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Introduction

M. Brelot [1] introduced relative Dirichlet problems on a metrizable com-
pactiίication of a Green space and L. Naϊm Q4] obtained many results con-
cerning this type of problems. Also, T. Ikegami Q3] studied the problems on
the Wiener compactification of a hyperbolic Riemann surface.

In this paper, we consider the relative Dirichlet problems on an arbitrary
compactification of a hyperbolic Riemann surface R. We denote by du the
resolutivity of all finite continuous functions on the ideal boundary relative to
a positive harmonic function u (§1, 7) and first give characterizations of Gu

for φ-compactifications (Theorem 1). Then we obtain that Qu is satisfied for
the Wiener compactification if and only if u is quasi-bounded (Theorem 2). As
a corollary, we improve Ikegami's result as follows: There exists a unique
pole of a minimal positive harmonic function on the Wiener boundary if and
only if the function is bounded.

Next, in connection with Brelot's \J1J and Nairn's works ^4], we define
the maximal compactification R$l of R for which Gu is satisfied for any u > 0
(Theorem 3). As a corollary, we obtain Brelot's result OH) For the Martin
compactification of i?, Qu is satisfied for any u>0. Finally, we prove that
R%r1 is not metrizable (Theorem 4) and we give an answer in the negative to a
question in Nairn's remark (p. 268 in [_4Γ\).

§ 1 Preliminaries

Let R be a hyperbolic Riemann surface. For a subset A of R, we denote

by dA and A1 the (relative) boundary and the interior of A respectively. We

shall call a closed subset F of R regular if OF consists of at most a countable

number of analytic arcs clustering nowhere in R. An exhaustion will mean

an increasing sequence {Rn}n=ι °f relatively compact domains on R such that

\jRn = R and each dRn consists of a finite number of closed Jordan curves.

We denote by BC the family of all real valued bounded continuous functions
on R and by CQ the subfamily of BC consisting of functions with compact
supports in R.

1. Wiener functions (cf.

For a finite continuous function / on R, we shall denote by 09/ (resp. Q$
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the family of all superharmonic (resp. subharmonic) functions 5 on i? such
that sΞ>/ (resp. s<^f) on R—Ks for some compact set Ks in R. If 09/ and
Q9/ are not empty, then we define hf(a)=mi{s(a); s e 0&f} and h/(a) = sup
{s(a) s e OS/} (α e R). It is known that hf, hf are harmonic and hf <S hf. If
hf=hf, then / is said to be harmonίzable. We write hf = hf=hf if / is har-
monizable. If / x and / 2 are harmonizable, then min (fu f2) is harmonizable
and λ/1ΛΛ/2

1)=Λ(W/W(/1,/2)). A finite continuous function / on R is called a
Wiener function if | / | has a superharmonic majorant and / is harmonizable.
We denote by W the family of all finite continuous Wiener functions on R
and set BCW=BCίΛ W. We see that W is a vector lattice with respect to the
maximum and minimum operations and also contains Co and constants.

2. Compactifications.

We follow C. Constantinescu and A. Cornea [2] for the definition of (Q-)
compactifications. In particular, we denote by R% (resp. R§?) the Martin com-
pactification (resp. the Wiener compactification) of R. Let R* be a compaeti-
fication of R. We write ΔM = R%I-R, ΔW = R%-R, ΔQ = R%-R and A = R*-R.
We denote by C(R*) the family of all real valued continuous functions on Λ*.
For any subset A of R, we shall denote by A* (resp. AM, Aw, AQ) the closure
of A in # * (resp. R%, R%, R%). Let Rf and R$ be two compactifications of R.
If there exists a continuous mapping π of Rf onto i?J which is reduced to the
identity on i?, then we shall say that such a mapping is the canonical mapping
of Rf onto R% and that R% is a quotient space of jftf. It is known ([[2]) that
if Q1CQ2, then i^§1 is a quotient space of Λg2. Hence i?^ is a quotient space
of 2φ.

3. Reduced functions.

Let J?* be a compactification of 7? and denote by A the ideal boundary
R* — R. Let u be a positive harmonic function on R. For a compact subset
A of J, we consider the following class:

[ superharmonic I> 0 on R, s^>ύ on

{ for some neighborhood Z7 of A in Λ*

Then the function

(a) = int{s(a); s 6 c$%R+} (a e R)

is harmonic on R and 0<J uA<, u.
We can easily show

LEMMA 1. Let u and A be as above. Let {Un}ζ=1 be any sequence of
neighborhoods of A in R*. Then there exists a sequence {Fn}ζ=1 of regular

1) hjί/\hj2 is the greatest harmonic minorant of min (hfίi hf2).
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closed sets in R such that

(a) The closure F* of each Fn is a neighborhood of A,

(b) UnnR>FH(n = l, 2, ...) and

(c) R-F
(d) uFn

2) decreases to uA as n->oo.

