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§1. Introduction

It is known that, from the algebraic point of view, the ring E of entire
functions has many interesting properties (see, for example, [ 3, §1, exerc. 127,
[7] and [8]). Any residue ring E/(f) by a non-zero entire function f is
isomorphic to a direct product of homomorphic images of discrete valuation
rings. This implies that, as far as the structure space is concerned, the
study of the ring F is reduced to that of a direct product of discrete valua-
tion rings. Thus, in this article, we shall mainly investigate the structure
space of a direct product of commutative rings.

Every ring in this article will be assumed to be a commutative ring with
an identity. In §2, as preliminaries, we shall give some relations between
the structure space of a ring R, which will be dencted by Spec(R), and that
of the Boolean algebra of idempotents in R. Next, in §3, we shall treat the
case in which R is a direct product of local rings or integral domains; and in
§5 the more restricted case, in which each factor of the product is a discrete
valuation ring, will be treated by making use of some results on isolated
subgroups of a totally ordered additive group which will be discussed in §4.

Finally, in §6, applying our theory to the ring of entire functions, we
shall show how the algebraic properties of it, which was given by M.
Henriksen, can be obtained (cf. [77], [8]).

The author wishes to express his thanks to Prof. M. Nishi for his valua-
ble suggestions and encouragement.

§2. Preliminaries

The set of idempotents in a ring R will be denoted by B(R), or simply
by B. The set B{(R) forms a Boolean algebra provided with the following
order relation: for any x, y in B, x <y if and only if x= yx. In this case
the complement x" of x» in B is 1—x, x A y=x7y, xV y=x+ y—xy, for any
x, yin B.

The term “ideal” will be used with two meanings in this article. On the
one hand, “ideal” will designate a ring ideal in a ring R. The word “ideal”
will also be used to denote an ideal in a Boolean algebra B(R), that is, a non-
empty subset J of B(R) such that e € J, f¢ J implies eV f€ J,and e € J, f<e
implies f¢J. Obviously, if 4 is an ideal in a ring R, then 4N B(R) is an
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ideal in B(R). If A4 is prime, furthermore, then so is ANB(R). By an ideal
in each sense we shall mean a proper ideal throughout this article.

Let R be a ring. We shall denote by Spec(R) [resp. Spec (B)] the set
of prime ideals of R [resp. B=B(R)] with Zariski-topology and by P(R)
[resp. M(R)] the subspace of Spec (R) congisting of minimal [ resp. maximal ]
prime ideals of R; any closed set of Spec(R) [resp. Spec(B)] is of the form
Vr(S) [resp. V5(S)] for some subset S of R [resp. B], where Vg(S) [resp.
V(S)] is the set of prime ideals of R [resp. B] containing S. Let us con-
sider the following diagram of the natural mappings:

e

P(R)—

M(R)
Spec (R) —%- Spec (B),

where a(M)=MN B for any M € Spec (R), and i, j are natural injections. We
shall show that «, ai and «; are continuous and surjective, and that «, «j
are closed mappings. The above notations will be fixed throughout this sec-
tion.

Prorosition 2.1 (Continuity of «). Let J be an ideal of B. Then,
a (V) =Vr().

Proor. Let M be a prime ideal of R. Then we see easily that M e Vz(J)
if and only if a(M)=MNB € Vs(J).

For the closedness of «, we need a few lemmas.

Lemma 2.2. An ideal of a mon-trivial Boolean algebra is prime if and
only if it is maximal.

Proor. This is well known (see [1, Theorem II-7] or [107]).

CoroLLARY 2.3. Let M,, M, be two prime ideals in R such that M, < M,.
Then, MyN\B=M,NB.

Lemma 2.4. Let J be an ideal of B. Then the ideal of R generated by the
set J is equal to the set-theoretic union: \J.c;Re.

By Izx(J), or simply by I(J), we shall denote the ideal of R generated
by J.

Proor or LEmmaA 2.4. Every element x of I(J) is of the form
are;+--+ayey

where a; ¢ R and e; € J for i=1,2,..., n. Then we see that x=xe, where
e=e1V..-Ve, This completes the proof.
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CoroOLLARY 2.5. Let J be an ideal of B. Then, I(J)N\B=J.

Lemma 2.6. Let A be an ideal of R and P a prime ideal of B containing
ANB. Then, I(P)+ A=~R.

Proor. Suppose that I(P)+ A=R. Then there exist elements r € R,
a € R and e € P such that 1=re+a, by Lemma 2.4. Hence ¢'’=ae’ € ANBCP,
where e’=1—e. This is a contradiction.

