Asymptotic Expansion of the Distribution of the Generalized Variance in the Non-central Case

Yasunori Fujikoshi
(Received Sept, 20, 1968)

1. Introduction and Summary

The generalized variance (the determinant of the sample variance and covariance matrix) was defined by Wilks [8] as a measure of the spread of observations. In this paper we study asymptotic expansion of the distribution of the generalized variance in the non-central case. In general, if the rows of a $n \times p$ matrix \boldsymbol{X} are independently normally distributed with common covariance matrix $\boldsymbol{\Sigma}$ and mean $\mathbf{E}[\boldsymbol{X}]=\boldsymbol{M}$, then the generalized variance is defined as the determinant of a matrix $S=(1 / n) \boldsymbol{X}^{\prime} \boldsymbol{X}$. Asymptotic expansion of the distribution of $|\boldsymbol{S}|$ depends on the order of the non-centrality matrix $\boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{M}^{\prime} \boldsymbol{M} \boldsymbol{\Sigma}^{-\frac{1}{2}}=\boldsymbol{\Omega}$ with respect to n. It is in general true that $\boldsymbol{\Omega}=\mathbf{0}$ (1) or $\Omega=\mathbf{0}(n)$, which means that all elements of Ω are $0(1)$ or $0(n)$ as $n \rightarrow \infty$.

In section 2 we derive the limiting distribution of $|\boldsymbol{S}|$ under the assumption that $\boldsymbol{\Omega}=n \boldsymbol{\theta}_{n}=\mathbf{0}(n)$ and $\lim _{n \rightarrow \infty} \sqrt{n}\left(\boldsymbol{\theta}_{n}-\boldsymbol{\theta}\right)=\mathbf{0}$. If $\boldsymbol{\Omega}$ may be regarded as a constant matrix, asymptotic expansion of the distribution of $|\boldsymbol{S}|$ is obtained up to the order $n^{-\frac{3}{2}}$ by inverting the characteristic function expressed in terms of hypergeometric function with matrix argument (see section 3).

2. Limiting distribution of $|S|$ when $\Omega=\mathbf{O}(n)$

In this section we assume that $\boldsymbol{\Omega}=n \boldsymbol{\theta}_{n}=\mathbf{0}(n)$ and $\lim _{n \rightarrow \infty} \sqrt{n}\left(\boldsymbol{\theta}_{n}-\boldsymbol{\theta}\right)=\mathbf{0}$. At first we shall consider limiting distribution of a function of the non-central Wishart matrix $\boldsymbol{X}^{\prime} \boldsymbol{X}$. Let $C_{\mathbf{X}^{\prime} \mathbf{X}}(\boldsymbol{T})$ be the characteristic function of $\boldsymbol{X}^{\prime} \boldsymbol{X}$, where \boldsymbol{T} is the $p \times p$ symmetric matrix having $\left\{\left(1+\delta_{i j}\right) / 2\right\} t_{i j}$ as its (i, j) element with Kronecker delta $\delta_{i j}$. From the result of Anderson $[1] C_{\boldsymbol{X}^{\prime} \mathbf{X}}(\boldsymbol{T})$ can be expressed by our notation as

$$
\begin{equation*}
C_{\boldsymbol{X}^{\prime} \mathbf{X}}(\boldsymbol{T})=\left|\boldsymbol{I}-2 i \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{T} \boldsymbol{\Sigma}^{\frac{1}{2}}\right|^{-(n / 2)} \operatorname{etr}\left\{-\frac{1}{2} \boldsymbol{\Omega}+\frac{1}{2} \boldsymbol{\Omega}^{\frac{1}{2}}\left(\boldsymbol{I}-2 i \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{T} \boldsymbol{\Sigma}^{\frac{1}{2}}\right)^{-1} \boldsymbol{\Omega}^{\frac{1}{2}}\right\} \tag{2.1}
\end{equation*}
$$

