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§1. Introduction

Let 97 be the ith reduced power operation mod p, and let 4 be the Bock-
stein operation associated with the exact coefficient sequence: 0—Z,—>Z,.—
Z,—0, where p is an odd prime and Z,, denotes the cyclic group of order m.
Let @;, ®; and @7 (i>1) be the stable secondary cohomology operations as-
sociated with the following Adem relations:

1.1) P HP— (i —1)4D — P4 =0,

(1'2) (@24)@:‘—1 _ ( (P_]-%(l—l) >A@i+1—i@i+14=0,

w3 @+ (PRI gy
_ <(P_ 1)(;— 1H— 1>@i+24 =0,
respectively, where e=1 if p=3, and ¢=0 if p>3. For each space X and
each integer ¢>0, the operation @;, for example, is a homomorphism:
0;: K9(0:;X)—>HT*0-Di(X; Z,)/Q1+20-%(0;; X)
where
Ki(0;; X)={u € H(X; Zp) | P 'u=0, P'u=0, 4u=0},
QUHEP-Vi((,; X)=PJHHp-VG-D-1( X, 7
—@—1D)4H* VX Z,) — P HUX; Zy).

It is known [1, Chapter 3] that the secondary operation associated with the
Adem relation is natural with respect to maps, that the operation is stable,
i.e., it commutes with suspension, and that it satisfies the second formula of
Peterson-Stein [97].

One of our purposes is to give some cup product formulas concerning
these operations @;, @}, #;. For example, we have the following

Tueorem 3.4. Let k and j be given integers with 0< j<k, and let u € H'
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(X; Z,) and v € H™(X; Z,) be mod p reductions of integral classes. If @:(u)
Sfor j<i<k and @,_;,(v) for 0=i<j are defined, then 0,(u\Jv) is defined, and
we have

O(u\Jv) = eﬁ:ﬂ(@,@)u@“%) +J:§1J(@iu\/¢k—i(v))

in HUm2e-DR(X: 7)) modulo the indeterminacy Q. (The definition of Q is
given in §3.)

In §2 we prove three formulas (Theorems 2.4, 2.10 and 2.16) concerning
mod p functional cohomology operations associated with the relations (1.1-3).
Combining the results in §2 with the second formula of Peterson-Stein [3,
Theorem 5.27, we have, in §3, Theorems 3.4, 3.11 and 3.14 which are our main
theorems. In §4 we discuss the operations @;, @, and @; in the infinite di-
mensional complex projective space CP~. In §5 we calculate the values of
the operations on the Thom class of the tangent bundle of the real 2n-dimen-
sional complex projective space CP” in case p=3 and n=3"—1, by the method
of Adem-Gitler [4]. Using the results in §5, we study the mod 3 secondary
operations in CP” in §6.

We consider the double secondary cohomology operations @; associated
with the relations (1.1) and (1.8). Adams [2] has applied the double second-
ary operations associated with the relations of squaring operations to the
problem of vector fields on spheres, and Adem-Gitler [4] to the immersion
problem for real projective spaces. We have the results on 6; for the com-
plex projective space CP> and the mod 38 lens space L~(8) of infinite dimen-
sion in §7.

In §8 we apply the results in §7 to the stable vector field problem for
some (2n +1)-dimensional mod 3 lensIspace L*(3), and we have a non-immer-
sion theorem for L”(3) as follows: L"(8) cannot be immersed in (3n—3'—1)-
dimensional Euclidean space for n=2-3°+3"—1 (s>¢t>1) (Theorem 8.4).

I would like to thank Professor M. Sugawara for valuable discussions
and kind criticisms.

§2. Formulas on mod p functional cohomology operations

2-1. We denote the Adem relation (1.1) by
(11) aiBi:09 a,:@ld—(l——l)d—@', Bi:(@iﬁly ¢i, A),

where i >1. (By these notations we mean that 3;(w)= (9" "'w, P'w, dw) and
ai(z, y, 2)=P'4x—(G—1)dy—P'z.) Let k and j be given integers such that
0<j<k. Let Xand Y be spaces and f: X—Y be a map. Suppose that the
elements c € H(Y; Z,) and d € H™(Y; Z,) satisfy the following conditions,
where >0 and m >0.
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(2.1) dc=0, 4d=0,
(2.2) f*Pie=0  for i=j, j+1, ., k,
2.3) f*P*id=0  for i=0,1,..,].

Then we can define the functional cohomology operations («;);8;(c) for
J<i=k, (@r-)sBr-i(d) for 0=i< j, and (ax)sBi(c\Ud). Moreover, we have

TueoreEM 2.4. (ap)Br(cUd)
=, 5 (@B UPHIF*d} + TP e U(@n-)sba-i(d))

i H!m2e-DR(x - 7./, where

sz*Hl+m+2(p—1)k(Y; Zp)_|_Ql+m+2(p—1)k(¢k; X)

k R . . :
+ Z _{Ql+2(p—1)z(¢i; X)U@k—zf* d+HI+2(p—1):—1(X; ZD)UA@k—zf*d}

i=j+1

-1 . . . ;
+ Z {@zf*cUQm+2(p—1)(k—z)(¢k_i; X)+A@tf*cUHm+2(p—1)(k—-z)—1(X; ZP)}
i=0

We may suppose that X is a subspace of Y and that f is the inclusion,
by the mapping cylinder construction. Consider the following exact se-
quence:

o HUN X Z)25HYY, X; Z)L5HY(Y; Z)-L5HY(X; Zy)—-

where j: Y—(Y, X) is the inclusion and ¢ is the coboundary homomorphism.
Put g=1+2(p—1)i. Since f*Pic=0 for j<<i=<k by (2.2), it follows that there
is an element x; € H'***-Vi(y, X; Z,) such that

(2.5) j*¥ui=Pc for i=j, j+1,..., k.
Similarly by (2.3) we have an element y,_; € H”*?-D¢=O(y  X; Z,) such that
(2.6) j*y};_i:@kiid for i=0,1,..., j-

Lemma 2.7.  Let z; denote x; or y,. The following relations hold modulo
Image 0.

(2.7.1) @lzi:(i‘l'l)z”la

(2.1.2) fpzz,-:((P_lz)i—l)sz,
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(2.1.3) 5D3Zz=—<(p_13)i_1>zz'+3+8@”221

Proor. These formulas follow easily from the definition of z; and the
Adem relations. Q. E. D.

Proor oF Tueorem 2.4. By the Cartan formula and (2.1-3) we have
S¥Bu(cUd)=0, and by (1.1) arBi(c\Ud)=0. Thus (a;)sBi(c\Ud) is defined.
Similarly (a;);8:(c) for j<i<k, and (as_;)sBr-i(d) for 0<i<;j are defined by
(2.1-3) and (1.1).

We consider the diagram 1, where each row is the cohomology exact se-
quence of the pair (Y, X) and the coefficient group Z, is omitted.

S HYX) —2% HNY,X)— "  HNY)—
VBi 1Bi WBi
f* Hﬂ+2(_b—1)(i—l)—1(X) ) H’n+2(p—1)(i—1)(Y, X)L)Hn+2(p—1)(i——1)(Y) f
8% 7 D
f* I S R0 I(X) 3 g tAs- 1)1(Y .X) Hn+2(b~1)i(Y) AN
@ @ . @
f* H”(X\ s H’HI(Y, X)_‘__]*—__)Hﬂ—}-l(Y) N AN
Y la; la;
fr Hn+2(p 1)’(X) 8 gntAs- 1)z+1(Y X)) i* Hn+2(1>—1)i+1(Y) f*
Diagram 1

Consider the case n=1I. The functional operation («;);8:(c) is determin-
ed, modulo the indeterminacy, by

(2.8) 6((ai)fﬁi(c)):@14’xi—l—(i_'l)Axia

where ¢ is the coboundary homomorphism in the bottom of the diagram 1
and x; is the element defined by (2.5). Similarly, in case n=m, (a,_;)sBr_i:(d)
is determined, modulo the indeterminacy, by

(2.9) 0((p-1)Br-i(d))=P"4 Ye—i-1— (k—i—1)d ys s,

where y,_; is the element defined by (2.6). Next, consider the case n=I[+m
and i =k in the diagram 1. We have

2 U P D+ T Py i)y =P e d),
i=j+ i=
*{ il(x,‘u@k_"d)—}— i‘o(@"cu Vi-)} =P¥c\U d),
=7 i=
by (2.5-6) and the Cartan formulas. Put

y=@14{ i l(xi_lU@k_id) +]i:(g)’cu _')’k—i-l)}
i=j+ 1=
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k . i .
—(k—14A{ Zﬂ(in@k"’d) + 2 (P yi-d)}
i=j i=0

Then j* y=a;,8:(c\Ud)=0 by (1.1) and (2.1). Thus we have d((ax)Bi(c\Jd))
= y by the definition of the functional operation.

