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§ 0. Introduction

Throughout this paper, p will denote an odd prime integer.

Let S2"*! be the unit (2n+1)-sphere in the complex (n+1)-space. Then
the free actions of S'={e’’|0 <0<27} and Z,={e'’|0=27h/p, h=0, ..., p—1}
on S+ are defined by e*(zo, ---, z,)=(e*’z0, ---, €°z,).

Let 7, be the Stiefel manifold of orthonormal k-frames in the real
2n-space R*". We define free actions of S' and Z, on V3, such that e’
operates on each vector of k-frame as above. We consider the quotient
manifolds

ZZn,k: VZn,k/Slp XZn,k: V27z,k/Zp~

Then Z;,,=CP"!, the real 2n—2 dimensional complex projective space, and
Xsu,1=L"""(p), the 2n—1 dimensional mod p lens space.

Let ¢ and 7 be the canonical complex line bundles over CP~ and L~(p),
respectively. Then the above manifolds Z,,, and X.,, are homotopy
equivalent to the total spaces of the associated 75, ,-bundles of n& and nz,
respectively, as is shown in Proposition 1.3. Consequently, it is expected
that the cohomology structures of Z,,, and X, give us the informations
about the structures of n¢ and ny and so the immersion problem for lens
spaces L"(p).

Recently, S. Gitler and D. Handel [5] have considered the projective
Stiefel manifolds, which are the above manifolds X, , for p=2 (in this case,
n need not be even), and determined their mod 2 cohomology algebras and the
actions of the Steenrod squares up to a small indeterminancy. Also,
P.F. Baum and W. Browder [ 1] have determined completely the actions of the
Steenrod squares when n is a power of 2. Moreover S. Gitler [ 6 ] has applied
these results to the immersion problem for the real projective spaces.

The purpose of this paper is to study the mod p cohomology structures
of Zs, and X3, , and to apply these results to the problems of independent
cross sections of ny and immersions of L*(p).

In §1, we prove Theorem 1.11, which determines the mod p cohomology
algebras H*(Z;,,:) and H*(Xz,,;). Furthermore the generators are given in
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Theorem 2.7, using the universal Pontrjagin classes p;, and Euler class z,
which is proved by the analogous method in [5]. The mod p reduced power
operations 9’ in these algebras are studied in §3, using Theorem 2.7 and the
well-known results on 9’p; and P'x. Also we study the Bockstein homomor-
phism 3 in §4, using the results of [1, MaiNy Turorem I (7.12)]. 9% and 8
are determined explicitly in Theorems 3.10-11 and 4.12 for n=n'p” (r=>1)
and some k.

For the applications, we study the relations between Z, ;, and Zz,, 2, 5 in
§5 and prove Proposition 6.4. Finally, we apply Proposition 6.4 to Theorem
6.2 which is a non-existance theorem of k£ independent cross sections of the
bundle m7y over L"(p). By Theorem 6.2 and T. Kobayashi’s Theorem [7,
Theorem 17, we obtain Theorem 6.3, which is a non-immersion theorem for
lens spaces L"(p).

The author thanks Professors M. Sugawara and T. Kobayashi for their
kind advice.

§ 1. The mod p cohomology of X3, , and Z3,,

In this paper, the cohomology H*( ) will be understood to have Z, for
coefficients, unless otherwise stated.

Let 7,,,, be the Stiefel manifold of orthonormal k-frames in the real 2n-
space R*" and define a free action of S'={e?’|0<<0<2r} on V3, , by consider-
ing

el= € U(n)SO(2n).
0
ei() J
We consider the following quotient manifolds:

— 1 _
ZZn,k— VZ/:,!&/S Y XZH,k’_ VZ)L,]-}/Z[)

where Z,= {e'’|0=2nh/p, h=0, 1, ..., p—1} C S

Let £ and % be the canonical complex line bundles over the infinite
dimensional complex projective space CP~ and the mod p lens space L~(p),
respectively, and né (resp. ny) the Whitney sum of n copies of & (resp. ). The
real restriction of né (resp. ny) is denoted by the same notation né& (resp.
ny). The associated Vs, -bundles of n& and ny are the following:

(11) VZ”,k — ST x S! VZn,k —_— CP”,
(1.2) Vone — 87X 2, Vany — L™(p),

where S~ ig the infinite dimensional sphere and the projections are defined by
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the natural projections S*——S°/S'=CP~ and S*——S~/Z,=L~(p), respec-
tively.

Prorosition 1.3.  The manifolds Zs, , (resp. Xa,.1) and S™ % s1Vy, , (resp.
Sz, Vanr) are of the same homotopy type and the matural projection
Vono——Zon 1 (resp. Vioy —— Xour) can be identified with the inclusion.

Proor. The following diagram is commutative:
St— 8% Vour——S" % s1Vons

y ¥
> Vle,k - ZZn,k)

1.4)

|
Sl

where vertical maps are the projections. The projection S™x Vo, r—— Vo
is obviously a homotopy equivalence and the inclusion map Vs, ,——S™ % Va, s
is its homotopy inverse. Hence, by the homotopy exact sequences of the
fibrations and the five lemma, the projection S~ gi1Vy, —— 22, induces
isomorphisms of all homotopy groups, and we obtain S*x 51V, ™= Zoy s
Similarly it follows that S»x 2, Ven 1 ™= Xon e Q.E.D.
According to Proposition 1.3, we identify the space S™x 1V, , with Zs,
and S™x z,Von with X, s.
Now, let f,: CP™——BS0(2n) be a classifying map of n&. Then f,7 is a
classifying map of n7, since y=r*¢, where n: L”(p)——CP~ is the natural
projection. Therefore we obtain the following homotopy commutative
diagram:
Vz?z,k: Vz;z,k: VZn,k
R

(1.5) XZ;,{ k —LaZi,,,k—fl‘»B;/SO(Zn —k)
L™ p)—sCP=—L2, BSO(21).

The mod p cohomology structures of 7, , and BSO(n) are the following
(2], 3] and [9, Theorem 327]):

/\<Un—/e”+1; sy Upely ’U) if k=2k"-1
(16) H+< VZH,k): .

/\(Ufz—lz’+1, sy Upyo1y Uy 'U/> if k:2/€/,
where deg v;=4/—1, deg v=2n—1 and deg v'=2n—k.
Zyl p1y oy puro1y %] if n=2n
Zp[Pb Ty pn’—l] if n=2n"-1,

1.7 H*(BSO(n))=

where p; is the j-th Pontrjagin class of the universal oriented n-plane bundle,
x is its Euler class. Notice that x*=p, , for n=2n". Moreover the elements
v; and v are transgressive in the fibration 7, ,——BSO(@2n—k)——BS0(2n),
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and
1.8) TV;= pj TUV=2X.
Also, it is well-known that
1.9 H*(CP=)=Z,[y], where deg y=2,
(1.10) HXL™(p)= N)RZ,[ y ],

where deg x=1, deg y=2 and Sx=y (B denotes the Bockstein homomor-
phism).

