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1. Introduction

Throughout this paper D will denote an integral domain with 1^0 and
quotient field X, and by an overring of D will be meant a ring / such that
DczJczK. An ideal A of D is called a valuation ideal provided there exists a
valuation overring Dv of D such that ADV nD = A ([22; 340], [10]). If 77 is
a general ring property, then we shall refer to an ideal A of D as a Π-ideal
provided there exists an overring / of D such that / is a 77-domain (i.e. / has
the property 77) and A = AJπD. It is shown in [10] that if every principal
ideal of D is a valuation ideal, then D is a valuation ring. Furthermore, if
every proper ideal of D is a Dedekind ideal, then D is a Dedekind domain [2]
and if every proper ideal of D is a Prufer ideal, then D is a Prufer domain
[7], [10; 238]. In this paper we are mainly concerned with the following
question. When does the statement

(a) "there exists a collection d of 77-ideals of 7)" imply the statement
(b) "D is a 77-domain" (i.e. D has property 77)? Our main result in

this direction is that (a) implies (b) when "77-domain" = "Krull domain" and
d is the collection of proper principal ideals of 7), i.e. if every proper principal
ideal is a Krull ideal, then D is a Krull domain. The same result holds in
case "Krull domain is replaced by either "integrally closed domain" or "com-
pletely integrally closed domain". In addition we show that (a) implies (b)
when d is the collection of proper finitely generated ideals of D and 77 is any
of the following ring properties: Prufer, 1-dim. Prufer, almost Dedekind, or
Dedekind.

We remark that (a) does not always imply (b), even in the case that d
is the set of all ideals of D (e.g. if 77 is one of P.I.D., Bezout, or (λR-property-
see Section 5).

In general we use the notation and terminology of [21] and [22]. In
particular, c denotes containment, while < denotes proper containment and
A is a proper ideal of D provided (0)<A<D. The theorems considered in
this paper are trivial in case D is a field, so we assume throughout that D
has at least one proper ideal.

We wish to thank Paul M. Eakin Jr. for suggesting Lemma 3.1 (allowing
us to shorten some proofs in Section 3) and Proposition 5.1 to us.

1) This author was supported in part by N. S. F. grant No. 6467 during the preparation of this
paper.
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2. Preliminary results

A domain D is called a Prufer domain provided Dp (the quotient ring of
D with respect to the prime ideal P of D [21 228]) is a valuation ring for
each proper prime ideal Pof D (see [1; (b) ], [3], [5], [7], [10], [12; 127],
[13 554]) D is an almost Dedekind domain provided Dp is a rank one discrete
valuation ring (i.e. a noetherian valuation ring - a valuation ring which is a
Dedekind domain) for each proper prime ideal P of D (see [3] and [9]) and
D is a Krull domain if D is the intersection of the members of a family % of
rank one discrete valuation rings Dv such that DcDvc:K and each non-zero
element of D is a non-unit in only finitely many of the Dv e g (see [1 (b)],
[12; 104], [19; 8], [22; 82]). An element % of K is said to be almost integral
(or quasi-integral) over D provided there exists de D such that d =̂= 0 and
dxn e D for every positive integer n. If the set of almost integral elements
of K over D is equal to D, then D is called completely integrally closed (see
[1; (a)] [4], [12; 102], [18]).

LEMMA 2.1. If S is a multiplicative system in D and A is an ideal of D
such that AJ Π D — A for an overring J of D, then ADS = AJS Π Ds.

PROOF. It is sufficient to prove that AJSΠ DS<^ADS- If x £ AJS ΓΪDS,

then x = a/s = d/t with s, t c 5, d e D, a e AJ. Thus ta^ds e AjnD = A, and
ds(l/st) = x€ ADS.

LEMMA 2.2. Let IT be a ring property such that if J is any domain having
property Π and S is a multiplicative system of /, then Js also has property Π.
Then if A is a Π-ideal of D and S is a multiplicative system of D, it follows
that ADS is a ΐl-ideal of Ds.

PROOF. An immediate consequence of Lemma 2.1.