Put $\boldsymbol{S}^{*}=\sqrt{n}\left\{\boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{S} \boldsymbol{\Sigma}^{-\frac{1}{2}}-(\boldsymbol{I}+\boldsymbol{\theta})\right\}$. Then we can express the characteristic function of \boldsymbol{S}^{*} as

$$
\begin{equation*}
C_{\boldsymbol{S}}(\boldsymbol{T})=\left|\boldsymbol{I}-\frac{2 i}{\sqrt{n}} \boldsymbol{T}\right|^{-(n / 2)} \operatorname{etr}\left\{-\frac{n}{2} \boldsymbol{\theta}_{n}+\frac{n}{2}\left(\boldsymbol{I}-\frac{2 i}{\sqrt{n}} \boldsymbol{T}\right)^{-1} \boldsymbol{\theta}_{n}-\sqrt{n} i \boldsymbol{T}(\boldsymbol{I}+\boldsymbol{\theta})\right\} . \tag{2.2}
\end{equation*}
$$

$C_{\boldsymbol{S}^{*}}(\boldsymbol{T})$ can be expanded by using the well known asymptotic formulas

$$
\begin{align*}
\left|\boldsymbol{I}-\frac{2 i}{\sqrt{n}} \boldsymbol{T}\right|^{-(n / 2)} & =\exp \left\{-\frac{n}{2} \log \left|\boldsymbol{I}-\frac{2 i}{\sqrt{n}} \boldsymbol{T}\right|\right\} \tag{2.3}\\
& =\operatorname{etr}\left\{\sqrt{n} i \boldsymbol{T}-\boldsymbol{T}^{2}\right\}\left\{1+0\left(n^{-\frac{1}{2}}\right)\right\} \\
\left(\boldsymbol{I}-\frac{2 i}{\sqrt{n}} \boldsymbol{T}\right)^{-1}= & \boldsymbol{I}+\frac{2 i}{\sqrt{n}} \boldsymbol{T}+\left(\frac{2 i}{\sqrt{n}} \boldsymbol{T}\right)^{2}+\mathbf{O}\left(n^{-\frac{3}{2}}\right), \tag{2.4}
\end{align*}
$$

which hold for large n such that the maximum of the absolute values of the characteristic roots of $(2 i / \sqrt{n}) \boldsymbol{T}$ is less than unity. Applying the formulas (2.3) and (2.4) to the expression of $C_{\boldsymbol{S}^{*}}(\boldsymbol{T})$ in (2.2), we get

$$
\begin{equation*}
C_{\boldsymbol{S}^{\prime}}(\boldsymbol{T})=\operatorname{etr}\left\{\sqrt{n} i \boldsymbol{T}\left(\boldsymbol{\theta}_{n}-\boldsymbol{\theta}\right)\right\} \operatorname{etr}\left\{-\boldsymbol{T}^{2}\left(\boldsymbol{I}+2 \boldsymbol{\theta}_{n}\right)\right\}\left\{1+0\left(n^{-\frac{1}{2}}\right)\right\} . \tag{2.5}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{\boldsymbol{S}^{*}}(\boldsymbol{T})=\operatorname{etr}\left\{-\boldsymbol{T}^{2}(\boldsymbol{I}+2 \boldsymbol{\theta})\right\} \tag{2.6}
\end{equation*}
$$

(2.6) shows that the limiting distribution of $S^{*}=\left(s_{i j}^{*}\right)$ is the multivariate normal distribution with mean zero and covariances $\mathbf{E}\left[s_{i j}^{*} s_{k l}^{*}\right]=q_{i j k l}$, where $q_{i j k l}$ is difined by

$$
\begin{equation*}
2 t r \boldsymbol{T}^{2}(\boldsymbol{I}+2 \boldsymbol{\theta})=\sum_{i \leq j} \sum_{k \leq l} q_{i j k l} t_{i j} t_{k l} \tag{2.7}
\end{equation*}
$$

Now we will generalize the well known result for obtaining limiting distributions of statistics (for example, Theorem 4.2.5 in Anderson [2] and Siotani and Hayakawa [6]) to the non-central case.