By the aid of the above lemma we can prove the following properties:
(Al) If AxCΛ2 and u1<u2, then (uλ)Aι<:(U2)A2.
(A2) (ui + u2)A = (u1)A + (u2)A.
(A3) If c ^ O is a constant, then (cu)A = cuA.
(A4) If AXCA2, then UAI = (UAI)A2=(UA2)AI.

(A5) If uk increases to u as &-»oo? then (uk)A increases to uA as k->oo.

LEMMA 2. Let u be a positive harmonic function on R. If F is a regular
closed set in R, then uF >̂ uFw^w.

PROOF. Since v = u — uF^>0 is a continuous Wiener function on R, it can
be continuously extended over Rfy. We denote by v* the continuous extension
of v over R^. For each ε>0, we set U£={z e R§; v*(z)<ε}. Since v* = Q on
Fw, U£ is an open neighborhood of FwΓ\ΔW and uF + e>u on UεΓ\R. Hence

Fwnjw. Since ε>0 is arbitrary, we complete the proof.

COROLLARY 1. // {Fn}^=1 is α sequence of regular closed sets in R such
oo

that Fn^)Fn+1 (7i = l, 2, ...) and f\Fn=φy then uFn decreases to uA, where A =
°° n=l

Γ\F%.
n=l

COROLLARY 2. If F is a regular closed set in R, then \imuF-Rn = UFwnJw,

where {Rn}ζ=1 is an exhaustion of R.

4. Singular harmonic functions.

Let u be a non-negative harmonic function on R. If u is the limit
function of an increasing sequence of non-negative bounded harmonic func-
tions, then u is said to be quasi-bounded. If any non-negative bounded har-
monic function dominated by u is always zero, then u is said to be singular.
Hence an unbounded positive minimal harmonic function is singular. It is
known (Parreau) that any positive harmonic function is uniquely represented
as the sum of a quasi-bounded harmonic function and a singular harmonic
function.

We shall prove

LEMMA 3. Suppose u is singular. For each integer zi>0, we set Fn =
{z e R; u(z) ^ n}. Then uFn = u on R for each n.

PROOF. V — U — UF is a bounded continuous Wiener function on R — Fn.

2) See p. 43 in [2] for this notation.
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By Lemma 1.3 in [SJ, we see that u = 0 on Γw, where Γw is the harmonic

boundary of R^ (cf. [2~]). Since uFjι^u on R, uFn = 0 on Γw- Hence we have

i; = 0 o n (Γw-Fξ)\JdFζ. By the minimum principle (Satz 8.4 in [2]), we

obtain that v = 0 on R — Fn. This completes the proof.

REMARK : We can furthermore show the following: Let u be a positive
harmonic function. For each integer ra>0, we set Fn—{z e R; u(z)^>n}. Then
lim uFn is equal to the singular part of u.

PROOF, (ί) Let u be quasi-bounded and A be a compact subset of Δw

such that 1^ = 0. Suppose u is the limit function of an increasing sequence
{uk}°k=ι of positive bounded harmonic functions. Then, by (A5), we have uA

= lim (uk)A. Since (uk)A<,(&xx$ uk)lA = §(k = l, 2, ...), it follows that uA = 0.

n = l
(ii) Let u be an arbitrary positive harmonic function. We set A =

n

Since lFn<*(l/n)(mm(u, n))^u/n(n = l, 2, ...), it follows from Corollary 1 to
Lemma 2 that l^^O. Hence, if u is quasi-bounded, then z^ = 0 by (i). Now
suppose u is not quasi-bounded. Let w be the singular part of u and Ωn =
{z e R; w(z)^>n} for each integer n>0. Since ΩnCFn for each n9 it follows
from Lemma 3 and Corollary 1 to Lemma 2 that wA = w. By (i), we see that
(u — w)A = 09 SO that uA=wA by (A2). This completes the proof.

As a corollary, we obtain:
a) u is quasi-bounded if and only if lim uFn = 0 (M. Nakai: Proc. Japan

Acad., 41(1965), 215-217).
b) u is singular if and only if uFn — u on R for each n (cf. Lemma 3).

