Relative Dirichlet Problems on Riemann Surfaces

Hiroshi Tanaka

(Received March 5, 1969)

Introduction

M. Brelot [1] introduced relative Dirichlet problems on a metrizable compactification of a Green space and L. Naïm [4] obtained many results concerning this type of problems. Also, T. Ikegami [3] studied the problems on the Wiener compactification of a hyperbolic Riemann surface.

In this paper, we consider the relative Dirichlet problems on an arbitrary compactification of a hyperbolic Riemann surface R. We denote by a_u the resolutivity of all finite continuous functions on the ideal boundary relative to a positive harmonic function u (§1, 7) and first give characterizations of a_u for Q-compactifications (Theorem 1). Then we obtain that a_u is satisfied for the Wiener compactification if and only if u is quasi-bounded (Theorem 2). As a corollary, we improve Ikegami's result as follows: There exists a unique pole of a minimal positive harmonic function on the Wiener boundary if and only if the function is bounded.

Next, in connection with Brelot's [1] and Naïm's works [4], we define the maximal compactification $R_{W_1}^*$ of R for which \mathcal{A}_u is satisfied for any u > 0(Theorem 3). As a corollary, we obtain Brelot's result ([1]): For the Martin compactification of R, \mathcal{A}_u is satisfied for any u > 0. Finally, we prove that $R_{W_1}^*$ is not metrizable (Theorem 4) and we give an answer in the negative to a question in Naïm's remark (p. 268 in [4]).

§1 Preliminaries

Let R be a hyperbolic Riemann surface. For a subset A of R, we denote by ∂A and A^i the (relative) boundary and the interior of A respectively. We shall call a closed subset F of R regular if ∂F consists of at most a countable number of analytic arcs clustering nowhere in R. An exhaustion will mean an increasing sequence $\{R_n\}_{n=1}^{\infty}$ of relatively compact domains on R such that $\bigvee_{n=1}^{\infty} R_n = R$ and each ∂R_n consists of a finite number of closed Jordan curves. We denote by BC the family of all real valued bounded continuous functions on R and by C_0 the subfamily of BC consisting of functions with compact supports in R.

1. Wiener functions (cf. [2]).

For a finite continuous function f on R, we shall denote by $\overline{\mathcal{W}}_f(\text{resp. }\underline{\mathcal{W}}_f)$

the family of all superharmonic (resp. subharmonic) functions s on R such that $s \ge f$ (resp. $s \le f$) on $R-K_s$ for some compact set K_s in R. If $\overline{\mathfrak{W}}_f$ and $\underline{\mathfrak{W}}_f$ are not empty, then we define $\bar{h}_f(a) = \inf\{s(a); s \in \overline{\mathfrak{W}}_f\}$ and $\underline{h}_f(a) = \sup\{s(a); s \in \underline{\mathfrak{W}}_f\}$ ($a \in R$). It is known that \bar{h}_f , h_f are harmonic and $\underline{h}_f \le \bar{h}_f$. If $\bar{h}_f = \underline{h}_f$, then f is said to be harmonizable. We write $h_f = \bar{h}_f = \underline{h}_f$ if f is harmonizable. If f_1 and f_2 are harmonizable, then min (f_1, f_2) is harmonizable and $h_{f_1} \wedge h_{f_2}^{-1} = h_{(\min(f_1, f_2))}$. A finite continuous function f on R is called a Wiener function if |f| has a superharmonic majorant and f is harmonizable. We denote by W the family of all finite continuous Wiener functions on R and set $BCW = BC \cap W$. We see that W is a vector lattice with respect to the maximum and minimum operations and also contains C_0 and constants.

2. Compactifications.

We follow C. Constantinescu and A. Cornea [2] for the definition of (Q)compactifications. In particular, we denote by R_M^* (resp. R_W^*) the Martin compactification (resp. the Wiener compactification) of R. Let R^* be a compactification of R. We write $\Delta_M = R_M^* - R$, $\Delta_W = R_W^* - R$, $\Delta_Q = R_Q^* - R$ and $\Delta = R^* - R$. We denote by $C(R^*)$ the family of all real valued continuous functions on R^* . For any subset A of R, we shall denote by \bar{A}^* (resp. \bar{A}^M , \bar{A}^W , \bar{A}^Q) the closure of A in R^* (resp. R_M^* , R_W^* , R_Q^*). Let R_1^* and R_2^* be two compactifications of R. If there exists a continuous mapping π of R_1^* onto R_2^* which is reduced to the identity on R, then we shall say that such a mapping is the *canonical mapping* of R_1^* onto R_2^* and that R_2^* is a quotient space of R_1^* . It is known ([2]) that if $Q_1 \subset Q_2$, then $R_{Q_1}^*$ is a quotient space of $R_{Q_2}^*$. Hence R_M^* is a quotient space of R_W^* .

