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§1. Introduction

It is known that, from the algebraic point of view, the ring E of entire
functions has many interesting properties (see, for example, [3, §1, exerc. 12],
[7] and [8]). Any residue ring E/(f) by a non-zero entire function / is
isomorphic to a direct product of homomorphic images of discrete valuation
rings. This implies that, as far as the structure space is concerned, the
study of the ring E is reduced to that of a direct product of discrete valua-
tion rings. Thus, in this article, we shall mainly investigate the structure
space of a direct product of commutative rings.

Every ring in this article will be assumed to be a commutative ring with
an identity. In §2, as preliminaries, we shall give some relations between
the structure space of a ring R, which will be denoted by Spec(i?), and that
of the Boolean algebra of idempotents in R. Next, in §3, we shall treat the
case in which R is a direct product of local rings or integral domains and in
§5 the more restricted case, in which each factor of the product is a discrete
valuation ring, will be treated by making use of some results on isolated
subgroups of a totally ordered additive group which will be discussed in §4.

Finally, in §6, applying our theory to the ring of entire functions, we
shall show how the algebraic properties of it, which was given by M.
Henriksen, can be obtained (cf. [7], [8]).

The author wishes to express his thanks to Prof. M. Nishi for his valua-
ble suggestions and encouragement.

§ 2. Preliminaries

The set of idempotents in a ring R will be denoted by B(R), or simply
by B. The set B(R) forms a Boolean algebra provided with the following
order relation: for any x, y in B, x < y if and only if x= yx. In this case
the complement χ! of x in B is 1 — x, xΛy=χy, xW y=x + y— xy, for any
x, y in B.

The term "ideal" will be used with two meanings in this article. On the
one hand, "ideal" will designate a ring ideal in a ring R. The word "ideal"
will also be used to denote an ideal in a Boolean algebra B(R), that is, a non-
empty subset / of B(R) such that e e J, f e J implies e Vf e /, and e e /, / < e
implies / 6 / . Obviously, if A is an ideal in a ring R, then Ar\B(K) is an
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ideal in B(R). If A is prime, furthermore, then so is Λr\B{R). By an ideal
in each sense we shall mean a proper ideal throughout this article.

Let R be a ring. We shall denote by Spec (R) [resp. Spec (B)~] the set
of prime ideals of R [resp. B = B(R)^} with Zariski-topology and by P(R)
[resp. M(R)Ί the subspace of Spec(i?) consisting of minimal [resp. maximal]
prime ideals of R any closed set of Spec (j?) [resp. Spec (B)J is of the form
VR(S) [resp. VB(S)~] for some subset S of R [resp. 5] , where VR(S) [resp.
VB(S)J is the set of prime ideals of R [resp. BΓ\ containing 5. Let us con-
sider the following diagram of the natural mappings:

Spec (R) -£L> Spec (£),

where a{M) = Mr\B for any Me Spec(iϋ), and ί, j are natural injections. We
shall show that α, aί and aj are continuous and sur jective, and that a, aj
are closed mappings. The above notations will be fixed throughout this sec-
tion.

PROPOSITION 2.1 (Continuity of a). Let J be an ideal of B. Then,

PROOF. Let M be a prime ideal of R. Then we see easily that M 6 VR(J)

if and only if a(M) = MΓ\B e VBQ).

For the closedness of a, we need a few lemmas.

LEMMA 2.2. An ideal of a non-trivial Boolean algebra is prime if and
only if it is maximal.

PROOF. This is well known (see [1, Theorem Π-7] or [10]).

COROLLARY 2.3. Let Mi, M2 be two prime ideals in R such that Mι^M2.
Then, M1r\B = M2Γ\B.

LEMMA 2.4. Let J be an ideal of B. Then the ideal of R generated by the
set J is equal to the set-theoretic union: \JeeJRe.

By IR(J), or simply by /(/), we shall denote the ideal of R generated
by/.

PROOF OF LEMMA 2.4. Every element x of /(/) is of the form

where a{ e R and e, e J for ί = l, 2, ..., n. Then we see that x = χe, where
e = eι V V en. This completes the proof.
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COROLLARY 2.5. Let J be an ideal of B. Then, I(J)ΓΛB = J.

LEMMA 2.6. Let A be an ideal of R and P a prime ideal of B containing
AΓ\B. Then, I(P) + AφR.

PROOF. Suppose that I(P)-\-A = R. Then there exist elements r e R,
a e R and e e P such that 1 — re + a, by Lemma 2.4. Hence e' — ae' e AίΛB^P,
where e ' = l — e. This is a contradiction.