5. Poles on the ideal boundary.

For be JM = R^-R, let kb be the Martin kernel (cf. p. 135 in [2]). Let Δλ

be the set of all minimal points of ΔM. It is known (H4]) that if b e Δι and if
F is a closed set in R, then (kb)F is either equal to kb or a Green potential in
fact (kb)F is a Green potential if and only if F is thin3 ) at b.

Let b be a point in Δλ and iϊ* be a compactification of R. Then we know
that there exists at least one point z on Δ such that (kb\zy = kb (Lemma 2.2 in
[3]). We call such a point z a pole of b on Δ. If (kb)F = kb for some closed
set F in R, then there exists at least one pole of b on Δ which is contained in
F*Γ\Δ. The set of all poles of b on Δw is denoted by Φ(b). It is known
(Theorem 2.1 in [3]) that Φ(b) = f\Ew where 9b = {ECR; R-E is thin at &}.

If U is a neighborhood of b in i?^, then it follows form Hilfssatz 13.2 in [2J
that UίλR 6 3b.

LEMMA 4. Lei b be a point in Δλ and F be a regular closed set in R. Then
F is thin at b if and only if FwΓ\Φ(b) = φ.

3) See p. 201 of [4] this is called effile.
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PROOF. We set a=FwΓ\Jw It suffices to prove that F is thin at b if
and only if aΓ\Φ(b)=φ. Let {Rn}ζ=ι be an exhaustion of R. First suppose
F is thin at b. Then F—Rn is thin at b for each n. Hence (kb)F-Rn is a Green
potential. Thus, by Corollary 2 to Lemma 2, we obtain that (kb)a = 0. This
shows that aΓ\Φ(b)=φ. Conversely, suppose aΓ\Φ(b)=φ. Since Φ(b) = f\Ew,

_Ee9b

for each z e a, we can find a regular closed set Fz in i? such that FJ is a
neighborhood of z in iϋĵ  and Fz is thin at ό. Since a is compact, we cann —
choose a finite number of points {zk}l=ι in a such that \jFYk is a neighborhood

of <x If we set F0=\jFZt, then Fo is thin at δ. Since F-RmCF0 for suffici-

ently large m, we see that F is thin at b.

COROLLARY. Let Qb = {GCR\ R — G is a regular closed set in iϋ and thin
atδ}.

(i) î or am/ G e ̂ , ί/̂ ere exists a neighborhood U of Φ(b) in R%? such that
UίΛRCG.

(ii) For any neighborhood U of Φ{b) in i?^, there exists a G e Qb such that
GCUίλR.

(iii)

For each b e Ju we set (Qb = {GCR; R — G is a closed set in R and thin at
6}. Then QbCQb for each b e άλ. For a function/ in BC, we define $(/) =
{ό 6 Ji; f\f(G) is one point}, where /(G) means the closure of /(G) in the

GeQt,

real numbers (see p. 147 in [2]). It is known ([2]) that 9- (/) is a Borel set.
The following properties are easy to prove:
(Bl) Let / be a function in BCW. Then be'd-(f) if and only if / can

be continuously extended over Φ(b) by a constant.
(B2) If a function / in BC can be continuously extended over R%, then

6. Relative Dirichlet problems.

Let Λ* be an arbitrary compactification of R and ^ be a positive har-
monic function on R. Given a function / (extended real valued) on i, we
consider the following classes:

I superharmonic on R, s/u is bounded below,]
s;

lim [s(a)/u(a)J^>f(z) for any z e Δ J

and

We define 2)/flί(α)=inf {s(α); 5 e d f̂Λ*} and ®/f«(α) = sup{5(α); 5 e du

fiR*}(a e R).
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It is .known (Perron-Brelot) that Q)ffU (resp. ©/,„) is either harmonic, - + oo
or = — oo, If Q)ffU=Q)ftU and are harmonic, then we say t h a t / is u-resolutive
and Q)f,u = Qf,u = Q)f,u is called the z^-Dirichlet solution of / (with respect to
i?*). In case u = 1, a w-resolutive function is called resolutive. If any finite
continuous function on A is resolutive, then we shall say that i?* is resolutive.

The following properties are easy to see:
(Cl) If / is the characteristic function of a compact subset A of J, then

uA=Q)ffU.