Tueorem 1.11. Suppose 0<k<2n and set k'=[(k+1)/2]. Let
N=N(n, k)= min {4i ln—k+1<i<n—1, (?)xo mod p}.

Then the mod p cohomology algebras of Xzn,, and Zsy,, are as follows:
(@) If N does not exist or vf N exists and 2n <N,

ANGnerrity s 20-1)QZLy 1/(y™) for odd k
V(Znosts -5 201, 2)RQZLy1/(y")  for even k,
AGuiat, o 20 )QADRZLyI/(y™)  for odd k
V(Znrrsty o Zno1, ZDQN@)RZp vy 1/(y") for even k.
(b) If N exists and 2n=N=4i,,
ANGutrsty oo Bigg s Zn-1)QZp y /(¥ N (z4,)

for odd k
V(Zuorrsty ooy Zigy ooy Zao1y 2DRZLy 1/ (y"Q N (z,)

for even k,

A111) H*Zzwp)=

(111.2) H*(szk):{

L11.3)  H¥(Zy )=

N (Zn—prs1s 0 21'03 s Zpo1)
QA@QZ y1/(y"RDN(z;,)  for odd k
1.11.4) H*(Xgpp)=
V(Zuorre1s o Bigs ©tvs Znels z')
RNA@IRZ,Ly J/(y"RQN(z:,)  for even k.
(¢) If N exists and 2n>N=4i,,
AGueprsts o 21'0: ctry A1y Z)®Zp[y]/(y2’°)

1115)  H*Zaur)= J Sfor odd k
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\/(zﬁ—k’+17 Tty 2503 coy -1y 2y Z/>®Zp|:yj/<y2i°>
for even k,
/\(zﬂ—k’+ls Tty 21'0’ sty Zp-1y Z)®/\(x)®zp[y:|/()/21°)
for odd k
\/(zn—k’+1: ) 21'0, sy Bp—1s 2y Z/)®/\(x)®zﬁ[y]/(y210)

for even k.

(1.11.6)  H*(Xyp,0)=

Here deg z;=4j—1, deg z;,,=4i,—1, deg z=2n—1, deg 2'=2n—k, deg x=1,
deg y=2 and V (h1, ---, hs) means the algebra with hi, ..., hs as the simple
system of gemerators, and 2;, indicates that z; has been omitted. Moreover, we
have the following relations:

Ii*zjzvj, i*zi‘]:vio—(?’>v, itz=v, *2'=v;
0

1117

kp*x:x, ])*y:y, z/Z_—_(nEk/)yzn_k,

where p and i are the maps in (1.5).

Remark 1.12. When n=p" or 2p” (r>1), the case (c¢) does not appear
and V (...) are A(...). In fact, N(p’, k) does not exist for any %, and
N@2p', k)=4p” if k'>p” and N(2p’, k) does not exist if ' <p”. Moreover

2#=0, since y*"*=y"=0if n=2p" =k, and <nfk’>50 mod p otherwise.

Remark 1.13. By (2.7.3) of Theorem 2.7, the element z; will be denoted
simply by z;, in §§3-5.

Proor or Tuxeorem 1.11. We shall prove (1.11.3) and the others are
proved similarly. Let {E,, d,} be the mod p cohomology spectral sequence
of the bundle (1.1). Since n¢ is orientable, the local system of the bundle
(1.1) is trivial and we have Ey,=H*(Vy, ) QH*(CP~).

If £ is odd, Ezs= A (vn_prs1, -5 Va1, V)QZy[ y]. From (1.8) and the natur-
ality of the transgression, we have

(1.14) o= pj(ng)=(’]?>y2f, ro=x(nf)=y".
Hence, the first non-zero differential is d,,=d4;, and

dZn'Uio:(ZJ)yZiO, dva:}’ns dZn'Uj:O (]:n_k/+1: ) 2:03 oy n—1),
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E2n+1: /\(Un—k’+1> Ty f]ioa Ty Uﬂvl)®/\(Uio_(?())'u)@Zﬁ[y]/(yn)'

Since y"=0 in E,,,1, we have d,=0 for r=>2n+1 and E,,,=E.. Therefore
we have (1.11.3) and (1.11.7) by [ 3, Proposition 7.4].
If kis even, Ey= A (vy_pri1s -5 Va1, 0, 0)RZ[ v ] and

E.= AWy -5 Digy -ooy U1, v’)®/\(vf0—<irz>v)®zp[y]/(y”),

similarly. Now let {E;, d;} be the mod p cohomology spectral sequence of
the fibration 7, ,—— BSO(2n—k)—=> BSO(2n), then we have E.= A(v))
RZyL piy s prw] by (1.8). The map [, in (1.5) induces fF: {E, d;}—>

{E,, d,} such that J*=1Qf*: Ej——E, and [*v'=0/, f,;kpj:(@yzf for J:
E,——E,.. The element v ¢ E, is the image of x ¢ H*(BSO(2n—k))
=Zy[ p1, -+, pu-i—1, ¥ ] by the projection H*(BSO2n—k))— Z}OELP”= A @),
Therefore the element v ¢ E. is the image of z’:];"x'EH *(Zon1) by the
projection H *(Zzn,k)——>§.' ES%*.  These facts and [2, Proposition 8.1 (b)]
imply (1.11.3). Since n/*;l_k/:x’z by (1.7), we have

22 :ffjkxlzszﬂ/*})7z—k/ :P*f;kpﬂfk’:<n ﬁ k/>y2n-k_ Q.E.D.

Now, we study the homomorphism in cohomology induced by the projec-
tion 7: XZﬂ,k_—)ZZn,k in (15)

Lemma 1.15.  The homomorphism 7*: H*(Zyp 1)—— H*(X2,.1) 1S @ mon-
omorphism and 7*y=y. Moreover, we can choose the classes z;, z;, z and z’
such that ©*z;=z;, ﬁ'*ziozzio, T*z=z and 7¥z'=z'.

Proor. Consider the following commutative diagram:

S] ““‘—‘) XZ;z,k —‘;;——) ZZN,k
| el ’
St — L= (p)—=— CP~.

The homomorphism i*: H*(L~(p))—— H*(S") is an epimorphism and so it
follows that i*: H*(Xs,,)—— H*(S") is an epimorphism. Therefore each
differential is trivial in the spectral sequence of the fibration S'——X;,,
—% 73, and the homomorphism 7#* is a monomorphism. Q.E.D.

By this lemma, it is sufficient to consider the structure of H*(Z;, ;) for
studying that of H*(Xs,,1)-
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§ 2. The mod p cohomology of X3, ; and Z,, , (continued)

We study the homomorphisms induced by the projections v,: Zy, ,——
Zon—1 and vy: Xopp—> Xop o1 When k£ is even,

We notice that, if one of N(n, 2k") and N(n, 2k'—1) of Theorem 1.11
exists, then the other exists and they are equal.

