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On Purely Inseparable Extensions

of Algebraic Function Fields
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In this note we shall be concerned with modular purely inseparable
extensions of algebraic function fields over a perfect field A; of a positive char-
actristic p. We shall first see that such an extension has a close connection
with separating transcendence bases (Proposition 1), and then give a
geometric interpretation of it (Proposition 2). Then if a is a purely
inseparable isogeny of a group variety G onto another one G defined over k,
we shall show that the rational function field k(G) of G over A; is a modular
extension of a*(k(G')) by using some results by P. Cartier and M. E. Sweedler
*n C2H> P>3 and [β~], where α* is the comorphism corresponding to a (Propo-
sition 3), and from this fact we shall show the existence of a favourable
system of local parameters at the unit point e of G with respect to a (Theorem
and its Corollary).

1. In the sequel let A; be a perfect field of a positive characteristic p
exclusively.

LEMMA 1. Let K be an algebraic function field over k and L a purely in-

separable extension of exponent 1 over K such that [_L\ K~]=ps. Then there

exists a separating transcendence basis {ίi, ••>*»} of L o v e r k such that L —

K(ti,--,ts) and that {tp

u•••,/£, ts+iy 9tn} is a separating transcendence basis

of K over k.

This result is contained in the proof of Barsotti's Theorem in §2. 3 of
[1]. Therefore we omit the proof.

PROPOSITION 1. Let K be an algebraic function field over k and L a purely

inseparable extension of K such that L is isomorphic to a tensor product K(x{)

®A- ® ^ ( ^ S ) of simple extensions K(xϊ) over K. Then the transcendental

degree n is not less than s and there exist n — s elements ί s + i , , tn in K such

that {xu- ,xs, ts+iy,tn} (resp. {χ{\- , xp

s\ ts+u ,tn}) is a separating

transcendence basis of L over k (resp. K over k), where e{ is the exponent of %i

over K for i = l, #,•••, s.

PROOF. If we put yi = xTi~1 for each i = l, 29- -,s, L'=K(yu---, γs) is iso-

morphic to K(yι)®κ ®K(ys) and is of exponent 1 over k. By Lemma 1,
there exists a separating transcendence basis {ίi, ,ί»} of L' over k such
that {ίί, -, tp

s, £s+i, , tn} is that of K over k. Then we can easily see that
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L/ = K(tiy,ts). Since {tly-,tn} is a separating transcendence basis of Lr

over k, there exist n derivations Du ,Dn of U into itself over k such that
Di(tj) = dij(i, j = l, #,•••> n). Then {Du , Dn} is a basis of the L'-vector space
Q)(L'/k) of the derivations of L' over k and {#i, , Ds} is that of 2/ over K,
since {ίi, , ί5} is a /?-basis of Z7 over K. Similarly let D[, , Z^ be 5 deriva-
t i o n s of I! o v e r i ^ s u c h t h a t D'i(yj) = δij (i,j = l, 2, . ,s). T h e n {D[y. ,D'S} i s

also a basis of ζΰ(Lf/K) over 2/ and hence {D'U...,D'S, Ds+U ,Dn} must be
that of Q)(Lf/k) over 27. From this fact we can see that the determinant

s\ Dn(ts+ι)y , A,(ίΛ

does not vanish and hence that {dyly-, dys, dts+u "9 dtn} is a basis of the
dual space of Q)(Lf/k) over V. This shows that {yw 9yS9 ts+i, -9tn} is a
separating transcendence basis of L' over k by Proposition 2 of Chap. VII
in [4J. Since L is separably algebraic over A(yi> > js> ίs+i, , ί») and A; (ji,
• , ys, ts+u ' 9tn) is a purely inseparable extension of degree ps = [_Lr:K^\
over &(yί, , yf, ίs+i, , ίn), we see that K is separably algebraic over k(y{,
•• ,yp

s, ts+iy,tn). Therefore L = K(xu.. > χs) is separably algebraic over
k ( χ u ' ,χS9 ts+i, ->tn)9 s i n c e x p ^ i = y p

i f o r i = l,2y ,s. T h i s c o m p l e t e s t h e

proof. q. e. d.

COROLLARY. Let K, L, k and {xw ^ xs, ίs+i, , tn} be as in Proposition
1. Then Kand k(xiy--, xs, ts+u , tn) are linearly disjoint over k(x{\- 9 χp

s

6s,

PROPOSITION 2. Let V and W be two algebraic varieties of dimension n
defined over an algebraically closed field k and f a dominant morphism of V
into W. Suppose that the rational function field k{ V) of V over k is isomorphic
to a tensor product K(τι)®κ..'®K(vs) of purely inseparable, simple extensions
K(ti) of the rational function field K=k( W) of W over k. Then there exists a
non-empty open subset U of W satisfying the following condition: the local ring
0x>v of V at a rational point x in f~ι(U) has a regular system {ίi,••-,£»} of
parameters such that {tffV j ίfs, ts+u •• , tn} is a regular system of parameters
of the local ring 0f(x)>w of W at the point f(χ), where e{ is the exponent of r,
over K=k(W).