Cororrary 2.7 (Closedness of «). Let A be an ideal of R. Then,
a(Vr(A)=Vs(ANB).

Proor. Let P be a prime ideal of B containing 4"\ B. Then, by Lemma
2.6, there exists a prime ideal M of R containing P and 4. By Lemma 2.2,
we obtain a(M)=P.

It also follows from the proof of the above lemma that a; is closed, since
the prime ideal M in the above proof can be chosen to be maximal. From
this, moreover, it follows easily that «j is surjective, a priori .

It remains to show that «i is surjective, which will be obtained from the
following

Lemma 2.8. Let P be a prime ideal of B. Then every minimal element
of Vr(I(P)) is a minimal prime ideal tn R. Furthermore, a=*(P)=Vr(I(P)),
which is not empty.

Proor. Let M be a minimal prime ideal of R containing I(P) and M a
prime ideal of R contained in M. Then, P=M'"B=MNB by Lemma 2.2.
Hence 71(P)c M'. Thus M’=M. This completes the proof of the first asser-
tion. The last assertion is evident from Proposition 2.1 and Corollary 2.5.

Remark 2.9. Some basic discussions on P(R) can be found in [9]. In
general, «i may not be closed even if it is bijective. If I(P) is a prime ideal
in R for any Pe€ Spec(B), then ai is bijective. When R has no non-zero
nilpotents (such a ring R is called a reduced ring), the converse is true. This
is obtained by the next lemma.

Lemma 2.10.  Let R be a reduced ring. Then, R/I(J) is also reduced for
any ideal J of B(R).

Proor. Let x be an element of R such that x” € I(J) for some integer
n. Then there exists e € J such that x”=ux"e, by Lemma 2.4. Hence x"¢’=0
and so, (ve)"=0, where e’=1—e. This implies that xe’=( by our assump-
tion. Thus, x = xe, which completes the proof.

CoroLrLARY 2.11. Let R be a reduced ring. Then, ai 18 bijective if and
only if 1(P) is a (minimal) prime ideal of R for any P € Spec(B).
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Finally we shall consider the case in which « is bijective, or equivalently
homeomorphic. First of all, we shall quote some results. The following con-
ditions on a ring R are equivalent:
(a) R is an absolutely flat ring.
(b) For any element x of R, x € x%R [ 2, Chap. I, §2, exerc. 17].
(¢) Every principal ideal of R is generated by an idempotent of
R[loc. cit].

(d) R is a reduced ring and every point of Spec (R) is closed [ 2, Chap. II,
§4, exerc. 16 .

(e) For any maximal ideal M of R, Ry is a field, or equivalently, Ry
+=R/M [2, Chap. 11, §3, exerc. 9.

It is easy to see that if R is reduced and « is homeomorphie, then R is
an absolutely flat ring by the condition (d), since Spec (B) is a compact space
(see [1]or [10]). Conversely, we get the following

Prorosition 2.12. Let R be an absolutely flat ring and P a prime ideal of
B=B(R). Then I(P) is a (maximal) prime ideal of R.

Proor. Let x, y be two elements of R such that xy € I(P). Then there
exist e;, e; € B such that xR=e;R and yR=e,;R. Since eie; € xyRNB
cI(P)NB=P, e; € Por e; € P. Hence x € I(P) or y€ I(P). This completes
the proof.

CororLLARY 2.13. Let R be an absolutely flat ring. Then

P(R)=M(R)=Spec (R)——/QL? Spec (B).

§3. A direct product of rings

Let us consider a direct product R=1II,xR, of a family {R,} of rings
indexed by a non-empty set X. For any x in R, we shall use the following
notations throughout this article:

x=(x,), where x, is the 2-th component of x,
Z(x)=4€ X; x,=0}.

Moreover, for any subset S of R, we shall denote by Z(S) the collection
{Z(x); x € S}, and the identity element of R and those of the R,’s will be
commonly denoted by the same 1.

In the case in which Spec(R,) is connected for every 2 ¢ X, i.e., B(R,)
={0, 1} for each 1 in X, every element x of B=B(R) is precisely of the
form (x,) such that x,=0 or 1 for each 1 in X. That is to say, every element
x of B is uniquely determined by Z(x), which is an element of the power set
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PB(X) of X. Such a correspondence gives the lattice-isomorphism Z of B onto

EECY), where M) is the dual of B(X); this isomorphism Z gives the natural
homeomorphism Z* of Spec(B) onto the ultrafilter space X’/ of X, and fur-
thermore, which is homeomorphic with the Stone-Cech compactification fX
of the discrete topological space X. For the reader, we shall comment on
the above briefly:

1. An ideal of 5136() is exactly a filter on X, and it is a prime ideal of EB\(X')
if and only if it is an ultrafilter on X [1, p. 257.

