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This is a suite of the previous paper [3]. In that paper the senior
author developed the fundamental calculus on high order derivations and
proved some functorial properties of high order differentials. In this paper
we shall apply these results to the theory of fields, in particular to a purely
inseparable field extension of finite exponent. In §1 it will be shown that
a purely inseparable extension of finite degree over a field K will be charac-
terized by the fact that the derivation algebra D(L/K) coincides with the
endomorphismring of L over K. If L is an extension of infinite degree over
K this is not the case. But when L is of finite exponent over K we can intro-
duce a suitable topology so as to get a bijective correspondence between the
intermediate fields of L and K and the closed subrings of D(L/K) containing
L. §3 is devoted to the representation theory of high order derivations. In
the case of characteristic p(> 0) the high derivations of orders 1, p, p°, ... are
fundamental while in the case of characteristic zero every high order deriva-
tion can be represented as the sum of products of ordinary derivations.

Notations and terminologies: Let & and 4 be commutative rings such
that 4 is a k-algebra and let M be an 4-module. The set of g-th order deriva-
tions of 4/k into M will be denoted by D{(A/k, M). D (A/k, M) has a
natural structure of left 4-module. When M = 4 we shall use the notation

oo

D (A/k) instead of DY (A/k, A). We shall set Dy(A/k) =\)DP(A/k). The

=1

derivation algebra D(A4/k) is the direct sum of homothetiles by elements of
A and Dy(A/k), i.e., D(A/k) = ADDy(A/k). D(A/k)is a subring of Hom,(4,
A4). The module of g-th order differentials of 4 over & will be denoted by
2{9(4) and the canonical g-th order derivation will be denoted by 6¥),. 2;7(4)
is a representing module for the functor D{”(A4/k). Let B be an A-algebra.
Then we have the canonical homomorphism B®42\°(A4)— 2°(B). The
cokernel of this homomorphism will be denoted by 2i°(B/4). The readers
are expected to refer the paper [ 3] for details. In this paper we shall make
frequent use of the results in [3] and the Proposition (or Theorem) 12 of
Chapter I in [ 3], for example, will be quoted as I-12.

§1. Structure theorems for derivation algebras

Let k£ and 4 be commutative rings such that 4 is a k-algebra. Let ¢ be
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the contraction homomorphism A4&,A— A4 and let I be the kernel of ¢. We
endow AR,A4 with a structure of 4-module by a(b®c) =abQc. Then the
exact sequence of 4-modules

0 1 ARprA -2~ A4 0

splits since there exists an A4-homomorphism of 4 into 4R A4 such that ¢(a)
=a®1. Identifying 4 with ¢(A4) we have a direct sum decomposition 4K, 4
= API1 Hence there exists a canonical isomorphism of 4-modules

AR A/ I = ADI/ I =~ AP LY (A).
These consideration yields at once the

ProrosiTioN 1. There is a canonical isomorphism of left A-modules:
r: Homy(ARuA/ I+, M)~ MDY (A/k, M)

where M is an arbitrary A-module. Lf f is an element of Homa(AR,A/I""",
M), then ©(f) = fF(L)+colf) where to(f) @h(@) = fARa—a@1).

CoroLLARY 1. 1. Let us assume that A is a purely inseparable extension
of finite degree of a field k. Then we have the canonical isomorphism D(A/k)
~Hom (AR, A, A).

Proor. Under the assumption 4&),4 is an artinian local ring with the
maximal ideal I. Hence I is nilpotent and we have Dy (4/k) = D¢(A/k) for
large n.

In the sequel we shall denote by L and K two fields of characteristic p
such that L D K.

THEOREM 2. Assume that L is a purely inseparable extension of finite
exponent e over K and let x be an element of L not contained in K. Then there
exists a high order derivation D of order p*~' of L/K such that D(x)==0.