3. Reduced functions.

Let R^* be a compactification of R and denote by \varDelta the ideal boundary R^*-R . Let u be a positive harmonic function on R. For a compact subset Λ of \varDelta , we consider the following class:

$$\mathfrak{S}^{u}_{A,R^*} = \left\{ s; \begin{array}{l} \mathrm{superharmonic} \geq 0 \ \mathrm{on} \ R, \ s \geq u \ \mathrm{on} \ U \cap R \\ \mathrm{for \ some \ neighborhood} \ U \ \mathrm{of} \ A \ \mathrm{in} \ R^* \end{array} \right\}$$

Then the function

$$u_A(a) = \inf\{s(a); s \in \mathcal{O}^u_{A,R^*}\} \ (a \in R)$$

is harmonic on R and $0 \leq u_A \leq u$.

We can easily show

LEMMA 1. Let u and A be as above. Let $\{U_n\}_{n=1}^{\infty}$ be any sequence of neighborhoods of A in \mathbb{R}^* . Then there exists a sequence $\{F_n\}_{n=1}^{\infty}$ of regular

¹⁾ $h_{f_1} \wedge h_{f_2}$ is the greatest harmonic minorant of min (h_{f_1}, h_{f_2}) .

closed sets in R such that

(a) The closure \overline{F}_n^* of each F_n is a neighborhood of A,

(b)
$$U_n \cap R \supset F_n (n=1, 2, \dots)$$
 and $\bigcap F_n = \phi$

- (c) $\overline{R-F_n^{i*}} \cap \overline{F_{n+1}^*} = \phi \ (n=1, 2, ...),$
- (d) $u_{F_n}^{2}$ decreases to u_A as $n \rightarrow \infty$.

By the aid of the above lemma we can prove the following properties:

- (A1) If $A_1 \subset A_2$ and $u_1 \leq u_2$, then $(u_1)_{A_1} \leq (u_2)_{A_2}$.
- (A2) $(u_1+u_2)_A=(u_1)_A+(u_2)_A$.
- (A3) If $c \ge 0$ is a constant, then $(cu)_A = cu_A$.
- (A4) If $A_1 \subset A_2$, then $u_{A_1} = (u_{A_1})_{A_2} = (u_{A_2})_{A_1}$.
- (A5) If u_k increases to u as $k \to \infty$, then $(u_k)_A$ increases to u_A as $k \to \infty$.

LEMMA 2. Let u be a positive harmonic function on R. If F is a regular closed set in R, then $u_F \ge u_{F^W \cap d_W}$.

PROOF. Since $v = u - u_F \ge 0$ is a continuous Wiener function on R, it can be continuously extended over R_W^* . We denote by v^* the continuous extension of v over R_W^* . For each $\varepsilon > 0$, we set $U_{\varepsilon} = \{z \in R_W^*; v^*(z) < \varepsilon\}$. Since $v^* = 0$ on \bar{F}^W , U_{ε} is an open neighborhood of $\bar{F}^W \cap \Delta_W$ and $u_F + \varepsilon > u$ on $U_{\varepsilon} \cap R$. Hence $u_F + \varepsilon \ge u_{F^W \cap \Delta_W}$. Since $\varepsilon > 0$ is arbitrary, we complete the proof.

COROLLARY 1. If $\{F_n\}_{n=1}^{\infty}$ is a sequence of regular closed sets in R such that $F_n \supset F_{n+1}$ (n=1, 2, ...) and $\bigcap_{n=1}^{\infty} F_n = \phi$, then u_{F_n} decreases to u_A , where $A = \bigcap_{n=1}^{\infty} \overline{F}_n^W$.

COROLLARY 2. If F is a regular closed set in R, then $\lim_{n\to\infty} u_{F-R_n} = u_{F^W \cap d_W}$, where $\{R_n\}_{n=1}^{\infty}$ is an exhaustion of R.

4. Singular harmonic functions.

Let u be a non-negative harmonic function on R. If u is the limit function of an increasing sequence of non-negative bounded harmonic functions, then u is said to be *quasi-bounded*. If any non-negative bounded harmonic function dominated by u is always zero, then u is said to be *singular*. Hence an unbounded positive minimal harmonic function is singular. It is known (Parreau) that any positive harmonic function is uniquely represented as the sum of a quasi-bounded harmonic function and a singular harmonic function.

We shall prove

LEMMA 3. Suppose u is singular. For each integer n > 0, we set $F_n = \{z \in R; u(z) \ge n\}$. Then $u_{F_n} = u$ on R for each n.

PROOF. $v = u - u_{F_n}$ is a bounded continuous Wiener function on $R - F_n$.