2. Let X” be the set of ultrafilters on X. For any subset 4 of X, we put
A*={Fe X", F>» Ay. Then the sets 4* form a basis of a topology on X".
This topological space X’ is called the ultrafilter space on X [5, §9, exerc.
26].

3. When we regard X as a discrete topological space, it is easy to see that
the Stone-Cech compactification #X of X coincides with the ultrafilter space
X" of X, from the method of the construction of fX in [ 6, Theorem 6.5 7.

Lemma 8.1, Let R be a direct product IT,cxR,., where all the R\’s are
Jields. Then,

VA

P(R)= M(R)—Spec (R) "5 Spec (B) "5 x .

Proor. It is easy to see that every principal ideal of R is generated by
an idempotent element of R, so that R is an absolutely flat ring. Therefore
the assertion follows from Corollary 2.13 and the above discussion.

Remark 3.2. Form now on, we shall write Spec(B)=X" instead of
Spec (B) > X"

CoroLLARY 3.3. With the same notations as in Lemma 3.1, let M, P and
F be corresponding elements of Spec (R), Spec(B) and X", respectively. Then,
a(M)=P, M=I(P)={x€R; Z(x) € F} and Z(P)=Z(M)=F.

Proor. The first two equalities have already been shown in Proposition

2.12. The fact that the iscmorphism Z: B—>EB\(5() induces the isomorphism
Z*: Spec (B)—— X", amounts to the fact that Z(P)=F and Z '(P)=F, or
equivalently P={x € B; Z(x) € F}. Hence F=Z(P)cZ(M)=Z(I(P)). Let
Z(re) be any element of Z(I(P)), where re R and e ¢ P (see Lemma 2.4).
Then Z@re)=Z(r)\JZ(e)2Z(e), where Z(e) € F; hence Z(re) € F. Thus we
have Z(P)=Z(M)=F. Finally, we see directly that Mc {x € R; Z(x) € F}
since Z(M)=F. We shall show the converse. Let x be an element of R
such that Z(x) € F. Then there exists e € B such that Z(e)=Z(x). Since
Z(e)=7Z(x) € F, we have e € P. Thus x=xe € I(P)=M. This completes the
proof.
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Now, let us consider the two cases: (i) when all the R,’s are integral
domains, and (ii) when all the R,’s are local rings with the maximal ideals
M,’s respectively.

The first case: Let Q, be the quotient field of R, and Q(R) the total
quotient ring of R=1I,.xR,. Then it is easy to see that Q(R)=IcxQs,
B(Q(R)=B(R) and P(Q(R)>XP(R). As for the fact that P(Q(R) S
P(R), more general results can be found in [9, Theorem 5.1 p. 1247]. By the
next lemma and Lemma 3.1, we get the following commutative diagram:

P(R) — Spec(R) —%> Spec(B) =— X"
a ot I I
P(Q (R))==38pec (Q ((R))==Spec (BQ(R)))=— X",

when ¢ is the continuous function which is induced by the natural injection:
R—Q(R).

Lemma 3.4. Under the same situation as above, let M be a minimal prime
ideal of R and put P=a(M). Then, M= MQ(R)NR and P=MNB=MQ(R)NB.
Furthermore, let F be an ultrafilter on X, which corresponds to P. Then,
F=Z(P)=Z(M) and Ix(P)=M={x € R; Z(x) € F}.

Proor. Obviously, M=MQ(R)N\R and P=MNB< MQ(R)NB. Since
MQ(R)NB is a prime ideal of B, it coincides with P by Lemma 2.2. This
completes the proof of the first assertion, which amounts to the commuta-
tivity of the above diagram. By Corollary 3.3, Z(MQ(R))=Z(P)=F; hence
Z(M)=Z(P)=F, since Z(P)cZ(M)cZ(MQ(R)). From the above diagram,
we see that «i is bijective; hence Ix(P)=M by virtue of Corollary 2.11.
Finally, since Mc{x€R; Z(x) e F}={x€ Q(R); Z(x) € Fy "R=MQ(R)NR
=M, we get the last equality in our lemma. This completes the proof.

