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§ 1. Introduction

Let Ω be a domain in the ^-dimensional complex space Cn. We shall
denote by /J(Ω) the space of all holomorphic functions in Ω, equipped with
the topology of uniform convergence on compact subsets of Ω. Clearly j4(Ω)
is a Frechet space. Elements of the dual space j4'(Ω) of -fi(Ω) are called
analytic functionals in Ω. As usual, &'(Ω) stands for the space of all distribu-
tions with compact supports in Ω.

The purpose of this paper is to prove an isomorphism theorem (Theorem
3.2) which relates i4'(Ω) to &'(Ω), and to use this isomorphism to give a sim-
plified proof, without using α-priori-estimates, of Kiselman's theorem [ΊΓ]
concerning carriers of analytic functionals.

§ 2. Definition and comments

From the definition of the topology of j4(Ω) it follows that for any analy-
tic functional β e f4'(Ω) there exists a compact set K in Ω and a constant C>0
such that

p i
K

Definition 2.1. (Kiselman [ΊΓ], Martineau [JoJ) A compact set K in Ω is
called a weak carrier of μ e $'(Ω) if for every neighborhood U of K which is
in £, there is a constant Cυ such that

Remark. There is a concept that is stronger than that of a weak carrier
(Martineau [6]). But in this paper, we shall use weak carriers only, so that
in the following, we omit the term "weak", and "carrier" means always "weak
carrier".

Remark. The following example shows that, different from a distribu-
tion, an analytic functional which is carried by one point is not always of
finite order of differentiation.

Example 2.2. Let Ω be a complex plane C, and for any entire function /,
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we set

then, μ e /}'(C) and the origin {0} is a carrier of μ.

PROOF. For any disc U r with center at the origin and radius r, Cauchy's
integral formula yields

r ur

Therefore

= e 1 / r s u p | / | . Q.E.D.
Ur

§ 3. Theorem of isomorphism and its direct application

If Ω is a domain in Cn, i4(Ω) is a subspace of &°°(Ω), and its topology is
equivalent to the induced one from ©°°(Ω). From this point, we examine the
relation between t4'(Ω) and &'(Ω).

PROPOSITION 3.1. A natural projection map ϊ: &f(Ω)-+j4'(Ω) is surjective.
More precisely, for every μ e j4'(Ω), if K is a compact carrier of μ, then for
any neighborhood U of K, there exists a Ύμ e &'(Ω) such that

and

PROOF. Let V be a relatively compact neighborhood of K such that

K C V C V C U. Since K is a carrier of μ, there is a constant Cv such that

(1) \β(f)\<cvsψ>\f\, VA^G°)

Noting that p(g) = Cv sup | g\ for ge@°°(Ω) is a continuous semi-norm on

(§°°(J2), we extend the linear functional μ to that on &°°(Ω) preserving the
inequality (1) (The Hahn-Banach theorem). It follows that there 'exists a
T^ e 8'(Ω) such that

u(f)=<Tμ,f>,
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and

The last inequality shows that the support of T^ is contained in V C U.
This completes the proof.

From this proposition, the following algebraic isomorphism holds:

(2) t4'(Ω) = <g'(.Q)/(Null space of ίf).

The distribution Ύμ in the above is called a representation of μ in &'{Ω). This
representation is, of course, not unique. For example, if Sy (y = 1, 2, ..., n) are

any distributions in &'{Ω), then T^+ Σ dfij where dj = ̂ - = —^-(-——-r-^

is also a representation of μ.
Conversely, from the next theorem, if Ω is a domain of holomorphy, then

any two representations of an analytic functional differ by a distribution of

the form Σ dβj, S, e &{Ω).
3=1

THEOREM 3.2. {of isomorphism) If Ω is a domain of holomorphy in Cn,
then the following isomorphism holds

Remark. In this paper, we prove this isomorphism algebraically. But
by the general theory of linear topological vector space, this isomorphism also
holds topologically. (Grothendieck [SJ).

PROOF. If Ω is a domain of holomorphy, we have the following exact
sequence:

where &χQ>p){Ω) is the space of all (8°°(^)-difFerentiable forms of type (0, p).
It is clear that the spaces &χQ>p){Ω) equipped with the product topologies

of Frechet spaces, are also Frechet spaces. And exactness shows that each
operator has a closed range. By the closed range theorem for Frechet spaces
(cf. [2Γ\, p 296, Theoreme 3), the following equality holds for the operator
9: ©TO,O){Ω)->©TQ,I)W

 a n d ί t s adjoint 9':

[Null space of 9]°-Range of 9' in <§'(£),

where V° denotes the polar of V.
From the definition of the adjoint operator, the range of df is equal to

the space Σ dβr{Ω).
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Now, j4(Ω) is equal to the null space of 9, therefore

Null space of ϊ = [_τ4(Ω)J in &{Ω)

(3) = [Null space of 9]°

= Range of d!

From (2) and (3), we get

= Σ d

Σ d Q.E.D.
3=1

In the one dimensional case, Σ 9jSf(Ω) reduces to d&;(Ω), and every
3=1

domain is a domain of holomorphy. For this reason, we can prove the follow-
ing proposition.

PROPOSITION 3.3. Let P(D) be any differential operator with constant

coefficients of order ^>1, where D = =—~-(%— + ^ — \ αwd let Ω be any
dz Δ \ox i σγJ

non-simply connected domain in C.
Then P(D)/4(ώ) is not dense in f4(Ω).

PROOF. It is sufficient to prove that the adjoint operator P( —D): /}'(Ω)
-^j4f(Ω) is not injective. Now, since the degree of the polynomial P(X) is
greater than or equal to one, there exists a complex number a such that

And there exists a compact component K of CΩ, because Ω is not simply con-
nected.