COROLLARY 2.7 (Closedness of a). Let A be an ideal of R. Then,
a(VR(A))=VB(Aί\B).

PROOF. Let P be a prime ideal of B containing Ar\B. Then, by Lemma
2.6, there exists a prime ideal M of R containing P and A. By Lemma 2.2,
we obtain a(M)=P.

It also follows from the proof of the above lemma that aj is closed, since
the prime ideal M in the above proof can be chosen to be maximal. From
this, moreover, it follows easily that aj is surjective, a priori a.

It remains to show that aί is sur jective, which will be obtained from the
following

LEMMA 2.8. Let P be a prime ideal of B. Then every minimal element
of VR(I(P)) is a minimal prime ideal in R. Furthermore, a~ι(P) = VR(I(P)),
which is not empty.

PROOF. Let M be a minimal prime ideal of R containing I(P) and M! a
prime ideal of R contained in M. Then, P=MfΓ\B = Mr\B by Lemma 2.2.
Hence I(P)<^M. Thus M' = M. This completes the proof of the first asser-
tion. The last assertion is evident from Proposition 2.1 and Corollary 2.5.

REMARK 2.9. Some basic discussions on P(R) can be found in [_9J. In
general, aί may not be closed even if it is bijective. If I(P) is a prime ideal
in R for any PeSpec(i?), then aί is bijective. When R has no non-zero
nilpotents (such a ring R is called a reduced ring), the converse is true. This
is obtained by the next lemma.

LEMMA 2.10. Let R be a reduced ring. Then, R/I(J) is also reduced for
any ideal J of B(R).

PROOF. Let % be an element of R such that xn e /(/) for some integer
n. Then there exists e e J such that xn — xne, by Lemma 2.4. Hence xne' = 0
and so, (xe/)n = 0, where e' = l — e. This implies that xe/=o by our assump-
tion. Thus, x — xe, which completes the proof.

COROLLARY 2.11. Let R be a reduced ring. Then, aί is bijective if and
only if I(P) is a (minimal) prime ideal of R for any P 6 Spec (B).
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Finally we shall consider the case in which a is bijective, or equivalently
homeomorphic. First of all, we shall quote some results. The following con-
ditions on a ring R are equivalent:

(a) R is an absolutely flat ring.
(b) For any element x of R, x e x2R [2, Chap. I, §2, exerc. 17].
(c) Every principal ideal of R is generated by an idempotent of

R[\oc. cit].
(d) R is a reduced ring and every point of Spec(i?) is closed [2, Chap. II,

§4, exerc. 16].
(e) For any maximal ideal M of R, RM is a field, or equivalently, RM

= R/M [2, Chap. II, §3, exerc. 9].

It is easy to see that if R is reduced and a is homeomorphic, then R is
an absolutely flat ring by the condition (d), since Spec (B) is a compact space
(see [1] or CIO]). Conversely, we get the following

PROPOSITION 2.12. Let R be an absolutely flat ring and P a prime ideal of
B = B(R). Then I(P) is a (maximal) prime ideal of R.

PROOF. Let x, y be two elements of R such that x y e I(P). Then there
exist eu e2 € B such that xR = eλR and yR = e2R. Since eλe2 e xγRΓ\B
^I(P)Γ\B = P, eι e P or e2 e P. Hence x e I(P) or ye 7(P). This completes
the proof.

COROLLARY 2.13. Let R be an absolutely flat ring. Then

= Spec ( i ? ) ^ Spec (£).

§ 3. A direct product of rings

Let us consider a direct product R = ΠxeXRx of a family {Rλ} of rings
indexed by a non-empty set X. For any x in R, we shall use the following
notations throughout this article:

x = (xλ), where xx is the Λ-th component of x,

Z(x)={λeX;xx = 0}.

Moreover, for any subset S of i?, we shall denote by Z(S) the collection
{Z(x); x e S}, and the identity element of R and those of the Rxs will be
commonly denoted by the same 1.

In the case in which Spec(i?λ) is connected for every λ e X, i.e.,t B(RX)
= {0, 1} for each λ in X, every element x of B = B(R) is precisely of the
form (xx) such that χx = 0 or 1 for each λ in X. That is to say, every element
x of B is uniquely determined by Z(x), which is an element of the power set
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of X. Such a correspondence gives the lattice-isomorphism Z of B onto

^β(X), where ^β(X) is the dual of ^β(X); this isomorphism Z gives the natural
homeomorphism Z* of Spec (B) onto the ultrafilter space X" of X, and fur-
thermore, which is homeomorphic with the Stone-Cech compactification βX
of the discrete topological space X. For the reader, we shall comment on
the above briefly:

1. An ideal of $β(X) is exactly a filter on X, and it is a prime ideal of ^β(X)
if and only if it is an ultrafilter on X [1, p. 25].