The second case: Let K, be the residue field R,/M, of R, and J(R) the
Jacobson radical of R=1II,.xR,. Then we see that J(R)=1I,.x M., R/J(R)
=1I,¢xK,, and that the canonical epimorphism ¢: R—— R/J(R) induces the
isomorphism B(¢): B(R) = B(Q(R)) and the homeomorphism ¢*: M(R/J(R))
X M(R). By Lemma 3.1, we get the following commutative diagram:

M(R/J(R))==Spec (R/J(R))===8pec (B(R/J(R)))=—=X"
o o], B@*|{
M(R) —i» Spec(R) —%s Spec(B) —_— X"

The commutativity of this diagram can be obtained by routine calculations
so the proof is omitted.

CororLrary 3.5. With the same motations as above, let M be a maximal
ideal of R and put P=a(M). If F is the ultrafilter on X, which corresponds
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to P, then F=Z(P)=Z(M/J(R)) and M=J(R)+ I(P)={x ¢ R; Z(z) € F}, where
% denotes the residue class of x modulo J(R). Furthermore, R/I(P) is a local
ring with the maximal ideal M/I(P).

Proor. For any subset S of R, we shall denote by S the image of S in
R/J(R). By Corollary 3.8, F=Z(P)=7Z(M),and M= Iz(P)={x ¢ R; Z(x) ¢ F}.
From this, it is easy to see that F=Z(P)=Z(P), and M={x € R; Z(x) € F}.
It remains to show that M=J(R)+ I(P). Since J(R)+ I(P)c M, we shall
show that Mc J(R)+ I(P). Let x be an element of M. Then, there exists
e € Psuch that x=x¢. Hence x=xe (mod J(R)). Therefore, x € J(R)-+ I(P).
Thus, M=J(R)+1(P). Finally, from the above diagram, we see that «; is
bijective, so that M is the unique maximal ideal of R containing P. Thus,
we see that R/I(P) is a local ring. This completes the proof.

TuroreM 3.6. Let {R,} be a family of local integral domains indexed by
a non-empty set X and put R=II, xRy Then, aj: M(R)—— Spec (B) and ai:
P(R)——Spec (B) are homeomorphisms. Moreover, let M be a maximal ideal
of R and M’ a minimal prime ideal of R such that MN\B=M NB(=P).
Then,

V) ZM)=Z(P)=Z(M/]J(R))(=F),

Q2) I(P)=M={x€R;Z(x)€FY,

@) M=J(R)+IP)={x€R; Z(z)€F}, and

(4) Ry=R/I(P),
where we denote by J(R) the Jacobson radical of R and by x the residue class
of x modulo J(R).

Proor. The assertions (1), (2) and (3) have already been shown. We
shall show that Ry=R/I(P). By Corollary 3.5, R/I(P) is a local ring with
the maximal ideal M/I(P). To complete the proof, it suffices to show that
the kernel of the canonical homomorphism: R—— Ry, coincides with I(P).
This will be done in the following

Lemma 3.7, Let M be a prime ideal of a ring R and A the kernel of the
canontcal homomorphism: R—— Ry. Then, I(MNB)c AcM. If I1(MNB)
18 a prime ideal, furthermore, then I (MNR)=A and Ry 1s a local domain.

Proor. Let x be an element of I(MNB). Then there exists e € MN\B
such that x=xe by Lemma 24. Hence x(1—e¢)=0, which implies that x € 4
since 1—e ¢ M. Thus I(MNB)C A, which proves the first assertion. Next,
suppose that I(MNB) is prime. To complete the proof, we have only to
show that 4 I(MN B). Let a be an element of 4. Then there exists s € R— M
such that as=0. Since as=0€ I(MNB), a € I(MNB). Thus A<I(MNB).

CororLarY 3.8 to Theorem 3.6. In Theorem 3.6, if each R, is a valuation
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ring, then R/I(P) is a valuation ring. Therefore, in this case, the set V (P)
of prime ideals in R containing I(P) is linearly ordered under set-inclusion
and Spec (R) as a set is the disjoint union: \Jpespecn V (P).

Proor. Obviously, if each R, is a valuation ring, then R=1II, xR, is a
Bezout ring, i.e., every finitely generated ideal of R is principal [ 4, §1, exerc.
20]. Therefore, R/I(P) is a local Bezout domain, whence it is a valuation
ring (cf. [4, §2, exerc. 127]). The other assertion in our corollary is trivial
and we omit the proof.