²⁾ See p. 43 in [2] for this notation.

By Lemma 1.3 in [3], we see that u=0 on Γ_W , where Γ_W is the harmonic boundary of R_W^* (cf. [2]). Since $u_{F_n} \leq u$ on R, $u_{F_n}=0$ on Γ_W . Hence we have v=0 on $(\Gamma_W - \bar{F}_n^W) \cup \overline{\partial F}_n^W$. By the minimum principle (Satz 8.4 in [2]), we obtain that v=0 on $R-F_n$. This completes the proof.

REMARK: We can furthermore show the following: Let u be a positive harmonic function. For each integer n > 0, we set $F_n = \{z \in R; u(z) \ge n\}$. Then $\lim_{n \to \infty} u_{F_n}$ is equal to the singular part of u.

PROOF. (i) Let u be quasi-bounded and A be a compact subset of Δ_W such that $\mathbf{1}_A = 0$. Suppose u is the limit function of an increasing sequence $\{u_k\}_{k=1}^{\infty}$ of positive bounded harmonic functions. Then, by (A5), we have $u_A = \lim_{k \to \infty} (u_k)_A$. Since $(u_k)_A \leq (\sup u_k) \mathbf{1}_A = 0 (k=1, 2, ...)$, it follows that $u_A = 0$.

(ii) Let u be an arbitrary positive harmonic function. We set $A = \bigwedge_{n=1}^{\infty} \overline{F}_n^w$. Since $1_{F_n} \leq (1/n)(\min(u, n)) \leq u/n(n=1, 2, ...)$, it follows from Corollary 1 to Lemma 2 that $1_A = 0$. Hence, if u is quasi-bounded, then $u_A = 0$ by (i). Now suppose u is not quasi-bounded. Let w be the singular part of u and $\mathcal{Q}_n = \{z \in R; w(z) \geq n\}$ for each integer n > 0. Since $\mathcal{Q}_n \subset F_n$ for each n, it follows from Lemma 3 and Corollary 1 to Lemma 2 that $w_A = w$. By (i), we see that $(u-w)_A = 0$, so that $u_A = w_A$ by (A2). This completes the proof.

As a corollary, we obtain:

a) u is quasi-bounded if and only if $\lim_{n\to\infty} u_{F_n} = 0$ (M. Nakai: Proc. Japan Acad., 41(1965), 215–217).

b) u is singular if and only if $u_{F_n} = u$ on R for each n (cf. Lemma 3).

5. Poles on the ideal boundary.

For $b \in \Delta_M = R_M^* - R$, let k_b be the Martin kernel (cf. p. 135 in [2]). Let Δ_1 be the set of all minimal points of Δ_M . It is known ([4]) that if $b \in \Delta_1$ and if F is a closed set in R, then $(k_b)_F$ is either equal to k_b or a Green potential; in fact $(k_b)_F$ is a Green potential if and only if F is thin³ at b.

Let b be a point in \varDelta_1 and R^* be a compactification of R. Then we know that there exists at least one point z on \varDelta such that $(k_b)_{\{z\}} = k_b$ (Lemma 2.2 in [3]). We call such a point z a pole of b on \varDelta . If $(k_b)_F = k_b$ for some closed set F in R, then there exists at least one pole of b on \varDelta which is contained in $\bar{F}^* \cap \varDelta$. The set of all poles of b on \varDelta_W is denoted by $\varPhi(b)$. It is known (Theorem 2.1 in [3]) that $\varPhi(b) = \bigcap_{E \in \mathscr{F}_b} \bar{E}^W$ where $\mathfrak{F}_b = \{E \subset R; R - E \text{ is thin at } b\}$. If U is a neighborhood of b in R^*_M , then it follows form Hilfssatz 13.2 in [2]that $U \cap R \in \mathfrak{F}_b$.

LEMMA 4. Let b be a point in Δ_1 and F be a regular closed set in R. Then F is thin at b if and only if $\overline{F}^{W} \cap \mathbf{\Phi}(b) = \phi$.

³⁾ See p. 201 of [4]; this is called effilé.