Then we construct a distribuition Si 6 &'(R2) such that

S i ^ e ^ in some neighborhood of K,

and

supp S iCKwβ.

Moreover, we set

S2 = 9Si, and S 3 = P ( - D ) S i .

Then an easy calculation shows that

and
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therefore

S2 e <g'(X?) and S3 e <g'(ώ).

Now, let μ e τ4'(,0) be the restriction of S2 to j4(Ω), i.e.

Then /^^Oasan element of j4f{Ω). In fact, if A = 0, then by the isomor-
phism theorem there exists a T e S'(Ω) such that

Since the operator 9 is one to one, it follows that T = Si. But this is impos-
sible because Si is not an element of Sf(Ω).

On the other hand,

so P( —D)A = 0 as an element of j4f(Ω). This proves that P(—D) is not
injective. Q.E.D.

Conversely, if Ω is simply connected, then it is well known that for any
P(D), Έ>(D)J4(Ω) = J4(Ω). (cf. [1]) Therefore the surjection theorem for one
dimensional case becomes complete.

§ 4. Carriers of an analytic functional.
Another proof of Kiselman's theorem.

We defined the carrier of an analytic functional in § 2. But in general,
it is not determined uniquely for an analytic functional it even happens that
an analytic functional has many compact carriers which are mutually
disjoint.

Example. Ω is the complex plane C. β e $f(Ω) is defined as follows:
β(f)=f (0). Then, {0} and any circle about the origin are compact carriers
of β which are mutually disjoint.

The purpose of this section is to prove Theorem 4.1 concerning the
intersection of two carriers of an analytic functional. This theorem was
proved by C. 0. Kiselman [5Γ\ using 9-cohomology and its α-priori-estimates.
In this paper, we shall give a completely differrent proof of this theorem.

THEOREM 4.1. (Kiselman [5]) Let Ω be a domain of holomorphy in Cn,
and Ki, K2 be carriers of an analytic functional β in Ω, βφO. If KiWK2 is
an /}(Ω)-convex compact set, then KιΓ\K2φφ and it carries β.

For the proof of this theorem, we recall the following well known lemma.

LEMMA 4,2. If Ω is a domain of holomorphy in Cn, K is an j4(Ω)-convex
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compact set in Ω and ω is any neighborhood of K, then there exists an open set
U (not necessarily connected) such that

(i) KCUCUC*>,
(ii) j4(Ω) I u is dense in /</(U),

(iii) U is a domain of holomorphy.
If in particular U is an analytic polyhedron, then these conditions are satisfied.
For the detail, we refer to [4]. (Theorems 2.5.13, 4.3.3 and Lemma 5.3.7).

PROOF OF THEOREM 4.1. First, we shall show that the intersection of Ki
and K2 is not empty.

If KiΛK2 = 0, then by Lemma 4.2, there are neighborhoods Vi, V2 of
Ki, K2, respectively, such that

and any f e j4(Vι\JY2) is a uniform limit of elements of j4(Ω) on every com-
pact set of VχWV2.

Since μ is carried by Kx and K2, there are compact sets L i 5 L2 which are
contained in Vi, V2? respectively, and constants Ci, C2 such that

(4) b(/)|^C,sup|/|, ^feAΩ), ; = 1, 2.

We, then, fix gς#φ) such that v(g)φθ, define g e ̂ (V^Yi) by

~_ M in Vl

8~ i 0 in V2,

and approximate g uniformely in ̂ (ViWV2) by a sequence /„ in /}(Ω).
Then (4) with ; = 1 tells us

and (4) withy = 2,

lim//(/„) = 0,

which is a contradiction. This prove that K1r\K2φφ.
Now we shall prove the remainder of the theorem.
We fix any neighborhood W in Ω of KiΠK 2. It is sufficient to show that

there exists a representation of μ in S\Ω), the support of which is in W,
because the desired estimate of the modulus of β(f) then follows easily from
Cauchy's integral formula.

We choose neighborhoods ~U[, U2 of Ki, K2, respectively, such that
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UίWU2 is a neighborhood of the τ</(i2)-convex compact set KiWK2, therefore
by Lemma 4.2, there exists a neighborhood U of KiWK2, which satisfies the
conditions (i) (ii) (iii) in Lemma 4.2 with ω equal to UίwU 2 . We set

Hence, there exist neighborhoods Ui and U2 of Ki and K2, respectively, such
that

(5) UiWU2 satisfies the conditions (i) (ii) (iii) in Lemma 4.2,

(6) U i π U 2 is contained in W.

Then, U I Λ C W and U 2 nCW are mutually disjoint compact sets in Ω, so that
there exists a smooth function φ such that

ί 1 on a neighborhood of
<P= \

[ 0 on a neighborhood of U2ΛCW.

Let Si and S2 be representations of μ in &'(β) the supports of which are
in Ui and U2, respectively. And μ can be extended to an analytic functional
μ on τ4(U) and condition (5) shows that this extension is unique. Therefore
Si and S2 in the above are also representations of μ in S'OJ), that is,

= <s2, /> =
By condition (iii) of Lemma 4.2 and Theorem 3.2, there exist distributions
Ty 6 g^U), ; = 1, 2, ..., n, such that

Σ1 — ί 5 2 = |

Then we set

By the definition, S also represents μ and it remains to examine the support
of S.

In a neighborhood of UiΓ\CW where φ is equal to one,

because the support of S2 is contained in U2. Similarly, in a neighborhood

of U 2 πCW where φ vanishes,

s=sx=o.



152 Yoshimichi TSUNO

Consequently, the support of S is contained in W.
This completes the proof.
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