(C2) If / is a finite continuous function, then (-max | / | )u <J 2)/ f f ί <J 2)/,«52

(C3) If / and g are finite continuous functions, then ©(/-#),« 52 2V,M —
ωg>u and @/, ,-©^ w ^©(/-^, .

We shall prove

PROPOSITION 1. Let u be a positive harmonic function on R and Λ* be a
compactίfication of R. Then a continuous function f on R* is u-resolutive if
and only if fu is a Wiener function. Furthermore, in this case, Q)ftU=hfU.

PROOF. Since QS/KCC^,^, we obtain that hfu^>Q)f>u. Let s be any func-
tion in S}>R*. For ε>0, there exists a neighborhood U of A in Λ* such that
s/u^>f—e on UίΛR. Hence we have s + eu e 0&fu. Thus s + εu^hfu for any
ε>0, so that s^hfu. It follows that Q)ffU^hfu, and hence Q)f>u = hfu. Simi-
larily, we can show that hfU = Q)ftU. Hence / is u-resolutive if and only if fu
is harmonizable. Since fu has a superharmonic majorant (sup|/ |)u, we com-
plete the proof.

COROLLARY (Hilfssatz 8.2 in [2ΓJ). f is resolutive if and only if it is a
Wiener function.

7. Brelot's axioms.

Let Λ* be a compactification of R and u be a positive harmonic function
on R.

Brelot [1] considered the following axioms:

AXIOM QU : Any finite continuous function on A is u-resolutive.

AXIOM β£": (UAI)A2 = 0 for any mutually disjoint compact subsets A\ and
A2 of A.

The following lemma is due to Brelot [ 1 ] :

LEMMA 5. In case i?* is metrizable, Qu is equivalent to OL'ύ'.

We can easily obtain

LEMMA 6. Let Rf and R$ be two compactifications of R. Suppose R$ is a
quotient space of R*. If &'£ is satisfied for Rf, then so is for R$.
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§ 2 Main results

8. Wu-compactifications.

For a positive harmonic function u on R we set

Wu={feBC; fu a W).

We see that Wu is a vector lattice with respect to the maximum and mini-
mum operations and also contains Co and constants. If u is bounded, then
BCWC Wu.

We can easily prove

LEMMA 7. Ifb e Δ\ is a singular point, i.e., kb is bounded, then BCWQ Wkh.

LEMMA 8 (Satz 14.2 in [2]). Let f be a function in BC and u = \ kbdju(b)

be a positive harmonic function. Then fu is a Wiener function if and only if

PROPOSITION 2. Let b be any point in ήγ. Then Wkb= {feBC; b e

We shall prove

THEOREM 1. Let u be a positive harmonic function on R and Q be a non-
empty subfamily of BC. Then the following conditions are mutually equivalent.

a) QCW\
b) 0Lu is satisfied for R%.
c) Q'ύ' is satisfied for R%.

PROOF. a)=»b): We set Qr = C(R%)Γ\Wu. Then Q' is a vector lattice
with respect to the maximum and minimum operations and contains Co and
constants. Since QCQΊ we see that Qr separates points of R%. By Proposition
1, (C2) and (C3), we can show that Q' is closed with respect to the uniform
convergence topology on R%. Hence, by Stone-Weierstrass' theorem (cf. [2]),
we obtain that Qr = C(R%). Therefore C(R%)C Wu. It follows from Proposi-
tion 1 that Qu is satisfied for R%.

b)=»c): Let Aλ and A2 be mutually disjoint compact subsets of ΔQ. Then

there exist two open neighborhoods U\ and U2 of Ax and A2 respectively such

that U1rλRQrλU2r\RQ=φ in R%. We can choose fk e C(R%) (Λ = l, 2) such that

/ft = l on Uk (k = l, 2) and min (fu f2) = 0. It is easy to see that

A = l, 2). Hence we obtain that

^ h/lU A hf2U = h(min(fίff2))u = 0.

c)=»a): Let f0 be any function in Q and set Qo={fo}. Then Q'J' is
satisfied for R%Q by Lemma 6 and R%Q is metrizable. It follows from Lemma
5 that Ctu is satisfied for R%Q. Hence, by Proposition 1, we see that f0 belongs
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to W\ Therefore QC Wu.

COROLLARY 1. If u = kb(b e Ji), then one of the above conditions a), b)
and c) is equivalent to the following condition:

b) There exists a unique pole of b on ΔQ.