PROOF. We set $\alpha = \overline{F}^W \cap \mathcal{A}_W$. It suffices to prove that F is thin at b if and only if $\alpha \cap \mathcal{O}(b) = \phi$. Let $\{R_n\}_{n=1}^{\infty}$ be an exhaustion of R. First suppose F is thin at b. Then $F - R_n$ is thin at b for each n. Hence $(k_b)_{F-R_n}$ is a Green potential. Thus, by Corollary 2 to Lemma 2, we obtain that $(k_b)_{\alpha} = 0$. This shows that $\alpha \cap \mathcal{O}(b) = \phi$. Conversely, suppose $\alpha \cap \mathcal{O}(b) = \phi$. Since $\mathcal{O}(b) = \bigcap_{\substack{E \in \mathcal{P}_b \\ F_c \neq b}} \overline{F}_c^W$, for each $z \in \alpha$, we can find a regular closed set F_z in R such that \overline{F}_z^W is a neighborhood of z in R_W^* and F_z is thin at b. Since α is compact, we can choose a finite number of points $\{z_k\}_{k=1}^n$ in α such that $\bigcap_{k=1}^n \overline{F}_{z_k}^W$ is a neighborhood of α . If we set $F_0 = \bigcup_{k=1}^n F_{z_k}$, then F_0 is thin at b. Since $F - R_m \subset F_o$ for sufficiently large m, we see that F is thin at b.

COROLLARY. Let $\widetilde{\mathcal{G}}_b = \{G \subset R; R - G \text{ is a regular closed set in } R \text{ and thin at } b\}.$

(i) For any $G \in \widetilde{\mathcal{G}}_b$, there exists a neighborhood U of $\boldsymbol{\Phi}(b)$ in R_W^* such that $U \cap R \subset G$.

(ii) For any neighborhood U of $\mathcal{O}(b)$ in \mathbb{R}^*_W , there exists a $G \in \widetilde{\mathcal{G}}_b$ such that $G \in U \cap \mathbb{R}$.

(iii) $\boldsymbol{\Phi}(\mathbf{b}) = \bigcap_{G \in \boldsymbol{\widetilde{q}}_b} \overline{G}^W.$

For each $b \in \Delta_1$, we set $\mathcal{G}_b = \{G \subset R; R - G \text{ is a closed set in } R \text{ and thin at } b\}$. Then $\widetilde{\mathcal{G}}_b \subset \mathcal{G}_b$ for each $b \in \Delta_1$. For a function f in BC, we define $\mathcal{F}(f) = \{b \in \Delta_1; \bigcap_{G \in \mathcal{G}_b} \overline{f(G)} \text{ is one point}\}$, where $\overline{f(G)}$ means the closure of f(G) in the real numbers (see p. 147 in [2]). It is known ([2]) that $\mathcal{F}(f)$ is a Borel set. The following properties are easy to prove:

(D1) Let f be a function in BCW Then $h \in \mathbb{Q}(f)$ if

(B1) Let f be a function in *BCW*. Then $b \in \mathcal{F}(f)$ if and only if f can be continuously extended over $\boldsymbol{\varphi}(b)$ by a constant.

(B2) If a function f in BC can be continuously extended over R_M^* , then $\mathcal{H}(f) = \mathcal{I}_1$.

6. Relative Dirichlet problems.

Let R^* be an arbitrary compactification of R and u be a positive harmonic function on R. Given a function f (extended real valued) on Δ , we consider the following classes:

$$\bar{\mathcal{O}}_{f,R^*}^{u} = \left\{ s; \begin{array}{l} \text{superharmonic on } R, s/u \text{ is bounded below,} \\ \lim_{\underline{a \to z}} \left\lceil s(a)/u(a) \right\rceil \geq f(z) \text{ for any } z \in \Delta \end{array} \right\} \cup \{\infty\}$$

and

$$\underline{\bigcirc}_{f,R^*}^u = \{-s; s \in \bigcirc_{-f,R^*}^u\}.$$

We define $\overline{\mathcal{D}}_{f,u}(a) = \inf\{s(a); s \in \mathcal{O}_{f,R^*}^u\}$ and $\underline{\mathcal{D}}_{f,u}(a) = \sup\{s(a); s \in \mathcal{O}_{f,R^*}^u\}(a \in R).$

It is known (Perron-Brelot) that $\overline{\mathcal{D}}_{f,u}$ (resp. $\underline{\mathcal{Q}}_{f,u}$) is either harmonic, $\equiv +\infty$ or $\equiv -\infty$. If $\overline{\mathcal{D}}_{f,u} = \underline{\mathcal{Q}}_{f,u}$ and are harmonic, then we say that f is *u*-resolutive and $\mathcal{D}_{f,u} = \overline{\mathcal{D}}_{f,u} = \underline{\mathcal{Q}}_{f,u}$ is called the *u*-Dirichlet solution of f (with respect to R^*). In case u = 1, a *u*-resolutive function is called resolutive. If any finite continuous function on Δ is resolutive, then we shall say that R^* is resolutive.

The following properties are easy to see:

(C1) If f is the characteristic function of a compact subset A of Δ , then $u_A = \overline{\mathcal{D}}_{f,u}$.

(C2) If f is a finite continuous function, then $(-\max|f|)u \leq \mathcal{D}_{f,u} \leq \mathcal{D}_{f,u} \leq (\max|f|)u$.