Lemma. Let $n \mathbf{S}$ have the non-central Wishart distribution with n degrees of freedom and the non-centrality matrix $\boldsymbol{\Omega}$ such that $\boldsymbol{\Omega}=n \boldsymbol{\theta}_{n}=\mathbf{0}(n)$ and $\lim _{n \rightarrow \infty} \sqrt{n}\left(\boldsymbol{\theta}_{n}-\boldsymbol{\theta}\right)=\mathbf{0}$. Suppose $f(\boldsymbol{W})$ is a real valued function of a $p \times p$ symmetric matrix \boldsymbol{W} with first and second derivatives existing in a neighborhood of $\boldsymbol{W}=\boldsymbol{I}+\boldsymbol{\theta}$. Then the statistic $\sqrt{n}\left\{f\left(\boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{S} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right)-f(\boldsymbol{I}+\boldsymbol{\theta})\right\}$ has asymptotically the normal distribution with mean zero and variance $2 \operatorname{tr} \boldsymbol{F}^{2}(\boldsymbol{I}+2 \boldsymbol{\theta})$, where $\boldsymbol{F}=\left(\left\{\left(1+\delta_{i j}\right) / 2\right\} f_{i j}\right)$ and $f_{i j}=\partial f(\boldsymbol{W}) /\left.\partial w_{i j}\right|_{\boldsymbol{w}=\boldsymbol{I}+\boldsymbol{\theta}}$.

Proof. From (2.6) and Theorem 4.2.5 in Anderson [2] we can see that the asymptotic distribution of $\sqrt{n}\left\{f\left(\boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{S} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right)-f(\boldsymbol{I}+\boldsymbol{\theta})\right\}$ is normal with mean zero. By using (2.7) its asymptotic variance can be expressed as

$$
\begin{aligned}
& \left.\sum_{i \leq j} \sum_{k \leq l} \frac{\partial f(\boldsymbol{W})}{\partial w_{i j}}\right|_{\boldsymbol{W}=I+\boldsymbol{\theta}}-\left.\frac{\partial f(\boldsymbol{W})}{\partial w_{k l}}\right|_{\boldsymbol{W}=\boldsymbol{I}+\boldsymbol{\theta}} q_{i j k l} \\
& \quad=2 \operatorname{tr} \boldsymbol{F}^{2}(\boldsymbol{I}+\mathbf{2} \boldsymbol{\theta}) .
\end{aligned}
$$

Putting $f(\boldsymbol{W})=|\boldsymbol{W}|$ in the above lemma and noting that the equality $\left(\left\{\left(1+\delta_{i j}\right) / 2\right\} \partial|\boldsymbol{W}| / \partial w_{i j}\right)=|\boldsymbol{W}| \boldsymbol{W}^{-1}$ holds for any symmetric matrix \boldsymbol{W}, we have the following theorem.

Theorem 1. Let n S have the non-central Wishart distribution with n degrees of freedom and the non-centrality matrix $\boldsymbol{\Omega}$ such that $\boldsymbol{\Omega}=n \boldsymbol{\theta}_{n}=\mathbf{O}(n)$ and $\lim _{n \rightarrow \infty} \sqrt{n}\left(\boldsymbol{\theta}_{n}-\boldsymbol{\theta}\right)=\mathbf{0}$. Then the distribution of $\sqrt{n}\{(|\boldsymbol{S}| /|\boldsymbol{\Sigma}|)-|\boldsymbol{I}+\boldsymbol{\theta}|\}$ is asymptotically normal with mean zero and variance $2|\boldsymbol{I}+\boldsymbol{\theta}|^{2} \operatorname{tr}(\boldsymbol{I}+2 \boldsymbol{\theta})(\boldsymbol{I}+\boldsymbol{\theta})^{-2}$.

3. Asymptotic expansion of the distribution of $|S|$ when $\Omega=0(1)$

In this section we shall obtain asymptotic expansion of the distribution of $|\boldsymbol{S}|$ under the assumption that the non-centrality matrix Ω is a constant matrix. Constantine [3] showed that the h th moment of $|\boldsymbol{S}|$ in the noncentral case could be expressed by the hypergeometric function of matrix argument. His result can be expressed by our notation as
where $\Gamma_{p}(a)$ and the hypergeometric function ${ }_{1} F_{1}$ are defined by

$$
\begin{gather*}
\Gamma_{p}(a)=\pi^{p(p-1) / 4} \prod_{\alpha=1}^{p} \Gamma(a-(\alpha-1) / 2) \\
{ }_{1} F_{1}(a ; b ; Z)=\sum_{k=0}^{\infty} \sum_{(\kappa)} \frac{(a)_{\kappa}}{(b)_{\kappa}} \frac{C_{\kappa}(Z)}{k!} \tag{3.2}\\
(a)_{\kappa}=\prod_{\alpha=1}^{p}(a-(\alpha-1) / 2)(a+1-(\alpha-1) / 2) \cdots\left(a+k_{\alpha}-1-(\alpha-1) / 2\right) .
\end{gather*}
$$