2. Let Xrr be the set of ultrafilters on X. For any subset A of X, we put
Λ*={Fe X"\ FD A}. Then the sets A* form a basis of a topology on X".
This topological space X" is called the ultrafilter space on X []5, §9, exerc.
26].

3. When we regard X as a discrete topological space, it is easy to see that

the Stone-Cech compactification βX of X coincides with the ultrafilter space

X" of X, from the method of the construction of βX in [6, Theorem 6.5].

LEMMA 3.1. Let R be a direct product ΠλeXRλ, where all the Rλ's are
fields. Then,

P(R) = M (R) = Spec (R) ̂ ^ Spec (B) ̂ ί X".

PROOF. It is easy to see that every principal ideal of R is generated by
an idempotent element of R, so that R is an absolutely flat ring. Therefore
the assertion follows from Corollary 2.13 and the above discussion.

REMARK 3.2. Form now on, we shall write Spec (B) = X" instead of

COROLLARY 3.3. With the same notations as in Lemma 3.1, let M, P and
F be corresponding elements of Spec(jR), Spec (B) and X", respectively. Then,

= P, M=I(P)={x€R; Z(x)eF} and

PROOF. The first two equalities have already been shown in Proposition

2.12. The fact that the isomorphism Z: B >^β(X) induces the isomorphism
Z*: Spec (B) >X", amounts to the fact that Z(P) = F and Z~\P) = F, or
equivalent^ P= {x eB; Z{x) e F}. Hence F=Z(P)^Z(M) = Z(I(P)). Let
Z(re) b e a n y e l e m e n t o f Z(I(P)), w h e r e r e R a n d e e P ( s e e L e m m a 2 . 4 ) .
Then Z(re) = Z(r)\jZ(e)ΏZ(e), where Z(e)eF; hence Z(re)eF. Thus we
have Z(P) = Z(M) = F. Finally, we see directly that M^ {x e R; Z(x) e F}
since Z{M) = F. We shall show the converse. Let x be an element of R
such that Z(x)eF. Then there exists etB such that Z(e) = Z(x). Since
Z(e) = Z(x) e F, we have e e P. Thus x = xe e J(P) = Λf. This completes the
proof.
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Now, let us consider the two cases: (i) when all the Rλ's are integral
domains, and (ii) when all the i?λ's are local rings with the maximal ideals
Mλ's respectively.

The first case: Let Qλ be the quotient field of Rλ and Q(R) the total
quotient ring of R = ΠλeXRλ. Then it is easy to see that Q(R) = UλeχQχ,
B(Q(R)) = B(R) and P(Q(R))^=ίP(R). As for the fact that P(Q(R))O^
P(R), more general results can be found in [9, Theorem 5.1 p. 124]. By the
next lemma and Lemma 3.1, we get the following commutative diagram:

P(R) _i_+ Spec (£) -2U Spec (B) = Xlf

n A II II
P(Q (Λ))=Spec (Q ((Λ))—Spec (B(Q(R)))=X

Tlf

when φ is the continuous function which is induced by the natural injection:
R

LEMMA 3.4. Under the same situation as above, let M be a minimal prime
ideal of R and put P=a(M). Then, M=MQ(R)r\Rand P=Mr\B = MQ(R)ΓλB.
Furthermore, let F be an ultrafilter on X, which corresponds to P. Then,
F=Z(P) = Z(M) and IR(P) = M= {% e R; Z(x) e F}.

PROOF. Obviously, M=MQ(R)Γ\R and P=MίΛBQMQ(R)r\B. Since
MQ(R)ΓλB is a prime ideal of B, it coincides with P by Lemma 2.2. This
completes the proof of the first assertion, which amounts to the commuta-
tivity of the above diagram. By Corollary 3.3, Z(MQ(R)) = Z(P) = F; hence
Z(M) = Z(P) = F, since Z(P)^Z(M)^Z(MQ(R)). From the above diagram,
we see that aί is bijective; hence IR(P) = M by virtue of Corollary 2.11.
Finally, since MΩ {X a R; Z(x) e F} = {x e Q(R); Z(x) e F}ΓλR = MQ(R)rλR
= M, we get the last equality in our lemma. This completes the proof.

