Duality Theorems for Continuous Linear Programming Problems

Atsushi Murakami and Maretsugu Yamasaki
(Received September 20, 1969)

§ 1. Introduction

Continuous linear programmings were first considered by W.F. Tyndall [7] as a generalization of "bottle-neck problems" in dynamic programming. N. Levinson [6], M. A. Hanson [3] and M. A. Hanson and B. Mond [4] generalized the results in [7].

In this paper we shall apply the theory of infinite linear programming studied by K.S. Kretschmer [5] and M. Yamasaki [8] to the investigation of the continuous linear programmings. Our main purpose is to improve the duality theorems in [6] and [7] obtained by approximation from the classical finite duality theorem.

In order to state the continuous linear programmings, we shall introduce some notation. If $D(t)$ is a matrix on the interval $[0, T](0<T<\infty)$ in the real line with entries $d_{i j}(t)$ and $g(t)$ is a scalar on $[0, T]$ such that every entry satisfies

$$
d_{i j}(t) \leqq g(t)
$$

then the notation

$$
D(t) \leqq g(t)
$$

will be used. If $\tilde{D}(t)$ is a matrix on $[0, T]$ with the same number of rows and columns as $D(t)$, then $D(t) \leqq \tilde{D}(t)$ means that $d_{i j}(t) \leqq \tilde{d}_{i j}(t)$ for all entries. For a matrix $D=\left(d_{i j}\right)$ and a vector $d=\left(d_{i}\right)$, we set

$$
|D|=\sum_{i, j}\left|d_{i j}\right| \text { and }|d|=\sum_{i}\left|d_{i}\right| .
$$

For an n vector d, an m vector e and an $n \times m$ matrix D, let $d D$ and $D e$ denote the vector-matrix products. Note that we do not use the familiar notation $D d^{T}$. For two n vectors $x(t)=\left(x_{i}(t)\right)$ and $y(t)=\left(y_{i}(t)\right)$, we set

$$
x(t) \cdot y(t)=\sum_{i=1}^{n} x_{i}(t) y_{i}(t) .
$$

In this paper we always assume that

$$
B(t)=\left(b_{i j}(t)\right) \text { is an } n \times m \text { matrix on }[0, T],
$$

$$
\begin{aligned}
& c(t)=\left(c_{i}(t)\right) \text { is an } n \text { vector on }[0, T], \\
& a(t)=\left(a_{j}(t)\right) \text { is an } m \text { vector on }[0, T], \\
& K(t, s)=\left(k_{i j}(t, s)\right) \text { is an } n \times m \text { matrix on }[0, T] \times[0, T],
\end{aligned}
$$

where $b_{i j}(t), c_{i}(t), a_{j}(t)$ and $k_{i j}(t, s)$ are bounded real-valued functions which are measurable with respect to the Lebesgue measures on the real line and the plane respectively.

A bounded measurable n vector $x(t)$ on $[0, T]$ is said to be feasible for the primal program of the (original) continuous linear programmings if $x(t)$ $\geqq 0$ and

$$
x(t) B(t) \geqq a(t)+\int_{t}^{T} x(s) K(s, t) d s
$$

The set of feasible vectors for the primal program is denoted by $S(N)$. The value of the primal program is defined by

$$
N=\inf \left\{\int_{0}^{T} x(t) \cdot c(t) d t ; x \in S(N)\right\} \quad \text { if } S(N) \neq \phi
$$

and

$$
N=\infty \quad \text { if } S(N)=\phi
$$

where ϕ denotes the empty set. A bounded measurable m vector $w(t)$ on $[0, T]$ is said to be feasible for the dual program of the continuous linear programmings if $w(t) \geqq 0$ and

$$
B(t) w(t) \leqq c(t)+\int_{0}^{t} K(t, s) w(s) d s
$$

The set of feasible vectors for the dual program is denoted by $S\left(N^{\prime}\right)$. The value of the dual program is defined by

$$
N^{\prime}=\sup \left\{\int_{0}^{T} w(t) \cdot a(t) d t ; w \in S\left(N^{\prime}\right)\right\} \quad \text { if } S\left(N^{\prime}\right) \neq \phi
$$

