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High Order Derivations II.
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This is a suite of the previous paper |ΊΓ]. In that paper the senior
author developed the fundamental calculus on high order derivations and
proved some functorial properties of high order differentials. In this paper
we shall apply these results to the theory of fields, in particular to a purely
inseparable field extension of finite exponent. In §1 it will be shown that
a purely inseparable extension of finite degree over a field K will be charac-
terized by the fact that the derivation algebra QXJL/K) coincides with the
endomorphismring of L over K. If L is an extension of infinite degree over
K this is not the case. But when L is of finite exponent over K we can intro-
duce a suitable topology so as to get a bijective correspondence between the
intermediate fields of L and K and the closed subrings of Q)(L/K) containing
L. §3 is devoted to the representation theory of high order derivations. In
the case of characteristic p(> 0) the high derivations of orders 1, /?, p2, are
fundamental while in the case of characteristic zero every high order deriva-
tion can be represented as the sum of products of ordinary derivations.

Notations and terminologies: Let k and A be commutative rings such
that A is a A -algebra and let M be an ^-module. The set of q-th order deriva-
tions of A/k into M will be denoted by Q)(

0

9)(A/k, M). Q){

o

q)(A/k, M) has a
natural structure of left ^4-module. When M = A we shall use the notation

Q){

0

Q)(A/k) instead of Q){

Q

9)(A/k, A). We shall set Q)Q(A/k) - \JQ)$\A/k). The

derivation algebra Q)(A/k) is the direct sum of homotheties by elements of
A and Q)0(A/k), i.e., Q)(A/k) = AφQ)0(A/k). 3)(A/k) is a subring of Hom^(^,
A). The module of q-th order differentials of A over k will be denoted by
Ω{

k

q)(A) and the canonical ^-th order derivation will be denoted by 6(Jlk. Ω
{£\A)

is a representing module for the functor Q)(

Q

q)(A/k). Let B be an ^4-algebra.
Then we have the canonical homomorphism Bς$AΩ

{

k

q)(A)-> Ω{

k

q\B). The
cokernel of this homomorphism will be denoted by Ω{

k

q\B/A). The readers
are expected to refer the paper Q3] for details. In this paper we shall make
frequent use of the results in [ΊΓ] and the Proposition (or Theorem) 12 of
Chapter I in [ΊΓ], for example, will be quoted as 1-12.

§ 1. Structure theorems for derivation algebras

Let k and A be commutative rings such that A is a A>algebra. Let φ be
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the contraction homomorphism A§§kA^>A and let /be the kernel of φ. We
endow Aζ&kA with a structure of ^-module by a(b(g)c) = ab(&c. Then the
exact sequence of ^-modules

0 -> I >Λ<g>kA-*->Λ >0

splits since there exists an J-homomorphism of A into A® A such that φ(a)
= α(g)l. Identifying A with φ(A) we have a direct sum decomposition
= A® I. Hence there exists a canonical isomorphism of J-modules

These consideration yields at once the

PROPOSITION 1. There is a canonical isomorphism of left A-modules:

r: HomA(A<g)kA/In+\ M)^>M(&Q){

o

n)(A/k, M)

where M is an arbitrary A-module. If f is an element of HomA(A(g)kA/In+1,
M\ then v(f) =/(l) + ro(/) where r o (/)(^(α)) = /(l(g>α-α<g>l).

COROLLARY 1.1. Let us assume that A is a purely inseparable extension
of finite degree of a field k. Then we have the canonical isomorphism Q)(A/k)

, A).

PROOF. Under the assumption A(&kA is an artinian local ring with the
maximal ideal /. Hence / is nilpotent and we have D{

o

n)(A/k) = D0(A/k) for
large n.

In the sequel we shall denote by L and K two fields of characteristic p
such that L^> K.

THEOREM 2. Assume that L is a purely inseparable extension of finite
exponent e over K and let x be an element of L not contained in K. Then there
exists a high order derivation D of order pe~ι of L/K such that D(x)ΦO.