The second case: Let Kλ be the residue field Rλ/Mλ of Rx and J(R) the
Jacobson radical of R = UλeXRλ. Then we see that J(R) = ΠxeXMx, R/J(R)
— HxeXKx, and that the canonical epimorphism φ: R >R/J(R) induces the
isomorphism B(ψ): B(R)^+B(Q(R)) and the homeomorphism 0*: M(R/J(R))
^ By Lemma 3.1, we get the following commutative diagram:

Spec (Λ//(Λ))—Spec {B{R/J{R)))=Xfr

M(R) —U Spec(i?) -£-> Spec (B) — Xπ

The commutativity of this diagram can be obtained by routine calculations
so the proof is omitted.

COROLLARY 3.5. With the same notations as above, let M be a maximal
ideal of R and put P—a(M). If F is the ultrafilter on X, which corresponds
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to P, thϊm F=Z(P) = Z(M/J(R)) and M=J(R) + I(P) = {x e R\ Z(x) e F}, where
x denotes the residue class of x modulo J(R). Furthermore, R/I(P) is a local
ring with the maximal ideal M/I(P).

PROOF. For any subset S of R, we shall denote by S the image of S in
R/J(R). By Corollary 3.3, F=Z(F) = Z(M), and M=I^(F)= {x e R; Z(x) e F}.
From this, it is easy to see that F=Z(P) = Z(F), and M= {x e R; Z{x) e F}.
It remains to show that M=J(R) + I(P). Since J(R) + I(P)QM, we shall
show that M^J(R) + I(P). Let x be an element of M. Then, there exists
e e P such that x = xe. Hence x = xe (mod J(R)). Therefore, x e J(R) + I(P).
Thus, M=J(R) + I(P). Finally, from the above diagram, we see that aj is
bijective, so that M is the unique maximal ideal of R containing P. Thus,
we see that R/I(P) is a local ring. This completes the proof.

THEOREM 3.6. Let {Rx} be a family of local integral domains indexed by
a non-empty set X and put R = ΠλcXRλ. Then, aj: M{R) >Spec(B) and ai\
P(R) > Spec (B) are homeomorphisms. Moreover, let M be a maximal ideal
of R and M' a minimal prime ideal of R such that MΓ\B = M'ΉB(=P).
Then,

(1) Z(M') = Z(P) = Z(M/J(R))(=F),
(2) I(P) = M'=ix€R;Z(x)€F}9

(3) M=J(R) + I(P) = {xeR; Z(x)eF}, and
(4) RM = R/I(P),

where we denote by J(R) the Jacobson radical of R and by x the residue class
of x modulo J(R).

PROOF. The assertions (1), (2) and (3) have already been shown. We
shall show that RM = R/I(P). By Corollary 3.5, R/I(P) is a local ring with
the maximal ideal M/I(P). To complete the proof, it suffices to show that
the kernel of the canonical homomorphism: R >RM, coincides with /(P).
This will be done in the following

LEMMA 3.7. Let M be a prime ideal of a ring R and A the kernel of the
canonical homomorphism: R >RM. Then, I(MΓ\B)^AQM. If I(Mr\B)
is a prime ideal, furthermore, then I(MΓ\R) = A and RM is a local domain.

PROOF. Let x be an element of I(Mr\B). Then there exists e e MΓ\B
such that x = xe by Lemma 2.4. Hence x(l — e) = 0, which implies that x e A
since 1 — eiM. Thus I(MΓ\B)^A, which proves the first assertion. Next,
suppose that I(Mr\B) is prime. To complete the proof, we have only to
show that A e I(Mr\B). Let a be an element of A. Then there exists s e R — M
such that as = 0. Since as = 0 e I(Mr\B), a e I(Mr\B). Thus A^I(Mr\B).

COROLLARY 3.8 to Theorem 3.6. In Theorem 3.6, if each Rλ is a valuation
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ring, then R/I(P) is a valuation ring. Therefore, in this case, the set V(P)

of prime ideals in R containing I(P) is linearly ordered under set-inclusion

and Spec (2?) as a set is the disjoint union:

PROOF. Obviously, if each Rλ is a valuation ring, then R = ΠxcXRλ is a

Bezout ring, i.e., every finitely generated ideal of R is principal \Λ, §1, exerc.

20]. Therefore, R/I(P) is a local Bezout domain, whence it is a valuation

ring (cf. [4, §2, exerc. 12]). The other assertion in our corollary is trivial

and we omit the proof.

THEOREM 3.9. With the same notations as in Theorem 3.6, suppose that

each Rλ is a discrete valuation ring, and set Q = Γ\™=ιM
n. Then we have

(1) R/Q is a discrete valuation ring.