Tueorem 3.9. With the same notations as in Theorem 3.6, suppose that
each R, 1s a discrete valuation ring, and set Q= Ny M”. Then we have

(1) R/Q is a discrete valuation ring.

@) Q=I(P) if and only if F has the countable intersection property.

Remark: In general, a filter on a set is said to be fixed if the intersec-
tion of all members of it is not empty. It is said to be free otherwise. If F
is fixed, in Theorem 3.9, then F has the countable intersection property, i.e.,
any intersection of countable members of F is also a member of F; some
discussions on this context are found in [6, Chap. 127].

Proor or Turorem 3.9. Let 7z, be a prime element of R, for each
2€X and set #=(x,). Then the maximal ideal M/I(P) of R/I(P) is a
principal ideal generated by the residue class of 7 modulo I(P). Therefore,
Ny (M/I(P))"=Ny-;7"Ry is the largest non-maximal prime ideal (such a
prime ideal is called a submaximal prime ideal) of R/I(P)=Ry. Since I(P)"
=IP)CM, Q/I(P)=N7,M"/I(P)=N;_,(M/I(P))". Thus we see that R/Q
is a Noetherian local domain with the maximal ideal which is principal, so
that R/Q is a discrete valuation ring. Next, we shall prove the second
assertion. Suppose that Q=I(P). We shall prove dually that F has the
countable intersection property. Let {IV;} be an ascending sequence of sub-
sets of X such that N; ¢ Ffor i=1, 2, .... It suffices to show that \U7_;V; ¢ F.
Now we take the element x=(x,) of R as follows:

x,=0 for 1e X—\U7_; N,
=, for 1€ Ny,

=n¢ for 2 € N,— N, and o on.

Let e; be an element of B such that Z(e;))=N; for i=1,2,.... By (3) in
Theorem 8.6, N; ¢ F amounts to e; ¢ M. On the other hand, we see that
xe; € 'R, so that x € n'"'Ry for i=1,2,.... Hence x ¢ (Q=1I(P), which

amounts to Z(x) € F by (2) in Theorem 3.6. Thus \U7_,N;=X—Z(x) ¢ F.
Conversely, suppose that Q=~7(P). Let x be an element of Q—1I(P).
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For each 1 in X, let us denote by v, the normalized valuation of R,, and set
N;={2¢ X; vu(x,)=1} for i=0,1,2, .... Then, Z(x)=X—\U7_,N; ¢ F, since
x ¢ I(P). Hence \UF_.,N; ¢ F. To complete the proof, it is sufficient to show
that N; ¢ F for i=1, 2,.... Suppose that N; € F for some ;. Then there exists
e € P such that Z(e)=N;; the element wxe’, where e'=1—e¢, can be written in
the form of n'ue’, where u is a unit in R. This implies that 7'Ry=xRy
CQRy=mN5-1n"Ry, since e’ ¢ M. This is impossible. Thus the proof is com-
pleted.

Turorem 3.10.  With the same notations and assumptions as in Theorem
3.9, if Q= 1(P), then R/Q is a complete discrete valuation ring.

Proor. By our assumption, there exists a descending sequence
{N:Yio.1.2,. of subsets of X such that N; ¢ F for each i and N7_,N; ¢ F. We
may assume that N7_,N;=¢, by replacing N; by N;— N if necessary, where
N=N7_,N; ¢ F. Now we take the element e; in B= B(R) such that Z(e;)=N;
for each i. Let {x;};-01,2,. be a countable family of elements of R. Then
we can consider in R an infinite sum Y7 ,e/x;, where e/,=1—¢; for each i,
since the 2-th components of each term are almost all zero for each 1 in X.
Now let {a,}.1.,. be a Cauchy sequence in R/Q with Zariski topology. We
shall prove that it converges in R/Q. We may assume that it is a regular
sequence, i.e., a,.1—a, € 7"R/Q for each n. For any r ¢ R, we shall denote
by 7 the equivalence class of r modulo Q. Note that 7=¢r for any idempotent
e € R—(Q and for any r € R. Now, choose representatives {x,},_01,2. in R

such that a; =%, and a1 —a,=7"x, for n=1,2,...; and set y,= DI AP T LA:
for n=0,1, 2, ..., where ¢/=1. Then we obtain
Yo=x0+mare] +wlaset+ -+ 7" wn refy + 7" Y
for n=1, 2, ....

This shows that y,=a,+ 7"y, Thus the proof is completed.