and

$$
N^{\prime}=-\infty \quad \text { if } S\left(N^{\prime}\right)=\phi
$$

We shall always assume the following conditions as in [6]:
(N. 1) $\quad c(t) \geqq 0$ and $K(t, s) \geqq 0$.
(N. 2) There exists $\beta>0$ such that for each i, j and t either $b_{i j}(t)=0$ or else $b_{i j}(t) \geqq \beta$.
Also for each t and j, there exists $i_{j}=i_{j}(t)$ such that

$$
b_{i_{j} j}(t) \geqq \beta .
$$

§ 2. Generalized continuous linear programmings

We shall first recall the theory of infinite linear programmings studied in [5] and [8].

Let X and Y be (real) linear spaces paired under the bilinear functional $((,))_{1}$ and Z and W be linear spaces paired under the bilinear functional $((,))_{2}$. The weak topology on X is denoted by $w(X, Y)$ and the Mackey topology on X is denoted by $s(X, Y)$.

A linear program for these paired spaces is a quintuple $\left(A, P, Q, y_{0}, z_{0}\right)$. In this quintuple, A is a linear transformation from X into Z which is $w(X, Y)$ $-w(Z, W)$ continuous, P is a convex cone in X which is $w(X, Y)$-closed, Q is a convex cone in Z which is $w(Z, W)$-closed, y_{0} is an element of Y, and z_{0} is an element of Z. We say that x is feasible for the program (A, P, Q, y_{0}, z_{0}) if $x \in P$ and $A x-z_{0} \in Q$. The set of feasible elements for the program is denoted by $S(M)$. The value of the program is defined by

$$
M=\inf \left\{\left(\left(x, y_{0}\right)\right)_{1} ; x \in S(M)\right\} \quad \text { if } S(M) \neq \phi
$$

and

$$
M=\infty \quad \text { if } S(M)=\phi
$$

The dual program is the program $\left(A^{*}, Q^{+},-P^{+},-z_{0}, y_{0}\right)$ for W and Z paired under ${ }_{2}(()$,$) and for Y$ and X paired under ${ }_{1}(()$,$) , where A^{*}$ is the dual transformation of A, i.e., $\left(\left(x, A^{*} w\right)\right)_{1}=((A x, w))_{2}$ for all $x \in X$ and $w \in W$, and P^{+}and Q^{+}are defined by

$$
\begin{array}{ll}
P^{+}=\left\{y \in Y ;((x, y))_{1} \geqq 0\right. & \text { for all } x \in P\}, \\
Q^{+}=\left\{w \in W ;((z, w))_{2} \geqq 0\right. & \text { for all } z \in Q\} .
\end{array}
$$

The bilinear functionals ${ }_{2}(()$,$) and { }_{1}(()$,$) are defined by { }_{2}((w, z))=((z, w))_{2}$ for all $w \in W$ and $z \in Z$ and ${ }_{1}((y, x))=((x, y))_{1}$ for all $y \in Y$ and $x \in X$. We say that w is feasible for the dual program $\left(A^{*}, Q^{+},-P^{+},-z_{0}, y_{0}\right)$ if $w \in Q^{+}$and $y_{0}-A^{*} w \in P^{+}$. The set of feasible elements for the dual program is denoted by $S\left(M^{\prime}\right)$. The value of the dual program is defined by

$$
M^{\prime}=\sup \left\{\left(\left(z_{0}, w\right)\right)_{2} ; w \in S\left(M^{\prime}\right)\right\} \quad \text { if } S\left(M^{\prime}\right) \neq \phi
$$

and

$$
M^{\prime}=-\infty \quad \text { if } S\left(M^{\prime}\right)=\phi
$$

The set of real numbers are denoted by R and the set of non-negative real numbers by R_{0}. Let $X \times R$ and $Y \times R$ be paired under the bilinear functional ((,)) defined by

$$
(((x, r),(y, s)))=((x, y))_{1}+r s
$$

for all $(x, r) \in X \times R$ and $(y, s) \in Y \times R$. Let G be the set in $Y \times R$ defined by

$$
G=\left\{\left(A^{*} w+y, r-\left(\left(z_{0}, w\right)\right)_{2}\right) ; y \in P^{+}, w \in Q^{+} \text {and } r \in R_{0}\right\} .
$$