PROOF. By assumption we have K C L C Kp~e. Let {xx, λeΛ} be a p-
basis of Kp'e over Kp~e+\ Then we have Kp~e = (g) K(xλ). Let x be a given

element of L and l e t / be the exponent of χ ( / < e ) . Then x0 = χf~e is an
element of Kp~e and of exponent e. We can supplement i 0 to a p-basis of
Kp~e over Kp'e+1 and hence we can assume that x0 is a member of a />-basis {xλ,
λεΛ}. In particular we see that there exists a field F such that F(x0) = Kp~e

and [F(xo)\ F] = pe. Let us set q —pe~ι. Then Ωψ{F(x0)) is a free module
with the basis δ(x0), δ(x2

0),..., δ(xq

0) by Π-15 where δ = δ^xo)IF. We have
then δ(x) = δ(x%e~f)φ0 and there exists a pe~l-ih order derivation D of Kp~e

over F (hence over K). The restriction of I) to L gives rise to an element
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Δ of Q)fl) (L/K, Kp'e) such that Δ(x)φO. Hence we must have δtfpWΦO.
From this we immediately get the assertion.

REMARK 1. If the exponent is not finite there could exist an element
x of L not contained in K such that for any high order derivation D of L/K
we have D(x) = 0. Take for example K = k(x), a purely transcendental
extension of k, and let L = Kp~°°. Then x

p~ι ί 2£ and if Z> is of order n D(xp~ι)
= D((xp'n~yn) = 0 by 1-7.1.

REMARK 2. Theorem 1 implies among others that the notion of high order
derivation is much broader than that of higher derivation. In fact let L be
a purely inseparable extension of K which is not modular over K. Let F be
the field of constants for higher derivations of L over K. Then by [5], F is
strictly bigger than K. Let x be an element of F not contained in K. Then
a high order derivation D of L/K such that D(x)Φ0 can not be a component
of any higher derivation of L/K.

THEOREM 3. Let L and K be as in Theorem 2. Then the center of Q)(L/K)
is equal to K.

PROOF. It is clear that K is contained in the center of Q)(L/K). Con-
versely let α+ Δ(a e L, Δ e Q){

o

n)(L/K)) be a central element of Q)(L/K). Then
first we must have Δx = Λ; J for any x in Z, thence we have Δ(x) = 0 for any
x in L, i.e. A = 0. Theorem 3 now follows from Theorem 2, since an element
x of L can be a central element of Q)(L/K) only when Δ{x) = 0 for any high
order derivation Δ. q.e.d.

Let 3X be a subring of Q)(L/K). Henceforce we shall denote by Z(SX) the
center of St.

THEOREM 4. Lei L be a purely inseparable extension of finite degree over
K Then we have Q)(L/K) ^ RomK(L, L).

PROOF. By definition Q)(L/K) is a subring of Hom#(L, L). By Corollary
1.1 we have Q)(L/K)^ΈlomL(L<g)κL, L)^Homκ(L, L) as left L-modules.
Hence Q)(L/K) has the same dimension as Hom^L, L) and we must have the
assertion. q.e.d.

This property of Q)(L/K) characterizes a purely inseparable extension of
finite degree. In fact we have

THEOREM 5. Let L be a finite extension of K. Then L is a purely in-
separable extension of K if and only if [Q)(L/K): L} = [L: K~],

PROOF. Let Ks be the separable closure of K in L. Then as will be seen
in the following proposition we have Q)(L/K) = Q)(L/KS). By Theorem 4 we
know that [_Q)(L/KS): LΓ\ = [_L: Ks~]. Hence the assumption implies that
K = Ks, i.e., L is a purely inseparable extension of K.
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PROPOSITION 6. Let Ks be the separable closure of K in L. Then we have

PROOF. AS is well known Ωψ(Ks) = 0. From this we easily deduce that
Ω%)(Ks) = 0ίor any n>l. It follows from Π-12, (3) Ωf\L)^Ωψs{L) for n^l.
The assertion then follows immediately.

§ 2. A purely inseparable extension of finite exponent

In this paragraph we shall assume that I is a purely inseparable exten-
sion of finite exponent e over a field K.

In this case Q)(L/K) cannot be a finite dimensional vector space, so we
shall introduce a suitable topology. Since Q)(L/K) is a subring of Romκ(L,
L) we shall introduce first in the latter set the following topology which we
shall refer to as the Krull topology in the sequel.

DEFINITION. Let E be an intermediate field of L and K such that Q2?: KΓ]
< oo, Then the fundamental system of neighborhoods of zero consists of the
set of the element f in Hom^L, L) such that f\E=0.

