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§ 0. Introduction

Throughout this paper, p will denote an odd prime integer.
Let S2n+1 be the unit (2π, + l)-sphere in the complex (ra + l)-space. Then

the free actions of S1 = {eίθ 10 < θ < 2π} and Zp = {eiθ \ θ = 2πh/p, h = 0, • , p -1}
o n S 2 n + 1 a r e d e f i n e d b y e i θ ( z 0 , •••, zH) = ( e i θ z θ 9 • ••, e i θ z n ) .

Let V2n>k be the Stiefel manifold of orthonormal ^-frames in the real
2π,-space R2n. We define free actions of S1 and Zp on V2n>k such that eιθ

operates on each vector of A -frame as above. We consider the quotient
manifolds

Z2n,k — Vzn.k/S ? X2n,k= V2n,k/Zp.

Then Z2n>ι = CPn~1, the real 2n — 2 dimensional complex projective space, and
Xϊn,ι = Ln~\p\ the 271 — 1 dimensional modp lens space.

Let ξ and η be the canonical complex line bundles over CP°° and L°°(p\
respectively. Then the above manifolds Z2n,k and X2n,k are homotopy
equivalent to the total spaces of the associated F2«^-bundles of nξ and ny,
respectively, as is shown in Proposition 1.3. Consequently, it is expected
that the cohomology structures of Z2n>k and X2n,k give us the informations
about the structures of nξ and nη and so the immersion problem, for lens
spaces Ln(p).

Recently, S. Gitler and D. Handel \ΊP\ have considered the projective
Stiefel manifolds, which are the above manifolds Xn>k for p=2 (in this case,
n need not be even), and determined their mod 2 cohomology algebras and the
actions of the Steenrod squares up to a small indeterminancy. Also,
P. F. Baum and W. Browder \J1Γ\ have determined completely the actions of the
Steenrod squares when n is a power of 2. Moreover S. Gitler [Ί3I] has applied
these results to the immersion problem for the real projective spaces.

The purpose of this paper is to study the mod p cohomology structures
of Z2n>k and X2n,k and to apply these results to the problems of independent
cross sections of nrj and immersions of Ln(p).

In §1, we prove Theorem 1.11, which determines the mod p cohomology
algebras H*(Z2n>k) and H*(X2n>k)> Furthermore the generators are given in
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Theorem 2.7, using the universal Pontrjagin classes pj and Euler class %,
which is proved by the analogous method in [5J. The mod p reduced power
operations CP in these algebras are studied in § 3, using Theorem 2.7 and the
well-known results on φιpj and §>*%. Also we study the Bockstein homomor-
phism β in §4, using the results of [1, MAIN THEOREM I (7.12)]. φ* and β
are determined explicitly in Theorems 3.10-11 and 4.12 for n = n/pr ( r ^ l )
and some k.

For the applications, we study the relations between Z2n,k and Z2n+2m,k in
§ 5 and prove Proposition 6.4. Finally, we apply Proposition 6.4 to Theorem
6.2 which is a non-existance theorem of h independent cross sections of the
bundle my over L\p). By Theorem 6.2 and T. Kobayashi's Theorem [7,
Theorem 1], we obtain Theorem 6.3, which is a non-immersion theorem for
lens spaces Ln(p).

The author thanks Professors M. Sugawara and T. Kobayashi for their
kind advice.

§ 1. The mod p cohomology of X2n>k

In this paper, the cohomology H\ ) will be understood to have Zp for
coefficients, unless otherwise stated.

Let V2n,k be the Stiefel manifold of orthonormal ^-frames in the real 2n-
space R2n and define a free action of S1 = {eiθ |0 <#<27r} on V2n,k by consider-
ing

ei0 =

We consider the following quotient manifolds:

where Zp={eiθ\θ = 2πh/p, A = 0, 1, •• , ^ - l } C 5 1 .
Let ξ and -η be the canonical complex line bundles over the infinite

dimensional complex protective space CP°° and the mod p lens space L°°(p\
respectively, and nξ (resp. nη) the Whitney sum of n copies of ξ (resp. -η). The
real restriction of nξ (resp. n-η) is denoted by the same notation nξ (resp.
nη). The associated V2n>^-bundles of nξ and nη are the following:

(1.1) V2n>k > S-x siV2n,k > CP~,

(1.2) V2n,k > S™ x Zp V2n>k > L~(p\

where 5°° is the infinite dimensional sphere and the projections are defined by
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the natural projections 5" >S*>/S1=-CP~ and 5 " >S™/Zp = Lao(p), respec-

tively.

PROPOSITION 1.3. The manifolds Z2n,k (resp. X2n,k) and S°° x s^V2n,k (resp.

S^">< zpV2n,k) are of the same homotopy type and the natural projection

V2ntk >Z2n>k (resp. V2n,k >X2n,k) c&n be identified with the inclusion.

PROOF. The following diagram is commutative:

Sl >S~X V2n,k >S-XSiV2n,k

(1.4) 1̂  I i
S > V2n,k

 > Z2n>fo

where vertical maps are the projections. The projection 5"x V2n>k

 >V2n,k

is obviously a homotopy equivalence and the inclusion map V2n,k >S™ x V2n,k

is its homotopy inverse. Hence, by the homotopy exact sequences of the

fibrations and the five lemma, the projection S~x sιV2nίk >Z2n,k induces

isomorphisms of all homotopy groups, and we obtain S~x s\V2n,k^-Z2n>k.

Similarly it follows that S~x zV2n,k~X2nίk. Q.E.D.

According to Proposition 1.3, we identify the space S~x SIΓ2»,A with Z2n,k

and S- x Zp V2n,k w i t h X2n>k.