Lemma 2.1, Let k=2k. Then vi: H*(Zyy 1) —— H*(Z3,) and v¥:
H*( Xy, p_1)—— H*(X3n,1) are both monomorphic. Moreover

+ — - p—— — — ko,
vizgi=z;, Vviz, =z, vii=z, vix=x, viy=y.
Proor. Consider the following homotopy commutative diagram:

SZn—k SN V2n,k i—-) V271,,k71
n " "

o2n -k v
S s Ly h — Zz;;,k_1-

Then the lemma is proved similarly as Lemma 1.15. Q.E.D.
If k=2k'—1, we obtain the following short exact sequence:

(2.2)

0——H*(BSO(2n), BSO(2n— k))—j*—»H*(BSO(2n))—”—/1—>H*(BSO(2n-— k)—0.
Since n"*p;=0 for n—k'+1<j<n—1, and n"*x=0, there exist unique classes
Ui (n—k'+1<j<n—1)and U in H*(BSO(2n), BSO(2n—k)) such that
(2.3) P*Ui=p; (j=n—k+1, ..., n—1), F*U=x.

By the mapping cylinder considerations in the diagram (1.5), we have the
following homotopy commutative diagram:

@9 (CVnps Vens)
hl 4
(L=(p), Xons) = (CPZopy)—In_ 3 (BSO(2n), BSO(2n—k))

where CV;,, ; is the cone over 7, ;.

Lemma 2.5, Let 0<k<2n and k=2k'—1. Then g*U;=0v; for
n—k'+1<j<n—1 and g*U=0,v, where g tis the map of (2.4) and 0;:
H*gl(V27z,k>_z“)H*(CV2n,ka VZn,k>~

Proor. According to [8, Lemma 5.1, the following diagram is com-
mutative:
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i~ H*(BSO(2n), BSO2n—k)) _ g«
< n'L \ H*(CVZﬂ,k) VZn,k)
* A~
H (BSO(2ni, Vant) ‘\SH*:T( -
SNCHA(BSO@n—), Var ) °

H*(BSO(2n))

H*(B:S'O(Zn), *)

Since tv;=p;, we have p; € j*g* '01v;, On the other hand j*U;=p; and j* is
a monomorphism, and so U; € g*'0,v;. Therefore g*U;=0.v;. Similarly we
have g*U=01v. Q.E.D.

By the diagram (2.4), we obtain the following commutative diagram of
the exact sequences for odd %:

0— H*(BSO(2n), BSO2n— k)25 H*(BSO(2n)=" H*(BSO(2n— k))—s0
(2.6) 73| i) 4|
S H* N Zyy )L HH¥(CP™, Zoy ) > HX(CP™) —2 s H¥(Zyy )—e .

Now, we characterize the classes z; z;, and z by the classes in
H*(BSO(2n), BSO(2n—k)) and the homomorphism f*.

Tueorem 2.7. Let 0<k<2n. The classes z;, z;, z and z’ in H*(Z,, ;) can
be chosen so as to satisfy the following conditions (2.7.1-5).

2.7.1) Zd=fF if ks even.
For the case (a) of Theorem 1.11,

2.7.2) 6zj—_—f,;kUj—<;%)y2f—" AU (jmn—k 41, oy n—1),
For the case (b) of Theorem 1.11,

az,:f,;kUj—(;?)yzf'-"f;kU Gmn—k 1, oy foy ooy n—1),
(2.1.3)
0z, = [*U; —<?0>ij.
For the case (¢) of Theorem 1.11,
(2.7.4) 0zy=J Ui+ Ay ¥ 275U, (j=n—k+1, ..., 5oy oy n—1),

(2.7.5) Oz=fXU+doy" ¥of XU,

where 2; satisfies the formula <?)+lj<§2>£0 mod p.

The generators of H*(Xs, ) are obtained by replacing fi with #*[* and
¥ with 7*fF in (2.7.1-5).

Proor. (2.7.1) has been proved in the proof of Theorem 1.11.
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It is sufficient to prove (2.7.2-5) for odd k£ by Lemma 2.1. By the diagram
(2.6), we have

28) ofru= = (G )y LU= fia= g,

Consider the case (a). Then there exists a unique class z; in H* " (Z3,,,)
such that

5Zf=foj—(?>y2j_”fn*Ua

since the image of the right hand side by ¢* is zero by (2.8) and ¢ is mon-
omorphic in odd degree. To see that the above classes z; (j=n—4&"+1, ...,
n—1) are generators of (1.11.1), it is sufficient to show that i*z;=v;
(j=n—k+1, ..., n—1). For this purpose we consider the following diagram
induced by (2.4):

H*_I(VZn,k)’—il_"H*(CVZn,k, VZn,k) &*
i+ w /\H*(BSO(2n>, BSO@n—F)
H*—I(Zzn,k) ~—§—>H*(CP°°, Zan k) 3

By Lemma 2.5, we have 0,v,= g*U, and so we have
mvjzh*f,:kvj:h*(@zﬁ(?)y”*"ﬁv):mi*a*(ﬁ”*y”*“h*ffU:6]i*zj,

since h*y*"=0 in H*(CV,, ). Therefore we obtain i*z;=wv; because J, is
isomorphic.
In the similar way, we can prove the theorem for the other cases.
Q.ED.

§ 8. Reduced power operations 9’ in H*(X,, ;) and H*(Z5, ;)

In this section, we determine the mod p reduced power operations 9’ in
H*(X3,,) and H*(Z,) for n=p" or 2p’, and also we notice that they are
computable for any positive integers n and k£ (0<k<2n).

A. Borel and J.-P. Serre [ 4, §14 | studied the mod p reduced power opera-
tions 97 in H*(BSO(2n)):

jtai-1

(3.1) Pipi=(=D)¥b2+20ip; i+ IZI pic,  a; € H*(BSO(2n)),
=j

(3.2) Pix=2C"*(p1, -y pu-1, 22)  (2g=p—1)

where 53277247 ig an integer and C"%(...) is given as follows: Let o, be the
i-th elementary symmetric function with respect to indeterminates x1, ---, x,,
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then C*(gy, ..., 0,) denotes the polynomial which expresses the symmetric
polynomial of typical term x7...x?.
Moreover, by S. Mukohda and S. Sawaki [[107], it is known that

(3.3) by =(¥ 1) mod p.
First ~of all, we calculate 9z’ in H*(Z,, ;) and H*(X,, ) when k=2Fk".
Since z'=ff«' by Theorem 2.7, we have
P =Pifra = FrPiu' = FF CH(pry oy puorr—1, 2'5)
=2 CHU(FFprs o Fipuows, FiFn'®)

and hence, we obtain

.4 @iz/zzfcf,q«iz) N (n3k> yzm).