In other words, two elements /, g of RomK(L, L) are said to be near if
and only if there exist finite elements xu••-, xn of L such that /(*,-) = g(xi),
ί = 1, 2, , n. With this topology Hom#(Z,, L) becomes a topological ring as
one can see easily.

THEOREM 7. Let L be a purely inseparable extension of finite exponent e.
Let SI be a subring of Ή.omκ(L, L) containing L such that Z(SX) = K. Then SI
is a dense subset of Hom#(L, L). In particular Q)(L/K) is a dense subspace of
HomK(L, L).

For the proof we need the following.

DENSITY THEOREM. Let A be a ring and let M be a semi-simple left A-
module and b an element of bicommutant B of M. Then for every finite set
of elements xu χ2, -> ocn of M there exists an element a of A such that ax{

= bxi for ί = 1, 2, , n.

For the proof we refer to [1], Chap. 8, §4, n°2.

PROOF OF THEOREM. 7. We view L a s a left Sί.-module and we shall find
its commutant C and bicommutant B. By our assumption the homotheties
by elements of L are contained in SI. Hence L is a simple Si-module, and an
element c of C must be an Z-linear endomorphism of L. This implies that c
is a homothety by an element of L and we can consider c as an element of L.
Then the assumption Z(Sl) = K implies that c is contained in K, hence, C = K.
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The bicommutant B is then equal to Hom#(£? L). The assertion now follows
immediately from Density Theorem. The last assertion is a consequence of
Theorem 3 that we have Z(β(L/K)) = K.

REMARK 3. When L is of finite degree over K, the topology introduced
above is discrete. Hence we have again Q)(L/K) = Ή.omκ(L, L) (cf. Theorem
4)

PROPOSITION 8. Let L and K be as in Theorem 7 and let F be an inter-
mediate field of L and K. Then RomF(L, L) is closed in Ή.omκ(L, L).

PROOF. Let / be an element adherent to ΈίomF(L, L). We have to show
that / is an element of HomF(L, Z). Let α, x be arbitrary but fixed elements
of F and L respectively. Then there exists an element g in Hom^L, L) such
that / = gon the subfield K(x> ax). Then we have f(aχ) = g(ax) = ag(x)
= af(χ)> i.e., / is jp-linear. q.e.d.

We are now well prepared to establish a Galois correspondence between
intermediate fields of L/K and the closed subrings of Q)(L/K) containing L.

THEOREM 9. Let L be a purely inseparable extension of finite exponent
over K. If we endow Q)(L/K) with the Krull topology we have a bijective cor-
respondence between intermediate fields of L/K and closed subrings of Q)(L/K)
containing L. The corresponding intermediate field F and the subring 21 are
related by the formula

PROOF. Assume a field F is given. Then Q)(L/F) = Q)(L/K) r\ HomF(£,
L). Hence by Proposition 8, S)(L/F) is a closed subring of Q)(L/K) and we
have Z(Q)(L/F)) = F by Theorem 3. Conversely let a closed subring % (con-
taining L) be given. It is easily seen that Z(Sl) = F is a field between L and
K. Moreover SI C Ή.omF(L, L) and is a dense subset of HOΠIF(£> L) by Theorem
7. Hence SI is dense and closed in Q)(L/K) Λ Hom^L, L) = Q)(L/F) i.e., % =
Q)(L/F).

THEOREM 10. Let L be a purely inseparable extension of finite exponent
over K. Let E{(i = 1, 2) be intermediate fields of L and K. Then we have

(1) Q)(L/Eι Γλ E2) = Q>a/Eι) W Q)(L/E2\

(2) Q)(L/Eι \J E2) -

Conversely let Sl, (ί = 1, 2) be closed subrings ofQ)(L/K) containing L. Then
we have

(3) Z(»i Λ 5i2) =

(4) z(Sί.i \j sx2) - z(sii) n z(a2).
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PROOF. (2) and (4) are immediate. (1) follows from (4) as follows. Let
$U = Q)(L/EiXi = i9 2). Then by (4), Z(%ι\J%2) = Z(%ι)rλZ(%2) = Eιr\E2. Hence
by Theorem 9 Q)(L/Eί r\ E2) = 3Ii W 212. Similarly (3) follows from (2). q.e.d.