COROLLARY 2.3. Under the conditions of Lemma 2.2 we have the following:
(a) every ideal of D is a II-ideals every ideal of Ds is a Π-ideal.
(b) Every proper principal ideal of D is a II-ideals every proper princi-

pal ideal of Ds is a Π-ideal.

PROOF. An immediate consequence of Lemma 2.2.

REMARK 2.4, If we take the ring property Π in Lemma 2.2 to mean that
/ is a Krull domain, then the conditions of Lemma 2.2 are satisfied and Corol-
lary 2.3 applies (see [1 (b)], [19 10]). Furthermore we pan replace "Krull"
by Dedekind, Prufer, almost Dedekind, noetherian, or iμtegrally closed (see
[6; 31], [3; 269], [9], [5], [21]). We note that the property "completely
integrally closed" does not satisfy the conditions of Lemma 2.2—the ring E
of entire functions is a completely integrally closed Prufer domain (in fact,
Bezout domain) with dimension greater than one ([l-(a); 71], [18; 324]), so
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that for a non-minimal prime ideal P of E the quotient ring EP is a valuation
ring of rank greater than one and therefore not completely integrally closed
[14].

3. Characterizations of domains which are Krull, integrally closed, or
completely integrally closed.

The purpose of this section is to establish the following result. Let Π
be one of the ring properties "Krull domain", "integrally closed domain", or
"completely integrally closed domain"; then if every proper principal ideal
of D is a TΓ-ideal, it follows that D is a 77-domain. Furthermore, a counter-
example is given which shows that this result is false if IT is one of the ring
properties "Dedekind domain", "almost Dedekind domain", "Prufer domain",
or "Noetherian domain".

LEMMA 3.1. Let g be a family of domains J such that DczJczK for all
/ e g . If for every x in D there exists J e g such that xD = xJΠ D, then
D= n/.

PROOF. If β e (Ί /, then β — x/y with x, y e D. Since x — βy implies that

xjaβyj for all / e g , then xja yj for all / e g . There exists / ' e g such that
yD = yJ'ΠD. Therefore xDdxJ' nDa yj' nD = yD and β e D.

THEOREM 3.2. // every proper principal ideal of D is an integrally closed
ideal {completely integrally closed ideal), then D is integrally closed (completely
integrally closed).

PROOF. This follows directly from Lemma 3.1 since the intersection of
a collection of integrally closed (completely integrally closed) domains is in-
tegrally closed (completely integrally closed).

COROLLARY 3.3. // every proper principal ideal of D is a Krull ideal, then
D is completely integrally closed.

PROOF. A Krull domain is completely integrally closed.

COROLLARY 3.4. If every proper principal ideal of D is a rank one valua-
tion ideal, then D is a rank one valuation ring.

PROOF. A valuation ring is completely integrally closed if and only if it
is rank one [[14; 170]; every proper principal ideal of D is a valuation ideal
implies that D is a valuation ring [10 239].

LEMMA 3.5. If P is a prime ideal of D such that DP is a Dedekind domain,
then the only primary ideals belonging to P are the symbolic powers P(n) of P.
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PROOF. Every proper ideal in DP is a power of PDP and is primary for
PDP. Since the primary ideals of DP which belong to PDP are in 1-1 corres-
pondence with the primary ideals of D which belong to P, the lemma follows
from the definition of symbolic powers [21 232].

LEMMA 3.6. // xD is a proper principal ideal of D such that xD is a
Krull ideal, then xD has an irredundant representation as a finite intersection
of strong primary ideals (i.e. primary ideals which contain a power of their
radical). Furthermore, if P is an associated prime ideal of xD, then Γ\Pn = (0).

n

PROOF. There is a Krull domain / such that DczJaK and xD = xJΠD.
Furthermore, since xj is a non-zero principal ideal in the Krull domain /, we
have χJ=Qι Π ΠQn where the Q{ are symbolic powers of the finite number
of minimal primes of / which contain xj (see [12; 119] and [20; Coro. 2.14]).
Since Q, is a symbolic power of Pf = vQz in /, then there is an integer m such
that Qi^Pp for ί = l, • •-, n. It is clear that Qi = QiΠD is primary for P{ =
Pi n D and Qiz>Pp for i = 1, ..., n. Furthermore xD=Q1Γ\ •-• PiQn. Since Jp.
is a Dedekind domain, nP>}Dp.=(0) and therefore nPj=(0) .

n n

LEMMA 3.7. // M^(0) is a maximal ideal in a completely integrally
closed domain D and M~ι — {x e K\ xMa D} >D, then M is invertible.

