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§ 1. Introduction

Continuous linear programmings were first considered by W.F. Tyndall
[7~] as a generalization of "bottle-neck problems" in dynamic programming.
N. Levinson Q6], M. A. Hanson Q3] and M. A. Hanson and B. Mond Q4] gener-
alized the results in [7].

In this paper we shall apply the theory of infinite linear programming
studied by K.S. Kretschmer [J5Γ\ and M. Yamasaki [8] to the investigation of
the continuous linear programmings. Our main purpose is to improve the
duality theorems in Q6[] and [7J obtained by approximation from the classical
finite duality theorem.

In order to state the continuous linear programmings, we shall introduce
some notation. If D(t) is a matrix on the interval [0, TJ (0< Γ<c>o) in the
real line with entries dij(t) and g(t) is a scalar on [0, T~} such that every
entry satisfies

then the notation

will be used. If D(t) is a matrix on [0, TJ with the same number of rows
and columns as D(t\ then D(t)<^D(t) means that dij(t)<idij(i) for all entries.
For a matrix D = (dij) and a vector d=(di\ we set

For an n vector d, an m vector e and an n x m matrix D, let dD and De
denote the vector-matrix products. Note that we do not use the familiar
notation Ddτ. For two n vectors χ(t) — (xi(t)) and yOO = (y»(ί))> w e s e ^

ί = 1

In this paper we always assume that

= (bij(t)) is an nxm matrix on [Ό, 3Γ],
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c(ί) = (c, (ί)) is an n vector on [0, Γ],

α (ί) = (αy (0) is an m vector on [0, Γ],

K(t, s) = (kij(t, s)) is an n x m matrix on [0, Γ] x [0, Γ],

where δ</(ί), ct (ί), «/(0 and Ay (ί, 5) are bounded real-valued functions which
are measurable with respect to the Lebesgue measures on the real line and
the plane respectively.

A bounded measurable n vector x (t) on [0, T~] is said to be feasible for
the primal program of the (original) continuous linear programmings if x (t)
^ 0 and

x (ί) B(t)7>a(t) + \ x (s) K(s, t) ds.
Jt

The set of feasible vectors for the primal program is denoted by 5(TV). The
value of the primal program is defined by

N=mi\[Tχ(t)-c(t)dt; xeS(N)\ if S(N)φφ,
Uo J

and

N=oo if S(N) = φ,

where φ denotes the empty set. A bounded measurable m vector w(t) on
[Ό, T'] is said to be feasible for the dual program of the continuous linear
programmings if w(t)^>0 and

B(t)w(t)<:c(t)+[ K(t, s)w(s)ds.
Jo

The set of feasible vectors for the dual program is denoted by S(N'). The
value of the dual program is defined by

p ^ C O C O ; ( θ } if

and

j\Γ'=-oo it

We shall always assume the following conditions as in [6]:

(N. 1) c ( ί ) ^ 0 and K(t, s)>0.
(N. 2) There exists /?>0 such that for each i, j and t either 6/y(ί) = 0 or

else bij(t)^>β.
Also for each t and j\ there exists ίj = ίj (t) such that
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§ 2. Generalized continuous linear programmings

We shall first recall the theory of infinite linear programmings studied
in [5] and [8].

Let X and Y be (real) linear spaces paired under the bilinear functional
((, ))i and Z and W be linear spaces paired under the bilinear functional
((,))2 The weak topology on X is denoted by w(X> Y) and the Mackey
topology on X is denoted by s(X, Y).

A linear program for these paired spaces is a quintuple (A, P, Q, γo> zQ).
In this quintuple, A is a linear transformation from X into Z which is w (X, Y)
— w(Z, W) continuous, P is a convex cone in X which is w(X, Γ)-closed, Q is
a convex cone in Z which is w(Z, fF)-closed, γ0 is an element of Γ, and z0 is
an element of Z. We say that x is feasible for the program (A, P, Q, y0) *o)
if xeP and Ax — zoeQ. The set of feasible elements for the program is
denoted by S(M). The value of the program is defined by

M=inf{((*, γo))ι; xβS(M)} if S(M)φφ,

and

M=oo if S(M) = φ.

The dual program is the program (^*, Q+, — P+, — z0, jo) for ίFand Z paired
under 2((,)) and for Y and X paired under i((,)), where A* is the dual
transformation of A, i.e., ((#, A*wJ)i = ((Ax, w))2 for all x eX and weW, and
P+ and (?+ are defined by

P+={γβ Y; ((#, j ) ) i ^ 0 for all ^ P } ,

W\ ((z,w))2^0 for all ^e<?}.