§4. Some results on isolated subgroups

Let G be a totally ordered additive group with the order relation <.
For any subsets 4, B of G, when «<b for any a € 4 and b6 € B, we shall
denote it by 4 < B. We shall write ¢« <{B instead of {a} <B. Similarly, we
shall use the notations like A< B, a< B, ete. Let H be an isolated subgroup
of G and set T=4{a € G; H<a}. Throughout this section, the above notation
will be fixed and furthermore, we shall assume that T satisfies the following
two conditions:

(I) If 4 and B are non-empty countable subsets of T such that 4<B,
then there exists an element ¢ in T such that 4 <c¢<B.
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(IT) For each element « in T, there exists a strictly descending sequence
{amy} of elements in 7 such that

na(,,)gag&la(n) fOI‘ n=1, 2,

(such a sequence will be called an r-descending sequence of a).

Let o be an element of 7. By H® we shall denote the maximal isolated
subgroup of G not containing a, and by H, the minimal isolated subgroup of
G containing a. Then the following lemma is immediate.

Lemma 4.1. Let a be an element of T. Then,
(1) H,=Up,{x€G; |x|<na} and
@2) H*={x€G; |nx| <a for any integer n}.

Lemma 4.2. Let {aw} be an r-descending sequence of a € T. Then, H®
=f\§,°=1{x € G; ‘.’X}‘ <a(,l)}.

Proor. It is clear that H°C {x € G; | x| <aw} for any integer n. There-
fore H*c N;_1{x €G; | x| <ap}. Conversely, let x be an element of 7'—H".
Then there exists an integer n such that ¢« <nx, by Lemma 4.1; hence a,
< x. Thus the proof is completed.

Lemma 4.3, H=£H, for any a, b€ T.

Proor. Suppose that H*=H,. And set A={na},_1,.. and B={bum}r-1,2,.,
where {b.,} is an r-descending sequence of 4. Then, 4<B by Lemma 4.1
and Lemma 4.2. It follows from our assumption that there exists ¢ € T such
that 4 <¢<<B. The fact ¢<B implies ¢ € H*=H,; by Lemma 4.1, there
exists an integer n such that ¢ <na. On the other hand, 4 <c implies
(n+1a<c. This is a contradiction and we have the assertion.

CoroLLARY 4.4. Suppose that H*EH® for some a, b€ T. Then, there
exists an element c in T such that H,SH° <= H, S H".

Proor. Obviouly H*< H® implies H,< H®, hence H,= H® by Lemma 4.3.
Then, by Lemma 4.3 again, we see that H,=H°<H,= H’, for every element
¢ in H*—H,. This completes the proof.

Prorosition 4.5. Let {a;}io1 2, and {b;};-1,2,. be two sequences of elements
tn T such that H S H“<H% < H" for each i, j such that i<j. Then there
exists an element c in T such that H* < H*=Hb for i=1, 2, ....

PROOF' Set’ A= {na}ﬂ=1,2,... and B= {(bn)(n)}n:l,Z,...) Where {(bn)(m)}m iS an
r-descending sequence of b, for each n. Then there exists ¢ € T such that
A<c<B by our assumption. This element ¢ is a required one.

CoroLLARY 4.6. Suppose that H* S H?® for some a, b € T. Then the totally



On the structure space of a direct product of rings 349

ordered set S={H°; H*SH°=H"} 1s an 7:-set™, and therefore, S has power at
least 2%,

§5. A direct product of discrete valuation rings

Let {R,} be a family of discrete valuation rings indexed by a non-empty
set X and put #=(x,) in R=I,.xR,, where each 7, is a prime element of
R,. And let M be a maximal ideal of R and set P=MNB(R). In §3, we
saw that Ry=R/I(P) is a valuation ring with the maximal ideal #R) and
with the submaximal prime ideal Q/I(P), where Q=n\;_; M”, and that
Q=1(P) if and only if F=Z(P) has the countable intersection property. In
this section, we shall show that if Q== I(P), then the set of prime ideals of R
contained in M has power at least 2%, The above notations and the as-
sumption that I(P)=~0Q, will be fixed throughout this section. Further, we
shall denote by v a valuation of R/I(P) and by G its value group and by 7
the image of Q/I(P) under ». And, for any element » of R, we shall denote
by z the residue class of x modulo I(P). To begin with, we shall prove that
T satisfies the condition (I) and (II) in §4.