The function $C_{k}(Z)$ is a zonal polynomial of the $p \times p$ symmetric matrix Z corresponding to the partition $\kappa=\left(k_{1}, k_{2}, \ldots, k_{p}\right)$, with $k_{1}+\ldots+k_{p}=k, k_{1} \geq \cdots \geq k_{p}$ ≥ 0. The symbol $\sum_{(\kappa)}$ means the sum of all such partitions.

Put $\hat{\lambda}=\sqrt{n} \log (|\boldsymbol{S}| /|\boldsymbol{\Sigma}|)$. We can express the characteristic function of $\hat{\lambda}$ as

$$
\begin{align*}
C(t) & =\mathbf{E}\left[e^{i t \hat{\lambda}}\right] \tag{3.3}\\
& =\mathbf{E}\left[(|\boldsymbol{S}| /|\boldsymbol{\Sigma}|)^{i t / / n}\right]
\end{align*}
$$

$$
=\left(\frac{2}{n}\right)^{i t p_{\sqrt{\prime}}^{n} \Gamma_{p}\left(\frac{n}{2}+i t \sqrt{n}\right)} \Gamma_{p}\left(\frac{n}{2}\right) F_{1}\left(-i t \sqrt{n} ; \frac{n}{2} ;-\frac{1}{2} \Omega\right) .
$$

Applying the Kummer transformation formula ${ }_{1} F_{1}(a ; b ; Z)=(\operatorname{etr} Z)$. ${ }_{1} F_{1}(b-a ; b ;-Z)$ (see Herz [4]) to this last expression, we can write $C(t)$ as

$$
\begin{align*}
& \left(\frac{2}{n}\right)^{i t p_{\sqrt{ }} n} \frac{\Gamma_{p}\left(\frac{n}{2}+i t \sqrt{n}\right)}{\Gamma_{p}\left(\frac{n}{2}\right)} \operatorname{etr}\left(-\frac{1}{2} \Omega\right)_{1} F_{1}\left(\frac{n}{2}+i t \sqrt{n} ; \frac{n}{2} ; \frac{1}{2} \Omega\right) \tag{3.4}\\
& \quad=C_{1}(t) C_{2}(t)
\end{align*}
$$

In the case that the non-centrality matrix Ω is equal to zero, $\operatorname{etr}\left(-\frac{1}{2} \Omega\right)$ ${ }^{-}{ }_{1} F_{1}\left(\frac{n}{2}+i t \sqrt{n} ; \frac{n}{2} ; \frac{1}{2} \Omega\right)$ which we shall denote by $C_{2}(t)$ is equal to unity. So $(2 / n)^{i t p_{\nu} \bar{n}} \Gamma_{p}\left(\frac{n}{2}+i t \sqrt{n}\right) / \Gamma_{p}\left(\frac{n}{2}\right)$ gives us the characteristic function of $\hat{\lambda}$ in the central case, which we shall denote by $C_{1}(t)$. We shall use the following asymptotic formula for the gamma function as in Anderson ([2], p.204).

$$
\begin{align*}
\log \Gamma(x+h)= & \log \sqrt{2 \pi}+\left(x+h-\frac{1}{2}\right) \log x-x-\sum_{r=1}^{m} \frac{(-1)^{r} B_{r+1}(h)}{r(r+1) x^{r}} \tag{3.5}\\
& +0\left(|x|^{-m-1}\right)
\end{align*}
$$

which holds for large $|x|$ and fixed h with the Bernoulli polynomial $B_{r}(h)$ of degree $r, B_{2}(h)=h^{2}-h+(1 / 6), B_{3}(h)=h^{3}-(3 / 2) h^{2}+(1 / 2) h$, etc. . Applying the formula (3.5) to each gamma function in $C_{1}(t)$, we get

$$
\begin{align*}
\log C_{1}(t)= & -p t^{2}-\frac{1}{\sqrt{n}}\left\{q i t+\frac{2}{3} p(i t)^{3}\right\}+\frac{1}{n}\left\{q(i t)^{2}+\frac{2}{3} p(i t)^{4}\right\} \tag{3.6}\\
& -\frac{1}{n \sqrt{n}}\left\{\frac{1}{12} p\left(2 p^{2}+3 p-1\right)(i t)+\frac{4}{3} q(i t)^{3}+\frac{4}{5} p(i t)^{5}\right\}+0\left(n^{-2}\right)
\end{align*}
$$

where $q=p(p+1) / 2$. This formula implies the asymptotic expansion of $C_{1}(t)$.