(C3) If f and g are finite continuous functions, then $\underline{\mathcal{Q}}_{(f-g),u} \leq \underline{\mathcal{Q}}_{f,u} - \underline{\mathcal{Q}}_{g,u}$ and $\overline{\mathcal{Q}}_{f,u} - \overline{\mathcal{Q}}_{g,u} \leq \overline{\mathcal{Q}}_{(f-g),u}$.

We shall prove

PROPOSITION 1. Let u be a positive harmonic function on R and R* be a compactification of R. Then a continuous function f on R* is u-resolutive if and only if fu is a Wiener function. Furthermore, in this case, $\mathcal{D}_{f,u} = h_{fu}$.

PROOF. Since $\overline{\mathfrak{Q}}_{fu} \subset \mathfrak{I}_{f,R^*}^u$, we obtain that $\overline{h}_{fu} \ge \overline{\mathfrak{Q}}_{f,u}$. Let s be any function in $\overline{\mathfrak{I}}_{f,R^*}^u$. For $\varepsilon > 0$, there exists a neighborhood U of Δ in R^* such that $s/u \ge f-\varepsilon$ on $U \cap R$. Hence we have $s+\varepsilon u \in \overline{\mathfrak{Q}}_{fu}$. Thus $s+\varepsilon u \ge \overline{h}_{fu}$ for any $\varepsilon > 0$, so that $s \ge \overline{h}_{fu}$. It follows that $\overline{\mathfrak{Q}}_{f,u} \ge \overline{h}_{fu}$, and hence $\overline{\mathfrak{Q}}_{f,u} = \overline{h}_{fu}$. Similarly, we can show that $\underline{h}_{fu} = \underline{\mathfrak{Q}}_{f,u}$. Hence f is u-resolutive if and only if fu is harmonizable. Since fu has a superharmonic majorant $(\sup|f|)u$, we complete the proof.

COROLLARY (Hilfssatz 8.2 in [2]). f is resolutive if and only if it is a Wiener function.

7. Brelot's axioms.

Let R^* be a compactification of R and u be a positive harmonic function on R.

Brelot [1] considered the following axioms:

AXIOM a_u : Any finite continuous function on Δ is u-resolutive.

AXION $\mathbf{a}_{u}^{\prime\prime\prime}$: $(u_{A_1})_{A_2}=0$ for any mutually disjoint compact subsets A_1 and A_2 of Δ .

The following lemma is due to Brelot [1]:

LEMMA 5. In case R^* is metrizable, \mathcal{A}_u is equivalent to \mathcal{A}''_u .

We can easily obtain

LEMMA 6. Let R_1^* and R_2^* be two compactifications of R. Suppose R_2^* is a quotient space of R_1^* . If $\mathbf{a}_{u}^{(\prime\prime)}$ is satisfied for R_1^* , then so is for R_2^* .

§ 2 Main results

8. W^{u} -compactifications.

For a positive harmonic function u on R we set

$$W^{u} = \{ f \in BC; f u \in W \}.$$

We see that W^u is a vector lattice with respect to the maximum and minimum operations and also contains C_0 and constants. If u is bounded, then $BCW \subset W^u$.

We can easily prove

LEMMA 7. If $b \in \Delta_1$ is a singular point, i.e., k_b is bounded, then $BCW \subset W^{k_b}$.

LEMMA 8 (Satz 14.2 in [2]). Let f be a function in BC and $u = \int_{A_1} k_b d\mu(b)$ be a positive harmonic function. Then fu is a Wiener function if and only if $\mu(\Delta_1 - \Im(f)) = 0$.

PROPOSITION 2. Let b be any point in Δ_1 . Then $W^{k_b} = \{f \in BC; b \in \mathcal{F}(f)\}$.

We shall prove

THEOREM 1. Let u be a positive harmonic function on R and Q be a nonempty subfamily of BC. Then the following conditions are mutually equivalent.

- a) $Q \subset W^u$.
- b) a_u is satisfied for R_Q^* .
- c) $a_{u}^{\prime\prime\prime\prime}$ is satisfied for R_{Q}^{*} .