PROOF. Since MM~X is an ideal in D and MczMM^aD, then MM~ι — M
or MM"1 — D. If MMr1 = M, then M(M~ι)n = Ma D for every positive integer
n. If 0 ^ d e M and x c M"1, then dxn e D and x is almost integral over D.
Since D is completely integrally closed, then x e D and Mrλ — Ώ—a contradic-
tion. Hence MM~ι — D and M is invertible.

LEMMA 3.8. // every proper principal ideal of D is a Krull ideal and P is
a (non-zero) minimal prime ideal of D, then DP is a rank one discrete valuation
ring (i.e. a Dedekind domain with exactly one proper prime ideal).

PROOF. It follows from Corollary 2.3 and Remark 2.4 that every proper
principal ideal of DP is a Krull ideal, and Corollary 3.3 implies that DP is
completely integrally closed. Since PDP is the only proper prime ideal in DP,
it is sufficient to show that PDP is invertible ([6] or [17]). Therefore, in
view of Lemma 3.7, it suffices to show that (PDP)~ι>DP. Let O^ψx e PDP.
By Lemma 3.6 there exists an irredundant strong primary representation for
xDP, and since every proper ideal in DP is primary for PDP, it follows that
xDPziPnDP ίor some positive integer n. If n = l then PDP is invertible, so
we may assume that n > 2 and minimal, that is xDPZD(PDP)

n and xDP-$(PDP)
n~ι.

Choose ye (PDP)
n~ι such that y <f xDP. Then y/x { DP, and it follows easily

that y/x 6 (PDPy\

LEMMA 3.9. // every proper principal ideal of D is a Krull ideal and if
is a maximal ideal in D such that P is an associated prime ideal of a



On Overrings of a Domain 99

non-zero principal ideal yD of D {see Lemma 3.6), then P is ίnvertible.

PROOF. Let yD=Qιf] ••• Γ)Qn be an irredundant strong primary repre-
sentation such that Pi = ^Qi for each ί and P=Pχ. If yD: P^ψyD and x e
{yD: P)\yD, then x/y f D and χ/ye P1 so that P is invertible by Corollary
3.3 and Lemma 3.7. Suppose that yD:P = yD, and therefore yD:Pk=yD
for all k. There exists an integer t such that P*c:Qι and hence ζ^: Pt = D.

It follows that yD=yD: Pt={f\Qi): Pf= f\(Qr. Pf)= n((?f : P')=> n f t o y ΰ and
1 1 ι=¥l i*l

yD= Π O, , a contradiction.

LEMMA 3.10. // every proper principal ideal in D is a Krull ideal, then
the associated prime ideals of any proper principal ideal yD of D {see Lemma
3.6) are minimal prime ideals of D {and consequently a proper principal ideal
of D has no imbedded components). Hence yD is contained in only finitely
many minimal prime ideals of D.

PROOF. Let P be an associated prime ideal of a proper principal ideal
yD of D. Then the maximal ideal PDP of DP is an associated prime ideal of
yDp and P is a minimal prime of D if and only if PDP is a minimal prime
ideal of DP. Since every proper principal ideal of DP is a Krull ideal, by
Corollary 2.3 and Remark 2.4, we may assume that P is a maximal ideal of D.
Under this assumption, Lemma 3.9 implies that P is invertible. Suppose
that Pi is a prime ideal of D such that P i < P . Then P i P 1 is an ideal of D
and P{PιP

ι) = Pι implies that PιP
1 = Pι and Pι = PχP. Hence P1 = P1P

nczPn

for all n. Since ΠP w =(0)by Lemma 3.6, then Pχ = (0) and P is a minimal
n

prime ideal of D.