Proor. By assumption we have K C L CK?”". Let {x,, 24} be a p-
basis of K?* over K**"". Then we have K? = & K(x,). Let x be a given
ANEA

element of L and let f be the exponent of x(f<{e). Then x,= x"° is an
element of K”* and of exponent e. We can supplement x, to a p-basis of
K? " over K?*"" and hence we can assume that x, is a member of a p-basis {x,,
led}y. In particular we see that there exists a field F such that F{xo) = K?°
and [F(x,): F]=p°. Let us set ¢=p°'. Then 2 {F(x,)) is a free module
with the basis 0(xo), 0(x2),..., 0(x8) by II-15 where ¢ =0, - We have
then 0(x) = d(x%"’)~0 and there exists a p° !-th order derivation D of K**
over F (hence over K). The restriction of D to L gives rise to an element
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4 of DY (L/K, K *) such that 4(x)==0. Hence we must have 6% (x)==0.
From this we immediately get the assertion.

Remark 1. If the exponent is not finite there could exist an element
x of L not contained in K such that for any high order derivation D of L/K
we have D(x)=0. Take for example K =k{x), a purely transcendental
extension of k, and let L=K? ~. Then x” "' ¢ K and if D is of order n D(x?"")
= D((x*"H?") =0 by I-7.1.

Remark 2. Theorem 1 implies among others that the notion of high order
derivation is much broader than that of higher derivation. In fact let L be
a purely inseparable extension of K which is not modular over K. Let F be
the field of constants for higher derivations of L over K. Then by [5], F is
strictly bigger than K. Let x be an element of F not contained in K. Then
a high order derivation D of L/K such that D(x)==0 can not be a component
of any higher derivation of L/K.

Tueorem 8. Let L and K be as in Theorem 2. Then the center of D(L/K)
18 equal to K.

Proor. It is clear that K is contained in the center of D(L/K). Con-
versely let a+4(ac L, 4 € D{(L/K)) be a central element of D(L/K). Then
first we must have 4x = x4 for any x in L, thence we have 4(x) =0 for any
xin L,ie. 4=0. Theorem 3 now follows from Theorem 2, since an element
x of L can be a central element of D{(L/K) only when 4{x) =0 for any high
order derivation 4. q.ed.

Let 2 be a subring of D(L/K). Henceforce we shall denote by Z(¥) the
center of L.

TueoreM 4. Let L be a purely inseparable extension of finite degree over
K. Then we have D(L/K) =Homg(L, L).

Proor. By definition O(L/K) is a subring of Homg(L, L). By Corollary
1.1 we have D(L/K)=Hom;{LRQxL, L)==Homg(L, L) as left L-modules.
Hence D(L/K) has the same dimension as Homg(L, L) and we must have the
assertion. q.e.d.

This property of D(L/K) characterizes a purely inseparable extension of
finite degree. In fact we have

TuroreM 5. Let L be a finite extension of K. Then L is a purely in-
separable extension of K if and only 1f [D(L/K): L] =[L: K.

Proor. Let K, be the separable closure of K in L. Then as will be seen
in the following proposition we have D(L/K) = D{L/K,). By Theorem 4 we
know that [D(L/K,): L]=[L: K,]. Hence the assumption implies that
K=K, ie., L is a purely inseparable extension of K.
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ProposiTiON 6. Let K, be the separable closure of K in L. Then we have

D(L/K) = D(L/K).

Proor. As is well known 2% (K;) =0. From this we easily deduce that
2% (K,)=0 for any n>1. It follows from II-12, (3) % (L) =~ 2% (L) for n > 1.
The assertion then follows immediately.

§2. A purely inseparable extension of finite exponent

In this paragraph we shall assume that L is a purely inseparable exten-
sion of finite exponent e over a field K.

In this case D(L/K) cannot be a finite dimensional vector space, so we
shall introduce a suitable topology. Since D(L/K) is a subring of Homg(L,
L) we shall introduce first in the latter set the following topology which we
shall refer to as the Krull topology in the sequel.

DerFiniTION. Let E be an intermediate field of L and K such that [E: K|
< co. Then the fundamental system of neighborhoods of zero consists of the
set of the element f in Homg(L, L) such that f|E=0.

In other words, two elements f, g of Homg(L, L) are said to be near if
and only if there exist finite elements xi,.--, x, of L such that f(x;) = g(x)),
i=1,2,..., n. With this topology Homg(L, L) becomes a topological ring as
one can see easily.