In the following we shall give some applications of Theorem 7.

PROPOSITION 11. Let L and K be as in Theorem 9, and let I be the kernel
OO

of the contraction homomorphism Lξ>§kL-+L. Then we have f\ In = {0}.
n = \

Before we go to the proof we need

LEMMA 12. Let M be a left L-subspace of L(g)L. Then KomL(L(S)κL/M, L)
= N is a closed subspace of Hom#(Z, L) where we identified Hom#(L, L)
with Ή.omL(L<g)κL, L) by the isomorphism φ\ Ή.omL(L<g)κL, L)^+Ή.omκ(L, L)
with φ(f)(x)=f(l<g)x).

PROOF. Let /eHom^I, ! ) and f* = <p-\f). Assume that feφ(N).
n

We shall show f*(M) = 0. Let Σ Λ;, ® y, be an arbitrary element of M. Then

by definition / c φ(N) implies the existence of an element g e φ(N) such that
= giydd = 1, , n). Hence f*{Σ

PROOF OF PROPOSITION 11. Let us set M— f\ln. By the identification φ
n = \

defined above we have Q)(L/K) C<p(HomL(L(g>kL/M, L)) C Hom^(Z, L). Since
Q)(L/K) is dense in HomK(L, i ) , <p(HomL(L<g>kL/M, L)) is also dense in
(L, L). On the other hand this is closed by the previous Lemma. Hence we
must have Ή.omL(L(&κL/M, L) = Homz(L(g)Z, M). This implies that M= 0.

PROPOSITION 13. Let L/K be a purely inseparable extension of finite expo-
nent and let F be an intermediate field such that [_F\ X"] < oo and let M be a
finite L-module. Then any element D of Q){

o

n)(F/K, M) can be extended to a high
order derivation of L/K into M.

PROOF. It suffices to show the case where M= L. Since F is a direct
summand of I as a K-vector space D can be extended to an element / of
HomiKZ, L). Since Q)(L/K) is dense in Hom^L, L) and [T: K^<oo there
exists an element Δ of Q)(L/K) such that J\F = f\F= D. Δ is the desired
extension.

REMARK 4. In general the order of extended high derivation should be
much bigger than that of original high derivation. For instance if K(x) is a
rational function field over K an ordinary derivation of K(xp) over K(xp2) can
be extended to a p-th order derivation of K(x) over K(xp2), but not to an
ordinary derivation.
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§ 3. Generators of Q){

o

n\K/k).

In what follows most fields in consideration will be of characteristic p
unless otherwise specified.

We shall first remind ourselves that if D is a q-th order derivation of
K/k, then for any element a of kKp\ [ # , a] is a high derivation of order
ί^q—p* by 1-11. 2. In particular if q<p\ we have [D, a] = 0. This implies
among others that D(aa) = aD(a) + aD(a) for any a a K.

LEMMA 14. Let D be a q-th order derivation of K/k. If q <p\ D is kKpι-
linear.

PROOF. For any element a of kKpι we have QZ), a} — 0 and D(a) = 0 by
1-10. Hence we have Da = aD.

Let K/k be a purely inseparable extension of finite degree and of ex-
ponent e. Let us consider a sequence of subfields

where Ki = kKpι (ί = 1, , e — 1). For convenience we set K = ίΓθ5 & = ^ β

We shall set

MK/k) = {D e Q)f\K/k) I D(Kd = 0} (ί = 0, 1, .., e-1).

It should be noted that j40 = {0}. We shall also set

• = Q)f\K/k)/MK/k) (ί = 0,1,..., 6-1).

/)i(K/k), hence Qi(K/k) is a left vector space over K. When we speak of
dimensions of f4i9 ft, etc., we mean the dimensions of left 7Γ-vector spaces A,
ft, etc.