THEOREM 3.11. If every proper principal ideal in D is a Krull ideal,
then D is a Krull domain.

PROOF. If Wl denotes the set of minimal prime ideals of D, then DP is a
rank one discrete valuation ring for each P e 9JΪ by Lemma 3.7. For each
non-zero d e D, Lemma 3.10 implies that the principal ideal dD is contained
in at most a finite number of minimal prime ideals of D, and therefore d is a
unit in DP for all except possibly a finite number of ideals P e 2ft.

To complete the proof it suffices to prove that Π DP— D* c D. If 0 =V
pern

a e D*, then a = x/y with x, yd D. Denote by X, Y the collections of as-
sociated prime ideals of xD, yD respectively (Lemma 3.6) and note that Ya
XaWl (Lemma 3.10). For each Pe9Ή there exists an integer v{x)*>0 such

p

that xDP={PDp)vp(x\ since DP is a Dedekind domain. It follows from Lemmas
3.5, 3.6, and 3.8 that xD= n P{v

P

{x)\ Similarly yD= n P ( V ω ) . Since a e £*,
pex PCY

we have xDPci yDP for each P e X, and therefore vp(x)^> vP{y) for each P e X.
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Consequently n P(v

P

(x))a n P(Vω>, which implies that ae D.
Pex per

COROLLARY 3.12. // every proper principal ideal of D is a Noetherian
integrally closed ideal, then D is a Krull domain.

PROOF. This is an immediate consequence of Theorem 3.11 since a Noe-
therian integrally closed domain is a Krull domain.

If F is a non-zero fractional ideal of D, let Fι— {a e K\aFaD}. An
ideal A^(0) of D is called a t -ideal provided A = (A~ιyι (see [12; 118], [20],
and the material on divisorial ideals in [1] and [19]).

PROPOSITION 3.13. Every v-ideal of a Krull domain D isa Dedekind ideal
(in fact, a P.I.D.-ideal).

PROOF. The set of i -ideals of D is exactly the set of finite intersections
of symbolic powers of minimal prime ideals of D ([12; 119] and [20; Coro.

k

2.14]). Let A= Π Pi(nί) be a i -ideal of D, where P/^ } is a symbolic power of
i = \

the minimal prime ideal P; of D. Now DP. is a Dedekind domain for & = 1, •••,

k and Ds= n DP where S=D\ u P, . I t follows from [16; 38] and [ 3 ; 276]
i = 1 l » = 1

that Z>5 is a Dedekind domain with a finite number of prime ideals (and
therefore a principal ideal domain). Or, alternately, Ds is a quotient ring of
a Krull ring, and therefore a Krull ring [19 10] Ds is one dimensional with
a finite number of prime ideals by [21 225], and hence Ds is a Dedekind
domain [22 84]. Finally, ADS Π D = ̂  by [21 225].

EXAMPLE 3.14. Let /=.F[^ i , x2, ••-, *rc, •••] be the polynomial ring in
infinitely many indeterminates over a field F. Then / is a unique (element)
factorization domain, and therefore / is a Krull domain [19]. It is clear that
an invertible ideal is a t -ideal—in particular, every non-zero principal ideal
is a ?;-ideal. A domain is Prϋfer if and only if every finitely generated non-
zero ideal is invertible [ 5 ] ; consequently / is not a Prϋfer domain since
(#i, x2) is not an invertible ideal in / (/>(#i, # 2)>(#i) and a proper invertible
ideal can not properly contain an invertible prime ideal). It is clear that / is
not Noetherian. Therefore, in the hypothesis of Theorem 3.11 we can not
replace "Krull ideal" by any of the following: "Dedekind ideal", "almost
Dedekind ideal", "Prϋfer ideal", "Noetherian ideal", "P.LD. ideal".