Kretschmer proved
Theorem 1. ${ }^{1)}$ If M is finite and the set G is $w(Y \times R, X \times R)$-closed, then $M=M^{\prime}$ holds and there exists $\bar{w} \in Q^{+}$such that

$$
y_{0}-A^{*} \bar{w} \in P^{+} \quad \text { and } \quad\left(\left(z_{0}, \bar{w}\right)\right)_{2}=M^{\prime}
$$

Let us denote by $L_{m}^{2}[0, T]$ the m product of $L^{2}[0, T]$, the space of all real-valued functions on $[0, T]$ which are square integrable. For $f \in L^{2}[0$, $T]$, we set

$$
\|f\|=\left(\int_{0}^{T} f(t)^{2} d t\right)^{1 / 2}
$$

Hereafter we choose

$$
\begin{aligned}
& X=Y=L_{n}^{2}[0, T], Z=W=L_{m}^{2}[0, T], \\
& ((x, y))_{1}=\int_{0}^{T} x(t) \cdot y(t) d t \quad \text { for } x \in X \text { and } y \in Y, \\
& ((z, w))_{2}=\int_{0}^{T} z(t) \cdot w(t) d t \quad \text { for } z \in Z \text { and } w \in W, \\
& P=\left\{x \in X ; x(t) \geqq 0 \quad \text { a.e. } .^{2)}\right\}, \\
& Q=\{z \in Z ; z(t) \geqq 0 \quad \text { a.e. }\}, \\
& y_{0}=c, z_{0}=a, \\
& A x(t)=x(t) B(t)-\int_{t}^{T} x(s) K(s, t) d s .
\end{aligned}
$$

Then the quintuple (A, P, Q, c, a) is a linear program and called the primal program of the generalized continuous linear programmings. We can easily verify that

$$
A^{*} w(t)=B(t) w(t)-\int_{0}^{t} K(t, s) w(s) d s
$$

Let M and M^{\prime} be the values of the primal and the dual of the generalized continuous linear programmings respectively. Then it is always valid that

[^0]$$
N^{\prime} \leqq M^{\prime} \leqq M \leqq N .^{3}
$$

Let μ and α be positive numbers such that

$$
\begin{aligned}
& |K(t, s)| \leqq \mu \text { on }[0, T] \times[0, T], \\
& |a(t)| \leqq \alpha \quad \text { on }[0, T]
\end{aligned}
$$

and let

$$
h(t)=(\alpha / \beta) \exp [\mu(T-t) / \beta] .
$$

Denote by $x_{h}(t)$ the n vector with all components equal to $h(t)$. Making use of conditions (N. 1) and (N. 2), Levinson showed that $0 \in S\left(N^{\prime}\right)$ and $x_{h} \in S(N) .{ }^{4}$ Consequently M and M^{\prime} are finite.

We shall prepare
Lemma 1. ${ }^{5)} \quad$ Let the integrable function $g(t) \geqq 0$ satisfy

$$
g(t) \leqq \rho_{1}+\rho_{2} \int_{0}^{t} g(s) d s \quad \text { a.e. on }[0, T]
$$

where $\rho_{1} \geqq 0$ and $\rho_{2}>0$. Then we have

$$
g(t) \leqq \rho_{1} \exp \left[\rho_{2} t\right] \quad \text { a.e. on }[0, T] .
$$

Lemma 2. Let two functions $f(t)$ and $q(t)$ of $L^{2}[0, T]$ satisfy

$$
0 \leqq f(t) \leqq q(t)+\rho \int_{0}^{t} f(s) d s \quad \text { a.e. on }[0, T]
$$

where $\rho>0$. Then we have

$$
\|f\| \leqq 2^{1 / 2}\|q\| \exp \left[\rho^{2} T^{2}\right]
$$

Proof. From the given relation, it follows that

$$
\begin{aligned}
f(t)^{2} & \leqq\left[q(t)+\rho \int_{0}^{t} f(s) d s\right]^{2} \\
& \leqq 2 q(t)^{2}+2 \rho^{2}\left[\int_{0}^{t} f(s) d s\right]^{2} \\
& \leqq 2 q(t)^{2}+2 \rho^{2} T \int_{0}^{t} f(s)^{2} d s
\end{aligned}
$$

almost everywhere on $[0, T]$. Writing $g(t)=\int_{0}^{t} f(s)^{2} d s$ and integrating both sides of the above inequality, we have
3) cf. [8], p. 336, Theorem 6.
4) [6], p. 74 and p. 78
5) $[6]$, p. 75 , Gronwall's lemma.