$$
\begin{align*}
C_{1}(t)= & e^{-p t^{2}}\left[1-\frac{1}{\sqrt{n}}\left\{q i t+\frac{2}{3} p(i t)^{3}\right\}+\frac{1}{n}\left\{\frac{1}{2} q(q+2)(i t)^{2}\right.\right. \tag{3.7}\\
& \left.+\frac{2}{3} p(q+1)(i t)^{4}+\frac{2}{9} p^{2}(i t)^{6}\right\}-\frac{1}{n \sqrt{n}}\left\{\frac{1}{12} p\left(2 p^{2}+3 p-1\right)(i t)\right. \\
& +\frac{1}{6} q(q+2)(q+4)(i t)^{3}+\frac{1}{15} p\left(5 q^{2}+20 q+12\right)(i t)^{5}
\end{align*}
$$

$$
\left.\left.+\frac{2}{9} p^{2}(q+2)(i t)^{7}+\frac{4}{81} p^{3}(i t)^{9}\right\}+0\left(n^{-2}\right)\right]
$$

Now we shall consider the second term $C_{2}(t)$ of (3.4). From definition (3.2) we have

$$
\begin{equation*}
C_{2}(t)=\operatorname{etr}\left(-\frac{1}{2} \Omega\right) \sum_{k=0}^{\infty} \sum_{(k)} \frac{\left(\frac{n}{2}+i t \sqrt{n}\right)_{k}}{\left(\frac{n}{2}\right)_{k}} \frac{C_{k}\left(\frac{1}{2} \Omega\right)}{k!} \tag{3.8}
\end{equation*}
$$

The coefficient of each term can be arranged according to the descending order of powers of n as

$$
\begin{align*}
& \left(\begin{array}{c}
n \\
2
\end{array}+i t \sqrt{n}\right)_{\kappa}=\left(\frac{n}{2}\right)^{k}\left[1+\frac{2}{\sqrt{n}} i t k+\frac{1}{n}\left\{\sum_{\alpha=1}^{p} k_{\alpha}\left(k_{\alpha}-\alpha\right)+2(i t)^{2} k(k-1)\right\}\right. \tag{3.9}\\
& \left.\quad+\frac{2}{n \sqrt{n}}\left\{i t(k-1) \sum_{\alpha=1}^{p} k_{\alpha}\left(k_{\alpha}-\alpha\right)+\frac{2}{3}(i t)^{3} k(k-1)(k-2)\right\}+0\left(n^{-2}\right)\right]
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{n}{2}\right)_{\kappa}=\left(\frac{n}{2}\right)^{k}\left\{1+\frac{1}{n} \sum_{\alpha=1}^{p} k_{\alpha}\left(k_{\alpha}-\alpha\right)+0\left(n^{-2}\right)\right\} \tag{3.10}
\end{equation*}
$$

Hence we can write $C_{2}(t)$ as

$$
\begin{align*}
C_{2}(t)= & \operatorname{etr}\left(-\frac{1}{2} \Omega\right) \sum_{k=0}^{\infty} \sum_{(k)} \frac{C_{\kappa}\left(\frac{1}{2} \Omega\right)}{k!}\left[1+\frac{2}{\sqrt{n}} i t k+\frac{2}{n}(i t)^{2} k(k-1)\right. \tag{3.11}\\
& \left.-\frac{2}{n \sqrt{n}}\left\{i t \sum_{\alpha=1}^{p} k_{\alpha}\left(k_{\alpha}-\alpha\right)-\frac{2}{3}(i t)^{3} k(k-1)(k-2)\right\}+0\left(n^{-2}\right)\right]
\end{align*}
$$