Now, let / „ : CP°° >BS0(2n) be a classifying map of nξ. Then fnπ is a

classifying map of nη, since η=π*$, where π: L°°(p) >CP°° is the natural

projection. Therefore we obtain the following homotopy commutative

diagram:

V2n> k V2n> k V2n2 n > k

% i
(1.5) X2n>k~^Z2n>k-l^BSO(2n- k)

The mod/? cohomology structures of V2n>k and BSO(n) are the following

([2], [3] and [9, Theorem 32]):

ί A(vn-k'+u -"> VH-L, v) if k = 2k'—l
(1.6) H*(V2n>li) =

[ Λ ( V » - Λ ' + I , ••-, vn-i, v, vf) if k = 2k\

w h e r e deg i;y = 4y — 1, deg v — 2n — 1 and deg v' = 2n — k.

{ Zp[_p^ ••-, jσW'-i, %] if rι = 2n'
(1.7) H*(BSO(n,)) =

[ Zp\ipu . . . , p W ' _ ] J if n = 2n/—l,

where pj is the /-th Pontr jagin class of the universal oriented zi-plane bundle,

% is its Euler class. Notice that x2—pn^ for n = 2n/. Moreover the elements

vj and v are transgressive in the fibration V2n,k >BSO(2n — k) >BS0(2n\
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and

(1.8) τvj=pj9 rv = %.

Also, it is well-known that

(1.9) H*(CP~)=ZPty^ where deg y = 2,

(1.10) H*(L~(p))= Λ«(g)Z,[y],

where deg x = l, deg y=2 and βx = y (/? denotes the Bockstein homomor-
phism).

THEOREM 1.11. Suppose 0<k<2n and set &'=[(&+ l)/2]. Let

0 mod pi.

Then the mod p cohomology algebras of X2n,k and Z2n>k are as follows:
(a) If N does not exist or if N exists and 2n<N,

[Λ(zn-k>+1, ..., Zn-JigtZptyyiy") for odd k
(1.11.1) H*(Z2Htk)=\

[V(zn-y+u •••» *n-u z')(g)Zp\lyy(yn) for even k,

(Λ(zn-k<+u ••-, Zn-i^Aix^ZplyJ/iy") for odd k
(1.11.2) H*(X2n,k)=\

- (V(*«-*'+i, •••, zn-ι, z')<g>Λ(x)®Zftyy(yn) for even k.

(b) If N exists and 2n = N= U0,

( A(zn^k'+u •••, £)„)•••> ^ « - i ) ® - ^ ί E j I I / ( j B ) ® Λ ( 5 , o )

/or odd &
(1.11.3) ff*(Z2),,»)=

s /or even k.

for odd k
(1.11.4) ff*(X2llfΛ)=«"

j ) for even k.

(c) 7/iVexists and 2n>N=ii0,

(1.11.5) H*(Z2n,k)=} for odd k
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for even k,

for odd k
(1.11.6) H\X2n>k)=\

for even k.

Here deg Zj = 4j— 1, deg ^ 0 = 4ΐ0 — 1, deg ^ = 2^ — 1, deg z' = 2n — k, deg Λ; = 1,
deg γ = 2 and V(Ai, •••, As) means the algebra with hi, •••, Λ5 as ί/ie simple
system of generators, and ziQ indicates that zio has been omitted. Moreover, we
have the following relations:

(1.11.7)

where p and ί are the maps in (1.5).

REMARK 1.12. When n=pr or 2pr ( r > l ) , the case (c) does not appear
and V( ) are Λ (•••)• I n fact, N(pr, k) does not exist for any k, and
N(2p% k) = ipr if k'>pr and N(2pr, k) does not exist if kf <pr. Moreover

*/ 2 = 0, since y 2 w - ^ = r

w = 0 if n = 2P

r = k, and ( ^ 7 / ) = 0 mod jo otherwise.

REMARK 1.13. By (2.7.3) of Theorem 2.7, the element zio will be denoted
simply by ziQ in §§3-5.

PROOF OF THEOREM 1.11. We shall prove (1.11.3) and the others are
proved similarly. Let {Er, dr} be the mod p cohomology spectral sequence
of the bundle (1.1). Since nξ is orientable, the local system of the bundle
(1.1) is trivial and we have E2 = H*(V2n,k)(g)H*(CP°o).

If k is odd, E2= Λ(vn-k'+u •••5 ̂ n-u ^CS^CyH From (1.8) and the natur-
ality of the transgression, we have

(1.14) τvj=pj(nξ)

Hence, the first non-zero differential is d2n=d^Q and

2ί0

5 d2nv=γn, d2nvj = 0 (j=n — k' + l, •••, i0, ••-, n — 1),
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Since yn = 0 in E2n+U we have c?r = 0 for r>2π, + l and E2n+i = Eoo. Therefore
we have (1.11.3) and (1.11.7) by [3, Proposition 7.4].

If k i s e v e n , E 2 = Λ(vn-k'+u •••> Vn-u v> v')<g>Zp\iy2 a n d

similarly. Now let {E'n d'r} be the mod p cohomology spectral sequence of
the fibration V2n,k >BSO(2n-k)-^->BSO(2n), then we have EL= Λ(v')
<g)Zp£pu •• ,jp»-*'H by (1.8). The map /„ in (1.5) induces / * : {E'r, d'r} •

{En dr} such that / * = W * = E'2 >E2 and f*v' = v', f *& = (") y2i for / * :

EL >£Όo. The element υ'e EL is the image of x' e H*(BSO(2n-k))

= Zp[pu •• ,pn-k>-u x'l by the projection H*(BS0(2n-k)) >Σ EL°'*=Λ(v').

Therefore the element υ1 e E^ is the image of z'=f*xf e H*(Z2n,k) by the

projection H*(Z2nιk) >ΣE°>*. These facts and [2, Proposition 8.1 (6)]

imply (1.11.3). Since 7r/*/?Λ_^ = %/2 by (1.7), we have

Now, we study the homomorphism in cohomology induced by the projec-
tion zr: X2n>k >Z2n>k in (1.5).