(2) Q = I(P) if and only if F has the countable intersection property.

REMARK : In general, a filter on a set is said to be fixed if the intersec-

tion of all members of it is not empty. It is said to be free otherwise. If F

is fixed, in Theorem 3.9, then F has the countable intersection property, i.e.,

any intersection of countable members of F is also a member of F; some

discussions on this context are found in [6, Chap. 12].

PROOF OF THEOREM 3.9. Let τrλ be a prime element of Rλ for each

λeX and set τr = (τrλ). Then the maximal ideal M/I(P) of R/I(P) is a

principal ideal generated by the residue class of π modulo /(P). Therefore,

ΓΛn=ι(M/I(P))n = Γ\n=ι7rnRM is the largest non-maximal prime ideal (such a

prime ideal is called a submaximal prime ideal) of R/I(P) = RM. Since I(P)n

= /(P)cJ|f, Q/I(P) = rλ7=1M
n/I(P) = Γλζ=1(M/I(P))n. Thus we see that R/Q

is a Noetherian local domain with the maximal ideal which is principal, so

that R/Q is a discrete valuation ring. Next, we shall prove the second

assertion. Suppose that Q = I(P). We shall prove dually that F has the

countable intersection property. Let {Nt} be an ascending sequence of sub-

sets of X such that N{ ( F for i = 1, 2, .... It suffices to show that \J7=1Ni i F.

Now we take the element x = (xx) of R as follows:

xλ = 0 for λeX-\JT=1Ni,

= πλ for λ e Nu

= nl for λ e N2 — Nι, and so on.

Let βi be an element of B such that Z(ei) = Ni for ί = l, 2, .... By (3) in

Theorem 3.6, TV,- i F amounts to e, $ M. On the other hand, we see that

xβieπi+1R, so that x e πi+1RM for ι = l, 2, •••. Hence x c Q = I(P),' which

amounts to Z(x) e F by (2) in Theorem 3.6. Thus \JT=1Ni = X-Z(x) $ F.

Conversely, suppose that QφI(P). Let x be an element of Q — I(P).
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For each λ in X, let us denote by vλ the normalized valuation of i?λ, and set
Ni={λ f l ; vλ(xλ) = ί} for '̂ = 0? 1, 2, .... Then, Z(x) = X-U7=0Ni $ F, since

x ί /(P). Hence wΓ=o^ £ ̂  To complete the proof, it is sufficient to show
that Ni ξ F for j = l5 2, . Suppose that iV, 6 F for some j . Then there exists
e e P such that Z(e)=iV/ ; the element #e', where e' = l —e, can be written in
the form of πιuef, where u is a unit in R. This implies that U1RM = XRM
^QRM^Γ\n=1π

nRM, since e' # M. This is impossible. Thus the proof is com-
pleted.

THEOREM 3.10. With the same notations and assumptions as in Theorem
3.9, if QφI(P), then R/Q is a complete discrete valuation ring.

PROOF. By our assumption, there exists a descending sequence
Wlί-0,1,2,... of subsets of X such that TV* e F for each ί and Γ\7=0Ni $ F. We
may assume that ΓλT^0Ni = φ, by replacing TV,- by Ni — Niί necessary, where
iV= ΓΛT=0Ni i F. Now we take the element e{ in B = B(R) such that Z(ei) = Ni
for each ί. Let {#z };=o,i,2,... be a countable family of elements of R. Then
we can consider in R an infinite sum Σ7=oeiχh where e = l — e, for each ι,
since the ^-th components of each term are almost all zero for each λ in X.
Now let {an}n=ι)2t... be a Cauchy sequence in R/Q with Zariski topology. We
shall prove that it converges in R/Q. We may assume that it is a regular
sequence, i.e., an+1 — an e πnR/Q for each n. For any r e R, we shall denote
by f the equivalence class of r modulo Q. Note that f — ~ef for any idempotent
e € R — Q and for any r e R. Now, choose representatives {Λ;»}W=O,I,2... in R
such that aι = x0 and α,2+i — an = nnχn for 7i = l, 2, ••• and set yn= Σ Γ ^ ^ ^ + ^ ί + ί
for 7i = 0, 1, 2, ..., where βo = l. Then we obtain

Jo = XQ + 7r^ie{ + 7r2Λ;2β2 H h 7ΓM~1Λ;w_ie,/i_1 + 7ΓW j w ,

f o r 77, = 1, 2 , ....

This shows that yo = an + πnγn. Thus the proof is completed.