Let us calculate the element y by means of the Cartan formulas, the
Adem relations, (2.1) and (2.7.1). We have

y='4 3, (i UPH ) — (h—1)4 3 (e IPHd)
i=j+ i=j+

DT e Ui DA 3 D)

k

= 2 A% 1 —((—1)dx )P d}

i=7+1
+(k— Az, 0P d+(— D) (k—j—Dx, U AP d
(D E P U@ i1~ k= i— DA )

—(k=NAP e\ yi— (=)' k—j—DPcUd y._;

i=j+1

modulo i (Image 0\U4P*d)+ Ji}l(d@"cv Image 0).
; <o

But by the naturality of cup products and (2.5-6) we have Ax,-u@k"'.d=
ij Uj*yk_j = ij Uyk_j =]*Ax,\J Ve—j =A@jCU Ye-j> and ijA@k—jd :@]CU
4 y,_;. Therefore y is given, modulo the above indeterminacy, as follows:

k

r= 1{(@1436"‘1_(i_l)Axi)U@k'id}
A

iy
+(— 1)’].20 {DPiev(@P A yp_jor—(k—i—1)d y,_)}.
On the other hand, by the property of ¢ and (2.8-9), we see

0L, %A@ B)US*PHidy + B {f*Pieus (@n-sba- D)}

=, @B UPH d) +(~ 1 TAP O (r-sBadDy = ¥

modulo the indeterminacy. Hence we have the desired result. Q. E. D.

2-2. We denote the Adem relation (1.2) by

(1.2) ajf;=0, a;=@24_< (p—I%(i—l) )A_i@m,
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Bi=(P-t, P+t 4), where i>1.

Let £ and j be given integers such that 0<j<k. Let X and Y be spaces and
f: X—Y be a map. Suppose that c € H(Y; Z,) and d € H™(Y; Z,) satisfy the
following conditions, where >0 and m >0.

2.1) de=0, 4d=0,
(2.2) f*Pe=0  fori=j, j+1,.., k+1,
2.3y fX*Pid=0  fori=-—1,0,..., j.

Then we can define the functional cohomology operations («;)s8:(c) and
(ap)sBi(e) for j<i<k; (aw-)sBr-i(d) and (a}_;)sP}-;(d) for 0=i<j; and
(ap)sBi(c\ud) and (a})sB:(c\Ud). Furthermore, we have

Tueorem 2.10. (a})sBi(c\Jd)

:,2:“ {(@) BN UPH f*d+ (k—i+1) ((a)sB:i(e)\ VP T+ f*d}

D Fe (@) s8h- D)+ G+ DD FreU (@ )Ba (D))

am HmEe-DGkeD) (x0 7.3/Q, where

Q/:f*Hl+m+2(p—1)(k+1)(Y; ZP)+QI+m+2(p—1)(k+1)(m£; X)

+ i {Ql+2(p_1)(i+1)(@:-; X)U@k—if*d_i_(k_i_|_1)01+2(p—1)i(¢i; X>U@k-i+1f*d}
1

i=j+

=1 . . . .
_|_JZ: {@'f*cUQerz(p_l)(k_'“)(@;,_,~; X)+(l+1)@z+l *CUQerZ(p-l)(k—z)(@k_i; X)}
i=0
k=1 . .
+ Z.{HI+2([>-—1)(;+1)~1(X; Zp)\/d@k_'f*d}
1=J

7 . .
+ igl{A@tf*cUHm+2(p—1)(k—z+1)—1(X; ZP)}°

Proor. As in the previous case, we see from (2.2-3)" that there exist
elements x; € H'***-Vi(Y, X; Z,) and y;_; € H"***-DE-0(y, X; Z,) such that

2.5y J*xi=Pic  fori=j, j+1,.., k+1,
(2.6) Pyi=Prd  for i=—1,0,..., .

Then we notice that Lemma 2.7 holds in this case.

By the Cartan formula, (2.1) and (2.2-3)’, we have f*3;(c\Ud)=0, and by
1.2), a;Bi(c\ud)=0. Hence (a})sBi(c\ud) is defined. Similarly («})s8}(c)
for j<i=k, and (a;-1)sB;-i(d) for 0=i<j are defined, by (2.1), (2.2-3)" and
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(1.2).
We consider the diagram 2, where the coefficient group Z, is omitted.
LSH N (X)—2——H"(Y, X) 7 H"(Y) L
4 / 4

i i i
f* H"+2(p—1)(1.”1)—1(X)—3—>H”+2(p—1)(i_1)(Y, X) J* —)H”+2(p—1)(i_1)(Y) f* -

f* H”+2(p“1)(i+1>—1(X)£—>Hn+2(p_l)(i+l>(Y,X)—j* __)Hn+2(p—1)(i+1)(Y) >

@ @ , ®
f* H"(X) ) Hn+1(Y, X) j* —+H"+1(Y) f* N
a; laj a;

i
f* Hn+2(p—1)(i+1)(X) 3 Hn+2(p—1)(i+1)+1(Y, X) j* Hn+2(p—1)(i+1)+1(y) f*

Diagram 2

Consider the case n=[. The functional operation («!);8}(c) is determin-
ed, modulo the indeterminacy, by

@1) o@D =P i~ PTHITD Yams,

where ¢ is the coboundary homomorphism in the bottom of the diagram 2
and x; is the element defined by (2.5)’. Similarly in case n=m, (a}_;);8;-:(d)
is determined, modulo the indeterminacy, by

212) 3(@4-)sB;- () =P Ay —(PTVEGTI Ny,

where y;_; is the element defined by (2.6)". Next, consider the case n=[+m
and i=Fk in the diagram 2. We have

j*{i§+1(x;_1u@k'id)+:g::(g)"c\./ YVi—i-)} =P (U d),
B a P D Peu i)l =P e d),
by (2.5-6) and the Cartan formulas. Put
Y =P i UP D+ B Peu s )
—(PREDY 4 5 P+ ’z: (Pie\ yaoii}-

Then j* y'=a;B:(c\Ud)=0 by (1.2) and (2.1). Hence we have 0((a;)sB8%
(c\Ud))=y" by the definition of the functional operation. Put y'=4+ B,
where
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A=9"4 z v Py —(PTOETDY 5 (au i),

i=j+1

j+1

B=@>u§0 @eu g —(PTIETD N B @ e i,

Let us calculate 4 and B by means of the Cartan formulas, the Adem
relations, (2.1), Lemma 2.7 and the next lemma.

Lemma 2.13.  The following congruence holds for any integers k and i.
—-1GE—1 . . —DE—i—-2)—-1 —Dk—-1
<(P )2(Z )>+z(k—z)+<(P X 21 ) )E<(P )2( )> (mod p).