LEMMA 1.15. The homomorphism π*: H*(Z2n,k) >H*(X2n,k) is a mon-
omorphism and τi*y = y. Moreover, we can choose the classes ZJ, z?0, z and z'
such that π*zj = Zj, π*ZiQ = ZjQ, π*z = z and π*z/=z/.

PROOF. Consider the following commutative diagram:

C ] / XT' 7? Ijf

ii n ' n ' '

The homomorphism z'*: H*(L°°(p)) >H*(S1) is an epimorphism and so it
follows that i*: H*(X2n>k) >H*(S1) is an epimorphism. Therefore each
differential is trivial in the spectral sequence of the fibration S1 >X2n,k

Tc >Z2njk and the homomorphism 7r* is a monomorphism. Q.E.D.
By this lemma, it is sufficient to consider the structure of H*(Z2n>k) for

studying that of H*(X2n>k).
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§ 2. The m o d p cohomology of X2n,k and Z2n>k (continued)

We study the homomorphisms induced by the projections vk' Z2n,k >

Z2n,k~i and Vu'> X2n,k >X2n,k-ι when k is even.

We notice that, if one of N{n, 2k1) and N(n, 2k'-l) of Theorem 1.11

exists, then the other exists and they are equal.

LEMMA 2.1. Let k = 2k\ Then v%: H*(Z2n,k-d >H*(Z2n,k) and vf:

H*(X2n,k-i) >H^{X2n>k) are both monomorphίc. Moreover

PROOF. Consider the following homotopy commutative diagram:

S2n~k > V2n,k-^ V2n,k-i

ii n n
ς> 2 n - k . 7 v k 7
ύ > A2n,k > ̂ 2?ι,k-l

Then the lemma is proved similarly as Lemma 1.15. Q.E.D.

If k = 2k'—l, we obtain the following short exact sequence:

(2.2)

0 >H*(BS0(2n), BSO(2n-k))-^H*(BSO(2n))-^H*(BSO(2jι-k)) >0.

Since 7r/*/?y = O for n — kr + l<j<n — l, a n d 7Γ/*κ = 0, t h e r e e x i s t u n i q u e c lasses

Uj (n-kf + l<j<n-l) and U in H*(BS0(2n\ BSO(2n-k)) such that

(2.3) fUj=Pj (j=n-k'+l9 .,n-ΐ), j*U=x.

By the mapping cylinder considerations in the diagram (1.5), we have the

following homotopy commutative diagram:

n>h V2n,k)

(L-(p), X2n,k) -*-> (CP-,Z2n,k)—tiL2l(BSO{2n\ BSO(2n-k))

where CV2n>k is the cone over V2n,k-

LEMMA 2.5. Let 0<k<2n and k = 2k'-l. Then g*Uj = δ1vj for

n — k' + l < y < ^ — 1 and g*U=διv, where g is the map of (2.4) and διm.

2nM V2n,k).

PROOF. According to [8, Lemma 5.1], the following diagram is com-

mutative :
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n), BSO(2n-k)).
H*(CV2n>h V2n>k)

H*(BSO(2n),

Since τvj=ph we have pj e j*g*~ιδιVj. On the other hand j*Uj=pj and y* is
a monomorphism, and so ί/y e g *" 1^^-. Therefore g*Uj=διVj. Similarly we
have ^*J7=ίit;. Q.E.D.

By the diagram (2.4), we obtain the following commutative diagram of
the exact sequences for odd k:

0 0

(2.6) /* r.
H*(Z2n>k

Now, we characterize the classes */, ^z 0 and z by the classes in
H*(BSO(2n\ BSO(2n-k)) and the homomorphism /* .

THEOREM 2.7. Lei 0<A;<2^. The classes zj, ZiQ, z and z' in H*(Z2n,k) can
be chosen so as to satisfy the following conditions (2.7.1-5).

(2.7.1) z'=J%x' if k is even.

For the case (a) of Theorem 1.11,

(2.7.2) dzj

For the case (b) of Theorem 1.11,

zi=f*U]-(^)yi'-'f*U (j=n-k'+l, -.., to, -.., n-ΐ),

ί0,

(2.7.3)

For the case (c) of Theorem 1.11,

(2.7.4) SzJ=f*UJ + λiy^-2i'f*Uh (j=n-k'+l,

(2.7.5) δz=f*U+λΰy'-2ί°f*Uio,

where λj satisfies the formula (n. ) + λl ? )=0 mod p.

The generators of H*(X2n>k) are obtained by replacing f* with π*f$ and
f* with 7r*/* in (2.7.1-5).

PROOF. (2.7.1) has been proved in the proof of Theorem 1.11.
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It is sufficient to prove (2.7.2-5) for odd k by Lemma 2.1, By the diagram
(2.6), we have

(2.8) l*~tfU} = f*Pj = (*)y*i, t*f*U=f*x = y«.

Consider the case (a). Then there exists a unique class zj in HAj~ι(Z2n>k)
such that

since the image of the right hand side by ί* is zero by (2.8) and δ is mon-
omorphic in odd degree. To see that the above classes zj (j=n — A/ + 1, • ••,
n — 1) are generators of (1.11.1), it is sufficient to show that i*zj = Vj
(j=n — A/ + 1, ..., τι — 1). For this purpose we consider the following diagram
induced by (2.4):

n), BSO(2n-k))

By Lemma 2.5, we have δiVj — g^Uj and so we have

since A*j2;~w = 0 in H*(CV2n,k) Therefore we obtain ί*Zj~Vj because £j is
isomorphic.

In the similar way, we can prove the theorem for the other cases.
Q.E.D.