The bilinear functionals 2(( ?)) and i((,)) a r e defined by 2((^5 *)) = ((*, w))2
for all w;€ JΓand ^ Z a n d i((j, Λ;)) = ((#, j))i for all yGFand ^ e l We say
that w is feasible for the dual program (A*, Q+, — P+, — *<» Jo) iί weQ+ and
jo — ̂ 4*w£ P+. The set of feasible elements for the dual program is denoted
by 5(Λf). The value of the dual program is defined by

, «0)2; we S(Af)} if

and

Jlf=-oo if

The set of real numbers are denoted by R and the set of non-negative
real numbers by Ro. Let Xx R and Yx R be paired under the bilinear func-
tional ((,)) defined by
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for all (x, r)eXxR and (j, 5) e Yx R. Let G be the set in Yx R defined by

G= {(A*w + y, r - ((*<>, w))2) γ£ P + , w e Q+ and r e Ro}.

Kretschmer proved

THEOREM 1.1) If M is finite and the set G is w(Yx R, Xx R)-dosed, then
M=M' holds and there exists w£Q+ such that

γ - ] ~ and ((z0, τv))2 = M\

Let us denote by L2

m[β, Γ] the m product of Z2[0, Γ], the space of all
real-valued functions on [0, T~} which are square integrable. For feL2[0,
Γ], we set

G T \ 1/2

Hereafter we choose

rT

((Λ;5 γ))1 = \ x(t)-y(t)dt for x eX and y£ Y,

rT

((z,w))2=\ z(t)-w(t)dt for zeZand we JF,
Jo

P={xeX; χ(t)>0 a.e.2)}5

Q={zeZ; z(t)^>0 a.e.},

-[ x(s)K(s,t)ds.
Jt

Then the quintuple (A, P, Q, c, α) is a linear program and called the primal
program of the generalized continuous linear programmings. We can easily
verify that

A*w(i) = B(t)w(t) — \ K(t, s)w(s)ds.
Jo

Let M and M be the values of the primal and the dual of the generalized
continuous linear programmings respectively. Then it is always valid that

1) [5], Theorem 3.

2) = almost everywhere with respect to the Lebesgue measure on the real line.
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Let μ and a be positive numbers such that

\a(t)\^a on[05 Γ],

and let

Denote by xh(t) the n vector with all components equal to h(t). Making use
of conditions (N. 1) and (N. 2), Levinson showed that 0 e S(JSΓ) and xh e S(N).4)

Consequently M and M are finite.
We shall prepare

LEMMA 1.5) Let the integrable function g(t)^O satisfy

rt

g(t)<:pι + p2\)og(s)ds a.e. on [0, Γ],

where Pi^O and p2>0. Then we have

#(OSSPi exp \j>zf\ a.e, on CO, Γ].

LEMMA 2. Lei two functions f {t) and q(t) of L2[0, TJ satisfy

O^f(t)^q(t) + p{)

t

of(s)ds a.e. on[_0, Γ],

where p>0. Then we have

PROOF. From the given relation, it follows that

almost everywhere on [0, TJ. Writing g(t) = \ f(s)2ds and integrating both

sides of the above inequality, we have

3) cf. [8], p. 336, Theorem 6.

4) [6], p. 74 and p. 78

5) [6], p. 75, GronwalPs lemma.
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By means of Lemma 1, we have

£(0^2| |? | | 2 exp[2p 2 Γί]^2 | | 9 | | 2 exp [2p2Γ2],

and hence

Now we shall prove

THEOREM 2. It is valid that M=M' and there exists we S(M) such that
' = ((a, w))2, i.e., weL2

m\β, T~] satisfies that

^>0 a.e. on [0, Γ],

K(t, s)w(s)ds a.e. on [0, Γ],

Mr=\ a(t)-iϋ(t)dt.
Jo

PROOF. In order to apply Theorem 1, it suffices to show that the set G
is w(Yx R, Xxi?)-closed. Since G is convex, it is enough to verify that G is
s(YxR, Xxi?)-closed ([1], p. 67, Proposition 4). Since YxR is a Banach

n

space with respect to the norm defined by Σ II j/ll + I r \ for γ= (yt) e Y and r €
i = 1

R and Xx R is the strong dual of Yx R, we see that s(Yx R, Xx R) coincides
with the topology of YxR induced by the norm (HI], p. 71, Proposition 6).
Let {(γik\ r(A°)} be a sequence in G which s(Yx R, Xx i?)-converges to ( j , r) e
Yx R. Then there exists w{k) e Q+ such that

γ(k)-A*ww€P+ and ((α,

Namely we have

(1) B(t)w^\t)<; /kXt) + [fK(t, s)w(k\s)ds a.e.