The proof is easy.
By calculations we obtain

e B [ (D Yo
+ b=+ DAP i 1 — (= Dy UPH1d |
(DI D=T) g
i+ (DD g g
+ (-1 (PDE=I D) sy
+ (=0 {t—j=DG+D +(PTVETTTIN e L

modulo "zl (Image 6\ 49D d),

B E] Peu (Prayn a—(POETID) gy, )
G+ DD AP oy~ (=i =Dy} |
0 (D) (0D
(o (POGTDY (DG Y gistous

+{(j—1)(k—j+1) +((P_1)2<f_2) >—<<P—1)2(k_1) >}A@chyk—f+1
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n {((p—l)z(j~1) )_((p—l)z(k—l) )}A@j“u Yous

modulo i} (49 c\w Image 0).
i=1

But by the naturality of cup products and (2.5-6)’, we have 4x;\UP*"1d
=4P'c\U y4_is1 and x,\ AP d=Dic\Udy,_;_, for i=j and j+1. Accord-
ing to Lemma 2.13, each of the sums of the coefficients of the corresponding
terms in 4 and B is zero. Therefore j is given, modulo the indeterminacy,

as follows:

y= 3 [{@ZAx,-_l—<(P‘lg(i‘1)>4xi+l}u@k_,-d

i=j+1

+(k—i—|—]_){g)14xi_1_ (i_l)Axi}U@k—Hld]

+ O G [Peu |y (PTVETI DNy,
+ <i+1)@f+1cu{@uy,,_,._l—(k-i—1)4yk_,-}].
On the other hand, by the property of & we have
0L, 3 A(@DsBIEN U * P+ (b= i+ D((@)Be) U P )
PP U@ )8 )+ 4 DD U (@) s8a (D))

= iéﬂ{0‘((a§)f8§(c))ug>k_id+ (k—i+1)0((ay) sB:(c))\ U PF-i+1 4}

(D B APV sBh (D) + G+ DD e Ud (@ )Ba (D}

i=

Then this is equal to y/, modulo the indeterminacy, by (2.8-9) and (2.11-12).
Therefore we get the desired result. Q. E.D.

2-3. We denote the Adem relation (1.3) by
(1.3) a;B;=0,
y— (p—D(E—-1) (p—DGE—1D)—1\ g+
a,._ﬁ)34+< p=1 )A—ed—( P0G )60 2,
1=(Pi-t, Piti DiFIDL4), where i>1.

Let k and j be integers such that 0<j<k. Let X and Y be spaces and f:
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X—Y be a map. Assume that c ¢ H(Y; Z,) and de€ H"(Y; Z,) satisfy the
folowing conditions (I >0, m>0).

2.1) de=0,  4d=0,

(2.2)” f*Pie=0 for i=j, j+1,., k+2,
(2.3)” frEPr-ig=0  fori=—2, —1,..,j,
(2.14) ef*PiPle=0  for i=j+1, j+2,., k
(2.15) ef ¥Pr-itiPlg=0  for i=0, 1,..., j—1.

Then we can define («,);8:(c), (a});B:(c) and (a3)sB5(c) for j<i=k; (Xr-i)sBr-i
(D), (@4-:)Bi-:(d) and (a;_;);B84—;(d) for 0=i<j; (@r)sBr(c\J d), (ap)sBi(c\J d)
and («a3)sR3(c\Ud). Moreover, we have

TueOREM 2.16. (a})sB3(c\Jd)

= 3 {(@) B UPHrd+ (it D@ BN U PR

_i_((p—l)(lé-—i)—1)((ai)f3i(c))u@k—i+2f*d}
TP (@ DB @)+ i+ DD N sBi- (D)
(PRI pre U (@) B )
in Hl+m+2(p—1)(k+2)(X; Zp)/Q”, where
Q//:f*Hl+m+2(p—1)(k+2)(Y; Zp)+Ql+m+2(p_1>(k+2)(m';’,; X)
+ Zk: {QI+2(p—1)(i+2)(@,§;X)U@k—if*d
i=j+1
+ (b= i+ DOV X)UPHI
(P DEmD T gromvia,; xyuPH-ieral
+iil{@if*cUQm+2(p—1)(k—i+2)(w;I;_i; X)
i=o0
+(i+1)@i+1 *CUQm+2(p—1)(k—i+1)(¢2_i; X)

+<(p— 12)i ‘—1>@i+2f>kcUQM+2(ﬂ—1)(k—i)(@k_i; X)}
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i k=1 -{H”Z(”’D(HZ)'I(X; Zp)ud@k—if*d}

i=j-1
+jil {A@if*cuHm+Z(p—1)(k—i+2)—1(X; Zp)}.
i=1
Proor. The method of the proof is the same as that of Theorem 2.10.

From (2.2-3)” we see that there are elements x; € H'**?-Di(Y, X; Z,) and
i € HmH¥e-DGE=D(Y X Z,) such that

(2.5)” Jrai=Pc for i=j, j+1,.-, k+2,
(2.6)” j*yk_,‘:@khid for i=—-2, —1,..., j

Notice that Lemma 2.7 holds in this case.
As is easily seen, all functional operations in the theorem are defined by

the assumptions.
We consider the diagram 3, where the coefficient group Z, is omitted.

L7 Xy) —2 S HYY,X)—L — L HNY)— I
187 167 183
f* Hn+2(p—1)(i—1)~l(X) ) Hn+2(p—1)(i~1)(Y, X) J* Hn+2(p—1)(i*1)(Y) f*
f* Hn+2(p»1)(i+2)—1(X> B Hn+2(p—1)(i+2)(Y, X) j* Hn+2(p—1)(i+2)(y) f*

f* eH"*z(”‘l)(”z)’l(X) 8 8Hn+2(p—1)(i+2)(y, X) i* an+2(p~1)(i+2)<Y) LN

@ B , B *
_f*_) H"(X) S Hn+1(Y, X) J* - Hn+1(y) f N
a Yo Vo

f* Hn+2(pA1)(i+2)(X) 8 N Hn+2(p-1)(i+2)+l(Y, X) i: Hn+2(p-1)(i+2)+1(y) f_*)

Diagram 3

Consider the case n=[. The functional operation («});8;(c) is determin-
ed, modulo the indeterminacy, by

@11 (@B =Pz +( PTIOT Yagy p—ea i,
where ¢ is the coboundary homomorphism in the bottom of the diagram 3

and x; is the element defined by (2.5)”. Similarly, in case n=m, {«}_;)sB%_;
(d) is determined, modulo the indeterminacy, by

(2.18) 0((ap-)B-i(d) =Py ;4 +<(P_1)(13c_i—1)>dyk—i+2_5A@k_i+ly1,

where y;_; is the element defined by (2.6)”. Next, consider the case n=1+m
and i=k in the diagram 8. We have
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. i-1
(i VP )+ 3 (PieV yi i)y =P eV d),
i=0

(ei2UP D+ B (PeU yi )y =P ),

k . X j+1 A
j*E{ 1(@’+1x1U@k_’d)+'go(@'@lc\}ykﬂ;”)

i=7+
T 2 @ VPP D) + 5 (PeuP ) =ePH DU ),
i=j i=
by (2.5-6)" and the Cartan formulas. Put

yll=Dg {.ﬁzﬂ (%o UDPFd) +J:Z;:,‘:(@"ck/yk_i—1)}

H(POETDNAL S iU+ DUy}

i=j+1

i=j+1

—ed{ 5 @ mU DD+ LD DUy i)

+ 5 (VP D)+ 20 Pic P14},

Then j*y/'=a;83(c\Ud)=0 by (1.3) and (2.1). Hence we have d((a})sR3(c\J
d)=y'.

We calculate y/' by means of the Cartan formulas, the Adem relations,
(2.1), Lemma 2.7 and the next lemma.

LemMma 2.19. The following congruence holds for any integers k and i.

(@=DG=D=1)_(G=Di=1)g_; _y
~ G+ (P DE—i=D) (=D —i=3)

E<(P—1)3(’“—1> ) (mod p).

The proof is not difficult.
By tedious calculations we obtain
k

yll= 3 [{@349&.71 +( (P_lé(i‘l) )Ax,-+z — eA@“lxl}U@k_id

i=7+1

+ (k—i+1) {@zdxi_l __( (P—l)z(i_l) >Axi+1}u@k—i+ld
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+<(P—1)(g_i)_l>{@ldx,;1— (i_mxi}u@k_md}
+ (—1)’:2;:[@ch {@34yk_i_1+<(p—1)(l§—i—1)>Ayk_i+2_84@k_,.+lyl}
+ (i+1)5Di+lcu{@24%4_1_<(P—1)(12c—i—l))Ayk_m}

+((P_:;)i —1>@i+ch {@ldyk—i_l — (k—i—l)dyk_i}]

i=j—1

k= . j + R
modulo ¥ (Image 6UAD*id)+ 3 (4Pic\ Tmage 5).
i=1

By the property of ¢, (2.8-9), (2.11-12) and (2.17-18), we have the desired re-
sult, as in the proof of Theorem 2.10. Q.E.D.

