 1 .

In the first case we have the table (1) by Propositions 3 and 5. In the second
case we have the tables (2) and (3) by Proposition 6 and Lemma 6. In the
third case we have the table (4) by Lemma 7. In the fourth case we have
the table (5) by Lemmas 8, 9 and 10. The proof is complete.
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