§ 3. Reduced power operations §>{ in H*(X2n,k) and H*(Z2n,k)

In this section, we determine the mod p reduced power operations §>* in
H*(X2flfk) and H*(Z2n>k) for n=pr or 2p\ and also we notice that they are
computable for any positive integers n and k (0</c<2τx).

A. Borel and J.-P. Serre [4, § 14] studied the mod p reduced power
tions φ{ in H*(BS0(2n)):

(3.1) > y ( ) j ^ y + β Σ;

(3.2) φix = xCi'\Pu ...,/>„_!, %2) (2q=p-ΐ)

w h e r e bi

p

>2i+2Qi is a n i n t e g e r a n d Ciι9(...) is g i v e n as fo l lows: L e t σ, be t h e

i-th e l e m e n t a r y s y m m e t r i c f u n c t i o n w i t h r e s p e c t t o i n d e t e r m i n a t e s xu •••, χm
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then Ci>q((7u .., σn) denotes the polynomial which expresses the symmetric
polynomial of typical term x\ x\.

Moreover, by S. Mukohda and S. Sawaki CIO], it is known that

(3.3) b'p'U+w

First of all, we calculate ύpz' in H*(Z2n,k) and H*(X2n,k) when k = 2k'.
Since z/=f^χ/ by Theorem 2.7, we have

and hence, we obtain

(3.4) ^ * / = * / c

Therefore we can calculate @>*z' for any n and even k.
Now let k = 2k'—l and consider the following diagram of the exact se-

quences (cf. (2.6)):

0—>H*(BS0(2n), BSO(2n-k))^H*(BSO(2n))-^UH*(BSO(2n-k))—>0

(3.5) / J ft I 7iJ
-9 Z2n,k) -JL

Then using (3.1-3), we have

(3.6) Φ'Uj='.

i! ] • )Uj+qi+ Σ Ufit, for j + qi--

yJ ί)Ux+ Σ U,at for j + qi =

in H*(BS0(2n), BS0(2n-k)\ where Uj and U are the elements in (2.3):

j*Uj=Pj (j=n-k' + l, -.., 77,-1), j*U=x.

Mapping (3.6-7) by /*, we have

Ίj+ai + '^fϊUtfϊat for j + qi

(3.8)

for j + t[i = n,

(3.9) f*Φ'U=f*UC< '>(β)y)y\ . .,
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Using (3.4), (3.8-9) and Theorem 2.7, we have the following theorem.

THEOREM 3.10. Let n=pr or 2//(r>l) and k be a positive integer such
that k<2n. Then the mod p reduced power operations °Pl in H*(X2n,k) and
H*(Z2n,k) are given by

(3.10.1)

{ 0

Φ'z' =

for

for £>0,(3.10.2)

where 2q—p—\.

PROOF. Assume that k = 2k\ then we have

ί z'C''ff(0, ••-, 0) if n=pr or 2pr, kf>pr

1 s'C^CO, ..., 0, 2 j 2 ^ ' , 0, ..., 0) if n = 2pr and A/<y,

by (3.4). According to Theorem 1.11 and Remark 1.12, we have γ2pr = Q in
H*(X2n,k) and H*(Z2ntk), and so we obtain (3.10.2).

We shall prove (3.10.1) for odd k. Then (3.10.1) for even k follows from
Lemma 2.1.

:/ 6 H*(BSO(2n)) is a polynomial of # ( / = !, •••, n),

Therefore/*^/ has a common factor y2pr and so we notice that

jo*/*α; = 0 for α/ 6 H*(BSO(2n))>

since p*γ2pr = 0 in H*(Z2ntk).

By (2.7.2-3) and Remark 1.12, we have

ί 2 if n = 2pr and j=pr

[ 0 otherwise.

Using (3.8-9) and the above facts, we have

if j + qi^ψn

if j + qί^n
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Σ

if ; + 9ΐ=N=»

if j + qi =n

if

where A, A' e H*(CP°°). Mapping this equality by ί* and using (2.8), we have
J = 0 and Af = 0. Since 5 is monomorphic in odd degree, (3.10.1) follows.

Q.E.D.

THEOREM 3.11. Let n and k be positive integers with k<2n, satisfying
n=nfpr, r > l , H / > 3 , (p, ^0 = 1 and Λ - [(A +1)/2] + 1 < / . ΓΛe^ ίλe
cohomology algebras of X2n,u and Z2n,k are the case (c) of Theorem 1.11 with
N(n, k) = 4pr<2n and the mod p reduced power operations ^(i>u) in H*(X2n,k)
and H*(Z2n,k) are given by

(3.11.1)

otherwise,

' < »

fσrp'

(3.11.2) 5>^

(3.11.3) 5>V = 0,

where 2q—p—l.

PROOF. It is clear that N(n, k) = ipr = 4:io<.2n by the assumptions and

so y2pr = 0 in ϋΓ*(Z2^) Hence we have

p*f*at = 0 for α, e H*(BSO(2n))9

similarly to the proof of Theorem 3.10.
We notice that the integers λj of (2.7.4) are zero if j^lpr (1 = 2, ..., n'—l),

and λ0 of (2.7.5) is equal to - l/nf. Therefore, using (2.7.4-5), (3.8-9) and
j 2^ rz=0, we have

i*f* Uio)

for

otherwise,
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for qi<n

for ίn + qi^n.

Here A, A', A and A' are some elements of H*(CP°°), and we see that these
elements are zero in the same way as the proof of (3.10.1). Hence (3.11.1)
and (3.11.2) follow.