PROOF. a) \Rightarrow b): We set $Q' = C(R_Q^*) \cap W^u$. Then Q' is a vector lattice with respect to the maximum and minimum operations and contains C_0 and constants. Since $Q \subset Q'$, we see that Q' separates points of R_Q^* . By Proposition 1, (C2) and (C3), we can show that Q' is closed with respect to the uniform convergence topology on R_Q^* . Hence, by Stone-Weierstrass' theorem (cf. [2]), we obtain that $Q' = C(R_Q^*)$. Therefore $C(R_Q^*) \subset W^u$. It follows from Proposition 1 that \mathcal{A}_u is satisfied for R_Q^* .

b) \Rightarrow c): Let A_1 and A_2 be mutually disjoint compact subsets of Δ_Q . Then there exist two open neighborhoods U_1 and U_2 of A_1 and A_2 respectively such that $\overline{U_1 \cap R^Q} \cap \overline{U_2 \cap R^Q} = \phi$ in R_Q^* . We can choose $f_k \in C(R_Q^*)$ (k=1, 2) such that $0 \leq f_k \leq 1, f_k = 1$ on U_k (k=1, 2) and min $(f_1, f_2) = 0$. It is easy to see that $u_{A_k} \leq h_{f_k u}$ (k=1, 2). Hence we obtain that

$$(u_{A_1})_{A_2} \leq h_{f_1u} \wedge h_{f_2u} = h_{(\min(f_1, f_2))u} = 0.$$

c) \Rightarrow a): Let f_0 be any function in Q and set $Q_0 = \{f_0\}$. Then a''_{u} is satisfied for $R^*_{Q_0}$ by Lemma 6 and $R^*_{Q_0}$ is metrizable. It follows from Lemma 5 that a_u is satisfied for $R^*_{Q_0}$. Hence, by Proposition 1, we see that f_0 belongs

to W^{u} . Therefore $Q \subset W^{u}$.

COROLLARY 1. If $u = k_b(b \in A_1)$, then one of the above conditions a), b) and c) is equivalent to the following condition:

b) There exists a unique pole of b on Δ_Q .

PROOF. It suffices to prove the equivalence between c) and d).

c) \Rightarrow d): Suppose there exist two distinct poles z_1 , z_2 of b on Δ_Q . Then $((k_b)_{\{z_1\}})_{\{z_2\}} = k_b$. This is a contradiction. Hence d) is valid.

d) \Rightarrow c): Suppose $((k_b)_{A_1})_{A_2} = k_b$ for mutually disjoint compact subsets A_1 and A_2 of Δ_Q . Since $(k_b)_{A_i} = k_b$ (i=1, 2), there exists a pole z_i (i=1, 2) of b on A_i (i=1, 2). $A_1 \cap A_2 = \phi$ implies $z_1 \neq z_2$. This is a contradiction. Hence c) is valid.

COROLLARY 2. Let b be any point of Δ_1 . Then there exists a unique pole of b on Δ_W if and only if $BCW \subset W^{k_b}$. In particular, if k_b is bounded, then there exists a unique pole of b on Δ_W .

COROLLARY 3. A compactification R^* of R is resolutive if and only if $(1_{A_1})_{A_2}=0$ for any mutually disjoint compact subsets A_1 and A_2 of $\Delta=R^*-R$.

REMARK. (i) Corollary 1 is a generalization of a part of Théorème 21 in [1].

(ii) The last half of Corollary 2 was obtained by Ikegami [3].

9. A characterization of a_u for R_W^* .

THEOREM 2. A_u is satisfied for R_W^* if and only if u is quasi-bounded.

PROOF. (i) Suppose u is quasi-bounded and is the limit function of an increasing sequence $\{u_k\}_{k=1}^{\infty}$ of positive bounded harmonic functions. Let A_1 and A_2 be compact subsets of Δ_W such that $A_1 \cap A_2 = \phi$. Then, by (A5), we see that $((u_k)_{A_1})_{A_2}$ increases to $(u_{A_1})_{A_2}$ as $k \to \infty$. Since $((u_k)_{A_1})_{A_2} \leq (\sup u_k)(1_{A_1})_{A_2} = 0$ by Corollary 3 to Theorem 1, we have $(u_{A_1})_{A_2} = 0$. Hence $a''_{u''}$ is satisfied for R^*_W . Thus, by Theorem 1, we see that a_u is satisfied for R^*_W and $BCW \subset W^u$.

(ii) Next suppose u is singular. For each integer n > 0, we set $F_n = \{z \in R; u(z) \ge n\}$. Since u is a continuous Wiener function, for each n, there exists a function ϕ_n in BCW such that $0 \le \phi_n \le 1$, $\phi_n = 0$ on $(R - F_{2n-1}^i) \cup F_{2n+1}$, = 1 on ∂F_{2n} and ϕ_n is harmonic in $F_{2n-1}^i - F_{2n+1} - \partial F_{2n}$. If we set $f_n = \sum_{k=1}^n \phi_k$, then f_n is a function in BCW and tends to a function f in BC on R as $n \to \infty$. We shall prove that f is contained in BCW. Since $f_n \le f \le f_n + u/(2n+1)$ on $R(n=1, 2, \ldots)$, we obtain that

$$0 \leq \bar{h}_f - \underline{h}_f \leq u/(2n+1)$$
 on $R(n=1, 2, ...)$.