$$
0 \leqq g(t) \leqq 2\|q\|^{2}+2 \rho^{2} T \int_{0}^{t} g(s) d s
$$

By means of Lemma 1, we have

$$
g(t) \leqq 2\|q\|^{2} \exp \left[2 \rho^{2} T t\right] \leqq 2\|q\|^{2} \exp \left[2 \rho^{2} T^{2}\right]
$$

and hence

$$
\|f\|^{2} \leqq 2\|q\|^{2} \exp \left[2 \rho^{2} T^{2}\right]
$$

Now we shall prove
Theorem 2. It is valid that $M=M^{\prime}$ and there exists $\bar{w} \in S\left(M^{\prime}\right)$ such that $M^{\prime}=((a, \bar{w}))_{2}$, i.e., $\bar{w} \in L_{m}^{2}[0, T]$ satisfies that

$$
\begin{aligned}
& \quad \bar{w}(t) \geqq 0 \quad \text { a.e. on }[0, T], \\
& B(t) \bar{w}(t) \leqq c(t)+\int_{0}^{t} K(t, s) \bar{w}(s) d s \quad \text { a.e. on }[0, T], \\
& M^{\prime}=\int_{0}^{T} a(t) \cdot \bar{w}(t) d t
\end{aligned}
$$

Proof. In order to apply Theorem 1, it suffices to show that the set G is $w(Y \times R, X \times R)$-closed. Since G is convex, it is enough to verify that G is $s(Y \times R, X \times R)$-closed ([1], p. 67, Proposition 4). Since $Y \times R$ is a Banach space with respect to the norm defined by $\sum_{i=1}^{n}\left\|y_{i}\right\|+|r|$ for $y=\left(y_{i}\right) \in Y$ and $r \in$ R and $X \times R$ is the strong dual of $Y \times R$, we see that $s(Y \times R, X \times R)$ coincides with the topology of $Y \times R$ induced by the norm ($[1]$, p. 71, Proposition 6). Let $\left\{\left(y^{(k)}, r^{(k)}\right)\right\}$ be a sequence in G which $s(Y \times R, X \times R)$-converges to $(y, r) \in$ $Y \times R$. Then there exists $w^{(k)} \in Q^{+}$such that

$$
y^{(k)}-A^{*} w^{(k)} \in P^{+} \text {and }\left(\left(a, w^{(k)}\right)\right)_{2} \geqq-r^{(k)}
$$

Namely we have

$$
\begin{equation*}
B(t) w^{(k)}(t) \leqq y^{(k)}(t)+\int_{0}^{t} K(t, s) w^{(k)}(s) d s \quad \text { a.e. } \tag{1}
\end{equation*}
$$

Multiplying the both sides of (1) by the n vector $e(t)$ with all components equal to 1 , we have by condition (N. 2) that

$$
\beta\left|w^{(k)}(t)\right| \leqq\left|y^{(k)}(t)\right|+n \mu \int_{0}^{t}\left|w^{(k)}(s)\right| d s \quad \text { a.e. on }[0, T] \text {. }
$$

It follows from Lemma 2 that

$$
\left\|w_{j}^{(k)}\right\| \leqq\left\|\left|w^{(k)}\right|\right\| \leqq 2^{1 / 2} \beta^{-1}\left\|\left|y^{(k)}\right|\right\| \exp \left[\left(n \beta^{-1} \mu T\right)^{2}\right]
$$

$$
\leqq 2^{1 / 2} \beta^{-1} \exp \left[\left(n \beta^{-1} \mu T\right)^{2}\right] \sum_{i=1}^{n}\left\|y_{i}^{(k)}\right\|
$$