Therefore we can calculate 9z’ for any n and even . -
Now let k=2k"—1 and consider the following diagram of the exact se-
quences (cf. (2.6)):

0—H*(BSO(2n), BSO(2n— k))-2>H*(BSO(2n))="H*(BS0@2n—k))—>0
(3.5) 7| a3 |
s H¥ N2y 1) 2 H¥(CP™, Zzg ) — H¥(CP™)——2"— H*(Zgp1)—

Then using (3.1-3), we have

¢ DT j+qi-1

J (—1)q¢<2]i 1>Uf+‘1i+] ,Z‘ Uy for j+gin

. =J

(3.6) PiU;= .
. P j+4q1—1

L(—l)ql(zf. 1>Ux+’ S U, for j+qi=n,

7 I=j
(8.7) PU=UC"*(py, -+ pu-1, 2°)
in H*(BSO(2n), BSO(2n—k)), where U; and U are the elements in (2.3):
J*Uj=p; (j=n—k'+1, ..., n—1), *U=x.

Mapping (3.6-7) by f, we have

( o X _ j+ai-1_

J (—1)41<2Ji 1>f,j‘Uj+qi+J X JXUSfFer  for j+giden

- . =7

88 [FPU=/ .
) s _ j+qt—1 _

L (¥ DUz L T for j4gi=n,

i=j

(3.9) ffg)iU———f_fUci’q<<il>y2, e <n21>y2n-2’ y2”>.
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Using (3.4), (3.8-9) and Theorem 2.7, we have the following theorem.

Turorem 3.10. Let n=p" or 2p"(r=>1) and k be a positive integer such
that k<2n. Then the mod p reduced power operations 9 in H*(X,, ) and
H*(Zy, 1) are given by

(3.10.1) Py J AT e for j<ngi
1 0 for j=>n—qi,.
(3.10.2) Piz'=0  for i>0,
where 2q=p—1.
Proor. Assume that £=2F’, then we have
» Z'C*1(0, ..., 0) if n=p"or2p, k>p
Pe= { 2 €10, ..., 0, 2927, 0, ..., 0) if n=2p” and &' <p’,

by (8.4). According to Theorem 1.11 and Remark 1.12, we have y**"=0 in
H*(X:n,1) and H*(Zs, 1), and so we obtain (3.10.2).

We shall prove (38.10.1) for odd .. Then (3.10.1) for even % follows from
Lemma 2.1.

Now «; € *(BSO(2n)) is a polynomial of p,(j=1, ..., n) and fjpj=<7;>yzf.

Therefore f,fa; has a common factor y**" and so we notice that
p¥fka=0  for «a, € H*(BSO(2n)),

since p*y*" =0 in H*(Zzu1).
By (2.7.2-3) and Remark 1.12, we have

. . 2 if n=2p" and j=p”
dz=[FU—af#U,  a=
0 otherwise.

Using (3.8-9) and the above facts, we have
0P 2= DTV af V)
il 27— Wrsqr Al W s _  Fxrreial (T2 n\ 2
O (Tt B T e afrue (D)t o ()
if j+gizxn
el 2T W e i L %o o Fkpreiaf (8,2 Y, 2n
( 1)q< 3 >nUf7zx+ lgj fnUl 7 & afnUC <<1>ya,<n>y >

if j4qgi=n
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J+ai—

. ] — q:1-1 _ . X i
O Yzt o {8 prrrada} +arzU i jgisen
=j
j+qi-1 . _ . . .
6{ 12’ (P*ffaz)zz}-l-A'f;kU if j4gi=n
=i
(0 Dzt AfFU it jgisen

A'f¥U if j4+gi=n,
where 4, A’ € H*(CP~). Mapping this equality by ¢* and using (2.8), we have

A=0 and 4’=0. Since ¢ is monomorphic in odd degree, (3.10.1) follows.
Q.E.D.

TuaeoreMm 3.11. Let n and k be positive integers with k<2n, satisfying
n=n'p’, r=1, n'>3, (p, n)=1 and n—[(k+1)/2]+1<p". Then the
cohomology algebras of Xznp and Z., . are the case (¢) of Theorem 1.11 with
N(n, k)=4p" <2n and the mod p reduced power operations P*(i>0) in H*(Xz, 1)
and H*(Z;, 1) are given by

T s for j<ngi jep i
(8.11.1) Pizi=
0 otherwise,

2

(3.11.2) Piz=

(’Z?)ywz for p'+qi>n,
(3.11.3) Piz'=0,
where 2q=p—1.

Proor. It is clear that N(n, k)=4p"=4i,<2n by the assumptions and
s0 y**"=0in H*(Z,, ;). Hence we have

Pfia=0  for a, € A*(BSO@2n)),

similarly to the proof of Theorem 3.10.

We notice that the integers 2; of (2.7.4) are zero if j=xip” (I=2,...,n'—1),
and 4, of (2.7.5) is equal to —1/n’. Therefore, using (2.7.4-5), (3.8-9) and
y?*"=0, we have

0P =P ([F U+ Ay ¥ 2 ¥ U;)

(-1)4f<211,—1>5z,.+q,-+.4f;< U, for j+qi<n,j+qiicis

A'f¥U; otherwise,



On the Cohomology of Certain Quotient Manifolds of the Real Stiefel
Manifolds and Their Applications 325

OP z=D (f U+ Ao y" 2fXU,)

; - q£ 7—— r 7 . .
<;,L>y2q’6z—(——nl,)—<zp, 1>y”‘21’ 6zpr+q,~—|—Afj‘U,~ for ic+gi<n

2
(% )y*oz+ A 75U, for iy+qi>n.

Here 4, A’, A and A’ are some elements of H*(CP~), and we see that these
elements are zero in the same way as the proof of (3.10.1). Hence (3.11.1)
and (3.11.2) follow.
(8.11.3) is obtained similarly to (3.10.2). Q.E.D.
In general, the mod p reduced power operations %" in H*(X,:) and
H*(Zs,,,) are given by the following

ProrpositioN 3.12.  For any positive integers n and k (k<2n), the mod p
reduced power operations P in H*(X,, ) and H*(Z,, ;) are given as follows:

(3.12.1) @izf: (— 1){11.(2]'1? 1>zf+tu+ Z[:aly2j+zqi_212h
i (T, 2 Wi iagioal
(3.12.2) 9P z_<i>y q Z+,=§+1azy *2ai-2ly
(3.12.3) wet=s () s (W) =,

where 3, in (3.12.1) is the sum of l=j, ..., j+qi—1 for the case (a), (b) and
l

l=min{j, ioc+1}, .-, j+qi—1 for the case (c) of Theorem 1.11, and a;, aj are
some integers.

Proor. We have already proved (3.12.3) in (3.4).
For the case (¢) of Theorem 1.11, we have

0P ;= P0z;=D'([F U+ Ay ¥k U, )
(—1)4f<2fi_ 1>5zj+qi+ Doy N0z AFFU,  for jiem—gi
(—1)qf<2f i—1>a’y”§z+ Say ¥ s+ [0, for j=n—gi,
0P z=Poz=P([FU+ Aoy *f¥U;)
:(’;)yzqiaz-l- :%I:lafy"”q"‘zlﬁzl—l—A/f,ZkU,-D,

by (2.7.4-5) and (3.8-9), where a;, @, and a; are some integers and 4, 4 and
A" are some elements in H*(CP~). In the similar way to the proof of
Theorem 3.10, we have (3.12.1) and (3.12.2).
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For the case (a) or (b) of Theorem 1.11, we have (3.12.1) similarly.
Q.E.D.