TueoreM 7. Let L be a purely inseparable extension of finite exponent e.
Let 2 be a subring of Homg(L, L) containing L such that Z(¥) =K. Then 2.
18 a dense subset of Homg(L, L). In particular D(L/K) is a dense subspace of
Homg(L, L).

For the proof we need the following.

DensiTy THEOREM. Let A4 be a ring and let M be a semi-simple left A-
module and b an element of bicommutant B of M. Then for every finite set
of elements xi1, x2,---, x, 0Of M there exists an element a of A such that ax;
= bx;fo'r 1= 1, 2,«-~, n.

For the proof we refer to [17], Chap. 8, §4, n°2.

Proor oF THeEorEM. 7. We view L as a left 2-module and we shall find
its commutant C and bicommutant B. By our assumption the homotheties
by elements of L are contained in . Hence L is a simple 2-module, and an
element ¢ of C must be an L-linear endomorphism of L. This implies that ¢
is a homothety by an element of L and we can consider ¢ as an element of L.
Then the assumption Z(2) = K implies that ¢ is contained in K, hence, C = K.
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The bicommutant B is then equal to Homg (L, L). The assertion now follows
immediately from Density Theorem. The last assertion is a consequence of
Theorem 3 that we have Z(D(L/K)) =K.

Remark 8. When L is of finite degree over K, the topology introduced
above is discrete. Hence we have again D(L/K) = Homg (L, L) (cf. Theorem
4)

Prorosition 8. Let L and K be as in Theorem 7 and let F be an inter-
mediate field of L and K. Then Homp(L, L) 1is closed in Homg(L, L).

Proor. Let f be an element adherent to Homz(L, L). We have to show
that f is an element of Homz(L, L). Let a, x be arbitrary but fixed elements
of F and L respectively. Then there exists an element gin Homgs(L, L) such
that f= gon the subfield K(x, ax). Then we have flax)= glax) =ag(x)
=af(x), i.e., f is F-linear. a.ed.

We are now well prepared to establish a Galois correspondence between
intermediate fields of L/K and the closed subrings of D(L/K) containing L.

Turorem 9. Let L be a purely inseparable extension of finite exponent
over K. If we endow D(L/K) with the Krull topology we have a bijective cor-
respondence between intermediate fields of L/K and closed subrings of D(L/K)
containing L. The corresponding intermediate field F and the subring U are
related by the formula

F=27zQ), %=D(L/F).

Proor. Assume a field F is given. Then D(L/F)=D(L/K) N\ Homp(L,
L). Hence by Proposition 8, D(L/F) is a closed subring of D(L/K) and we
have Z(D(L/F)) = F by Theorem 3. Conversely let a closed subring . (con-
taining L) be given. It is easily seen that Z() = F is a field between L and
K. Moreover % C Homr(L, L) and is a dense subset of Homz(L, L) by Theorem
7. Hence 2 is dense and closed in D(L/K) N\ Homp(L, L) = D(L/F) i.e., A=
D(L/F).

Turorem 10. Let L be a purely inseparable extension of finite exponent
over K. Let E;(i =1, 2) be intermediate fields of L and K. Then we have

@ D(L/Ey N Ey) = D(L/Ey) \J D(L/Ey),
(2) D(L/E,\J Ep) = D(L/E) N D(L/Ey).

Conversely let U; (i = 1, 2) be closed subrings of D(L/K) containing L. Then
we have

3 Z(U N W) = ZA) U Z(As),
(4) ZQU U A) = ZQRL) N Z(AU,).
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Proor. (2) and (4) are immediate. (1) follows from (4) as follows. Let
W=D(L/E)(i =i, 2). Then by (4), ZQ,\U¥)=ZQ)NZQ)=E NE,;. Hence
by Theorem 9 D(L/E, N E;) =, UV, Similarly (3) follows from (2). q.e.d.

In the following we shall give some applications of Theorem 7.