(3.11.3) is obtained similarly to (3.10.2). Q.E.D.
In general, the mod p reduced power operations Φ* in H*(X2n,k) and

H*(Z2n,k) are given by the following

PROPOSITION 3.12. For any positive integers n and k (k<2n), the mod p

reduced power operations °Pl in H*(X2n,k) and H*(Z2n,k) are given as follows:

(3.12.1)

(3.12.2)

(3.12.3)

where Σ i n (3.12.1) is the sum of l=j\ >-•> j + qi — 1 for the case (α), (6) and

"̂ — 1 for ^ e c a s e (c) °f Theorem 1.11, and ah a\ areZ—min{y, i

some integers.

PROOF. We have already proved (3.12.3) in (3.4).
For the case (c) of Theorem 1.11, we have

δφiZj = φidzj = g>*(f* Uj + λjy v-2i°f* Uh)

for j-^n-qί

for j=n-qi9

Σ

by (2.7.4-5) and (3.8-9), where ah ax and a\ are some integers and A> A and
A' are some elements in H*(CP°°). In the similar way to the proof of
Theorem 3.10, we have (3.12.1) and (3.12.2).
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For the case (α) or (6) of Theorem 1.11, we have (3.12.1) similarly.
Q.E.D.

§ 4. Bockstein homomorphisms β in H*(X2n,k) and H*(Z2n,k)

P. F. Baum and W. Browder [1] determined the mod p cohomology
algebra of the projective unitary group PU(n)=U(n)/S1 and the reduced
power operations §>* when n = n'pr, (/>, n') = l and r > l . Moreover, they
determined the Bockstein homomorphism β in degree <2//~\ According to
[1, MAIN THEOREM I ] , the mod p cohomology structure of PU(tι) is the follow-
ing:

Let n-=np\ (p, n') = l and r > l . Then

where deg wj = 2j—l and deg y = 2,

ί βypr~\ A ^ O m o d o , for / = z/"1

(4.1) βwj=
{ 0 for j<pr-\

REMARK. It is proved that βwj=0 for j <pr~x of (4.1), in the proof of
MAIN THEOREM I in £1, p. 324]].

First, we shall extend (4.1) for all j (l<j<n, j^pr). For this purpose,
we use the properties of generators w} in H*(PU(n)).

Let EU(n) be a contractible space such that U(ή) acts freely, then
EU(n)/U(n) = BU(n) is a classifying space of U(n), and there is the follow-
ing homotopy commutative diagram ([12, §§1-2]):

(4.2)

BU(n)

where / w is a classifying map of nξ. Then we obtain the following diagram
induced by (4.2):

(4.3) \ | ^ ^ ^

^ ^H2>(BU(n)).

The cohomology algebras of BU(n) and Z7(rc) are given as follows:
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where the element cy is the universal y-th Chern class and the element uj is
transgressive and rwy = cy.

Since the y-th Chern class of nξ over CP" is [n )yJ\ we obtain t*f*cj

= / . * < * = ( " ) / i n (4.3).

LEMMA 4.4. Let n = n'pr, (p, nr) = l and r > l . We can choose the genera-

tors Wj 6 H*(PU(n)) (y = l, •• ,/> r, •••, 7i) such that

(4.4.1) ff«;y=

s/*cy otherwise.

PROOF. If pr does not divide y, then ί*/*cy = 0. Therefore we have a
unique element w; c H2j'~1(PU(n)) such that δwj=f*Cj. If j=lpr, we have a

unique element wy e /ί2-7'-1 (PU(n)) such that dwj=f*cj — —rι(
n )f*cι

pr. Using

the diagram (4.3), we have i*wj=Uj. Therefore the lemma follows from the
proof of [1, Corollary 4.2]. Q.E.D.

LEMMA 4.5. Let n = n/pr, (p, 72/) = 1 α^cί r > l . Then the Bockstein homo-
morphism β in H*{PU(n)) is given as follows:

( βιf for j=lf-1 (/ = 1, ...,^-1)

[ 0 otherwise,

where βι — ~—-[P \β and β is the one of (4.1).

PROOF. By Lemma 4.4, we have δβwj = 0 and so βwj e p*H*(CP°°). There-
fore βwj = 0 for j>pr.

Assume that//" 1 <j<pr Now, we use the same notations in the integral
cohomology # * ( Z) of BU(n) and CP°°. Set k=pr"1 and consider the

element χJ = af*cJ—ajy
i-kf*ck in H2j(CP°°, PU(n)\ Z\ where α = ^

modjσ and αy = — ^ \ Since ί*^ = α ^ y y " ° / j ) / = ° ί n H2j(CP°°; Z), there

exists an element x'j e H2j~ι{PU(n)\ Z) such that tf#y = A;y. Therefore we
have

kfnck = δ(awj — ajγJ' kWu)

in H2j{CP°°, PU(ii)) by Lemma 4.4, where pp is the modp reduction. Since δ
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is monomorphic in degree 2/—1, we obtain ppxj
and the fact βpp = O, we obtain 0 = βppXj = aβwj —

j kWk. Using (4.1)
j. Therefore we have

By the simple calculations it is proved that

0 otherwise

mod p. Therefore we have the lemma. Q.E.D.
Let h: U(n) >SO(2n) be the natural inclusion. Then, we have the

following homotopy commutative diagram of fibrations:

(4.6) 4
>PU(ή) >CP"

SO(2n)

and the commutative diagram of the exact sequences induced by the map h:

(4.7)
H*(BSO(2n),

j
H*(BU(n), *)=H*(BU(n))

>H*-\PU(n))-±

The homomorphism h*: H*(BSO(2n)) >H*(BU(n)) is given as follows
(e.g. [9]):

(4.8) h*pj= Σ (~l)j+kckch

(4.9) h*x = cn.