Since $\left\|y_{i}^{(k)}-y_{i}\right\| \rightarrow 0$ as $k \rightarrow \infty(i=1,2, \ldots, n)$, we see that $\left\{\left\|w_{j}^{(k)}\right\| ; j=1, \ldots, m, k=\right.$ $1,2, \ldots\}$ is bounded. From the fact that every closed ball $\left\{x \in L^{2}[0, T] ;\|x\|\right.$ $\leqq d\}(d>0)$ is weakly sequentially compact ([2], p. 68, Theorem 28), we can find a $w(W, Z)$-convergent subsequence of $\left\{w^{(k)}\right\}$. Denote it again by $\left\{w^{(k)}\right\}$ and let w be the limit. Then we have $w \in Q^{+}$,

$$
\begin{aligned}
& ((a, w))_{2}=\lim _{k \rightarrow \infty}\left(\left(a, w^{(k)}\right)\right)_{2} \geqq \lim _{k \rightarrow \infty}\left(-r^{(k)}\right)=-r, \\
& \begin{aligned}
\left(\left(x, y-A^{*} w\right)\right)_{1} & =\lim _{k \rightarrow \infty}\left(\left(x, y^{(k)}\right)\right)_{1}-\lim _{k \rightarrow \infty}\left(\left(A x, w^{(k)}\right)\right)_{2} \\
& =\lim _{k \rightarrow \infty}\left(\left(x, y^{(k)}-A^{*} w^{(k)}\right)\right)_{1} \geqq 0
\end{aligned}
\end{aligned}
$$

for all $x \in P$, and hence $y-A^{*} w \in P^{+}$. Therefore $(y, r) \in G$ and G is $w(Y \times R$, $X \times R$)-closed.

§ 3. Duality theorems for the continuous linear programmings

In this section we shall apply Theorem 2 to the study of the duality theorem for the continuous linear programmings.

We have
Theorem 3. It is valid that $M^{\prime}=N^{\prime}$ and there exists $v \in S\left(N^{\prime}\right)$ such that $N^{\prime}=((a, v))_{2}$.

Proof. On account of Theorem 2, there exists $\bar{w} \in S\left(M^{\prime}\right)$ such that $M^{\prime}=$ $((a, \bar{w}))_{2}$. Define $v(t)$ by

$$
v(t)= \begin{cases}0 & \text { on } E, \\ \bar{w}(t) & \text { on }[0, T]-E,\end{cases}
$$

where

$$
E=\left\{t \in[0, T] ; \bar{w}(t)<0 \text { or } B(t) \bar{w}(t)-\int_{0}^{t} K(t, s) \bar{w}(s) d s>c(t)\right\}
$$

We shall show that $v \in S\left(N^{\prime}\right)$. Clearly $v(t)$ is non-negative and measurable and satisfies

$$
\begin{equation*}
B(t) v(t) \leqq c(t)+\int_{0}^{t} K(t, s) v(s) d s \quad \text { on }[0, T] \tag{2}
\end{equation*}
$$

since $c(t) \geqq 0$ by condition (N. 1). Let ν be a positive number such that $|c(t)|$ $\leqq \nu$ on $[0, T]$ and $e(t)$ the n vector with all components equal to 1 . Multiply-
ing both sides of (2) by $e(t)$, we have

$$
\begin{aligned}
\beta|v(t)| & \leqq|c(t)|+n \mu \int_{0}^{t}|v(s)| d s \\
& \leqq \nu+n \mu T| ||v| \|^{2}
\end{aligned}
$$

which shows that $v(t)$ is bounded and hence $v \in S\left(N^{\prime}\right)$. Since E is a set of zero measure, we have

$$
M^{\prime}=((a, \bar{w}))_{2}=((a, v))_{2} \leqq N^{\prime}
$$

and hence $M^{\prime}=N^{\prime}=((a, v))_{2}$.
Theorem 4. It is valid that $M=N$ and there exists $u \in S(N)$ such that N $=((u, c))_{1}$.