By letting $n \to \infty$, we have $\bar{h}_f = \underline{h}_f$. Since |f| is bounded, it follows that f is a

54

function in *BCW*. For each $\alpha(0 < \alpha < 1)$, we set

$$\mathcal{Q}_{\alpha,n} = \{z \in F_{2n-1}; f(z) \geq \alpha\} \cup F_{2n}$$

and

$$C_{\alpha} = \{z \in R; f(z) = \alpha\}.$$

Then $\mathcal{Q}_{\alpha,n}$ and C_{α} are regular closed and $\partial \mathcal{Q}_{\alpha,n} \subset C_{\alpha}$. Since $u_{\mathcal{Q}_{\alpha,n}} = u$ on R by Lemma 3, $u_{\partial \mathcal{Q}_{\alpha,n}} = u$ on $R - \mathcal{Q}_{\alpha,n}$. Hence $u_{C_{\alpha}} = u$ on $R - \mathcal{Q}_{\alpha,n}$ for each α and n. This shows that $u_{C_{\alpha}} = u$ on R for each α . We set $A_{\alpha} = \overline{C}_{\alpha}^{W} \cap \mathcal{A}_{W}$. By Corollary 2 to Lemma 2, we see that $u_{A_{\alpha}} = u$ on R for each α . Since f is a continuous Wiener function, $A_{\alpha_{1}} \cap A_{\alpha_{2}} = \phi$ if $\alpha_{1} \neq \alpha_{2}$. Since $(u_{A_{\alpha_{1}}})_{A_{\alpha_{2}}} = u$ on R, it follows that $\mathcal{Q}_{u}^{\prime\prime\prime}$ is not satisfied for R_{W}^{*} . Hence, by Theorem 1, we see that \mathcal{Q}_{u} is not satisfied for R_{W}^{*} and $BCW \subset W^{*}$.

(iii) Let u be an arbitrary positive harmonic function which is not quasi-bounded. Then u is uniquely decomposed into a quasi-bounded part u_1 and a singular part u_2 . Since $u_2 > 0$, it follows from (ii) that there exists a function f in *BCW* such that $fu_2 \notin W$. Since $fu_1 \in W$ by (i), we see that $fu \notin W$. Hence $BCW \not\subset W^u$ and \mathcal{Q}_u is not satisfied for R_W^* by Theorem 1. Therefore we complete the proof.

COROLLARY 1 (cf. Corollary 2 to Theorem 1). Let b be a point in Δ_1 . Then there exists a unique pole of b on Δ_W if and only if k_b is bounded.

COROLLARY 2. For each $b \in \Delta_1$, either $\mathcal{O}(b)$ consists of only one point or contains an uncountable number of points according as b is a singular point or not.

PROOF. Let $u = k_b(b \in A_1)$ be unbounded. Then u is a singular harmonic function. In the proof of the theorem we see that there exists a pole $z(\alpha)$ of b on A_{α} for each $\alpha \in (0, 1)$. If $\alpha_1 \neq \alpha_2$, then $A_{\alpha_1} \cap A_{\alpha_2} = \phi$, so that $z(\alpha_1) \neq z(\alpha_2)$. Hence $\boldsymbol{\Phi}(b)$ contains an uncountable number of points. By the above corollary, we complete the proof.

COROLLARY 3. If R^* is a resolutive compactification of R, then \mathcal{A}_u is satisfied for R^* for any positive quasi-bounded harmonic function u.

PROOF. By the aid of (A5) and Corollary 3 to Theorem 1, we have the corollary.

10. W_1 -compactifications.

We define a class

 $W_1 = \bigcap W^u = \{f \in BC; fu \in W \text{ for any positive harmonic function } u\}.$

By definition, we see that $W_1 \in BCW$. By Lemma 7, $f \in W_1$ if and only if $\mathcal{H}(f) = \mathcal{A}_1$. Hence, by Proposition 2 and (B1), we have

Hiroshi Tanaka

PROPOSITION 3. $W_1 = \bigcap_{b \in \mathcal{A}_1} W^{k_b} = \{f \in BC; \mathcal{F}(f) = \mathcal{A}_1\} = \{f \in BC; f \text{ can be continuously extended over each } \boldsymbol{\emptyset}(b) \text{ by a constant for any } b \in \mathcal{A}_1\}.$

COROLLARY. (i) $R_{W_1}^*$ is a quotient space of R_W^* . (ii) R_M^* is a quotient space of $R_{W_1}^*$.

PROOF. Since $W_1 \subset BCW$, we have (i). By (B2), we see that (ii) is valid.