§ 4. Bockstein homomorphisms 8 in H*(X;, ;) and H*(Z3,, )

P.F.Baum and W. Browder [1] determined the mod p cohomology
algebra of the projective unitary group PU(n)=U(n)/S' and the reduced
power operations %* when n=n'p’, (p, n’)=1 and r>>1. Moreover, they
determined the Bockstein homomorphism (8 in degree <<2p”~'. According to
[1, Maix Tueorewm I, the mod p cohomology structure of PU(n) is the follow-
ing:

Let n=n'p’", (p, n')=1and r=1. Then

H*(PU(H’)): /\(wh ] ﬁ)p’) ] Wn)®Zp[y]/(9fp1)

where deg w;=2;j—1 and deg y =2,

uy?™, p=0modp, for j=p
4.1) Bw;= {

0 for j<p.

Remark. It is proved that Sw;=0 for j <p”~! of (4.1), in the proof of
Main Taeorem I in [1, p. 3247,

First, we shall extend (4.1) for all j (1<j <{n, j=¢p”). For this purpose,
we use the properties of generators w; in H*(PU(n)).

Let EU(n) be a contractible space such that U(n) acts freely, then
EU(n)/U(n)=BU(n) is a classifying space of U(n), and there is the follow-
ing homotopy commutative diagram ([12, §§1-27):

S'— U(n) —— PU(m) D= 8xuU(n)

Il { v *
(4.2) S' — EU(n) — EU(n)/S' &= CP>
| i

BU(n)=——=BU(n) In
where f, is a classifying map of n&. Then we obtain the following diagram
induced by (4.2):
0——H%-Y(PU(n))2-H¥(CP=, PU(n))-LH*(CP~)—> -
4.3) | | \ I
H*"Y(U(n)) %’sz(EU(n), U(n))&=-H*(BU (n), x)=—=H%(BU (n)).

The cohomology algebras of BU(n) and U(n) are given as follows:
H*(BU<n>>:Z.b[Ch “ovy Culy H*(Um)= N(u1,y - tn),
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where the element ¢; is the universal j-th Chern class and the element u; is
transgressive and tu;=c;.

Since the j-th Chern class of né over CP~ is <?>yj, we obtain t*f¥c;
= f,;kcj—_—<?>yj in (4.3).

Lemma 4.4, Let n=n'p", (p, n)=1and r>1. We can choose the genera-
tors w; € H*(PU(n)) (j=1, m,}/)\’, ..., n) such that
= 1 N 7 . . , ,
ff,;kc,—m<'; >f,jkc£r if el 1=2 .
(4.4.1) Ow; =
fike; otherwise.

Proor. If p” does not divide j, then ¢*fc;=0. Therefore we have a

unique element w; € H*~'(PU(n)) such that dw;=fc;. If j=Ip", we have a
1 /n'\- .

n"( ; >f;"cj,r. Using

the diagram (4.3), we have i*w;=u;. Therefore the lemma follows from the
proof of [ 1, Corollary 4.27]. Q.E.D.

unique element w; € H*~! (PU(n)) such that dw;=f}c;,—

Lemma 4.5. Let n=n'p’", (p, n)=1and r=>1. Then the Bockstein homo-
morphism B in H*(PU (n)) is given as follows:

{ ﬂl}’j JSor jzlprﬂl (=1, ., P—1>
Wi =

0 otherwise,

where u, -1

] (P:1>/4 and u 1s the one of (4.1).

—1

Proor. By Lemma 4.4, we have 03w;=0 and so Sw; € p*H*(CP~). There-
fore fw;=0 for j>p’.

Assume that p”"'<j<p”. Now, we use the same notations in the integral
cohomology H*( ;Z) of BU(n) and CP~. Set k=p" ' and consider the

} . ) , 1 /n ,
element x;=affc;—a;y’ *f¥c, in H¥(CP=, PU(n); Z), where a=?<k> =7
mod p and aj=i<'?>. Since t*xj:a<;’>yf—aj<z’>yf=0 in H¥(CP~; Z), there

PN

exists an element wx;e¢ H¥ '(PU(n); Z) such that 0x;=x;, Therefore we
have

00,5} = 0,05 }=0,(af Fe;—a;y *fFcw)
=af;"c,-—ajyj‘kf_j‘ck=6(awj—ajyj‘kwk)

in H*(CP=, PU(n)) by Lemma 4.4, where p, is the mod p reduction. Since ¢
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is monomorphic in degree 2j—1, we obtain p,x;=aw;—a;y’ *w,. Using (4.1)
and the fact f0,=0, we obtain 0=pp,x;=afw;—a;xy’. Therefore we have
Bw;=ala;uy’.

By the simple calculations it is proved that

()= [0 = a=Lepe
P 10 otherwise

mod p. Therefore we have the lemma. Q.E.D.
Let h: U(n)——>SO(@2n) be the natural inclusion. Then, we have the
following homotopy commutative diagram of fibrations:

U(n) PU(n) — CP™

(4.6) | dl |
SO(2n)——>SO(2n)/Sl:Zz,z,z,,_1~zi—> cP~

and the commutative diagram of the exact sequences induced by the map 4:

o H* Y2y 50 1) 2 H*(CP™, Zop 20 1)L >H*(CP=)—> -

in ;
H*(BSO(2n), *)=—=H*(BSO0(2n))
@ e W " i
H*(BU(n), ¥)==H*(BU (n))

v v = fr
s HAY(PU (n)) 2 H*(CP™, PU(n))—L H*(CP™)— .

The homomorphism A*: H*(BSO(2n))——H*(BU(n)) is given as follows
(e.g. [9D:
hk, . — _1\i+k
(4.8) h*p; k+1zizj( D/ *cpey,
(4.9) P a=c,.
Lemma 4.10. Let n=n'p", (p, n')=1 and r=1. Then the homomorphism
B H*(Zgp,201)——H*(PU (n)) is given by

(4.10.1) Fry=y,
0 for j>n/2

(4.10.2) Wz= { —dw, for j=n/2, n=2p"
(— 1) 2w,; otherwise,

(4.10.3) Bz =1w,.
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Moreover, h* is a monomorphism in degree smaller than 2p.