Now we shall evaluate each term of the above infinite series. Since the identity $(\operatorname{tr} Z)^{k}=\sum_{(\kappa)} C_{\kappa}(Z)$ (see James [5]) holds for any symmetric matrix Z, We have

$$
\begin{gather*}
\sum_{k=0}^{\infty} \sum_{(\kappa)} \frac{C_{\kappa}(Z)}{k!} k(k-1) \cdots(k-r+1) \tag{3.12}\\
=\sum_{k=r}^{\infty} \sum_{(k)} \frac{C_{k}(Z)}{(k-r)!} \\
=\sum_{k=r}^{\infty} \frac{(t r Z)^{k}}{(k-r)!}=(t r Z)^{r} e t r Z
\end{gather*}
$$

which holds for any non-negative integer r. Sugiura [7] proved the following formula.

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{(\kappa)} \frac{C_{k}(Z)}{k!}\left\{\sum_{\alpha=1}^{p} k_{\alpha}\left(k_{\alpha}-\alpha\right)\right\}=\operatorname{tr} Z^{2} e \operatorname{tr} Z . \tag{3.13}
\end{equation*}
$$

Applying the formula (3.12) and (3.13) to the expression of $C_{2}(t)$ in (3.11), we can simplify the expression (3.11) for the function $C_{2}(t)$ as

$$
\begin{equation*}
C_{2}(t)=1+\frac{i t}{\sqrt{n}} \operatorname{tr} \Omega+\frac{(i t)^{2}}{2 n}(t r \Omega)^{2}-\frac{1}{6 n \sqrt{n}}\left\{3(i t) \operatorname{tr} \boldsymbol{\Omega}^{2}-(i t)^{3}(\operatorname{tr} \Omega)^{3}\right\}+0\left(n^{-2}\right) \tag{3.14}
\end{equation*}
$$

Combining this result with the expression for $C_{1}(t)$ in (3.7), we obtain the following asymptotic expansion of the characteristic function $C(t)$.

$$
\begin{equation*}
C\left(\frac{t}{\sqrt{2 p}}\right)=\mathrm{e}^{-\frac{t^{2}}{2}}\left\{1-n^{-\frac{1}{2}} A_{1}+n^{-1} A_{2}-n^{-\frac{3}{2}} A_{3}+0\left(n^{-2}\right)\right\}, \tag{3.15}
\end{equation*}
$$

where the coefficients A_{1}, A_{2} and A_{3} are given by

$$
\begin{aligned}
A_{1}= & \frac{1}{3 \sqrt{2 p}}\left\{3 i t(q-\operatorname{tr} \boldsymbol{\Omega})+(i t)^{3}\right\} \\
A_{2}= & \frac{1}{36 p}\left\{9(i t)^{2}\left[q(q+2)-2 q t r \Omega+(t r \Omega)^{2}\right]+6(i t)^{4}[q+1-\operatorname{tr} \Omega]+(i t)^{6}\right\} \\
A_{3}= & \frac{1}{180 \sqrt{2 p} p}\left\{15 i t\left[p^{2}\left(2 p^{2}+3 p-1\right)+6 p t r \Omega^{2}\right]+15(i t)^{3}[q(q+2)(q+4)\right. \\
& \left.-3 q(q+2) \operatorname{tr} \Omega+3 q(t r \Omega)^{2}-(t r \Omega)^{3}\right]+3(i t)^{5}\left[5 q^{2}+20 q+12\right. \\
& \left.\left.-10(q+1) \operatorname{tr} \Omega+5(t r \Omega)^{2}\right]+5(i t)^{7}[q+2-\operatorname{tr} \Omega]+(5 / 9)(i t)^{9}\right\} .
\end{aligned}
$$

By inverting this characteristic function, we can finally obtain the following theorem.