The following theorem is an immediate consequence of Theorem 1, Corollary 1 to Theorem 1 and Proposition 3.

THEOREM 3. Let Q be a non-empty subfamily of BC. Then the following conditions are mutually equivalent.

- a) $Q \subset W_1$.
- b) a_u is satisfied for R_Q^* for any u > 0.
- c) $\mathbf{a}_{u}^{\prime\prime\prime}$ is satisfied for R_{ω}^{*} for any u > 0.
- d) For any $b \in \Delta_1$, there exists a unique pole of b on Δ_Q .

COROLLARY 1 (Brelot [1]). For the Martin compactification of R, a_u is satisfied for any u > 0.

COROLLARY 2. Let R^* be a compactification of R. Suppose R^* is a quotient space of $R_{W_1}^*$ and R_M^* is a quotient space of R^* . For each $b \in \Delta_1$, we denote by z_b the unique pole of b on Δ_Q . Then $b \rightarrow z_b$ is a one to one mapping of Δ_1 into Δ_Q .

REMARK. The equivalence between b) and d) in the theorem is a generalization of Théorème 24 in [1].

We shall prove

THEOREM 4. $R_{W_1}^*$ is not metrizable.

PROOF. We shall prove that any point z of Δ_{W_1} never has a countable system of basis for neighborhoods. Let π be the canonical mapping of $R_{W_1}^*$ onto R_M^* . Suppose z has a countable system $\{U_n\}_{n=1}^{\infty}$ of basis for open neighborhoods and set $\pi(z)=b$. We may assume that $\pi(U_n) \subset \{a \in R_M^*; d(a, b) < 1/n\}(n=1, 2, ...)$, where d is a Martin's metric on R_M^* . Furthermore, we may assume that $U_n \supset \overline{U_{n+1}} \cap \overline{R}^{W_1}(n=1, 2, ...)$. For each n, we take a compact disk K_n in $(U_n - \overline{U_{n+1}} \cap \overline{R}^{W_1}) \cap R$ with center at a_n . Let f_n be a function in BC such that $0 \leq f_n \leq 1, f_n(a_n)=1$ and $f_n=0$ on $R-K_n$. If we set $f=\sum_{n=1}^{\infty} f_n$, then f is a function in BC.

First we assume that $b \in \Delta_1$. Then we can choose $\{K_n\}_{n=1}^{\infty}$ in such a way that $p = \sum_{n=1}^{\infty} (k_b)_{K_n}$ is a potential. If we set $F = \bigcup_{n=1}^{\infty} K_n$, then F is a regular closed set in R and $(k_b)_F \leq p$. Hence F is thin at b. It follows that $b \in \mathcal{F}(f)$. Obviously, $b' \in \mathcal{F}(f)$ for $b' \in \Delta_1 - \{b\}$. Thus $\mathcal{F}(f) = \Delta_1$ and hence $f \in W_1$. Next if

56

 $b \in \Delta_M - \Delta_1$, then obviously $\mathcal{F}(f) = \Delta_1$. Hence $f \in W_1$. It follows that $\bigcap_{n=1}^{\infty} U_n$ contains an uncountable number of points. This is a contradiction. Therefore we complete the proof.

COROLLARY 1. If π is the canonical mapping of $R_{W_1}^*$ onto R_M^* , then, for each $b \in \Delta_M$, $\pi^{-1}(b)$ contains an uncountable number of points.

COROLLARY 2. $R_{W_1}^*$ is not homeomorphic to R_M^* .

11. On Naïm's remark.

By the aid of Corollary 2 to Theorem 4, we shall give an answer in the negative to a question in Naïm's remark ([4], p. 268): Suppose a metrizable compactification R^* of R satisfies

β) For each $b \in A_1$, we denote by z_b the unique pole of b on $A = R^* - R$. Then $b \to z_b$ is a one to one mapping of A_1 into A.

Then is R^* homeomorphic to R_M^* ?

By Corollary 2 to Theorem 4, we see that there exists a function f in W_1 which can not be continuously extended over R_M^* . If we set $Q=M \cup \{f\}^{4}$, then R_Q^* is metrizable and satisfies α) and β) by Corollary 2 to Theorem 3. However, it is not homeomorphic to R_M^* .

References

- [1] M. Brelot: Le problème de Dirichlet axiomatique et frontière de Martin, J. Math. Pures Appl., 35 (1956), 297-335.
- [2] C. Constantinescu and A. Cornea: Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [3] T. Ikegami: Relations between Wiener and Martin boundaries, Osaka J. Math., 4 (1967), 37-63.
- [4] L. Naïm: Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, 7 (1957), 183-281.

Department of Mathematics, Faculty of Science, Hiroshima University

⁴⁾ For the definition of the class M, see p. 134 in [2].