Proor. Assume that n'>>3. Then N(n, 2n—1)=4p" =4i, and
H*(Zy, 3,_1) is the case (¢) of Theorem 1.11. Furthermore, in the equality
2.7.4):

62]‘:]?;[]]“1’1]‘9’2]'_2’.0]?;0'1‘0 (]Zla ctty 207 AR n_l)a

we have ;=0 mod p if j=¢lp” (I=2, ..., n’—1). On the other hand,
fj(cZJ'fscs) :]F:CZJ'—sf;;kcs:<Z>6w2j—sys+f4j,sf;;kcios

where A4;, € H*(CP~), by (4.41). In this equality, <Z>EO mod p if s=¢[p”

((>0) and Ows;—sy° = 0(wsj_sy*) =0 if s=1{p” (1>0). By these facts and
(4.7-8), we have

6];*2]:71*6Z]:f,?<ﬁ*[];+ ijzj_Ziof_,;ka*Uio

e . e o/ 200
=75 (7 easses )=yl & (= Dfenrer)

{<—1>]26WZ]+AJF;FC¢O lf ]gn/Z

A'f¥e;, if j>n/2,

where 4, A’ € H¥*(CP~). Mapping this equality by ¢* and using the fact
t*fkei,=n'y"2:0, we have 4=0 and 4'=0. Since ¢ is a monomorphism in
odd degree, we have (4.10.2) for n'>>3.

For the case n'=2, N(n, 2n—1)=4p"=2n and H*(Zsy,2.-1) is the case (b)
of Theorem 1.11. Therefore

o= ([ U= ()3T 0)
f (—1)726wzj—<?>yzj~n6w” if ]gn/z

LO if j>n/2,

by (2.7.3) and (4.7-9), and so we have (4.10.2) for n'=2, similarly. (4.10.2)
for n’=1 and (4.10.3) are proved in the same way. Q.E.D.

There exists a fibration Vs, pi22 —— Voup —5> Vi sz, Where y, is the
natural projection. This fibration induces fibrations Vy, 4 22— Zop —2s
Zoniz and Vioy pioo— Xopp —2> Xoppoa I b=2K—1,vF: H*(Vap1_2)
= Apeprszy oy Vno1, V) —> H*(Vion ) = A\ Waprst, 5 Une1, v) is given as
follows ([ 2, §107)):
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vivi=vj, yiv=w.
And so we have the following lemma.

Levma 4.11. Let k=2k'—1. If N(n, k)=4i, exists, then assume that
io>n/2 or ig>xn—k'+1. Then the homomorphisms v¥: H*(Zyyp o) —
H*(Zon1), H¥(Xay p2) —— H*(Xay 1) are given as follows:

vizi=z, Jor n—k+2<j<n-—1,

- f Ko —
!sz——z, ka—x, ka— y-

Moreover vi are monomorphic.

By the induction on £, we determine the Bockstein homomorphism j in
H*(Zyy,x) and H*(X,, ,) when n, k satisfy (x) of below.

Tureorem 4.12. Let n and k be positive integers with k<2n, satisfying
(*) n=n'p’,r=>1, (p, n)=1; n—[(k+1)/2]+1<p" if n' =3.
Then the Bockstein homomorphisms in H *(Xonr) and H*(Z2, 1) are given by

2j . L r—1 _ _
ty Sfor j<n/2,j=1lp"" (I=1, ..., p—1)
4.12.1) Bzj=
0 - otherwise,

(4.12.2) Bz=0, Bz'=0, Bx=y, By =0,
where u; 18 the same as in Lemma 4.5.

Proor. The last two relations of (4.12.2) follow from (1.10). It follows
easily that fz'=0 by the dimensional reason. According to Theorem 2.7, we
have 08z;=0 and 082=0 and so 8z, and Sz are the elements of p*H*(CP~).
Therefore 5z;=0 for j>>p” and fz=0, since y**'=0 in H*(Z,,,) under the
assumption (x) (cf. the proof of Theorems 3.10 and 3.11).

By Lemmas 2.1 and 4.11, it is sufficient to prove (4.12.1) in H*(Zs,,20-1)
for j<p’. By Lemmas 4.5 and 4.10, we have

1

_ . =2y for j=p'
h*Bz;=(—1)2Bwy;=

for j<p !
{—2/zzﬁ*y%” for j=pt
o for j<p™t

Since —2u,=—(p—1)x=x mod p, h*y = y and A* is monomorphic in degree
smaller than 2p’, it follows that
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9pr—1 . r—1
ny®? for j=p’
(4.13) Bz=
0 for j<p'.

Replace ¢; € H*(BU(n); Z) and y € H*(CP~; Z) in the proof of Lemma 4.5
with U; ¢ H*(BSO@n), =; Z) and y* e H*(CP~; Z), then we obtain (4.12.1)
for j<p” by the entirely same technique as the proof of Lemma 4.5, using
(4.18) and (2.7.2-4) in place of (4.1) and (4.4.1). Q.E.D.

Remark. If n=p” in Theorem 4.12, then (4.12.1) is shown by Lemmas
4.5 and 4.10 only.

§ 5. The relations between X, , and X, 2, and between
ZZn,k and Z2u+2m,k

We consider the following homotopy commutative diagram:

Zon =2 Zon 1 X Loy 422525, 4 X CP™——
CRY) Pl » lﬂxl
¥
Z2n+2m,k—p——’CP°° d > CP*x CP*——
Inxfn, BSO(2n — k) x BSO(2m)—~—BSO(2n 4 2m — k)

’7
2

n"xl
Jaxim_, BSO(2n) x BSO(2m)—~—s BSO(2n +2m).

Here d is the diagonal map, # and x’ are the multiplications, f, and f, are
classifying maps of n¢ and mé, respectively. Then (2n+2m)-plane bundle
(n+m)p*& has a map x(f. X f,)dp as a classifying map and x(f,x fn)dp is
lifted to #'(fux fu)d': Zoy—> BSO (2n+2m—k), where d'=(1x% p)d: Zs,,
——Zs,,: x CP~. Therefore the associated V', .., ,-bundle of (n-+m)p*é over
Zsn., has a cross section and so we obtain a map p: Zyy s ——> Z24 2m, 1 Such that
o*p*&é=p*s. Similarly, we have a map p: Xz, —— Xou 2m 0

In this section, we use the same notations for the generators of H*(Z;,,.)
(resp. H*<X27z,k)) a'nd H*(Z2n+2m,k> (resp. H*<X2n+2m,k)>'

Turorem 5.2. Let 0<k<2n and set N=N(n+m, k)=4i,, N=N(n, k)
=4if, and K(j)=As|j—n+1<s<<m}, K'())={s|j—n+1<s<m, s=¢j —i;}.
Then the homomorphisms 0*: H*(Zsy om ) —— H*(Z2n 1) and 0% H*(Xon,2m 1)
—— H*(X3,,) are given as follows:

(5.2.1) o¥x=x. o*y=vy,

(@) If N exists and 2n+2m > N=4i,, then
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(5.22)  p*z= X <m>yzszf~s+lj 2 (m>y2j_2i0+2tzio—t
seK (HNS

teg (ip\ ¥

when N exists and 2n > N,
m s m i_9f .
(5.2.3) p*zj=s€§(j)<s )yz zj-s+ /ljt“;]io)< t)yzf oty otherwise,