PROOF. It suffices to prove the equivalence between c) and d).
c)=^d): Suppose there exist two distinct poles zu z2 of b on AQ. Then

((^b\z1y\z2}=kb. This is a contradiction. Hence d) is valid.
d)=^c): Suppose ((kb)Al)Az = kb for mutually disjoint compact subsets Aλ

and A2 of JQ. Since (kb)A. = kb(ί = l, 2), there exists a pole Zi(i = l, 2) of b on
Ai(ί = l, 2). AιΓ\A2=φ implies £1=7̂ *2. This is a contradiction. Hence c) is
valid.

COROLLARY 2. Let b be any point of Δx. Then there exists a unique pole
of b on Jw if and only if BCWC Wk\ In particular, if kb is bounded, then
there exists a unique pole of b on dw

COROLLARY 3. A compactification R* of R is resolutive if and only if
(1A1)A2 = 0 for any mutually disjoint compact subsets Aλ and A2 of J = R* — R.

REMARK, (i) Corollary 1 is a generalization of a part of Theoreme 21 in

El}
(ii) The last half of Corollary 2 was obtained by Ikegami [3].

9. A characterization of CLU for R%.

THEOREM 2. Qu is satisfied for R^ if and only if u is quasi-bounded.

PROOF, (i) Suppose u is quasi-bounded and is the limit function of an
increasing sequence {uk}°£=1 of positive bounded harmonic functions. Let Aλ

and A2 be compact subsets of Jw such that AιΓ\A2=φ. Then, by (A5), we see
that ((uk)Al)A2 increases to (uAl)Ai as &->oo. Since ((uk)Al)A2 <J(sup uk)(lAl)A2 = 0
by Corollary 3 to Theorem 1, we have (uAl)Ai = 0. Hence β£" is satisfied for
i?^. Thus, by Theorem 1, we see that Gu is satisfied for R% and BCWC Wu.

(ii) Next suppose u is singular. For each integer n>0, we set Fn =
{z e R; u(z) ;> n}. Since u is a continuous Wiener function, for each n, there
exists a function φn in BCW such that O<ί0w<;i, φn = 0 on (R — Fι

2n_ι)\jF2n+h
n

= 1 on dF2n and φn is harmonic in Fι

2n_ι — F2n+ι — dF2n. If we set/»

then fn is a function in BCW and tends to a function / in BC on R as n->oo.
We shall prove that / is contained in BC W. Since fn <Lf<ίfn + u/(2n +1) on
R(n = l, 2, ...),we obtain that

on R(n = l, 2, ...).

By letting ^->oo3 we have hf=hf. Since \f\ is bounded, it follows that / is a
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function in BCW. For each a(0<a<l), we set

and

Ca = {zeR;f(z)=a}.

Then Ωa>n and Ca are regular closed and dΩa>nCCa. Since uΩa n = u on R by-
Lemma 3, udΩan = u on R — Ωan. Hence uCa = u on R — Ωan for each α and 71.
This shows that uCa = u on i? for each a. We set Aa = C%Γ\Δw. By Corollary
2 to Lemma 2, we see that uAa = u on J? for each α. Since / is a continuous
Wiener function, AaiΓ\Aa2=φ if axφa2. Since (uAa^)A^ = u on R, it follows
that β£" is not satisfied for i?^. Hence, by Theorem 1, we see that Qu is not
satisfied for R% and BCW(£ W\

(iii) Let u be an arbitrary positive harmonic function which is not
quasi-bounded. Then u is uniquely decomposed into a quasi-bounded part m
and a singular part u2. Since &2>0, it follows from (ii) that there exists a
function / i n BCWsuoh t h a t / u 2 i W. Since fuλ e ϊΓby (i), we see thsXfu i W.
Hence BCWttWu and Qu is not satisfied for R% by Theorem 1. Therefore
we complete the proof.

COROLLARY 1 (cf. Corollary 2 to Theorem 1). Let b be a point in Δ\.
Then there exists a unique pole of b on Δψ if and only if kb is bounded.

COROLLARY 2. For each b 6 Δu either Φ(b) consists of only one point or
contains an uncountable number of points according as b is a singular point or
not.

PROOF. Let u = kb(b € Δι) be unbounded. Then u is a singular harmonic
function. In the proof of the theorem we see that there exists a pole z(a)
of & on Aa for each a e (0, 1). If <Xiφa2, then AaiΓλAa2=φ, so that z(a±)Φ
z(a2). Hence Φ(b) contains an uncountable number of points. By the above
corollary, we complete the proof.