LEMMA 4.10. Let n = n/pr

ί (p, n') = l and r^>l. Then the homomorphism

X*: H*(Z2n,2n-ι) >H*(PU(n)) is given by

for j>n/2

for j = n/2, n = 2P

r

otherwise,

(4.10.1)

(4.10.2)

(4.10.3)
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Moreover, %* is a monomorphίsm in degree smaller than 2pr,

PROOF. Assume that n>%. Then N(jι, 2n — 1) = 4pr = 4i0 and
H*(Z2n,2n-ι) is the case (c) of Theorem 1.11. Furthermore, in the equality
(2.7.4):

we have Λ/ = 0 modp if j\lpr (1 = 2, ..., n'—ΐ). On the other hand,

w h e r e Aj>s e H*(CP°°), by (4.4.1). In th i s equality, ( j = 0 moά p if
\ s /

(/>0) and δw2j-sy
s = δ(w2j.sy

s) = 0 if s = lpr(l>0). By these facts and
(4.7-8), we have

δTι*zj = h*δZj=f*h* Uj + λj y 2i~ 2i«f*h* Uio

:o(-iy+sc2j^cs)- λjy

2'-2i>f*(j:o ( - iyC2lΰ.tCt

(( — l)j2δw2j
JrAf*CjQ if y<H,/2

Ά'ΐ*r ΐf \ „ /9
^ / » c^o n 7 ̂  n/Δi

where A, A' e H*(CP°°). Mapping this equality by ί* and using the fact
t*f*CiQ = n''γio^O, we have A = 0 and A' = 0. Since ί is a monomorphism in
odd degree, we have (4.10.2) for π / > 3 .

For the case n' = 2, N(n, 2n — l) = Apr = 2n and H*(Z2n,2n-ι) is the case (b)
of Theorem 1.11. Therefore

2j-nδwn if j<n/2

0 if j>n/2,

by (2.7.3) and (4.7-9), and so we have (4.10.2) for n' = 29 similarly. (4.10.2)
for n' = l and (4.10.3) are proved in the same way. Q.E.D.

There exists a ίibration V2n-k+2,2 > V2n,k
 V]c > V2n,k-2^ w h e r e vk is t h e

natural projection. This fibration induces fibrations V2n^k+2,2 > Z 2 n > k - ^ ^

Z2n,k-2 a n d V2n-k + 2,2 >X2n,k-^X2n,k-2. If A = 2k' - 1, VA* : if* ( F"2lii*-2)

= Λ(v»-^+2, ••-, v»-i, v) >H*(y2n,k) = Λ (V»_Λ'+I 5 ••-, v«-i, υ) is g i v e n a s

follows ([2, § 1 0 ] ) :
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And so we have the following lemma.

LEMMA 4.11. Let k — 2k/—l. If N(n, k) = 4d0 exists, then assume that

io^>n/2 or io^=n — k'+l. Then the homomorphisms v*: H*(Z2n>k-2) >

H*(Z2n,k), H*{X2n>k^2) > H*(X2n,k) are given as follows:

vfzj = Zj for n — /c' + 2<ιj<,n — ly

Moreover pf are monomorphic.

By the induction on k, we determine the Bockstein homomorphism β in

H*(Z2n,k) and H*(X2n,k) when n, k satisfy (*) of below.

THEOREM 4.12. Let n and k be positive integers with k<2n, satisfying

(*) n = n'pr, r > l , (p, n') = l; ^-[(A; + l)/2] + l <f if nf>3.

Then the Bockstein homomorphisms in H*(X2n,k) and H*(Z2n>k) are given by

[Mιy2j for jKnfaj^lp'-1 (1 = 1, - 9p-ΐ)
(4.12.1) βZj=\

(0 otherwise,

(4.12.2) ^ = 0, βz' = 0, βχ = y, βγ = O,

where βι is the same as in Lemma 4.5.

PROOF. The last two relations of (4.12.2) follow from (1.10). It follows

easily that βzr = 0 by the dimensional reason. According to Theorem 2.7, we

have δβzj = 0 and δβz = 0 and so βZj and βz are the elements of p*H*(CP~).

Therefore βzj = 0 for j>P

r and βz = 0, since γ2pr = 0 in H*(Z2n>k) under the

assumption (*) (cf. the proof of Theorems 3.10 and 3.11).

By Lemmas 2.1 and 4.11, it is sufficient to prove (4.12.1) in H*(Z2nt2n-\)

for j<pr. By Lemmas 4.5 and 4.10, we have

i-2β2y
2^1 for j=P>-1

\
{ 0 for j < p r l

^ 1 f o r j^p9"1

1 0 for j<pr-\

Since —2μ2= —(p — ΐ)ju = μ mod p, h*γ= y and Λ* is monomorphic in degree

smaller than 2pr, it follows that
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[My2*"1 for j=p'-1

(4.13) βZj={
{ 0 for jKp"1.

Replace Cj€H*(BU(n); Z) and y e H*(CP°°; Z) in the proof of Lemma 4.5
with Uj£H*(BS0(2n),*;Z) and γ2 e H*(CP~; Z), then we obtain (4.12.1)

ίoτ j<pr by the entirely same technique as the proof of Lemma 4.5, using

(4.13) and (2.7.2-4) in place of (4.1) and (4.4,1). Q.E.D.

REMARK. If n—pr in Theorem 4.12, then (4.12.1) is shown by Lemmas

4.5 and 4.10 only.