PROPOSITION 15. There exists an isomorphism of K-vector space (Qi(K/k)
^ Q)^\Ki/k, K). In particular [βlK/k): Kj = log^K : Ki+1J

PROOF. Let D be an element of Q){

o

pl)(K/k). Then the restriction of D to
Ki gives a i^-module homomorphism of Q)f\K/k) into Q>$\Ki/k, K) with the
kernel j4{. Hence to prove the assertion it is necessary to show that every
derivation of K{/k into K is induced in this way and it suffices to show that
every i^+i-derivation Jo of K{ into i£f+\ can be extended to a p'-th order
derivation of Kp~+\ into Kp~+\. Let now {χt}ι<t<s be a />-basis of Ki/Ki+ί.
Let {^}i<ί<s be elements of K^~+\ such that z?'1 = xt(t = l9 ,s). Then we

have (8>i£t +i0zf)®tf ί+1^=^ί+\ for a suitable field 1% since Kp-"+x is modular over

Ki+1. Ki+i(zt) is of exponent ί over ίΓ ί+1. Let ^ be a //-th order derivation
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of KPi~+\ over Ki+ι such t h a t adt — dta for any a in (g) Ki+i(zt')§t)F, and

= J0(**X <**(*?) = ΛoUfX , d,(#f) = ^o(^f). The existence of such a high
derivation is assured in 11-15. It is easily seen that the p'-th order deriva-

tion Σ dt answers the question.
t =1

Let T = {Δu , J s } be a set of high order derivations of K/k. The set of
i£-linear combinations of the non-commutative monomials of Λi, , Δs will be
denoted by K< T> or K< Δu , Δs>. We say that Q)0(K/k) is generated
over K by Γ = {Ji, , Δs} if we have Q)0(K/k) = K< T>.

PROPOSITION 16. Let K/k be a finite purely inseparable extension of ex-
ponent e, T{i) = {Δfτ)}ι<j<s. be a set of high order derivations of K/k such
that the residue class {ΔfX)}ι^j<kSt forms a K-basis for Q{(K/k) (0<ί<e — l).
Then Q)0(K/k) is generated over K by {T(i\ 0<ί<e-l}.

PROOF. Since Q){

0

1)(K/k) = Q){

0

1)(K/K1) and K/Kx is of exponent 1, Q>Q{K/Kλ)
is generated by Γ ( o ) over K. By induction we assume that ζbQ(K/Ki) is
generated by Γ(o), Γ(1),..., Γ(ί'-1} over K. Then we shall show that Q)0(K/Ki+1)
is generated over K by Γ(o), Γ(1), , T«\

Let SXo = i^< T^V , Γ ( ί ) > . We shall first prove that % = K®l\Q is a
subring of %>(K), the set of additive homomorphisms of K into itself. For this
purpose, it suffices to prove that Δf]a e 2I(α e K, 0<j<ί). For a e K, ^J{f\
a] is a (pj — l)-th order derivation, and so {_Δ$'\ <f\ is ^-linear by Lemma 14.
Hence by induction assumption [_Δ{£3 \ a] is contained in K< T ( 0 ), Γ(1), ,
Γ ( y-1 } >. Since Δf]a = [_Δf\ α] + a Δf] + Δf >(o), we have J f 5α e SI. and §1 is a
subring of SCfiΓ). On the other hand we have {a e K\ Δψa = aΔ%\ - , Δpa
= aΔ*l)} = Ki+ι, by Proposition 15, thence Z(3I) = Ki+χ. Since 31 is a subring
of S(X) and Z($l) = Ki+u we have 21 = Hom^.+1 (K, K) by Jacobson-Bourbaki
Theorem (cf. [2]). Hence we have % = Q)(K/Ki+1) by Theorem 4 and so %0

REMARK 5. Let the situation be as in Proposition 16. If pf'1<n <//,
an n-th order derivation of K/k is contained in K< Γ(o), Γ(1), .., Tu'l)>.
This follows immediately from the facts that we have 3){

o

n)(K/k) = Q){

o

n)(K/Kf),
Ω)f\K/k)=Q)f\K/Kf\ MK/k) = ^ f (̂ /^/) for 0 <.'

Hitherto we were interested in the case of a purely inseparable extension
K/k of finite degree. There the high derivations of orders p\ί = 0, 1, ) are
key stones for the construction of high order derivations. When K/k is a
separably algebraic extension there is no non-trivial high order derivation
over k. So we shall go to the case where K is a finitely generated separable
extension of k. In this case there is a finite number of independent variables
Λ;I, , χn over k such that K is a finite separable extension of k(xu---, xn) = k(x).
Then the essential theory of high order derivations of K/k is reduced to that
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of k(χ)/k owing to the following

THEOREM 17. Let K, F be over fields ofk such that K is separably algebraic
over F. Then any q-th order derivation of F/k into a K-module M can be ex-
tended in a unique way to a q-th order derivation of K/k into M.