Derinition 5.1, Let x=(x,), y=(») be two elements in R and N a
subset of X. Then we denote x <y on N, when v,(x,) <v.(y) for every
X € N, where each v, is the normalized valuation of R,, and similarly, x<y
on N, when v,(x,)<v.(y) for every 2¢N. Then we have the following
lemma immediately.

Lemma 5.2.  Let x, y be any two elements tn R. Then, v(z) <v(y) if and
only iof x <1y on some member in F. Therefore, v(z)=v(y) tf and only if
x < yand y<x on some member in I at the same time. Moreover, v(x)<<v(y)
if and only 1f x <y on some member in F.

Prorosition 5.3. For any element a in T, there exists an r-descending
sequence of a.

Proor. Choose an element x=(x,) in Q— I(P) such that v(z)=a and set
N;=A{2€ X; v,(xy)=i} for i=0,1, 2, .... Then, we have already seen in the
proof of Theorem 3.9 that N, ¢ F for every i and X—\U;_,N,=Z(x) ¢ F. Now,
for every positive integer n, we take the element x, of R as follows:

(x)2=0  for 1 e X—\U7_ N,
=1 for Ae Ny\U...\UN,_1,

=mu, forleN,J...\UNy,_1,

*) A totally ordered set S is called an 7,-sef when S satisfies the condition: for any countable
subsets 4, B of S such that 4 < B, there exists ¢ € S such that A<c<B (cf. [6, Chap 13]).
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=r% for 1€ N,,\U...\UNj3,_1, and so on.

Now set a(,y=v(x,) for each n. Then the fact that (%)% >>x on \U,=.N,, and
x> (x,)" on X, implies 2nay>a">nagyy, by Lemma 5.2, since U,y € F.
On the other hand, we see that au)>aw.1), since x,>x,.1 0N \Upsonus 1y N
Thus {a@} is an r-descending sequence of a. This completes the proof.

Prorosition 5.4. Let A, B be two non-empty countable subsets of T such
that A<B. Then there exists c € T such that A <c <B.

Proor. We may assume that 4= {a,},-1 ... and B=1{b,},-1,... such that
an<an<bn,<b, for all n<m. Now, choose elements {x,},_1 . . and {y.} .12,
in Q—I(P) such that v(x;)=a,, and v(3,)=0b, for each n. Then there exists
a descending sequence {N;};_; ... of members of F, such that x; <lx,<...
<L, <y --<y;<y; on N, for each n. First, suppose that "7, N;=N¢€ F.
Then, we take two elements x=(x,) and y=(y,) of R as follows:

x,=0  for 1€ X—N,

=nxx+ for 1€ N, where a,=supv,((x,)).

=0 for 2 X—N,

=n{+ for 12 € N, where B, =inf v,((yu)\).

In the above, we put 77*=0 when «,=co. Then, x,<<x<y<y, on N for
every n. This implies that e, <<v(z) v (¥)<b, for every n. Thus the
assertion settles in this case. Next, suppose that N7, N;=N¢ F. Then we
may assume that N is an empty set, by replacing N; by N;— N if necessary.
Now, we take two elements x=(x,) and y={(y,) of R as follows:

wm=n=0 for e X—\U7_ N,
= (21, M=y for 2 € N;— N,
w=(x2)r n=(y),  for 1€ N;— N, and so on.

Then we see that x <y on X and x,<<x<y< y, on N, for every n. This
implies that a, <v(z) <v(y) <b, for every n. In either case, v(x) or v(¥) is
a required element in 7. Thus the proof is completed.

ProrosiTioN 5.5. For any element a in T, there exist b, c € T such that
HSH S H*.

Proor. Let x=(x,) be an element in Q— I(P) such that v(x)=a, set
Ni={1€ X; v\(x,)=i} for i=1, 2, ..., and we take the element y=(y,) of R
as follows:
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=0 for 1€ X—\U?_, N,
=n{+ for 1€ N, where a,=[Vi ], for i=1, 2, ....

Then we see that x> y” on \U,,2.1N,, for each n. This implies that nb<a
for every n, where b=v(y). By Lemma 4.1, we see that b ¢ H¢ so that
Hb=H°

Similarly, we take the element z=(z,) of R as follows:

=0 for 2 ¢ X— U7 N,
=7{" for 1eN; (i=1,2,..).
Then by routine calculations, we get that H*= H®, where ¢ =uv(2).

CororLLARY 5.6. Let Py be a prime ideal of R such that I(P)=P,<Q.
Then there exist prime ideal P,, P; of R such that I(P)SP; =P, =P;<Q.
Moreover, the set of prime tdeals of R between I(P) and Q has power at least
2%,

Proor. The first assertion is obtained from Proposition 5.5 directly; the
last by Corollary 4.6.