4. Characterizations of Prϋfer domains, almost Dedekind domains,
and Dedekind domains.

In this section we show that the statement "every proper finitely gener-
ated ideal of D is a TMdeal implies that D is a 77-domain" holds in case the
ring property U is one of the following; Prϋfer domain, 1-dim. Prϋfer do-
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main, almost Dedekind domain, or Dedekind domain.
If A is an ideal of D, then % e K is said to be integral over A provided

there exist αx, • •-, an such that xn + aχxn~lj\ Van = 0 a n d a{ e A 1 f o r i = l, •••,
n the set A* = {x e K\ x is integral over A} is called the integral closure of
A in K (see [16] and [22; 350]). The set A' = n ^D,, where D, ranges over
all of the valuation over rings of Z>, is called the completion of A and A is
said to be complete if A = A'; furthermore A' = A* [22; 350]. In addition, D
is a Prϋfer domain if and only if A = A' for every ideal A of D [10]. In
particular, if D is a Prϋfer domain, then A — A^ for every finitely generated
ideal A of D; the converse is also true and is established below.

THEOREM 4.1. The domain D a is Prύfer domain if and only if A = A*
for every finitely generated ideal A of D.

PROOF. The domain D is Prϋfer if and only if AB = AC implies B = C,
when B and C are ideals of D and A =V (0) is a finitely generated ideal of D
(see [5], [10]). Suppose H=H* for every finitely generated ideal H of D,
and let B, C, A = (xu • ••, χn)^(0) be ideals of D such that AB = AC. If b e B,

n

t h e r e e x i s t c / 7 6 C s u c h t h a t OΛJ, = Σ cυχj f ° r * —1? •••> ^ L e t CΊ b e t h e i d e a l
. 7 = 1

in D generated by the c^. Since CΊ is finitely generated, then Cι = Cf<zC.
Let £,7 = 0 for z'=̂ =y and 5,7 = 1 for &*=/, and solve the system of equations

n

Σ (cij — bδii)χj = 0 (i = lj •••, τθ by Cramer's rule. Since not all of the Λ ^
i = i

are 0, it follows that the determinant | Cij — bδij\ = 0 ; expanding the determi-
nant, we have elements ci, ••-, cn such that bn + cιbn~ιH hcw = 0 with c, 6 Cj.
Therefore 6 is integral over Cu and b e Cf = C\ c C. Hence BaCy and simi-
larly C c £ , so that B = C.

THEOREM 4.2. // ei βr̂ / finitely generated ideal in D is a Prύfer ideal,
then D is a Prύfer domain.

PROOF. Since a Prϋfer domain is integrally closed, it follows from Theo-
rem 3.2 that D is integrally closed. Moreover, since a Prϋfer ideal is an in-
tersection of valuation ideals [10], every finitely generated ideal of D is an
intersection of valuation ideals. An intersection of valuation ideals is a com-
plete ideal [22 353], and therefore every finitely generated ideal of D is com-
plete. Hence A = A* for every finitely generated ideal A of D, and D is a
Prϋfer domain by Theorem 4.1.

We say that a domain D has property p provided the following holds: if
P is a proper prime ideal of D and a,b e D with b ^=0, then there exist c, d 6 D
such that a/b = c/d and either c { P or d { P (this is an abstraction of a very
useful property in classical algebraic number theory, where fractions can
not in general be "reduced to lowest terms" but can be "reduced to lowest
terms with respect to a given prime ideal").
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LEMMA 4.3. A domain D is Prύfer if and only if D has property p.

PROOF. It is easy to show that D has property p if and only if for every
non-zero α e l , that either a or or 1 belongs to DP for every proper prime
ideal P of D.

LEMMA 4.4. // / is an overring of a Prύfer domain D and P is a prime
ideal of J, then Jp=

PROOF. It is clear that JP^DP^D- Let a=aλ/a2 with au a2ej and
a2 ί P. Since D has property p, it follows directly that a\ = x\/ yι and u2 =
X2/ J2 with xu x2, yu y2 e D, yiξ P, x2ξ P and the reverse inclusion is es-
tablished.

COROLLARY 4.5. An overring of a Prύfer domain is a Prufer domain.

THEOREM 4.6. // every proper finitely generated ideal of D is a 1-dim.
Prύfer ideal, then D is a 1-dim. Prύfer domain.