J y"z+2 <7:>9’”+m_2i”+2tzio—t when N exists and 2n >N
teEK (i)
(5.2.4) o¥z= }

m —9f .
o 2 ( >y”+”‘ Pty otherwise,
tEK (ig)

\ t

where 2; satisfies the formula (n—;m>+/1j<n;|'m>50 mod p.
0
(b) If N exists and 2n+2m <N or N does not exist, then

(6.25)  o*z= % <m>y25zj_s—<n"lfm>yzf“”z when N’ exists and 2n >N,

SERT(HNS J
(526) otz= 3 <m>y2st_s otherwise.
SER(GHINS

Proor. (5.2.1) follows from p'o~p. From the diagram (5.1) and the
mappingicylinder considerations, we have thejfollowingfcommutative dia-
gram:

(5.3)
H*Y(Zoneom )= H¥(CP™, Zyn. g 2) 22 H¥(BSO2n +2m), BSO@n +2m—k))

pV P

H*"1(CP~) o o H*((BSO(2n), BSO(2n—F)) x BSO(2m))
»* (]nxfm)*
H*"Y(Z3y )2 H*(CP=, Zy, ) «— L H*((CP=, Z3, 1) X CP*).

It is well-known that

L py= 2 peXphs wrr=x'x7",
=7

where p;, p}, p7 and x, %/, x” are the j-th Pontrjagin classes and the Euler
classes of the universal oriented (2n +2m)-, 2n-, 2m-plane bundles. Therefore
we obtain

Gy pU= 5 Uiexpit Ulxpla= 2 UjsX pst U'X pion,

SEK (] SEK(F)
(5.5) pFU=U x72",

where U, U;, U’ and U are the elements determined by (2.2-3).
Consider the case (¢). Using (2.7.4) for n+m and (56.3-5), we have
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00%z;=0%0z;=0* ([ mUs+ 2, y" *0 0,

= A5 ) BAUA Ay d 5 X f) U,

f*U, sps(mf)—l_f;k U/}’”P/—n(mf)

S€EK (]

Fhy Y] S TEUGp(mE) 4 TEU Y )]

Assume that N exists and 2n >N =4;.

Then, using the fact y"0z
=0(y"z)=0 and (2.7.4), we have

60*21 Z Ps(mg)az] s

SEK(f)

Z Vi syZ] Be-24p (mé)f;k iy Ppi- ,O(mé)f;" i

seEK’(f)

+ " pin(mE)Bz— 2 5> Hop; (m&) [ 3 U
F 2,5 T (e,

teK’ (i¢g)

3 gy BB g (m&) XU

te K’ (ig)

p,MOTEUL+ 5 piy w05 — 5y s, (U]

=0 ¥ pp Oty T pnp*e)a, 4+ AT,
seK(f)

te K (ig)

for some 4 € H*(CP~). In the same way as the proof of (8.11.1), we have
A=0. Since ¢ is monomorphic in degree 4;j—1, we have

— my 2s m\ 2j+2t—2¢
0*z;= X ( )y Ziostdi X4 < )y ! 0%t
sER (H\S tek (Gip\ T

Assume that N exists and 2n <N or N’ does not exist. Then we have

X, — ) .n 2j—2s—n k17
00%z; SE%I(j)ps(mrS)@z,_s—l—S”;j) <]’“S> p(mE)f XU

TP mATEU+ Ly ] 3 pi(md)o
10

n ig—2t—n 7 / n r U
+ tel%(:z‘o) <i0—t>‘yz : ‘pt(mf)f;kU + Y on_n(mf)f;k[]}

_ N 2726 L PERTT
—6{“;(],)%(7"[) $)Z]_s+ljy tu;m Pt(mp é)ztrt}'i'/lfn U,

for some A’ € H*(CP~) by (2.7.2-3). In the similar way to the above, we
obtain

*p.= my,2s T\, 2j-2ig+2¢
072 st(,)( )y Z-s T4 tEK(zo)( >y fomb
and (5.2.3) follows.

In the similar way to the proof of (5.2.2-3), we have (5.2.4-6). Q.E.D.
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Remark. In §§3-4, we determined explicitly the reduced power opera-
tions %' and the Bockstein homomorphism S under the assumption (%) of
Theorem 4.12. Using the results of this section, we can expect to study P*
and 8 for other n and £.

§ 6. Applications to the immersion problem for the lens spaces

We denote L"(p) the mod p lens space of dimension 2n-+1, and 7, the
restriction of 4 over L=(p) to L"(p). By L"(p) R", we mean that L"(p) can
be immersed in the real k-space R*. The next theorem for immersion was
proved in [7, Theorem 17.

TueoreMm 6.1 (Kobayashi). Let n=(p—1Ls+r (0 <r<p—1) and k be a
positive integer with k<2n+1 and let a be a positive integer such that
2ap° ¢ >4n+3, where e=0 or 1 according as r <1 or >1. The necessary and
sufficient condition for L"(p) S R**'** is that the bundle {ap***— (n+1)}7, has
2ap°*¢— (2n+k+2) independent cross sections.

One of our main theorems is the following
THEOREM 6.2. Let r and n’ be positive integers such that r>2 and
(p, n)=1 and let m and ¢ be non-negative integers satisfying
) 0<t<m, m—i+(p—1)/2<p %, 1<p’, (’f)-\;—o mod p.
Then, the bundle (n'p”-+m)7y, over L"(p) does not have k independent cross
sections for
() k=2n'p"— 2lp“1 +2t4+1, 2" 2m—2t+p—1<n<2p,
(=1, ..., p—1
Before proving Theorem 6.2, we consider the applications.

Turorem 6.3. Let r (>>2), m and ¢ be non-negative integers satisfying (x)
of Theorem 6.2, then

(6.31)  Lrm-i(p) L R4k if m<[(p~'—p+20/3],
(6.32) LM ml(p) gt ROY-MITUZ G <[(2p " —p4-20)/3].

Proor. Assume that m<<[(p"~'—p+2¢)/3]and L'~ "(p) S R*"~*""-4-2,
By Theorem 6.1, the bundle (n'p”+m)7, -1 has 2n'p"—(p—D)p" ' +2:+1
independent cross sections, where n’=ap°**~"—1 for some integer a. By the
assumption m <[ (p"'—p+2t)/3], we have (p—1)p" ' +2m— 21+ (p—1)
<p"—m—1. This contradicts to Theorem 6.2 and so (6.3.1) follows. The
proof of (6.3.2) is similar. Q.E.D.
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Now, we use the following results to prove Theorem 6.2.
ProrosiTioN 6.4. Let r, n’ and k=2k"—1 be positive integers with r>2,
(p, n)=1 and m be a non-negative integer such that m<n'p"+m—k"+1<p".
Then Pt and 8 in H*(Xz,proom 1) a¥e given by
q
(6.4.1) Prz;=(—1)12j— 1Dz ¢+ Zl (=" 2my*z;,, s

Jor n'p"+m—k+1<j<p"—q,

= m ' Y oy , .,
(6.4.2) Bz= l_§1<]._lp,._1>ﬂ,y I for wpm—k+1<j<p,
where ﬂ;z%@:i)uéﬂ) mod p 1s the same as in Lemma 4.5 and 2g=p—1.