§8. Formulas on mod p secondary cohomology operations

3-1. We denote by &; the stable secondary cohomology operation as-
sociated with the Adem relation (1.1) of degree 2(p—1)i+1. Let &k and j be
given integers with 0<j<k. Let X be a space. Assume that the elements
u e H(X; Z,) and v € H*(X; Z,) have the following properties (1>0, m>0):

3.1 v and v are mod p reductions of integral classes.
(3.2) Pu=0  for i=j, j+1,.., k,
(3.3) Priv=0 for i=0, 1,...,;.

Then we can define the secondary cohomology operations @;(u) for j<i<lk,
0,_i(v) for 0=i<j, and 0,(z\Uv). Moreover, we have

TueOREM 8.4. O@,(u\Uv)= i 1(@,~(u)U@k‘iv)+jil(@iu U0,_;(v))
i< Frd

im HmH2e=Dk(X 7.3 modulo the indeterminacy Q.

If 0,(u) for j<i<Fk and @,_;(v) for 0<<i <j are defined, clearly the condi-
tions (8.2-8) are satisfied. Therefore Theorem 3.4 is equivalent to the
theorem in §1.

The indeterminacy Q is given as follows. Let g: X—>K(Z, ) and h: X—
K(Z, m) be maps such that g*r=u and h*k=v, where y and £ are the mod p
reductions of the fundamental classes of H'(K(Z, 1); Z) and H™(K(Z, m); Z)
respectively. Such maps g and & exist because of (3.1). Define a map f:
X—K(Z, 1) x K(Z, m) by f(x)=(g(x), h(x)) for each x € X. Then
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Q=f*H' "2 0"DNK(Z, 1) x K(Z, m); Zy)+ Q"+ * P~ D¥@, ; X)

+ Z {Ql+2(p—1)i(0i; X)U@k—iU+HI+2(p—1)i—l(X; Zp)UA@k_i’U}

k
i=7+1

-1 . . . .
+]Z {@‘uuQ"”z“"l)("”’)(m_f; X)_|_AgDzuuHm+2(p—1)(k—z)—1(X; Zp)}
i=0

Proor or TueoreM 8.4. Let g, & and f be defined as above. Then
[ *ax)=g*r=u, f*Axk)=h*c=vand f*(r x£)=fF((r xHDUAXK)=u\Jv.
Properties (2.1-8) hold for Y=K(Z, ) xK(Z, m), c=7 %1, d=1x£ by (3.1-3).
Hence we can define (a;);B:(r x1) for j<i<k, (as-i)sBr-i(1xk) for 0=i<j,
and (a;):8:(r %X k), and we have
k
(85)  (awsBu(r x k)= ; {(@)sBi(y x D) U P f*(1 x k)}

i27+1

+ j?;: {Df*(r x 1)U (@r-1)sBr-i(L X £)}

in Hi*m+2-DE(X: 7,)/Q by Theorem 2.4.
On the other hand, the second formula of Peterson-Stein [ 3, Theorem
5.27] implies that

(3.6) Or(u\Jv)=—(an)sBi(r X £)

modulo f*H' " +**=DXK(Z, 1) x K(Z, m); Zp)+ Q'+ 20-Dk(@y; X),
3.7 Oi(u) = —(a)B:(r > 1)

modulo f*H'***="DYK(Z, 1) x K(Z, m); Z,)+Q'**~Di(0;; X),
(3.8) O i(v) = — () sBr_i(1 X k)

modulo f*H™**P=VENK(Z, 1) x K(Z, m); Zp)+ Q™2 #-DE=D(@, ;5 X).

Thus we have the desired formula with the indeterminacy Q from (3.5-8).
Q.E.D.

CoroLLARY 3.9. Assume that the elements u € H'(X; Z,) and v e H”
(X; Zp) (>0, m>0) satisfy (3.1), and

(3.9.1) D=0 fori=1,2 .,k
(8.9.2) m<2(k—1).
Then 0;(u) for 1<i<k and 0,(u\Jv) are defined, and we have

B\ Uv) = gz(mi(u>u@k—fv)
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in H'AmEe-DE(x. 7.3/01, where
Qu=fH*H"" 2O ONK(Z, 1) x K(Z, m); Zp)+ Q™ DM@y X)

k . . . .
+i§:2 {QHZ(D—l)z(@i; X)U@k—zv_i_HHZ(p—l);—l(X; Zp)UA@k_"U}-

Proor. If we put j=1, the conditions (3.2-3) are satisfied by (3.9.1-2).
Clearly, we have @,(v)=0 by (8.9.2). Since u\UQ™**?-V*(@,:X) is contained
in Q\+m+2-DE(@, . X) by (3.9.1), the result follows immediately from Theorem
3.4. Q.E.D.

CoroLLARY 8.10. Assume that the elements ue€ H(X; Z,) and ve H™
(X; Zp) (1>0, m>0) satisfy (3.1), and

(3.10.1) Pu=0  fori=1,2,..,k,
(3.10.2) Pv=0  fori=1,2,..., k.
Then 0,(u), 0,(v) and @,(u\Jv) are defined, and we have
0, (u\Jv)=04(u) Jv+u\JOx(v)
i H " E0-DR(X s Z,)/Q3, where
Qo= f*H"" 20" DXK(Z, 1) x K(Z, m); Z) + Q™" "2~ DX(@y; X).
This result follows also from the formula of Adem [3, Theorem 8.47].

Proor. The conditions (8.2-3) are satisfied by (8.10.1-2). Since Q'*2(?~1*
(@,; X)\Uv and w\UQ™ *?-D¥@,; X) are contained in Q'*™+:?-Vk(@,. X) by
(3.10.1-2), the result follows from Theorem 3.4. Q. E.D.

8-2. Let us denote by @’ the secondary operation associated with the
Adem relation (1.2) of degree 2(p—1)(i+1)+1. Let k and j be integers with
0<j<k. Let X be a space. Suppose that u € H'(X; Z,) and v € H"(X; Z,)
(1>0, m>0) are mod p reductions of integral classes, and that they have the
following properties:

(3.2) Pu=0  fori=j, j+1,.., k+1,
(3.3 Pr-ip=0  fori=—1,0,...,j.

Then we can define the secondary cohomology operations @;(u) and @(u)
for j <i=<k; @;_i(v) and 0;_;(v) for 0<i <j; and O,(u\Jv) and Oy (u\Jv).
Furthermore, we have

Tueorem 8.11.  O;(u\Jv)= _ZkJI {05(w)\ UP v+ (k—i+1)0;(w) U PF+1p}
i=j+
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T ADUUOL )+ G+ DP U8, ()

i H'm oD X 78 /0!, where
Q/:f*Hl+m+Z(p—l)(k+1)(K(Z, l) XK(Z, m); Zp)+Ql+m+2(p—1)(k+1)(m;; X)

k . . . .
+ Z {Ql+z(p—1)(:+1)(@£; X)Ug)k—zv+(k_i+1)Ql+2(p—l)z(¢i; X)U@k_”lv}

i=j+1

=1 X X . .
+],§0{@tuUQm+2(p—1)<k_t+l)(¢;¢—i; X)_I_(i_|_l)gDz+1uUQerZ(p—l)(k—z)(mk_i; X)}

k-1 . . i . .
+ ,Zj'{HHZ(p_l)(Hl)_I(X; Zp)Ud@k_iv} + ZI{A@zuuHerZ(p—l)(k—wl)—I(X; Zp)}.
i= i=

Proor. The result follows from Theorem 2.10 and the second formula
of Peterson-Stein, as in the proof of Theorem 3.4, so we omit the details.
Q.E.D.