Prorosition 11.  Let L and K be as in Theorem 9, and let I be the kernel

oo

of the contraction homomorphism L& ,L— L. Then we have N\ I" = {0}.

n=1
Before we go to the proof we need

Lemma 12.  Let M be a left L-subspace of LQL. Then Hom; (LQxL/M, L)
=N 18 a closed subspace of Hompg(L, L) where we identified Homg(L, L)
with Hom (LQxL, L) by the isomorphism ¢: Hom (L& kL, L) > Homg(L, L)
with ¢(f) (x) = f1Rx).

Proor. Let feHomg(L, L) and f*=¢ '(f). Assume that fe€ o(V).
We shall show f*(M)=0. Let f} x:& y; be an arbitrary element of M. Then
i=1

by definition f ¢ ¢(N) implies the existence of an element g€ ¢(IV) such that
[y =gly)(@=1,-,n). Hence f[*(Xx:Qy)= 2xif(y)=2x:ig(y)=
gX¥(Xx @y)=0.

Proor or Prorosition 11. Let us set M= F\ I". By the identification ¢
n=1

defined above we have D(L/K) Cp(Hom(LR,L/M, L)) C Homg(L, L). Since
D(L/K) is dense in Homg (L, L), ¢(Hom;(L&),L/M, L)) is also dense in Homg
(L, L). On the other hand this is closed by the previous Lemma. Hence we
must have Hom; (L& xL/M, L) = Hom;(LQL, M). This implies that M= 0.

Prorosition 13. Let L/K be a purely inseparable extension of finite expo-
nent and let F be an intermediate field such that [F: K] < oo and let M be a
finite L-module. Then any element D of D (F/K, M) can be extended to a high
order derivation of L/K into M.

Proor. It suffices to show the case where M= L. Since F is a direct
summand of L as a K-vector space D can be extended to an element f of
Homg (L, L). Since D(L/K) is dense in Homg(L, L) and [F: K ]< oo there
exists an element 4 of D(L/K) such that 4|F= f|F=D. 4 is the desired
extension.

Remark 4. In general the order of extended high derivation should be
much bigger than that of original high derivation. For instance if K(x) is a
rational function field over K an ordinary derivation of K(x?) over K(x?") can
be extended to a p-th order derivation of K(x) over K(x”"), but not to an
ordinary derivation.
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§8. Generators of D (K/k).

In what follows most fields in consideration will be of characteristic p
unless otherwise specified.

We shall first remind ourselves that if D is a ¢g-th order derivation of
K/k, then for any element a of kK?,[ D, «] is a high derivation of order
<q—p' by I-11. 2. In particular if ¢ <p, we have [ D, a]=0. This implies
among others that D{aa) = aD(a)+aD(x) for any a € K.

LemMa 14.  Let D be a g-th order derivation of K/k. If q<p', D is kK?'-
linear.

Proor. For any element « of kK? we have [ D, ] =0 and D(«) =0 by
I-10. Hence we have Da = aD.

Let K/k be a purely inseparable extension of finite degree and of ex-
ponent e. Let us consider a sequence of subfields

kCK, 1 CK, ,C - CKCK,
where K; = kK* (i =1,..., e—1). For convenience we set K = K,, k = K,.
We shall set
Ai(K/k) = {D € DY (K/k)| D(K;) =0} (i =0, 1,...,e—1).
It should be noted that 4, = {0}. We shall also set
Gi(K/k) =D (K/k)/A«K/k) (i =0,1,...,e—1).

“i(K/k), hence G;(K/k) is a left vector space over K. When we speak of
dimensions of #;, @;, etc., we mean the dimensions of left K-vector spaces #;,

G;, ete.

ProrositioN 15. There exists an isomorphism of K-vector space G,(K/k)
DMK /k, K). In particular [G(K/k): K] =1log,[ K;: K;.1].