PROOF. First we shall prove the uniqueness. From 11-11 we have the
following two exact sequences

(1)

(2)

Since K is separably algebraic over F we see easily Ωψ(K) =
Then the repeated use of (2) yields at once Ωψ(K/F) = 0(#>l) . Hence from
(1) we get an epimorphism

and the dual monomorphism

0 >Q)$\K/k, M)-^~>Q)^(F/k, M).

This sequence implies that the extension is unique.

Next we shall prove that the extension is possible. For that purpose we
have to show that φ* is sur jective and it suffices to prove that φ is injective.
This is well known in case q = l(cf. [4]). The proof will be carried out by
induction on q.

We denote by r the mapping Kξ$FF<ξξ)kF->Kζξ)kK such that τ(χ®y®z)
= xγ0z. Let ω be an element of K(g)FIFCK(&FF(&kF satisfying r(α>)
e Iγι. We shall show that ω e K(g)FI

g

F

+1. Let us now consider the following
commutative diagram of exact sequences

0 0

I

o—>i κ-
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where a and β are contraction homomorphisms and IF denotes the ideal of
K0kK generated by elements of the form {10y— J 0 1 , γc F}. Since K is
a finite separable extension of F we have J—J2^ and / has a finite basis.
Hence there exists an element γ such that γ^l (mod. /) and γj= 0. Let c be

an element of K(&K which is mapped on γ. Then c — 1 = b is contained in IF,

and C/A-ΞΞO (mod /p). Then the assumption r(ω) = (KiV1) implies that

c9+1r(ω) is contained in Iq

F

+ι. On the other hand τ(ω) is contained in 1% by
induction assumption. Hence

This result completes the proof since we have

Let us go back to our original situation. Let K be a finitely generated
separable extension of h and let ίi, , ίw be a separating transcendence basis
of K/k. Then we have

From Π-10 it follows that

Hence we have

Thus to find q-th order derivations of K/k it is sufficient to find q-th. order
derivations of k[_tu..., tn~]/k. From Π-2 it follows that Ω{

k

q)(k[_f\) is a free
module over £O] with the basis δω(Mλ) where δ(Q) = ί^ : / Λ and {Afλ, Λ e 1̂}
are all monomials of degree <q.

Now we divide the case into two cases.
(I) The characteristic of K is zero: Let us denote by 9, the partial deri-

vation with respect to tit Then any high order derivation of order <iq is
represented as Sf1 9f ... 9J» with Σ « / < g . The proof is quite easy. For
example to every monomial Mλ = if ••• ^ of degree <q we associate a ^-th
order derivation

Then we see easily that /) λ form a &[»basis of
(II) The characteristic of K is a positive prime jo. Let us denote by
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Aβi. ... an) the high order derivation defined by Diait,.,t aj (tψ1 • • • t™n) = (™0 (J»)

ίf1~αi ... t™n~an. 2>(αi>..., *n> is a high derivation of order Σ α( . Since we have
ί = 1

A Ί . ... o ^ i 1 '•• *2B) = * a n d Dί"i.~>o^?1 ••• C n ) = 0 if α* > 77i; f o r s o m e i, w e s e e

easily that D(av_> aJ are independent and so Z)(fll,..., β n ) ( l ^ Σ«f < ^ ) form a

A;[ί>basis of Q){

0

Q) (k\jΓ\/k). Let us set #«),..., o, "?*, o,..., o> = 9 s »( l^ i < ^ ) Let

a>i= Het-up3(\<Li<Ln) be the p-adic expansion of αt . Then we can see by a

simple calculation that we have

)y"°7 y ) ( / 7
= o ; = o

In other words D0(K/k) is generated by high derivations of orders l,p,p2,

PROPOSITION 18. Let Kbea finitely generated separable extension of a field
k. Then if the characteristic of K is zero Q)0(K/k) is generated by Q){

o

ι)(K/k).
If the characteristic of K is a positive prime jo, Q)0(K/k) is generated by high
order derivations of orders pι(i = 0, 1, •).
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