8-8. We denote by @; the secondary operation associated with the
Adem relation (1.3) of degree 2(p—1)(:+2)+1. Let £ and j be integers
with 0<j<k. Suppose that u € H(X; Z,) and v € H™"(X; Z,) (1>0, m>0) are
mod p reductions of integral classes, and that they have the following pro-
perties:

(3.2)” Pu=0  fori=j,j+1,.., k+2,
3.3)” Pr-ipy=0  for i=—2, —1,...,j,
(3.12) PPy =0  fori=j+1,j+2,..,k
(3.13) ePt-i1Ply=0  for i=0, 1,..., j—L1.

Then we can define 0;(u), @;(x) and 0;(u) for j<i=<k; @, ;(v), 0;_;(v) and
0;_;(v) for 0=5i<j; 0,(w\Jv), O4(u\Jv) and @y(u\Jv). Moreover, we have

Turorem 314 G3(u\U)
= 5 {B@uP ot (it DO UP
H(PDED ) g i)
+ 8 AP0 @)+ GHDP U0, w)
+(P D)2 00 o)

im HImr2e-DGD(x . 7.3/Q", where
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Q//:f‘*Hl+m+2(p—1)(k+2)(K(Z, l) % K(Z, m)) Zp)+Ql+m+Z(p—1)(k+2)(mi; X)

+ i {Ql+2(p—l)(i+2)(¢,;; X)U@kq'v_I_(k~i+1)Ql+2(p—l)(i+1)(¢;; X)U@k/z#lv

i=j+1

+<(P_1><12‘:_i)_1>Ql+2(p—1)i(@i; X)U@k—nzv}
+]§: {@iuUQm+2(p71)(k—i+2)(w,’,a—i;X)_|_(i__l_1)@i+1uUQm+2(p71)(k—i+1)(0’/¢_i;X)
+<(P‘12)i“1)§D"+2uuQ"’”(i’*”(”—")(a)k_i;X)}

i kil {H1+z(p—1)(i+2)71(X; Zp)\/Ang*iU}

i=j-1
s i m+2( (k—-i+2)-1
+ 2 AP S H DT 2]

Proor. This result follows from Theorem 2.16 and the second formula
of Peterson-Stein. We omit the detailed proof. Q. E. D.

We have corollaries of Theorems 3.11 and 3.14 similar to Corollaries

3.9-10.
§4. Mod p secondary cohomology operations in complex projective space

Let CP~ denote the infinite dimensional complex projective space. The
cohomology algebra H*(CP>; Z,) is a polynomial algebra over Z, generated
by z € H*(CP~; Z,)~=Z,, where z is the mod p reduction of a generator z, of
H?(CP~; Z)~=Z. We are going to calculate the secondary cohomology opera-
tions @;, @/, and @; (i>1) in CP~ associated with the Adem relations (1.1-3).

Lemma 4.1. If < 'Z.L>zo (mod p), then Q¥"+2=Di(@,;; CP=)=0.

Proor. Since Piz"= < ?)z”*“’*l)":O for a generator z" ¢ H**(CP~; Z,),
and HY(CP~; Z,)=0 for odd g, we get the desired result. Q.E.D.

Lemma 4.2. If i(i:1>50 (mod p), then Q*"+*(-LU+D(@;; CP~) =0,

Proor. Since i@”lz”:i(i_,’:1>z”*("‘1)("“)=0 for a generator z”, and

HY(CP~; Z,)=0 for odd ¢, we have the above result. Q. E.D.
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Lemma 43. If <(p—1)(;_1)_1><i :2>EO (mod p), then Q*"+3P-1G+2)
(@ CP=)=0.

Proor. Since<(p _1)(;_1)_1>5D”2z”=0, the result follows similarly.

Q. E.D.

Let I and m be positive integers, and let g: CP”—K(Z, 21) and h:
CP~—K(Z, 2m) be maps such that g*r=2z' and A*t=z:", where r and « are
the mod p reductions of the fundamental classes of H*(K(Z, 2l); Z) and
H*™(K(Z,2m); Z) respectively. Define a map f: CP~—K(Z, 21) x K(Z, 2m) by
f(x)=(g(x), h(x)) for each x € CP~.

TuEOREM 4.4. Let k and jbe integers such that 0<j<k, and I and m be

positive integers satisfying the following conditions:

(44.1) (D)=0@modp)  for i=j j+1,m b

(4.4.2) (kfi>zo (mod p)  fori=0,1,.., ;.

Then we can define @;(z") for j<i<k, @, i(z") for 0=i<j, and @.(z'*™).
Moreover, we have

BG= 5 @EUP T @O0, ()

i H* i+ 2o-Dk(cp=- 7.y modulo

f*H21+2m+2(p—1)k(K(Z’ 2[) % K(Z, zm), Zp)_|_QZl+2m+2(p~1)k(mk; CP‘”).

Proor. We apply Theorem 3.4, setting X=CP", u=z' and v=2z2". The
conditions (8.1-3) are satisfied by (4.4.1-2) and the definition of z. We have
Q¥+2-Di(@;; CP~)=0 for j<i=k by (4.4.1) and Lemma 4.1, Q*"+*®-D-9
(@y-;; CP~)=0 for 0==i<j by (4.4.2) and Lemma 4.1. Therefore we get the
desired indeterminacy. Q. E.D.

In addition, if we assume that
(45) (™ )=0 (mod p),

then we see that the second term of the indeterminacy of Theorem 4.4,

Q2 +2m+20-Dk(@, . CP*), is zero by Lemma 4.1.
Now we investigate the first term of the indeterminacy.
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Lemma 4.6. Let s and t be integers with 0<t<s, N be a positive integer,
and a=0, 1 or 2. Set l=Np**', m=p*—p' and k=p°. Then we have

FrRE 200G (K(Z, 21) % K (Z, 2m); Z,)=0.
Proor. Since f=(g, h), we have, by the Kiinneth formula,
[rREY I 0-DRra (K (7, 20) % K(Z, 2m); Z,)

= Zg*Hj(K(Z, 21); Zp)@h*HZI+2m+2(p—1)(k+a)~j(K(Z’ 2m); Zp).
J

In case 0<j<2l, clearly H/(K(Z, 21);Z,)=0.

In case j>2l, for the fundamental class y ¢ H*(K(Z, 21); Z,), we have
47=0, and g*Pr=9Pz'=0 for any i with 0<i<p°*'!. Then g*H**? 1
(K(Z, 21); Z,)=0. Since 2(p—1)(p°*'—1)>2m+2(p—1)(k+a), we have the
lemma in this case.

In case j=2I, we must show a*H>"+¥#-D+a(K(7 2m); Z,)=0. For the
fundamental class k € H**(K(Z, 2m); Z,), clearly P*£=0, and h*P'x=P'z"=0
for each i with 0<i<p’. Put u=p?, where g is any integer such that t=¢<
s. Then we see easily h*PD*g=0 for all i with p?"'<i<p‘’. As2(p—1)
(p’—1+pH=2(p—1)(k+a), we get the desired result.

Finally, we consider the case j=0. Let I be any sequence {ii, iz,---, in}
of positive integers, whose degree is 2/+2(p—1)(k+a) and put P'=PrP"
.9, We are going to show A*Pk=0. If N£0 (mod p—1), there is no
sequence I such that degree Pk=2m+21+2(p—1)(k+a)=2m+2(p—1)(i1+
+1i,), and so we have H+2m+2-V+a(K(Z 2m); Z,)=0. If N=0 (mod
p—1), then i1+ +i,=a (mod p°) by the assumptions. Let

il':Za;Pq (]:1, 2"“3 n)
q

be the p-adic expansion of i; where 0<a)<p. Let r be the least integer
such that a]=0 for any ¢ with ¢<r and any j, and such that at least one of
the coefficients al,..., a” is non-zero. By M we denote the maximum of the
integers j with a/=0.