Proof. Let $\left\{x^{(k)}\right\}$ be a sequence in $S(M)$ such that $\left(\left(x^{(k)}, c\right)\right)_{1}$ tends to M as $k \rightarrow \infty$. Define $\bar{x}^{(k)}(t)$ by

$$
\bar{x}_{i}^{(k)}(t)=\min \left(x_{i}^{(k)}(t), h(t)\right) \quad(i=1, \ldots, n) .
$$

By the same argument as in the proof of Lemma 3.1 in [6], we see that $\bar{x}^{(k)}$ $\in S(M)$ and $\left(\left(\bar{x}^{(k)}, c\right)\right)_{1}$ tends to M as $k \rightarrow \infty$. Since $\left\|\bar{x}_{i}^{(k)}\right\| \leqq\|h\|<\infty(i=1, \ldots, n$, $k=1,2, \ldots)$, we can find a $w(X, Y)$-convergent subsequence of $\left\{\bar{x}^{(k)}\right\}$. Denote it again by $\left\{\bar{x}^{(k)}\right\}$ and let \bar{x} be the limit. By the same reasoning as in the proof of Theorem 2 in [6], we can prove that $\bar{x} \in S(M), x_{h}-\bar{x} \in P$ and $M=$ $((\bar{x}, c))_{1}$. Define $u(t)$ by

$$
u(t)= \begin{cases}x_{h}(t) & \text { on } F, \\ \bar{x}(t) & \text { on }[0, T]-F,\end{cases}
$$

where

$$
\begin{aligned}
& F=\left\{t \in[0, T] ; \bar{x}(t)<0 \text { or } \bar{x}(t)>x_{h}(t)\right. \text { or } \\
& \left.\qquad \bar{x}(t) B(t)-\int_{t}^{T} \bar{x}(s) K(s, t) d s<a(t)\right\} .
\end{aligned}
$$

Then we see that $u \in S(N)$. Since the measure of F is equal to zero, we have

$$
M=((\bar{x}, c))_{1}=((u, c))_{1} \geqq N
$$

and hence $M=N=((u, c))_{1}$.
According to Theorems 2, 3 and 4, we have
Theorem 5. It is valid that $N=N^{\prime}$ and there exist $u \in S(N)$ and $v \in S\left(N^{\prime}\right)$ such that

$$
\int_{0}^{T} u(t) \cdot c(t) d t=\int_{0}^{T} v(t) \cdot a(t) d t
$$

Levinson proved this theorem under additional conditions that $B(t), c(t)$, $a(t)$ and $K(t, s)$ are continuous (Theorem 3 in [6]). Tyndall proved this theorem in the case where $B(t)$ and $K(t, s)$ are constant matrices. We remark that the above result is an answer to Tyndall's conjecture in Mathematical Review 37 (1969) \#2527 (see also [4]).

References

[1] N. Bourbaki: Espaces vectoriels topologiques, Chap. III-V, Paris, 1955.
[2] N. Dunford and J. T. Schwartz: Linear operators, Part I, New York, 1967.
[3] M. A. Hanson: Duality for a class of infinite programming problems, J. Soc. Ind. Appl. Math., 16 (1968), 318-323.
[4] M. A. Hanson and B. Mond: A class of continuous convex programming problems, J. Math. Anal. Appl., 22 (1968), 427-437.
[5] K. S. Kretschmer: Programmes in paired spaces, Canad. J. Math., 13 (1961), 221-238.
[6] N. Levinson: A class of continuous linear programming problems, J. Math. Anal. Appl., 16 (1966), 73-83.
[7] W. F. Tyndall: A duality theorem for a class of continuous linear programming problems, J. Soc. Ind. Appl. Math., 13 (1965), 644-666.
[8] M. Yamasaki: Duality theorems in mathematical programmings and their applications, J. Sci. Hiroshima Univ. Ser. A-I Math., 32 (1968), 331-356.
Note added in proof.
After our paper was sent for printing the following related papers drew our attention.
[9] R. C. Grinold: Continuous programming, part one: linear objectives, J. Math. Anal. Appl., 28 (1969), 32-51.
[10] R. C. Grinold: Continuous programming, part two: nonlinear objectives, J. Math. Anal. Appl., 27 (1969), 639-655.

> Department of Mathematics, Faculty of Science, Hiroshima University and
> School of Engineering, Okayama University

[^0]: 1) [5], Theorem 3.
 2) =almost everywhere with respect to the Lebesgue measure on the real line.