Proor. The homomorphism p*: H*( Xy, pr i omp)——H*(Xaowpr 1) 18 given
by (5.2.2) if n'=>3, since N(n'p"+m, k)=N(n'p’, k)=4p" <2n'p"; and by (5.2.8)
or (5.2.6) if n' <2, since N(2p’, k)=4p” and N(p’, k) does not exist. There-
fore

p*zj:sgo Zl'>yzszj,s for n'p’+m—E+1<7<p’,
since (n p;+m>50 and so ;=0 mod p for m < j<p".

Now D'z, has the form P'z,— tﬁ v 250 (a0=(—1)(2j— 1)) by (3.12.1).
=0

Therefore

0¥z = i i‘a(m) 20425 for ita<p’

TET A a Y jta-t—s JTg<p -
On the other hand
@10*4:S;()(T){zsy%”qzj_sﬂ—1>4<2j—2s—1)y28zj_3+q},
by (8.10.1) or (8.11.1). Comparing the coefficients of these equations, we have
a4 ta ()= (- D02 —2s—D(T) mod p  for s=0, .., .

Therefore we have a,=(—1)?"*2m for s=1, ..., ¢, by the induction on s and

we have (6.4.1).
If j<p’, then

s, o BfmN _as  N_ &/m\ 25, __p_1< m 2j
Bo z]_ﬁ<s§o<3>y ‘]*S>—s§0<3>y BZJA'S—I=1 j_l])’._l)ﬂly ]’
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by (4.12.1). Therefore (6.4.2) follows. Q.E.D.
Lemma 6.5.  Suppose there is ¢ map f: L"(p)——> Xom 1 such that the follow-

wng diagram is commutative:

f X2m,k »

=7 B 3
L"(p) C L=(p).
If 2j<n and sz=,ay2j, thenf*zjzﬂxij_l m H4j‘1(L"(p)).

Proor. By the commutativity of the diagram, we have f*x=x and
f*y=ry. Assume f*z;=u'xy*"!, then ' y*=Bf*z;=f*Bz;j=py%.
Q.E.D.

CoroLLARY 6.6. Set m of Lemma 6.5 be n'p"+m. Under the assumptions
of Proposition 6.4, we have

p-1 .
frz= 1§1(]"‘ ?]L]r-l >ﬂ1x yH Jor n/p"+m—k'+1<j<p"

Proor or THEOREM 6.2. Assume that (n'p”+m)y, over L"(p) has k inde-
pendent cross sections, where k=2n'p"—2lp" '+2:+1. Then its associated
Vawsrvamp-bundle has a cross section and so there exists a map f: L"(p)—
Xowprram,r such that the following diagram is commutative:

f XZn’pT+2m,k »
L*(p) C L=(p).
Let j=Ip" '4+m—t and 2¢=p—1. By (6.4.1), we have

q
(6.7) Plz;=(—1)%2j— l)zj”—f—él (=D 2m oy 2,05

Since 2(j+¢)<n and n'p"+m—k'+1<j+¢q <p’ by the assumption (xx),

S*2j0q-s (0<s<q) is given by Corollary 6.6, and its coefficient is
p-1

m
z§1<(1— Np '+ qg—s+m— t)ﬂ’/'

are zero if I’/ by the condition (x). Therefore we have

In this summation, the binomial coefficients

(6.8) f*sz_s=<t_rg+s)mxy2j+2‘1_zs_l for 0<s<g.

If 0 <t <<¢—1, we have
q .
rotnl 2,0 Jufre

=2m<m: 1),4!1.96 y2j+2q—1= (2m-2t>(’tn>ﬂlxy2j+24—l’
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by (6.7-8) and the simple calculations of the binomial coefficients. On the
other hand, we obtain

(Y)Y
=0@2m—2t— 1)<’?>ﬂzxy2j"‘24“1,

by (6.8). Since (?)EO mod p and x,2<0 mod p, we have f*P'z;2: P f*z,,

which is a contradiction.
If t=¢4, we obtain similarly

FEPiay= {(- 1>‘1(2j—1>+s§q1 (—1>q+82m(’j)}mxy2f‘+24-l
=2m— l)(?)/z;x yZ“Z‘I‘I,

Pt *zj:2m<’;l),a1x AR

which is a contradiction.
Finally, if ¢>g, we have similarly a contradiction:

[P z;=(2m— 225)(?),&196 yirrasl

D= @m— 20— D7 w1120, QED.
RemaRrk 6.9. Comparing T heorem 6.3 with D. Sjerve’s Theorem for im-
mersions [ 14, Theorem 4.7 (i) ], we have, e.g., the following results:
L(p) LR, (PSR
if n=n'p"—[(n'p"'—p+2t)/3]—1
=n'p"—('p" ' —p+21)/3—1,n'=1 or 2;
L”(p)%RS”—p, Lﬂ(p> c R3ﬂ—1)+4
if n=n'p"—[(n'p"'—p+2t)/3]—1
=n'p"—(n'p" ' —p+2—1)/3—1, n'=1 or 2.

References

[1] P.F.Baum and W. Browder, The cohomology of quotients of classical groups, Topology 3 (1965),
305-336.



338

(2]
[3]
[4]

[5]
6]
[7]
[8]

(9]
[10]

(11]
(12]
[13]
[14]

Tsutomu Y Asut

A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogénes de groupes de Lie com-
pacts, Ann. of Math., 57 (1953), 115-207.
- ,  Sur Phomologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76
(1954), 273-342.

and J.-P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math., 75
(1953), 409-448.
S. Gitler and D. Handel, The projective Stiefel manifolds-I1, Topology T (1968), 39-46.
S. Gitler, The projective Stiefel manifolds-11, Applications, Topology T (1968), 47-53.
T. Kobayashi, Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108.
W.S. Massey and F.P. Peterson, The cohomology structure of certain fiber spaces 1, Topology 4
(1965), 47-65.
J. Milnor, Lectures on characteristic classes, (mimeographed notes), Princeton Univ., 1957.
S. Mukohda and S. Sawaki, On the b%7, Coefficient of a certain symmetric function, J. Fac. Sci. Nii-
gata Univ. Ser. 1. 1 (1953), 1-6.
T. Petrie, The K-theory of the projective unitary groups, Bull. Amer. Math. Soc., 72 (1966), 875-878.
—————,  The K-theory of the projective unitary groups, Topology 6 (1967), 103-115.
J.-P. Serre, Homologie singuliere des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
D. Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc., 138 (1969), 97-106.

Department of Mathematics,
Faculty of Science,
Hiroshima University