COROLLARY 3. // 7?* is a resolutive compactification of R, then Qu is
satisfied for R* for any positive quasi-bounded harmonic function u.

PROOF. By the aid of (A5) and Corollary 3 to Theorem 1, we have the
corollary.

10. Wycompactifications.

We define a class

WΊ = f\Wu = {f e BC; fu e Wfor any positive harmonic function u}.

By definition, we see that WxQBCW. By Lemma 7, / e Wλ if and only if
c?(/) = Δi. Hence, by Proposition 2 and (Bl), we have
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PROPOSITION 3. JFi = Λ ^ * δ = {f * BC; £ ( / ) = Δλ} = {/e £ C ; / c a n be con-

tinuously extended over each <0(ό) by a constant for any b e Δι}.

COROLLARY, (i) R%λ is a quotient space of R^.
(ii) R^ is a quotient space of j?^.

PROOF. Since WiCBCW.we have (i). By (B2), we see that (ii) is valid.

The following theorem is an immediate consequence of Theorem 1, Corol-
lary 1 to Theorem 1 and Proposition 3.

THEOREM 3. Let Q be a non-empty subfamily of BC. Then the following

conditions are mutually equivalent

a) QCWi.
b) Qu is satisfied for R% for any u > 0.
c) β£" is satisfied for R% for any u>0.
d) For any b e Jh there exists a unique pole of b on ΔQ.

COROLLARY 1 (Brelot [1J). For the Martin compactification of R, du is
satisfied for any ^ > 0 .

COROLLARY 2. Let R* be a compactification of R. Suppose R* is a quo-
tient space of R§?1 and R% is a quotient space of R*. For each b e Δh we denote
by zb the unique pole of b on JQ. Then b->zb is a one to one mapping of Δ\
into ΔQ.

REMARK. The equivalence between b) and d) in the theorem is a gener-

alization of Theoreme 24 in [ΊL].

We shall prove

THEOREM 4. R%λ is not metrizable.

PROOF. We shall prove that any point z of ΔWl never has a countable

system of basis for neighborhoods. Let π be the canonical mapping of R^λ

onto Rfy. Suppose z has a countable system {Un}ζ=ι of basis for open neigh-

borhoods and set π(z) = b. We may assume that π(Un)C {a 6 R%\ d(a, b)<

l/n}(n = l, 2? •••)> where d is a Martin's metric on R%. Furthermore, we may

assume that UnZ> Un+1Γ\RWl(n = l, 2, •••)• For each n, we take a compact disk

Kn in (Un— Un+ιΓ\RWl)Γ\R with center at an. Let /„ be a function in BC such

that 0 ^ / n ^ l , / n ( α Λ ) = l and/ w = 0 on R-Kn. If we set f=Σfn, t h e n / is a
w = l

function in BC.
First we assume that b e Δλ. Then we can choose {Kn}™=1 in such a way

thatp=Σ(kb)κn is a potential. If we set F=\JKn, then F is a regular closed
n=l n n=l

set in R and (kb)F<,p. Hence F is thin at b. It follows that b e 9 ( / ) . Obvi-
ously, V e 9(f) for V e Δx- {b}. Thus 9(f) = Δι and hence fe Wλ. Next if
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be ΔM-ΔU then obviously 9-(f) = J1. Hence fe Wx. It follows that f\Un
n = i

contains an uncountable number of points. This is a contradiction. There-
fore we complete the proof.

COROLLARY 1. // π is the canonical mapping of R%1 onto R%, then, for
each b e ΔM, n~\b) contains an uncountable number of points.

COROLLARY 2. R%λ is not homeomorphic to R^.

11. On Nairn's remark.

By the aid of Corollary 2 to Theorem 4, we shall give an answer in the
negative to a question in Nairn's remark (Q4J, p. 268): Suppose a metrizable
compactification R* of R satisfies

a) Qu is satisfied for Λ* for any u > 0
and

β) For each b e Δh we denote by zb the unique pole of b on Δ = R* — R.
Then b-+zb is a one to one mapping of Δ\ into Δ.
Then is R* homeomorphic to R%?

By Corollary 2 to Theorem 4, we see that there exists a function / in Wλ

which can not be continuously extended over R%. If we set Q = M\j {/}4),
then R% is metrizable and satisfies a) and β) by Corollary 2 to Theorem 3.
However, it is not homeomorphic to R^'
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4) For the definition of the class M, see p. 134 in [2].