PROOF. Theorem 4.2 implies that D is a Prufer domain. If P is a pro-
per prime ideal of D, every proper finitely generated ideal of the valuation
ring Dp is a 1-dim. Prufer ideal by lemma 2.2. Lemma 3.1 implies that DP is
an intersection of 1-dim. Prufer domains therefore the valuation ring DP is
completely integrally closed and must be rank one. Hence D is a 1-dim.
Prufer domain.

COROLLARY 4.7. // every proper finitely generated ideal of D is an almost
Dedekind ideal, then D is an almost Dedekind domain.

PROOF. We have from Theorem 4.6 that D is a 1-dim. Prufer domain,
so that Dp is a rank one valuation ring for each proper prime ideal P of D.
Lemma 2.2 implies that every proper finitely generated ideal of DP is an
almost Dedekind ideal, and since DP is a maximal subring of the quotient
field of D it follows that DP is a rank one discrete valuation ring.

COROLLARY 4.8. // every proper finitely generated ideal of D is a De-
dekind ideal, then D is a Dedekind domain.

PROOF. Since a Dedekind domain is a Krull domain, it follows from
Theorem 3.11 that D is a Krull domain; D is 1-dim. by Theorem 4.6, and
therefore D is a Dedekind domain [22 84].

REMARK 4.9. It follows immediately from proposition 3.13 and Corollary
4.8 that in any Krull domain with dimension =V 1 there is a finitely generated
ideal which is not a v-ideal.
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5. Some miscellaneous results.

PROPOSITION 5.1. / / g is a finite family of Noetherian overrings J of D

such that for each proper ideal A of D there exists / e g such that AJf] D = A,

then D is Noetherian.

PROOF. If Aλ c A2 c c An c • is a chain of ideals in D, then AiJcz A2J

c c AnJd ... for each / e g. There exists an integer k such t h a t AnJ= An+ιJ

for all n > k and all / e g , and there exists a domain / e g such t h a t Akf n D

= ^4*. I t follows t h a t ^4w = ^ w + i for all ra>A;, and Z> is Noetherian.

By an ascending ring property we understand a ring property Π such
that if D has property Π and / is an over ring of D, then / has property Π. We
consider the following question: if Π is an ascending ring property and every
proper ideal of D is a ZΓ-ideal, does it follow that D is a /JΓ-domain ? We give
three ascending ring properties for which the answer to this question is nega-
tive.

PROPOSITION 5.2. If J is an overring of a Bezout domain D {i.e. every
finitely generated ideal of D is principal), then J is a Bezout domain.

PROOF. It is sufficient to prove that an ideal (x, γ) of /, generated by
two elements, is principal. Since x, γζ K then x — a/c and γ=b/c with α,
b, c e D. Hence c(x, y)/=(α, δ)/=(α, b)D J=rD-J=rJ for some r e D, and
(*, γ)J=(r/c)J.

COROLLARY 5.3. Every overring of a principal ideal domain (P.I.D.) is a
P.I.D.

PROOF. A domain D is a P.I.D. if and only if D is a Bezout domain and
a Dedekind domain (both of which are ascending ring properties).

EXAMPLE 5.4. Denote by / the domain of algebraic integers in the field
R(yl — β\ where R is the field of rational numbers. Then / is a Dedekind
domain which is not a Bezout domain [14 43, 49], and every proper ideal of
/ is invertible and therefore a i -ideal. It follows from Proposition 3.13 that
every proper ideal of / is a P.I.D. ideal.

A domain D has the ()i?-property provided every overring of D is a quoti-
ent ring of D with respect to some multiplicative system in D. It is shown
in Qll; 98] that the (λR-property is an ascending ring property; furthermore,
an example is given [11 102] of a Dedekind domain D* which does not have
the (λft-property. Proposition 3.13 shows that every proper ideal in a De-
dekind domain is a P. I. D.-ideal, and hence a (λft-ideal since a P.I.D. is a QR-
domain [11 99]. Consequently, every proper ideal of D* is a QR-ideal and
D* is not a (λR-domain.
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