PROOF. It is well known that there exists an open subset U' of W such
that Ϊ7' and f~ι(Uf) are non-singular. Let{rs+i,- , r»} be a set of elements
in k(W) such that {ri, , r»} satisfies the condition of Proposition 1, and U
an open subset of U such that {ri — ΓI(Λ;),. -, τn — rn(x)} (resp. {rf1 —rf^ j) ,
•• ? ^Γs — τf s(y)5 r s + i — r s + 1 (y), , xn — tn(y)}) is a regular system of parame-
ters of 0x>v (resp. 0y>w) for any rational point x in f~ι(U) (resp. any rational
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point y in U). Such an open set U exists, since {ri,. ,r»} (resp. {rf\ ,
rf%rs+i,• ••, vn}) is a separating transcendence basis of k(V) over A (resp.
k{W) over A) (cf. Chap. VII in [4]). There we may put ίi = r —ri(#) for ι =
1, 2, , n. This completes the proof. q.e.d.

Remark. It is known that a purely inseparable extension of an alge-
braic function field is not necessarily modular.

2. PROPOSITION 3. Let G, G be group varieties defined over a perfect
field k and a a purely inseparable isogeny of G onto G defined over k. Then
the rational function field k(G) of G over k is a modular purely inseparable
extension of u*(k(G')), where a* is the comorphism of k(G) into k{G) cor-
responding to a.

PROOF. We use notations and results of P. Cartier [2J. If we put N(a)
— Nk(a) for convenience, N(a) is a cocommutative bialgebra over k and the
homomorphism ω: N(a)(S)k k(G) >k(G) defined by ω(u(g)f) = u(f) measures
k(G) to k(G) in the sense of Sweedler [_5J, because by definition α)(^(g)l) =
u(l) = ε(u) and ω(u<S)fg) = u(fg) = J(u)(f, g). Therefore by Lemma 2.5 in
[5], N(a)(k(k(G))pn) C k(k(G))pn = k(G)p\ since k is perfect. On the other hand
we have k(G)N(a)={f e k(G) \ ω(u<g> f) = ε(u)f for any u in N(ά)}=a*(k(G'))
and hence a*(k(G)) and k{G)pn are linearly disjoint for any n by Lemma 2.2.
in [5J. This means that k(G) is a modular extension of a*(k{G)) by Theorem
1 in [6]. q.e.d.

A similar result of the following theorem was obtained for formal Lie
groups by J. Dieudonne in [3] (cf. Theorem 6) and special cases of exponent
one for group varieties were given by I. Barsotti in \Ύ}. Our proof will
depend on the above Proposition 3.

THEOREM. Let G and G be group varieties defined over an algebraically
closed field k and a a purely inseparable isogeny of G onto G defined over k.
Then there exists a regular system {ίi, , tn} of parameters of the local ring
0e,G of G at the unit point e of G such that {if1,---, ίf% £s+i, > tn} is that of
the local ring Qe>ίG' of G at the unit point e of G\ where pe^+"'e^ is the degree
of the rational function field k(G) over the subfield a*(k(G)).

PROOF. By Proposition 3, k{G) is isomorphic to a tensor product K(τι)
®# (g)ίT(rs) of simple extensions K(τd over K, where K=a*(k(G')\ and
hence, by Proposition 2, there exists a rational point of G over A, at which
the local ring 0x>G of G has a regular system {t[,•••, t'n} of parameters such
that {t[pe\---, t'/s, ίs + i, ••, ί»} is that of C^OO.G' Since x and e are biholomor-
phic by a left translation, it is easy to see that there exists a regular system
{ίij j tn} of parameters of 0e>G satisfying the conditions of our theorem.

Let G, G and a be as above. Then we can define the kernel of a as an
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affine scheme Spec N(a)D, where N(ά) is a subbialgebra of the bialgebra
consisting of the left invariant semi-derivations of G (cf. [7]). We shall
terminate this note by giving a relation between the structure of the field
extension k(G) over k(G') and that of N{a)D as an algebra over k.

COROLLARY. Let G, G' and a be as in Theorem 1. If k(G) is isomorphic

to a tensor product K(τι)<g}κ - ® ^ ( r s ) of simple extension K(τi) over K=k(G'),

the linear dual N{ά)D of the bialgebra N(a) corresponding to the isogeny a is

isomorphic to a residue ring k[_Xιy ••> X J / ( X f v , Xζ8) of a polynomial ring

k[_Xu .., XsJ as algebras over k.

PROOF. We use the same notations as in [Ί~]. The kernel Spec N(a)D

of a is isomorphic to Oe>G/a, where σ is the ideal generated by the maximal

ideal m' of Oe',G> (cf. Theorem 4 in [7J). However Theorem shows t h a t a —

(*fV > *f% ίi, - , tn) for a suitable choice of regular system {tu , tn} of para-

meters of Oe>G and hence Oe>G/a is isomorphic to Oe>G/(tPι\ •-, ίf% ί s + i , ,ί»)

^ACίiΓ ^ J Λ ί Γ S ^ Γ , ί.+i,- , ^ ~ £ [ X i , , X J / ( X f V , ^ f s ) as A -alge-
bras. q. e. d.
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