Proor. Let D be an element of D" (K/k). Then the restriction of D to
K; gives a K-module homomorphism of D{"(K/k) into DL (K;/k, K) with the
kernel ©;. Hence to prove the assertion it is necessary to show that every
derivation of K;/k into K is induced in this way and it suffices to show that
every K;,;-derivation 4, of K; into K2, can be extended to a p-th order
derivation of K%} into KZ%.;. Let now {x:}i<, be a p-basis of K,/Ki,.
Let {z}1<<. be elements of K%, such that z*"' = x,(¢t=1,...,s). Then we

S -4 . . i .
have ® K;.1(z) Rk, F=K?%. for a suitable field F, since K%.' is modular over
t=1

K;.1. K;.1(z) is of exponent i over K;,;. Let d; be a p-th order derivation
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of K, over K;,; such that ad; = d,a for any a in (%) K 1(z;)QF, and d;(x;)
t'+t

= do(%y), di(x2) = do(x2),---, di(x2") = 4o(x2"). The existence of such a high
derivation is assured in II-15. It is easily seen that the p’-th order deriva-

S
tion )] d; answers the question.
t=1

Let T= {4, .-, 4,} be a set of high order derivations of K/k. The set of
K-linear combinations of the non-commutative monomials of 4,,..., 4, will be
denoted by K< T> or K< 4y,.--,4,>. We say that D(K/k) is generated
over K by T= {4:,..-, 4,} if we have Dy(K/k) =K< T >.

ProrosiTioN 16. Let K/k be a finite purely inseparable extension of ex-
ponent e, T® = {49 "} ;<,, be a set of high order derivations of K/k such
that the residue class {d°},<;<;, forms a K-basis for G(K/k) (0<i<e—1).
Then Dy(K/k) is generated over K by {T,0<i <e—1}.

Proor. Since DV (K/k)=D{(K/K;) and K/K; is of exponent 1, D,(K/K;)
is generated by T‘© over K. By induction we assume that D,(K/K;) is
generated by 7@, T®,..., T Dover K. Then we shall show that D,(K/K;.:)
is generated over K by T, 7MW ..., T®,

Let 9o =K< TO,...., T® >, We shall first prove that % =KPY, is a
subring of £(K), the set of additive homomorphisms of K into itself. For this
purpose, it suffices to prove that 4¢”a € 2(a € K, 0<j <i). For a €K, [4¢",
a] is a (p’—1)-th order derivation, and so [4¢”, a] is K;-linear by Lemma 14.
Hence by induction assumption [4¢”, «] is contained in K< T©, TM ...,
TU-D > Since 4" a=[4%", a]+ad?” + 4%"(a), we have 4%"a € Wand A is a
subring of £(K). On the other hand we have {a € K|4%a=adl,..., 4%7a
=ad?"} = K;,,, by Proposition 15, thence Z(?)) = K;.,. Since 2 is a subring
of &(K) and ZQA) = K;.,;, we have % =Homg, (K, K) by Jacobson-Bourbaki
Theorem (cf. [2]). Hence we have 2% = D(K/K;.,) by Theorem 4 and so 2,
= @o(K/Ki+1)-

Remark 5. Let the situation be as in Proposition 16. If p/~'<n < p/,
an n-th order derivation of K/k is contained in K< T, TM ... TU-D >,
This follows immediately from the facts that we have Oy (K/k) = Dy (K/Kjy),
DYP(K/k) =D (K/Ky), H{(K/k) = A:(K/K;) for 0 <i < f.

Hitherto we were interested in the case of a purely inseparable extension
K/k of finite degree. There the high derivations of orders p'(i =0, 1,...) are
key stones for the construction of high order derivations. When K/k is a
separably algebraic extension there is no non-trivial high order derivation
over k. So we shall go to the case where K is a finitely generated separable
extension of £. In this case there is a finite number of independent variables
x1,---, %, OVEr k such that K is a finite separable extension of k(x, -, x,) =k(x).
Then the essential theory of high order derivations of K/k is reduced to that
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of k(x)/k owing to the following

TueoreM 17. Let K, F be over fields of k such that K is separably algebraic
over F. Then any g-th order derivation of F/k into a K-module M can be ex-
tended in a unique way to a g-th order derivation of K/k into M.

Proor. First we shall prove the uniqueness. From II-11 we have the
following two exact sequences

L KRLPF)— 27(K)— 2 (K/F)—0,
@) 2EV(F)Rr2EV(K/F)— 20 (K/F)— 24 (K)——0.