§4. Some results on isolated subgroups

Let G be a totally ordered additive group with the order relation < .
For any subsets A, B of G, when a <& for any a e A and b £ B, we shall
denote it by A<iB. We shall write a<iB instead of {α}<J5. Similarly, we
shall use the notations like A<CB, a<B, etc. Let H be an isolated subgroup
of G and set T— {a e G\ H<a}. Throughout this section, the above notation
will be fixed and furthermore, we shall assume that T satisfies the following
two conditions:

(I) If A and B are non-empty countable subsets of T such that A<B,
then there exists an element c in T such that A<ic<iB.
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(II) For each element a in T, there exists a strictly descending sequence

{«(«)} of elements in T such that

n a ( n ) < ^ a < L 2 n a ( n ) f o r n = l , 2 , •••

(such a sequence will be called an r-descending sequence of a).

Let α be an element of T. By Ha we shall denote the maximal isolated

subgroup of G not containing a, and by Ha the minimal isolated subgroup of

G containing a. Then the following lemma is immediate.

LEMMA 4.1. Let a be an element of T. Then,

(1) Ha= \Jn=ι{x cG; \x\<na} and

(2) Ha= {x e G; I nx \ <a for any integer n}.

LEMMA 4.2. Let {a^} be an r-descending sequence of a e T. Then, Ha

— Γ\"=ι{x eG\ \x\<a(n)}.

PROOF. It is clear that Ha<^ {x e G; \x\ <a{n)} for any integer n. There-

fore Ha<^ r\n=ι{χ €" G; \x\ <a(n)}. Conversely, let x be an element of T—Ha.

Then there exists an integer n such that a<inx, by Lemma 4.1; hence a(n)

< Λ ; . Thus the proof is completed.

LEMMA 4.3. Hh φHa for any α, b e T.

PROOF. Suppose that Hb — Ha. And set A = {na}n=ι>2>... and B = {b^n)}n=ι,2,.^

where {b{n)} is an r-descending sequence of b. Then, Λ<B by Lemma 4.1

and Lemma 4.2. It follows from our assumption that there exists c e T such

that A<c<B. The fact c<B implies ceHb = Ha; by Lemma 4.1, there

exists an integer n such that c<na. On the other hand, A<Cc implies

(ft + l ) α < c . This is a contradiction and we have the assertion.

COROLLARY 4.4. Suppose that Ha^Hb for some a, b e T. Then, there

exists an element c in T such that Ha^Hc^Hc^Hb.

PROOF. Obviouly Ha^Hb implies Ha^Hb, hence Ha^Hb by Lemma 4.3.

Then, by Lemma 4.3 again, we see that Ha^Hc^Hc^Hb, for every element

c in Hb — Ha. This completes the proof.

PROPOSITION 4.5. Let {ai}i=ιί2ι... and {δ/j ^i^,... be two sequences of elements

in T such that Hai^Ha^Hb^Hbi for each ί, j such that ί<j. Then there

exists an element c in T such that Haί^Hc^Hbί for ί = l, 2, ....

PROOF. Set A={na}n=ιι2,... and B={(bn)in)}ns=1,2,..., where {(bn)(m)}m is an
r-descending sequence of bn for each n. Then there exists c e T such that

by our assumption. This element c is a required one.

C O R O L L A R Y 4.6. Suppose that Ha(^Hb for some a,b 6 T. Then the totally
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ordered set S= {Hc Ha<^Hc^Hb} is an τjι-set*\ and therefore, S has power at
least 2*1.

§ 5. A direct product of discrete valuation rings

Let {Rx} be a family of discrete valuation rings indexed by a non-empty
set X and put π = (πx) in R = ΠX(:χRx, where each πx is a prime element of
Rx. And let M be a maximal ideal of R and set P=Mr\B(R). In §3, we
saw that RM — R/I(P) is a valuation ring with the maximal ideal nRM and
with the submaximal prime ideal Q/I(P), where Q= Γ\n=ιMn, and that
Q = I(P) if and only if F=Z(P) has the countable intersection property. In
this section, we shall show that if QφI(P), then the set of prime ideals of R
contained in M has power at least 2**1. The above notations and the as-
sumption that I(P)ΦQ, will be fixed throughout this section. Further, we
shall denote by v a valuation of R/I(P) and by G its value group and by T
the image of Q/I(P) under v. And, for any element x of R, we shall denote
by x the residue class of x modulo I(P). To begin with, we shall prove that
T satisfies the condition (I) and (II) in §4.