§ 5. The relations between K2n,k and X2U}2m,k and between

Z>2n,k a n ( l Z2n + 2m>k

We consider the following homotopy commutative diagram:

(5.1)

n +

Here d is the diagonal map, μ and μf are the multiplications, fn and fm are

classifying maps of nξ and mξ, respectively. Then (2π, + 2τ7i)-plane bundle

(jι + m)p*ξ has a map μ(fnxfm)dp as a classifying map and μ(fnxfm)dp is

lifted to μ'(fnXfm)d':Z2n,k >BSO(2n + 2m-k), where d' = (l xP)d: Z2n>k

>Z2n>kXCPc°. Therefore the associated F2wf2»i>*-bundle of (n + m)p*ξ over

Z2n,k has a cross section and so we obtain a map p: Z2n>k
 >Z2n+2m>k such t h a t

p*/*f = p*f. Similarly, we have a map p: Z2w,^ >X2,̂ 2™>

In this section, we use the same notations for the generators of H*(Z2n,k)

(resp. H*(X2n,k)) and H*(Z2n+2m>k) (resp. H*(X2n+2m,k)).

THEOREM 5.2. Let 0<k<2n and set N= N(n + m, k) = UQ, N'= N(n, k)

= 4/Q, and K(j) = {s\j—n + l<s<m}, K'(j) = {s\j—n + l<ίs<ίm, s^ψj — i'Q}.

Then the homomorphίsms p*: H*(Z2nv2m>k) >H*(Z2n>k) and p*: H*(X2n+2m>k)

>H*(X2nfk) are given as follows:

(5.2.1) p*x = x. Q*y=y,

(a) If Nexists and 2n + 2m>N=4:io, then



332 Tsutomu YASUI

(5.2.2) p*zj= Σ () (^

TV' exists and 2n>N\

(5.2.3) p*Zj = Σ r V v . + 'li Σ (m)γ2J-2io+2tZi0-t otherwise,

(5.2.4)
Σ

o Σ (™)yn+m-2ib+2%-t otherwise,

where λj satisfies the formula (n . m ) + λj(n.m)=O m o d p .

(6) // iV exists and 2nJ

Γ2m<iN or N does not exist, then

(5.2.5) p*zj= Σ (™)γ2szj_s-(n + mλγ2j-nz when Nf exists and 2n>N',

(5.2.6) p*zj= Σ (m)γ2szj-.s otherwise.
s€K(j)\ S /

PROOF. (5.2.1) follows from p'p~p. From the diagram (5.1) and the
mappingj-cylinder considerations, we have the^ followingjj[commutative dia-
gram:

(5.3)

ττ*-lf7 >\ s v TJ^/TΌ00 7 \2JLL21 Tf*CR QΠί9n J-9mλ 7? %Πf9n 4-9m ZΛ^

H*-ι(CP") p* ?* H*((BS0(2n), BSO(2n-Jc))xBS0(2m))

^Z2n>k) < £ H*((CP~, Z2n>k) x CP").

It is well-known that

s + t=j

where ph p'h p] and x, x', x" are the -th Pontr jagin classes and the Euler
classes of the universal oriented (2n + 2m)-, 2n-, 2ττι-plane bundles. Therefore
we obtain

(5.4) β*Uj=gΣ{ U'^xp'+irtxp^

(5.5) μ*U=ϋ'XXπ,

where U, Uh V and Uj are the elements determined by (2.2-3).
Consider the case (α). Using (2.7.4) for n + m and (5.3-5), we have
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δp*zj = p*δz} = p*(f*+mUj + λjy

2ί-2iϊ*+m Uia)

= d*(Jn x fm)*β* Uj+λσ^-^d*Cfn x fm)*β* Uio

= Σ f*U'J-,p.(mξ)+f*ϋrγ''pj.n(jnξ)
seκ(j)

. f*U'it-φ(mξ)+f*U'y"pit-H(me)\ .Σ.

Assume that Nf exists and 2^>iV/ = 4io- Then, using the fact γnδz
nz) = 0 and (2.7.4), we have

j= Σ

Σ p,(mξ)dzh.t- Σ λ'i^y
' t κ ' i

Σ Pt(mP*ξ)zltJ+Af*U'{,Σ

for some A e ^Γ*(CP°°). In the same way as the proof of (3.11.1), we have
A = 0. Since δ is monomorphic in degree 4/— 1, we have

P**,= Σ C")y"xj + b ΣΣ
( ί O )

Assume that Nf exists and 2n<>N
/ or Nf does not exist. Then we have

y= Σ p8(mξ)δzj-8+ Σ

teK(iQ)

ΣLΛ
.S6K(j) '

h Σ

for some A e H*(CP°°) by (2.7.2-3). In the similar way to the above, we
obtain

ΣP**J= Σ h)yzj.s + λi Σ

and (5.2.3) follows.
In the similar way to the proof of (5.2.2-3), we have (5.2.4-6). Q.E.D.
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REMARK. In §§3-4, we determined explicitly the reduced power opera-
tions ty1 and the Bockstein homomorphism β under the assumption (*) of
Theorem 4.12. Using the results of this section, we can expect to study °P'1

and β for other n and k.

§ 6. Applications to the immersion problem for the lens spaces

We denote Ln(p) the mod p lens space of dimension 2ra + l, and ηn the
restriction of -η over LT(p) to Ln(p). By Ln{p)^R\ we mean that Ln(p) can
be immersed in the real &-space Rk. The next theorem for immersion was
proved in [7, Theorem 1].

THEOREM 6.1 (Kobayashi). Let n = (p — ΐ)s +r (0<r<p— 1) and k be a
positive integer with k<ί2nJrl and let a be a positive integer such that
2aps+€>4^ + 3, where e=0 or 1 according as r < l or >1. The necessary and
sufficient condition for Ln(p) ^R2n+1+k is that the bundle {aps+ε — (n + l)}τ}n has
2aps+ε—(2n + k-\-2) independent cross sections.

One of our main theorems is the following

THEOREM 6.2. Let r and n' be positive integers such that r > 2 and
(p5 n') = l and let m and t be non-negative integers satisfying

(*) 0<ί<7π, m-t+(p-l)/2<pr~\ t<pr~\

Then, the bundle (n'pr + πι)7]n over Ln(p) does not have k independent cross
sections for

(**) k = 2n'pr-2lpr-1 + 2t + l, 2lpr~1 + 2rn-2t+p-l<n<2pi\

1 = 1, . ;p-l.