§6. Application

Let E be the ring of entire functions, and let z be the identity mapping
of the complex number field C, which is regarded as an element of E. Then,
for any complex number ¢, we obtain a discrete valuation ring R.=E._.,
with a prime element 7.=z—c. Now, let us fix a non-zero and non-unit
element f in E for a little while; and let 4 be the set of zeros of f and, for
each c ¢ 4, let 0(c) be the order of f at c. Then, from the theorem of Mittag-
Leffler, we obtain the following natural isomorphisms by purely algebraic
calculations:

e
<61> E/f‘El{)HcEAE/ﬂg(C)E:HCCARC/ES(C)Rw
where ¢.: E/fE—— E/n9“E is the natural surjection for each c.

Prorosition 6.1 [7, Lemma 1, p. 183]. If M is a maximal ideal of E,
then the field E/M s algebraically closed.

Proor. Let f be a non-zero element of M and A4 the set of zeros of f;
and set R=I..4R,. Then E/M is a residue field of E/fE; and by virtue of
(6.1), it is a residue field of a residue ring of R; hence, it is a residue field of
R. Let J(R) be the Jacobson radical of R. Then, since R/J(R)=1I ;caR./7.R.
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=(C4, our proposition follows from the next lemma.

Lemma 6.2, Let {K,} be a family of algebraically closed fields indexed
by non-empty set X, and set R=1II,.xK,. Then, every residue field of R is
algebraically closed.

The proof is routine and omitted.

Prorosition 6.3. If M is a maximal ideal of E, then MEy 1s a principal
ideal.

Proor. Observing the proof of Proposition 6.1, we can take an element
f(5=0) € M such that the order of f at each zero of f is one. Then, since
E/fE is an absolutely flat ring by virtue of (6.1), we obtain

(E/fE)ujse=En/fEn=E/M,
so that fEy=MEy. This completes the proof.

CororLARY 6.4 [ 8, Theorem 3, p. 7147]. Let M be a maximal ideal of E.
Then, Q= Ny_1M" is the largest nonmaximal prime ideal contained in M and
E/Q is a discrete valuation ring.

Proor. Let f be an element of M such that MEy=fEy. Then our
corollary follows from the fact

Q: /\:Z:an: /\Z;lM”EMf\E: f\;zlanMf\E.

Prorposition 6.5 [ 8, Corollary p. 716]. Let M be a maximal ideal of E.
Then the set of prime ideals of E contained in M is linearly ordered under set-
nclusion.

Proor. Let P, P, be two prime ideals of E contained in M and suppose
that PyZP; and P,ZP,. Then there exist /; ¢ P,—P, and f, € P,—P;. Con-
sidering (6.1) with /= f1 f,, we obtain our proposition from Crollary 3.8.

Prorposition 6.6 [ 8, Theorem 2, p. 713]. Ewery non-zero prime ideal P of
E is contained in a unique maximal ideal.

Proor. Considering (6.1) with '(~0) € P, our proposition follows from
Corollary 3.8.

RemARrk 6.7. As the converse of (6.1), for any (countable) discrete subset
A(5=¢) of C and for any sequence {0(c)}.ca of non-negative integers indexed
by A, there exists an element f in E such that (6.1) holds.

ProrosiTiON 6.8. Let R be a N-copy of the discrete valuation ring E,,
where N is the set of positive integers, and let P, be a prime ideal of R which
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18 neither maximal nor minimal. Then, R/P,=E/P’ for some prime ideal P’
of E.

Proor. Let M be a maximal ideal of R containing P; and P, a minimal
prime ideal of R contained in P;. Then observing the proof of Theorem 3.9
with X=N, we can take an element x in P;— P, such that Z(x)=¢. Thus
R/xR=E/fE for some element f of £ by Remark 6.7, which proves our pro-
position.

CoroLLARY 6.9 [8, p. T19]. There exists a maximal ideal M of E such
that Q= N, M"=0, and with this prime ideal Q, E/Q is a complete discrete
valuation ring.

Proor. This follows from Proposition 6.8 and Theorem 3.10.

CororrArY 6.10 [ 8, Theorem 5, p. 7T17]. With the same M as in Corollary
6.9, the set of prime ideals of E contained in M has power at least 2%,

Proor. This follows from Proposition 6.8 and Corollary 5.6.
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