DEFINITION 5.1. Let x = (xx), y={yx) be two elements in R and N a
subset of X. Then we denote x < j on iV, when vx(xx) <ί; λ(jλ) for every
λ e N, where each vx is the normalized valuation of Rx, and similarly, x < y
on N, when vχ(xλ)<vχ(yx) for every λ e N. Then we have the following
lemma immediately.

LEMMA 5.2. Let x, y be any two elements in R. Then, v(x) <C,υ(y) if and
only if χ<Ly on some member in F. Therefore, v(x) = v(y) if and only if
χ<Ly and y<x on some member in F at the same time. Moreover, v(x)<v(y)
if and only if x< y on some member in F.

PROPOSITION 5.3. For any element a in T, there exists an r-descending
sequence of a.

PROOF. Choose an element x = (xx) in Q — I(P) such that v(x) = a and set
Ni={λ e X; vx(χx) = i} for ί = 0, 1, 2, .... Then, we have already seen in the
proof of Theorem 3.9 that JV, i F for every i and X- \J7=0Ni = Z(x) $ F. Now,
for every positive integer n, we take the element xn of R as follows:

= 1 for λ e N0VJ- \JNn.u

= πx for λ 6 Nn\J • \JN2n-u

*) A totally ordered set S is called an ηx-set when S satisfies the condition: for any countable
subsets A, B of S such that A<B, there exists c e S such that A<c<B (cf. [6, Chap 13]).
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= π\ for λ e N2nW W-/V3w_i, and so on.

Now set a(n) = v(χn) for each re. Then the fact that (χn)
2n>χ on \Jm>nNm and

^ > ( Λ ^ ) W on X, implies 2reα(w)>α>reα(w), by Lemma 5.2, since \Jm>nNme F.

On the other hand, we see that a(n)>a(n+1), since xn>xn+1 on WOT>2»(«+i)^».

Thus {α(w)} is an r-descending sequence of α. This completes the proof.

PROPOSITION 5.4. Let A, B be two non-empty countable subsets of T such

that A<B. Then there exists c e T such that A<^

PROOF. We may assume that A= {an}n=ι>2,... and B={bn}n=ι>2,... such that

an<am<bm<bn for all re<τre. Now, choose elements {χn}n=i,2,... and {yn}n=i,2,...

in Q—I(P) such that v{χ~^) = am and v{~y~n) = bn for each re. Then there exists

a descending sequence {Ni}i=1>2ι_ of members of F, such that xi<^2<I---

< ^ « < > < < j 2 < 7 i on Nn for each re. First, suppose that Γ\7=iNi = Ne F.

Then, we take two elements χ = (xλ) and γ=(γλ) of R as follows:

= πχλ for A e iV, where aλ = $upvλ((xn)x).
n

j λ = 0 iorλeX-N,

= πξ> for λ e iV, where (3x = mivx((yn)x).
n

In the above, we put πx

λ = 0 when αλ=oo. Then, χn<Lχ<Ly<,yn on iV for

every re. This implies that an<v(x) <v(y) <bn for every re. Thus the

assertion settles in this case. Next, suppose that ΓΛ7=iNi = N'( F. Then we

may assume that N is an empty set, by replacing TV,- by Ni — N if necessary.

Now, we take two elements x = (xx) and y=(yx) of R as follows:

χx=yx = 0 for λeX-\J7^Ni9

for λ eNx-N2,

for λ £N2 — N39 and so on.

Then we see that Λ ; < y on X and χn<Lχ<,y<Lyn on iVw for every re. This

implies that αw<>(^) <Lυ(y) <^bn for every re. In either case, v(x) or v(y) is

a required element in T. Thus the proof is completed.

PROPOSITION 5.5. For any element a in T, there exist b, c e T such that

PROOF. Let x = (xx) be an element in Q—I(P) such that v(x) = a, set

Ni={λ e l ; vx(χx) = ί} for ί = l, 2, •••, and we take the element y=(yx) of R

as follows:
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yλ = 0 for λ € X-\JT=1Nh

= πχλ for Λ e Nh where ax = [V7], for £ = 1, 2, —

Then we see that x> yn on \Jm^n

2+iNm for each n. This implies that nb<a
for every n, where b = v(y). By Lemma 4.1, we see that b £ Ha, so that

Similarly, we take the element z = (zλ) of R as follows:

* λ = 0 for λ e X- \JT=1Niy

= π{2 for λeNi (£ = 1, 2, •••).

Then by routine calculations, we get that Ha^H% where c = v(z).