In the rest of the proof, we use the symbol z[ n ] instead of z”. If r+1=<
t, W*Pr=Ph.. . Piu(Kz[ -+ Ap”**]) for some integers K and 4. Since 0<alf
<p, we have Piuz[ ...+ Ap"*']=0, and hence 1*Pk=0. If r=s, clearly h*Pk
=0. If t=r<s, there exists a positive integer R such that al+ - +a?=Rp,
because i+ - +i,=a(mod p*). Suppose a=0. Take a positive integer Q
such that a?*'+a?*24 - +a?<p and a +af**+---+a?>p. Now we have

WPl = i Pix(HEL -+ (p—Dp+ )

—HP'...Pia.. Pirs "‘+.(.f.’1352'§3+"')z["'+<p—1—a¥>p’+---?J
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. i ios .,A_’_(p_]__aly_..._a$+1)Pf+...
S )]

for some integers H and G. In the above equalities the last binomial coeffici-
ent is congruent to zero modulo p, since p—1—a¥ —--- —af*1<a?. Therefore
we get A*Pk=0. The proof in case a=1 or 2 is similar. Q.E.D.

CoroLLARY 4.7. Let s and t be integers with 0<t<s, and N be a positive
integer. Set l=Np**', m=p°—p' and k=p*. Then 0,z') for 1<i=k and
0,(z'"™) are defined, and with zero indeterminacy we have

0s(z' M) = 3 (@(HUPHm

in H21+2m+2(p—1)k(CPm; Zp)-

Proor. The conditions (4.4.1-2) for j=1 and (4.5) are satisfied by the
assumptions. Since m<k—1, we have @,(z")=0. By (4.5) and Lemma 4.6
the indeterminacy is zero, and hence we have the desired result from Theo-
rem 4.4. (We may use also Corollary 3.9.) Q. E.D.

CororLrLarY 4.8. Let s and N be positive integers. Putl=Np**' and k=p°.
Then 0;(z%*) and 0,(z") are defined for 1<i<k, and with zero indeterminacy
we have

@i(z’) = N@,-(z”k) v Zlﬁpk.

Proor. If N=1, the result is trivial. Suppose N>1. We apply Corol-
lary 3.10, setting X=CP~>, u=2z"* and v=2'"?*. The conditions (3.10.1-2) are
satisfied by the assumptions. Thus by Corollary 8.10, for any i with 1 <i<k,
0,(z%%), 0,(z'~?*) and 0;(z") are defined, and we have

0,(2)=0;(z?%)\ Uz PF 4 2tF U@, (2 PF).

It can be shown that the indeterminacy is zero. The result follows by in-
duction. Q. E.D.

Tueorem 4.9. Let k and j be integers such that 0< j<k, and I and m be
positive integers satisfying the following conditions:

(4.9.1) (4)=0@modp)  fori=j, j+1,, k1,
(49.2) (,™;)=0@modp)  fori=—1,0,..].

Then we can define @,(z') and @;(z") for j<i<k, 0,_i(z") and 0;_;(z") for
0=<5i<j, and @,(z'"*") and 0y(z'*™). Moreover, we have
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k . .
OY "= 5 O UDH 4 (ki DO D27
i=j+1

i-1 . :
+ ZAPE VO, (M) + @+ DP U0, ()}
i=0
mn HZI+2m+2(p—1)(k+1)(CP»; Zp) modulo

f*H21+2m+2(p—1)(k+1)(K(Z, 21) % K(Z, 2m)’ Zp)+sz+2m+2(p_1)(k+l)(w]/z; CPoo)

Proor. Putting X=CP~, u==2' and v=2", we apply Theorem 3.11. The
indeterminacy is as above because of (4.9.1-2) and Lemmas 4.1-2. Q. E. D.

In addition, if we assume that
(4.10) k( L )EO (mod p),

then we see that the second term of the indeterminacy of Theorem 4.9,
Q2+em 2=kt (@1 - CP™), is zero by Lemma 4.2. Q.E.D.

Turorem 4.11.  Let k and j be integers such that 0<j<k, and I and m be
positive integers satisfying the following conditions:

@11y (1)=0(modp)  fori=j, j+1, k+2,

@112) (,")=0@modp)  fori=—2 —1,..,}

@113) e TP =0 mod p)  for i=j+1, j 42, k,
1+1 P J J

(4.11.4) em(’ng?;ll)EO (mod p)  fori=0,1,..., j—1.

Then we can define 0,(z"), 0;(z") and 07(z") for j<i<k; @,_i(z"), O}_;(z™)
and @;,_;(z") for 0=i<j; 0,(z'*"), 0,(z'*™) and 04(z'*™). Moreover, we have

03" M= 5 {BiDUPH 4 (b i+ DO U P
+ <(P_ 1)(12C— i) - 1) @i(zl) U@k—nzzrn}

+ 3P0 + G+ DDV,

H(PDI s 0, )
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in H¥+2m+20-DED(Cp=- 7.y modulo
f*Hzl+2m+2(p—1)(k+2)<K<Z, 2l) XK(Z, 2m), Zp)+ QZl+2m+2(p—1)(k+2)(@2; CP"’).

Proor. Putting X=CP~, u=z' and v=2", we apply Theorem 3.14. By
(4.11.1-2) and Lemmas 4.1-3, we have the desired indeterminacy. Q. E.D.

Furthermore, if we assume that
(4.12) ( (p=D—1) —1X Lim )Eo (mod p),

then we see that the second term of the indeterminacy of Theorem 4.11,
QF+am 2=kt (@ - CP™), is zero by Lemma 4.3.
We obtain corollaries of Theorems 4.9 and 4.11 similar to Corollaries

4.7-8.

§5. Mod 3 secondary cohomology operations on the Thom class of ¢(CP")

The next proposition is proved, using the second definition of the func-
tional cohomology operation [9, p. 2927].

ProrosiTion 5.1. Let f: X—Y be a map, and g be a positive integer.
Suppose that the element c € H/(Y; Z,) is the mod p reduction of an integral
class co € H/(Y; Z) and satisfies that f*c=0. Then the functional cohomology
operation dsc 1s defined. Furthermore, there is an element d, € HY(X; Z)
such that f*co=pdoy, and we have

dsc=d(= the mod p reduction of d,).

Let CP” denote the complex projective space of real dimension 2n, and
let x, be a generator of H*(CP"; Z)~Z. The cohomology algebra H*(CP";
Z) is a polynomial algebra over Z with relation x7t1=0. Set gy=x,x1—1
X xo € H}(CP"x CP"; Z). There is a map f: CP"x CP"—>K(Z, 2)=CP~ such
that

(5.2) f*Zo’:ﬂ():onl—lxxo,

where z, is a generator of H*(CP~; Z)~Z. Let x € H*(CP"; Z,), z € H*(CP*;
Z,), pn€ H*(CP"xCP"; Z,) be the mod p reductions of x,€ H*(CP”; Z),
zo € H¥(CP>; Z), o € H*(CP" x CP"; Z) respectively. Then we have

ProrositioN 5.3. Let n=p**'—1 and k=p° (s>0). Then, for z""'¢€
H*"*%(CP=; Z,) (i>0), the functional cohomology operation 4;z"*' is defined.
In addition, if p=3, the following holds with zero indeterminacy:

dgz"ti= — g (o* x 1) (€ H Y5 (CP" x CP"; Zy)).
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Proor. Clearly, 4z""'=0. By (5.2), we have
(5.2) [rfa=p=xx1—-1xuz,

sothat f*2" " =(xx1—-1x )" =(a""x1—-1x 2" (2 x1—1xx)'=0, since
x"*'=0. Therefore 4;z"*" is defined.

If p=38, for n+1=38""'=8k, we have ui*'={(xox1—1xx0)*}*=—38(xo
X 1=1%x0)"U(xkx x8) (mod 9). Hence f*zi*i=pi ' x pi*t=—-8put" " 1\U(xt
% x8) (mod 9). Therefore, by Proposition 5.1, we obtain 4,z"" = — y**i-1y
(x*x x*). Since f*z"*'=0 and HYCP"x CP"; Z3)=0 for odd ¢, it follows
that the indeterminacy is zero. Q. E.D.