Since K is separably algebraic over F we see easily 2§ (K)=0(¢>1).
Then the repeated use of (2) yields at once 2,”(K/F)=0(g>>1). Hence from
(1) we get an epimorphism

K2 (F)—— 2,(K)—0,
and the dual monomorphism
0—> D@ (K/ky, M) 2D (F/k, M).
This sequence implies that the extension is unique.

Next we shall prove that the extension is possible. For that purpose we
have to show that ¢* is surjective and it suffices to prove that ¢ is injective.
This is well known in case ¢ = 1(cf. [4]). The proof will be carried out by
induction on g. ‘

We denote by r the mapping KQrF&F — K&K such that r(x&® y&z)
=xyQz. Let o be an element of KXplpr CKRrFR,LF satisfying t(w)
e I{. We shall show that we KQrI%. Let us now consider the following
commutative diagram of exact sequences

0 0

00— J— KKK 2> K—0

H

fon
S5
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where a and /8 are contraction homomorphisms and I » denotes the ideal of
K&K generated by elements of the form {1Q y—y&1, yc F}. Since K is
a finite separable extension of F we have J=J?% and J has a finite basis.
Hence there exists an element y such that y=1 (mod. J) and yJ=0. Let c be

an element of KQK which is mapped on y. Then ¢—1 = b is contained in fp,
k

and ¢/x =0 (mod fp). Then the assumption c(w)=0(I%!) implies that

¢ r(w) is contained in 1 41, On the other hand z(w) is contained in 1 % by
induction assumption. Hence

(o) = A+6)" () = ¢ elw)= 0 (1),

This result completes the proof since we have

(1) CKQ TG,

Let us go back to our original situation. Let K be a finitely generated
separable extension of £ and let ¢,,--, ¢, be a separating transcendence basis
of K/k. Then we have

212 (K) = KQ2,2 (k(1)).
From II-10 it follows that
232 (k(1)) = k()R prn 232 (k[ 1 ]).

Hence we have

29 (K) = KQur 259 (K[t ]).

Thus to find ¢-th order derivations of K/k it is sufficient to find ¢-th order
derivations of k[¢,..., ¢, )/k. From II-2 it follows that 2 (k[¢]) is a free
module over k[ ¢] with the basis 0‘”(M,) where 0 =0¥,1,, and {M,, A € A}
are all monomials of degree <gq.

Now we divide the case into two cases.

(I) The characteristic of K is zero: Let us denote by 0; the partial deri-
vation with respect to ¢, Then any high order derivation of order <{g is
represented as 09 04 ... 04» with 2la;,<{q. The proof is quite easy. For
example to every monomial M, = :§' ... 14~ of degree < q we associate a ¢-th
order derivation
v-]‘ﬁlafl aZn_

a1! o Qp

D)‘,=

Then we see easily that D, form a k[ ¢t ]-basis of D (k[ t]/k).
(II) The characteristic of K is a positive prime p. Let us denote by
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D,... 4, the high order derivation defined by D,,.., o)t - t2m) = (70 - {7n)
n
,,,,, «,) 1s a high derivation of order ) a;. Since we have
i=1
D, 0y (t8r- tim)y =1and D, ., a7 - t72)=0 if a; > m; for some i, we see
easily that D, .. ., are independent and so D, +,,(1 <2 a;<<q) form a
i

k[t ]-basis of D (k[¢]/k). Let us set D, .. o, %x, 0. 00=0,(1<i<n). Let

a; = ia;,»pj (1<<i<<n) be the p-adic expansion of ¢;, Then we can see by a
7i=0

N 1 R )

,,,,,

simple calculation that we have

1 71 rn
e ATV /A CTR
(]Zoaflj)'“(, Oaw')]_o =
7= J

In other words Do(K/k) is generated by high derivations of orders 1, p, p%,......

Prorosition 18.  Let K be a finitely generated separable extension of a field
k. Then if the characteristic of K is zero Do(K/k) is generated by DV (K/k).
If the characteristic of K is a positive prime p, Do(K/k) is generated by high
order derivations of orders p'(i =0, 1,...).
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