Theorem 2. Let $n \mathbf{S}$ have the non-central Wishart distribution with n degrees of freedom and the non-centrality matrix $\boldsymbol{\Omega}=\boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{M}^{\prime} \boldsymbol{M} \boldsymbol{\Sigma}^{-\frac{1}{2}}$. Assume that the non-centrality matrix Ω may be regarded as a constant matrix with respect to n. Then the asymptotic expansion of the distribution of $|\boldsymbol{S}|$ can be obtained up to the order $n^{-\frac{3}{2}}$ in the following way. Let $\lambda=(\sqrt{n} / \sqrt{2 p}) \log (|\boldsymbol{S}| /|\boldsymbol{\Sigma}|)$. Then we have

$$
\begin{align*}
& P(\lambda \leq x)=\Phi(x)+\frac{1}{3 \sqrt{2 p n}}\left\{3 \Phi^{\prime}(x)(q-\operatorname{tr} \boldsymbol{\Omega})+\Phi^{(3)}(x)\right\} \tag{3.16}\\
+ & \frac{1}{36 p n}\left\{9 \Phi^{(2)}(x)\left[q(q+2)-2 q t r \Omega+(t r \Omega)^{2}\right]+6 \Phi^{(4)}(x)[q+1-t r \Omega]+\Phi^{(6)}(x)\right\} \\
+ & \frac{1}{180 \sqrt{2 p} p \sqrt{n} n}\left\{15 \Phi^{\prime}(x)\left[p^{2}\left(2 p^{2}+3 p-1\right)+6 p t r \Omega^{2}\right]+15 \Phi^{(3)}(x)[q(q+2)(q+4)\right. \\
- & \left.3 q(q+2) \operatorname{tr} \Omega+3 q(t r \Omega)^{2}-(t r \Omega)^{3}\right]+3 \Phi^{(5)}(x)\left[5 q^{2}+20 q+12-10(q+1) t r \Omega\right. \\
+ & \left.\left.5(t r \Omega)^{2}\right]+5 \Phi^{(7)}(x)[q+2-t r \Omega]+(5 / 9) \Phi^{(9)}(x)\right\}+0\left(n^{-2}\right),
\end{align*}
$$

where $q=p(p+1) / 2$ and $\Phi^{(r)}(x)$ denotes the rth derivative of the standard normal distribution function $\Phi(x)$.

Corollary 1. If the non-centrality matrix Ω is the null matrix, λ can be expanded asymptotically as

$$
\begin{align*}
& P(\lambda \leq x)=\Phi(x)+\frac{1}{3 \sqrt{2} p n}\left\{3 q \Phi^{\prime}(x)+\Phi^{(3)}(x)\right\}+\frac{1}{36 p n}\left\{9 \Phi^{(2)}(x) q(q+2)\right. \tag{3.17}\\
& \left.+6 \Phi^{(4)}(x)(q+1)+\Phi^{(6)}(x)\right\}+\frac{1}{180 \sqrt{2 p} p \sqrt{n} n}\left\{15 \Phi^{\prime}(x) p^{2}\left(2 p^{2}+3 p-1\right)\right. \\
& +15 \Phi^{(3)}(x) q(q+2)(q+4)+3 \Phi^{(5)}(x)\left(5 q^{2}+20 q+12\right)+5 \Phi^{(7)}(x)(q+2) \\
& \left.+(5 / 9) \Phi^{(9)}(x)\right\}+0\left(n^{-2}\right)
\end{align*}
$$

This corollary will be obtained at once by putting $\Omega=\mathbf{0}$ in (3.16). The asymptotic expansion (3.16) may be useful not only in the case of $\boldsymbol{\Omega}=\mathbf{0}(1)$, but also in the case of $\Omega=\mathbf{O}(n)$. However, we could not succeed in deriving it.

Acknowledgment. The author wishes to express his very sincere gratitude to Dr. N. Sugiura of Hiroshima University for his valuable advices and encouragements.

References

[1] Anderson, T. W. (1946). The non-central Wishart distribution and certain problems of multivariate statistics. Ann. Math. Statist. 17 409-431.
[2] Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.
[3] Constantine, A. G. (1963). Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 1270-1285.
[4] Herz, C. S. (1955). Bessel functions of matrix argument. Ann. Math. 61 474-523.
[5] James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 475-501.
[6] Siotani, M. and Hayakawa, T. (1964). Asymptotic distribution of functions of Wishart matrix. The Proc. Inst. Statist. Math. 12 (in Japanese) 191-198.
[7] Sugiura, N. (1968). Asymptotic expansions of the power functions of the likelihood ratio tests for multivariate linear hypothesis and independence. Mimeo Series No. 563 Univ. of North Carolina.
[8] Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika 26 471-494.

Department of Mathematics
Faculty of Science
Hiroshima University