Before proving Theorem 6.2, we consider the applications.

THEOREM 6.3. Let r (>2), m and i be non-negative integers satisfying (*)
of Theorem 6.2, then

(6.3.1) £^-«-i(i,)

(6.3.2) L2pr-tn^p^Repr^2pr-l-2t-2 tf ^ < [(2/"1-p + 2ί)/3].

PROOF. Assume that m<t(/-ι-p + 2t)/?>-] and Lpr-m'\p)QR3pr-p

By Theorem 6.1, the bundle (n'pr + m)7jp,_m_1 has 2nfpr-(P-l)pr-1

independent cross sections, where n/=aps+£~r — l for some integer a. By the
assumption m<\i(pr-ι-p + 20/3], we have (p- Y)pr~ι + 2m- 2t + (p-ΐ)
<pr-m-l. This contradicts to Theorem 6.2 and so (6.3.1) follows. The
proof of (6.3.2) is similar. Q.E.D.



On the Gohomology of Certain Quotient Manifolds of the Real Stiefel
Manifolds and Their Applications 335

Now, we use the following results to prove Theorem 6.2.

PROPOSITION 6.4. Let r, n and k = 2k'—l be positive integers with r > 2 ,

(p5 nf) = l and m be a non-negative integer such that m<in'pr + m — k' + 1 < p r .

Then Φ1 and β in H*(X2n>pr+2m!k) are given by

(6.4.1) Φ1zJ=(-ΐ)q(2j-l)zJ+q + Σ (-iYns2mγ2szj+q^

for

(6.4.2) βzj= Σ Y . f r-iV/72y for n'}

where /J,I = —Γ-[PΊ ,)β^0 mod p is the same as in Lemma 4.5 and 2q = p — l.
I \l 1/ Γ

 Ί. r

PROOF. The homomorphism p*: H*(X2n'pr+2m,k) >#*(X2^ve) is given

by (5.2.2) if /z/>3, since N(jι'pr + m, k) = N(nfp\ k)=ψ<2nfpr and by (5.2.3)

or (5.2.6) if π/<2, since N(2p\ k) = ipr and N(pr, k) does not exist. There-

fore

~ ^ V 2 s for

since ίnP .mJ=0 and so Λ/ = 0 mod p for m<j<pr.

Now φx

Zj has the form Φι

Zj= Σ atγ
2tzJ+q_t(a0 = (-iy(2j-l)) by (3.12.1).

t = o

Therefore

q m / jγj \

Q%(sj)i2k-—. y* Ύ1 dt[ )γ2^+2sz t f o r

On the other hand

by (3.10.1) or (3.11.1). Comparing the coefficients of these equations, we have

for * = 0, ..., g .

Therefore we have αs = (— l)^52m, for 5 = 1, ..., q, by the induction on 5 and

we have (6.4.1).

If j<p\ then
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by (4.12.1). Therefore (6.4.2) follows. Q.KD.

LEMMA 6.5. Suppose there is a map f: Ln(p) >X2m,k such that the follow-
ing diagram is commutative:

If 2j<n and βzj = βγ2j, then f*Zj= βxy2j~ι in HAj-\L\p)).

PROOF. By the commutativity of the diagram, we have f^% — % and
f*γ=γ. Assume f*zj = Ju

/xγ2j'-\ then β'γ
2j = βf*zj=f*βzj = βy2j.

Q.E.D.

COROLLARY 6.6. Set m of Lemma 6.5 be n'pr + m. Under the assumptions
of Proposition 6.4, we have

βixγ2^1 for n'/ + m-k' + l<j</.

PROOF OF THEOREM 6.2. Assume that (n'pr + m)r/n over Ln(p) has k inde-
pendent cross sections, where k=^2n/pr — 2lpr~ι + 2t + l. Then its associated

2̂̂ />^+2w -̂bundle has a cross section and so there exists a map / : Ln(p) >
X2n'pr+2m,k such that the following diagram is commutative:

j -Λ-2n'pr + 2m,k p

Ln(p) C L~(p).

Let j=lpr~1 + m — t and 2q=p — 1. By (6.4.1), we have

(6.7) ^z^i-iyVj-Vz^+ht-iy

Since 2(j + q)<n and n/pr + m — k'+l<j + q<pr by the assumption (**),
f*zj+q-s (0<><Cgr) is given by Corollary 6.6, and its coefficient is

Σ (/, ,/\ r-i m , )βv> In this summation, the binomial coefficients
/ ' = 1 \ ( Z — ί)p + q — s + m—t/
are zero if Γ^l by the condition (*). Therefore we have

(6.8) f*Zj+ί-s = {t_™+s)M,xy2J+2'>-2s-1 for 0<s<q.

If 0<,t<,q—l, we have



On the Gohomology of Certain Quotient Manifolds of the Real Stiefel
Manifolds and Their Applications 337

by (6.7-8) and the simple calculations of the binomial coefficients. On the
other hand, we obtain

by (6.8). Since ( m ) ^ 0 mod p and Ui^O mod p, we have f*jP1zj=^jP1f*zj,

which is a contradiction.
If t = q, we obtain similarly

which is a contradiction.
Finally, if t>q, we have similarly a contradiction:

2j+2q~\ Q.E.D.

REMARK 6.9. Comparing Theorem 6.3 with D. Sjerve's Theorem for im-
mersions PL45 Theorem 4.7 (i)J, we have, e.g., the following results:

if n = n/pr~i(n/pr-1p

l, nf = l or 2;

if n = ny-t(n/pr-1

= n/pr-(n/pr-1-p + 2t-l)/3-l, n'' = 1 or 2.
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