Multiplying the both sides of (1) by the n vector e(t) with all components
equal to 1, we have by condition (N. 2) that

β I w(Λ)(0 I <: I y{k\t) I + nμ^ I ww(s) I ds a.e. on [0, Γ].

It follows from Lemma 2 that
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SinceIIy^) — yί ||->0 as A-*oo(ί = l, 2,..., n), we see that {||w}Λ>||; /"=1,..., m, k —
1, 2,...} is bounded. From the fact that every closed ball {χeL2[0, T~]\ \\x\\
<^d}(d>0) is weakly sequentially compact ([2], p. 68, Theorem 28), we can
find a w(W, Z)-convergent subsequence of {w(k)}. Denote it again by {w{k)}
and let w be the limit. Then we have

((α, W))2 = lim((α, tι;(*>))2^lim(-r(*>) = -r

= lim((#, y(k)-

for all x βP, and hence y—A*weP+. Therefore ( j , r ) e G and G is «;(7x.
Xxi?)-closed.

§ 3. Duality theorems for the continuous linear programmings

In this section we shall apply Theorem 2 to the study of the duality
theorem for the continuous linear programmings.

We have

THEOREM 3. It is valid that M = Nf and there exists ve S(N') such that

PROOF. On account of Theorem 2, there exists w £ S(M) such that M =
((α, w))2. Define v(t) by

ίO on E,

U(0 on[0, Γ]-£,

where

^={^^[0, Γ]; w)(ί)<0 or B(t)w(t) — \ K(t, s)iϋ(s)ds>c(t)}.

We shall show that ve S(N'). Clearly υ(t) is non-negative and measurable
and satisfies

(2) B(ί) v(t)^c(0 + [fK(ty s) v00 ds on [0, Γ],
Jo

since c(t) ^ 0 by condition (N. 1). Let v be a positive number such that \c(t)\
<z\> on [0, T~] and e(t) the n vector with all components equal to 1. Multiply-
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ing both sides of (2) by e(t), we have

β\v(t)\<\c(t)\+nμ\t\v(s)\ds
Jo

which shows that v(t) is bounded and hence ve 5(7V0 Since E is a set of
zero measure, we have

and hence M' = N' = ((a, v))2-

THEOREM 4. It is valid that M=N and there exists u e S(N) such that N
= ((u9 c))i.

PROOF. Let {x{k)} be a sequence in S(M) such that ((χ(k\ c))i tends to
M as k -> oo, Define x{k) (t) by

56i*)(ί) = min(Λ;i*)(ί), A(0) (i = l v , ̂ )

By the same argument as in the proof of Lemma 3. 1 in Q6], we see that x(k)

eS(M) and ((x(k\c))ι tends to Mas &->oo. Since | | ^ ^ | | ^ | ^ | | < O O ( Ϊ = 1 5 ...,/*,
Jc = l, 2, ...), we can find a w(JST, F)-convergent subsequence of {x{k)}. Denote
it again by {x(k)} and let x be the limit. By the same reasoning as in the
proof of Theorem 2 in [6], we can prove that x e 5(M), χh — χeP and M=
((3c, c))i. Define κ(ί) by

ίxh(t) on F,

(x(t) on[05 TJ-F,

where

F = {ί £ [0, 3Γ] 3c(ί) < 0 or χ(ί) > xh (t) or

r

x(t)B(t)-\ x(s)K(s,i)ds<a(t)}.

Then we see that u € S(iV). Since the measure of F is equal to zero, we have

and hence M=N=((u, c))i.
According to Theorems 2, 3 and 4, we have

THEOREM 5. It is valid that N=N' and there exist u € S(N) and v e S(N;)
such that
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rT rT

\ u(t)-c(t)dt=\ v(t)-a(t)dt.
Jo Jo

Levinson proved this theorem under additional conditions that B(t), c(t),
a(t) and K(t, s) are continuous (Theorem 3 in [6]). Tyndall proved this
theorem in the case where B(t) and K(t, s) are constant matrices. We re-
mark that the above result is an answer to TyndalΓs conjecture in Mathema-
tical Review 37 (1969) #2527 (see also [4]).
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