Let =7(CP") denote the tangent bundle of CP”, E the total space of <,
and 7 : E—~CP" the projection of z. Let 6>0 be a sufficiently small number.
Let E(0) (resp. E,(0)) be the set of the pairs («, ?) € E, where x € CP" and
[|3]|<<6 (resp. ||5||=0). Let D be the diagonal in CP”x CP”. Define a map

e: (E(0), Eo(0))—>(CP"x CP", CP"x CP"—D)

by e(x, 3)=(x, y) for (x, 3) € E(0), where y is the terminal point of the
geodesic in CP” which has the initial point x, the direction of the vector %,
and the length ||7||. Since e(x, 0)=(x, x), e(Ey(0))CP"x CP"—D. The
map e defines the isomorphism [ 8, pp. 46-47]

Wi H((CP™); Z,)—>H*(CP" x CP", CP"x CP"—D; Z,),

where (CP™)" denotes the Thom complex of the tangent bundle r. Let
U e H**((CP")"; Z,) be the Thom class of . For the injection j: CP” x CP"—
(CP"x CP", CP"x CP"—D), set U=j*yU. From the definition of the map e,
we have, for x' € H*(CP"; Z,),

(5.4) P UUT ) =T (x x 1).
According to [8, Theorem 157, U= Zn] (2" % x%).
Suppose p=3. If n=3""1—1, v’vzo have
(5.5) frar=pr=(x x1—1x %) =T,
for z € H3(CP~>; Zs), by (5.2)'.

Let @;, 0, and @7 (i>1) be the mod 3 secondary cohomology operations
associated with the following Adem relations (mod 3):

1LD; DPDHP—(i—1)4D—Pi4=0,
(1.2); (P*HP ' —2i(i —1)AP+ —iPi14=0,
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(1.3)s (P HD+ < 2i§2 )Ag)nz_d(@in@l) _< 2ig3 >@i+24=0.
Let us calculate @;(U), 0;(U) and @3(U) by the method of Adem-Gitler

[4, §71.

TueoreMm 5.6. Let n=3°"'—1 and k=3° (s>0). Let U=j*yU (€ H**(CP”"
x CP"; Z3)). Then 0,0) is defined for i >1, and with zero indeterminacy we
hawve

0,(0)=—TU(x* x1)==0, and 0;(T)=0, if i~k.
Proor. Clearly, 4U=0. Since the mod 3 Pontrjagin class of CP” is
given by

6.7) » =( ntl )fo ¢ HY(CP"; Zy),

it follows that p;=0 for i>0. Thus we have

(5.8) PiT=0 for i >0,
because P'U=j*yP U= j*ydp;, where ¢: H*(CP"; Z3)—~>H""**"((CP™)"; Z3) is
the Thom isomorphism (cf. [8, p. 1207]). Therefore @;(7) is defined for i >1.
By (5.5) and (5.8), f*B:(z")=0 for i >1, so that («,);8:(z") is defined for any

i>1. According to the second formula of Peterson-Stein [ 3, Theorem 5.27,
we have

(5.9) 0,(0)=—(a)sB:(z")

in H™(CP"x CP"; Z3) modulo f*H%(CP*; Z3)+Q***(@;; CP"x CP").
Since f*z"**=0 for i>0, it follows that f*H?***(CP~; Z;)=0. Using the
Cartan formulas we can prove that P'H?"(CP" x CP"; Z3)=0 for any i>0.
Thus Q*"**(@;; CP" x CP")=0. Now we have

(@)sBi(z") =P 4— (i —1)Ad—=D) (P, P, (")
=P )P " — (G — 1) 4, PP " — Pi(4z")
Z@ldf@i—l n_(i_l)Afg)izn,

by considering the definitions of functional operations. (Notice that each
term is well defined.) Therefore

G10) (@i =(; 2y )P — =D ()4

In case i=k, by (5.10), (5.9), (56.5) and Proposition 5.3, we obtain, with
zero indeterminacy,
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0,(U)=— () sBs(z") = — P dyz" 22 42" 2*
=P 3 U (xF % xF) — 1 VU x xh) = — pt U (xF < xF)
= — U (2% x 1)=0.

Now, by (5.9) and Proposition 5.3, we have

0D =— (" )P = 3U Gt + G=D (7 (= a5 Ut x k)

_ {(k+ 2i — 33(;'11)— i — 1)(’; )}ﬂk+2f~1u(xk % x*).
On the other hand, the naturality of @; and (5.4) show that
0,(T)=0,(j*yU)=j*y0,(U) = j*(A(U U n*x%))
=20V x 1) =24"U(x* x 1),

for some 1¢ Z;. Comparing the coefficients of x”:x x?* on the right-hand
kE+2i—1

n—k
a€Z;. If i<k, obviously 1=0. If i>k and (ktf_Lk_l)?éO (mod 3), we have

i=mk for some m>1, and hence x*=0. Thus in case ik we obtain @,(0)
=0 with zero indeterminacy. Q. E.D.

Tueorem 5.11. Let n=38°"'—1 and k=38°(s>0). Let U € H*"((CP™)"; Z53)
denote the Thom class of the tangent bundle t=7(CP") of CP". Then ®;(U) s
defined for i>1, and with zero indeterminacy we have

sides of the above two expressions of @,(U), we have 1 =a< > for some

0,(U)=—UU(n*x** x1)=£0, and 0,(U)=0, i f ik,
where 7 is the projection of the tangent bundle «(CP").

Proor. 4U=0is clear. P U=d¢p;=0 for i >0, by (5.7), where ¢ is the
Thom isomorphism. Thus @;(U) is defined for i>1. By (5.4), Theorem 5.6
and the naturality of @,, we see

F 0, (U)=0,0)=—TU(x** x 1) = — Xy (U (n*x** x 1)).

Since j*yr is a monomorphism, we have the first formula. It is easy to prove
that the indeterminacy is zero.
The second part is obtained similarly. Q. E. D.

Tueorem 5.12.  Under the assumptions of Theorem 5.6, 0.(U) and @3(U)
are defined for i >1, and with zero indeterminacy we have
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0;(0)=0and 03(0)=0  for any i>1.

Proor. Since 4U=0 and P9'T=0 for : >0 by (5.8), it follows that @;(0)
is defined for i>1. By (5.5) and (5.8), f*pj(z")=0, and so (a});Bi(z") is
defined for i>1. According to the second formula of Peterson-Stein [3,
Theorem 5.27], we have

(5.13) 0;(0)=—(a})sBi(z")

in H24+4(CP"x CP"; Z;) modulo f*H?"**+4(CP>; Z3)+Q***+4(@}; CP"x
CP™). Here we can see that the indeterminacy is zero, by the calculation
using the Cartan formulas. Now we have

(@DsBi(z")=(P?A—2i(i—1)d—iP" 1) (P71, P, A)(2")
:@de@i—lzn_2i(i_l)Af@len

=<i_nl>@zdfzn+2i—2 —2i(i— 1)<ii1)4fzn+2i+z‘

Therefore, by Proposition 5.3 and (5.13), we obtain

0,(T) = {(ij1)<k+22l— 3)—2i(i——1)<i_:1)}ﬂk+2“1U(xk % %%,
On the other hand, the naturality of @} and (5.4) show that
0(0)=2au"U (x> x 1),

for some 1 € Z;. Comparing the coefficients of x”x x%*% on the right-hand
sides of the above two equalities, we get 1=0.
The proof of the second part is quite similar. Q. E.D.

Tueorem 5.14. Under the assumptions of Theorem 5.11, @:(U) and @3(U)
are defined for i>1, and with zero indeterminacy we have

0:(U)=0and 07(U)=0  for any i>1.

Proor. The theorem follows from Theorem 5.12 in the same way as
Theorem 5.11 follows from Theorem 5.6. Q. E.D.

§6. Mod 3 secondary cohomology operations in complex projective space

TaeorREM 6.1. Let k=38° (s>0). Then, for z% € H*(CP>; Zs), ®,(z%)
(A <i<k) s defined, and with zero indeterminacy we have

0,(2**)= + 2% and 0,(z*)=0 for 1<i<k.
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Proor. Put n=38°"'—1=3k—1. Let & be the real restriction of the
canonical complex line bundle over CP”. We use the same notation for
a vector bundle and its isomorphism class. Let X* denote the Thom complex
of a vector bundle ¢ over a complex X. According to [5, Proposition 4.37],
there exists a natural homeomorphism: CP?*"*!/CP"~ (CP")"*V! where
mé=¢@- - B¢ (the m-fold Whitney sum of ¢). Furthermore, according to
[5, Lemma 2.4, there is a natural homeomorphism: (CP")"®*~S?(CP™)",
where S”Y denotes the r-fold suspension of Y. As is well-known, (n+1)¢
=tP2. Let

Q: CP2n+1/CPn—>SZ(CPn)T

denote the composite of the above homeomorphisms. Consider the diagram
4, where j: CP*"*'—(CP~ is the inclusicn, ¢: CP*"*'—->CP?*"*'/CP" is the pro-
jection, and ¢? is the 2-fold suspension.