COROLLARY 5.6. Let Pi be a prime ideal of R such that
Then there exist prime ideal P2, P3 of R such that I(P)^P2^Pι^P3^Q.
Moreover, the set of prime ideals of R between I(P) and Q has power at least

PROOF. The first assertion is obtained from Proposition 5.5 directly; the
last by Corollary 4.6.

§ 6. Application

Let E be the ring of entire functions, and let z be the identity mapping
of the complex number field C, which is regarded as an element of E. Then,
for any complex number c, we obtain a discrete valuation ring Rc — E{z_c)

with a prime element πc = z—c. Now, let us fix a non-zero and non-unit
element / i n .Efor a little while; and let A be the set of zeros of /and, for
each c c i , let 0(c) be the order of / at c. Then, from the theorem of Mittag-
Leffler, we obtain the following natural isomorphisms by purely algebraic
calculations:

(6.1)

where φc\ E/fE >E/π°c

ic)E is the natural surjection for each c.

PROPOSITION 6.1 [7, Lemma 1, p. 183]. If M is a maximal ideal of E,
then the field E/M is algebraically closed.

PROOF. Let / be a non-zero element of M and A the set of zeros of / ;
and set R = UceARc. Then E/M is a residue field of E/fE; and by virtue of
(6.1), it is a residue field of a residue ring of R; hence, it is a residue field of
R. Let J(R) be the Jacobson radical of R. Then, since R/J{R) = ΊΊceARc/πcRc
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= CΛ, our proposition follows from the next lemma.

LEMMA 6.2. Let {Kλ} be a family of algebraically closed fields indexed
by non-empty set X, and set R = Πλ6χKλ. Then, every residue field of R is
algebraically closed.

The proof is routine and omitted.

PROPOSITION 6.3. If M is a maximal ideal of E, then MEM is a principal
ideal.

PROOF. Observing the proof of Proposition 6.1, we can take an element
f(ΦO) e M such that the order of / at each zero of / is one. Then, since
E/fE is an absolutely flat ring by virtue of (6.1), we obtain

so that fEM = MEM. This completes the proof.

COROLLARY 6.4 [8, Theorem 3, p. 714]. Let M be a maximal ideal of E.
Then, Q= Γ\n=χMn is the largest nonmaximal prime ideal contained in M and
E/Q is a discrete valuation ring.

PROOF. Let / be an element of M such that MEM=fEM. Then our
corollary follows from the fact

Q= r\n=xM
n= Γ\n^MnEMr\E= r\n=ιfnEMΓ\E.

PROPOSITION 6.5 [8, Corollary p. 716]. Let M be a maximal ideal of E.
Then the set of prime ideals of E contained in M is linearly ordered under set-
inclusion.

PROOF. Let Pi, P 2 be two prime ideals of E contained in M and suppose
that P i ί P 2 and P 2 ί Pi. Then there exist fλ € P1-P2 and f2 e P 2 - P i Con-
sidering (6.1) with f=f1f2y we obtain our proposition from Crollary 3.8.

PROPOSITION 6.6 [8, Theorem 2, p. 713]. Every non-zero prime ideal P of
E is contained in a unique maximal ideal.

PROOF. Considering (6.1) with f(φθ) eP, our proposition follows from
Corollary 3.8.

REMARK 6.7. As the converse of (6.1), for any (countable) discrete subset
A(Φφ) of C and for any sequence {0(c)}c€A of non-negative integers indexed
by A, there exists an element / in E such that (6.1) holds.

PROPOSITION 6.8. Let R be a N-copy of the discrete valuation ring E{z),
where N is the set of positive integers, and let Pi be a prime ideal of R which
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is neither maximal nor minimal. Then, R/Px — E/Pr for some prime ideal P'
ofE.

PROOF. Let M be a maximal ideal of R containing Pi and Po a minimal
prime ideal of R contained in Pλ. Then observing the proof of Theorem 3.9
with X=N, we can take an element x in Pι — PQ such that Z(x) = φ. Thus
R/xR — E/fE for some element / of E by Remark 6.7, which proves our pro-
position.

COROLLARY 6.9 [8, p. 719]. There exists a maximal ideal M of E such
that Q=Γλn=ιMn^0, and with this prime ideal Q, E/Q is a complete discrete
valuation ring.

PROOF. This follows from Proposition 6.8 and Theorem 3.10.

COROLLARY 6.10 [β, Theorem 5, p. 717]. With the same M as in Corollary
6.9, the set of prime ideals of E contained in M has power at least 2**1.

PROOF. This follows from Proposition 6.8 and Corollary 5.6.
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