H2n+2(CPeo; ZS) Qk ——>H2”+2+4k(CPm; Zs)
H2n+2(CPZn+1; ZS) mk —>H2”+2+4k(CPZ”+1; Z3)

tg* '
H2”+2(CP2”+1/CP"; ZS)_&HZn+2+4k(CPZn+1/CPn; Z3)

to* to*
HZ”+2(SZ(CP”)T; Z3> mk _)H2n+2+4k(SZ(CPn)7; Z3)

12 102

D

H*"((CP")"; Zs) SHHH(CP) 5 Z3)

Diagram 4

It is clear that j*, ¢*, ¢* and ¢® are isomorphisms, and that each indetermi-
nacy of @, is zero. The commutativity of the diagram 4 and Theorem 5.11
imply that (6%)7'(¢p*)71j*0:(z"") =0,(6?) ' (p*) N g*) " = £ 0(U)=F U
U(m*x2*% x 1)5=0. Therefore we have @,(z"+") = + z%.

The proof of the second part is similar. Q.E.D.

THEOREM 6.2. Let k=38°(s>0). Then, for z°* € HS*(CP~; Z;), 0}(z**) and
07(2%%) (1<i<k) are defined, and with zero indeterminacy we have

0,(**)=0 and 03(z*)=0  for 1<i<k.

Proor. Using Theorem 5.14, we obtain the results, similarly as in the
proof of Theorem 6.1. Q. E.D.

THEOREM 6.3. Let s and ¢t be integers with s>t>0, and N be a positive
integer. Set |=N3*', m=3°—8' and k=8°. Then, for z'*™ € H***"(CP~;
Z3), 0,(z'"™) is defined, and with zero indeterminacy we have
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@k(sz) — Nzl+m+2k.

Proor. By Corollary 4.7, #;(z") for 1<i<k and @,(z'*™) are defined, and
k .
with zero indeterminacy we have 0,(z"*™)= >} (0;(z")\uP*2™). We can also
i=2

define @;(z%*) for 1<i<k, and with zero indeterminacy we have @;(z")=No;
(z*)\z'~%k by Corollary 4.8. These results, combined with Theorem 6.1,
yield the desired formula. Q.E.D.

TuEOREM 6.4. Under the assumptions of Theorem 6.3, 0,(z'*™) and 0}
(Z'*™) are defined, and with zero indeterminacy we have

0,(z"*"™) =0 and 0;(z'*™) =0.

Proor. The results follow from Lemma 4.6, Theorems 4.9, 4.11, 6.1 and
6.2. Q.E.D.

§7. Double secondary cohomology operations in complex
projective space and mod 3 lens space

Let 9* be the ith reduced power operation mod 3, and 4 be the Bockstein
operation associated with the exact coefficient sequence: 0—>Z3—>Z;—Z;—0.
Let i=0 (mod 3). Consider the double secondary cohomology operation 6;
associated with the Adem relations:

(7.1) aifi= (P HP '+ 4P — D 4=\,
(7.2) aipi=(P*HP + (2i/3—1)(4P*) P — (4P HP' =0,

where a; =P A4+ 4+ 0— D', ;= P34+ (2i/3—1)4DP? — 4D+ +0, and B;= (D',
Pi. P 4). Let @; and @; be the secondary cohomology operations associated
with the relations (7.1) and (7.2) respectively. ©; is the same one as in §§1-6
for p=38. As for 0, if @;(w) is defined for some w € H%(X; Zs), the operation
07(w) in §§1-6, for p=3, is defined. Moreover, we have

0(w) =03(w) modulo Q"**+*(d; X).

The double secondary cohomology operation @; is a stable operation con-
structed as follows (cf. [4, §107]). Let n: E—>K(Zs, q) be a fibre space deter-
mined by B;. It is sufficient to construct @; in the stable range. Let ¢>4:
+8, and choose elements a € H***(E; Z;) and b € H*****8(E; Z3) associated
with (7.1) and (7.2) respectively. Let X be a space, and f: X—>K(Zs, q) be a
characteristic map for a given element u € HY(X; Z;). If B;(x)=0, there is a
map g: X—E such that rg=f. Define 0;(u)=(g*(a), g*(b)) € H*"*(X; Z3)P
H*+8(X; Z,), where ) denotes the direct sum. The indeterminacy Q(6@;;
X) is given by



On Some Secondary Cohomology Operations 69

(P AD P} A dH 4 ~5(X; Z3) + (4D (2i/3—1)4P?)dH* - 1(X; Z3)
+OD(— 4P D))dH (X5 Zs) +(—P'D0)dH*(X; Z3),
where dH is the diagonal subgroup of HHH.

TuEOREM 7.3. Let s and t be integers with s>t>0, and N be a positive
integer such that N==0 (mod 8). Put I=N3°*!, m=3°—8' and k=3°. Then,
for 2'™ e HEH™(CP~; Zs3), 0,(z'*™) is defined, and with zero indeterminacy we
have

@k(zl+m): i(zl+m+2k, 0).

Proor. Under the assumptions, @,, @, and @; are defined for the ele-
ment z'*” with zero indeterminacy. Therefore @, coincides with @, and 6,
is identical with the pair (@, #;,) on z'*”. Thus the result follows from
Theorems 6.3-4. Q.E.D.

Let L"(p) be the (2n+1)-dimensional standard lens space mod p, and
L=(p) be \J,L"(p). The cohomology algebra H*(L~(p); Z,) is given by
ALyI®Z,[w], where y and w are generators of H'(L*(p); Z,)=Z, and
H*(L>(p); Zp)=Z, respectively, with relation: 4y=w.

Turorem 7.4. Let s and t be integers with s>t>1, and N be a positive
integer such that N==0 (mod 3). Put [=N3**', m=38°—8' and k=8°. Then,
for w'*™ € H¥+*(L=(8); Z3), @(w'*™) 1s defined, and we have

@k(whrm)#o
in H¥ 24 (L=(3) 5 Zs)DH 244 +8(L=(3) ; Zs) modulo Q(6;; L™(3)).
Proor. Let p: L*(3)—>CP~ be the natural projection. Consider the

commutative diagram, where the coefficient group Z; is omitted, and n=2[ +
2m.

H"(CP”)&-—)H%H}Z(CP“)@ H”+4k+8(CP°°)

p p*
H"(L”(3))&>H”+4k(L°°(3))EBH"+4“8(L°°(3))/Q(@k ; L=(3))

*

As is well-known, p* is an isomorphism in even degree when the coefficient
group is Z,, and p*z=w, for z € H*(CP~; Z;). Hence p*z'""=w'"". By the
commutativity of the diagram and Theorem 7.3, we have

@k(wl+m) :@k(p*zl+m) :P*@k(zl+m) =+ (wl+m+2k’ 0)

modulo Q(®;; L7(3)). However, by the simple calculation we can see that
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any element of Q(@,; L=(3)) has a form A(w'*™*2* —yu/*m+2%+%) where 1 € Z;
(Here we need the assumption ¢>1). Thus Q(6,; L~(3)) does not contain
=+ (w' ™2k 0). Q.E.D.

Let v be an m-dimensional vector bundle over L*(8), V € H™((L"(8))"; Zs)
be the mod 3 Thom class of v. There exists a map f: (L"(3))*—~K(Z, m) such
that f*c="V, where r € H"(K(Z, m); Z3) is the mod 3 reduction of the funda-
mental class of K(Z, m). Then we have

THEOREM 7.5. Let k=38° (s>0). Suppose that m <2k—2 and that the first
Pontrjagin class mod 3, pi(v), is zero. Then 0,(V) is defined. If, in addi-
tion, fXH™ ¥ (K(Z, m); Z3)=0 and f*H™ ***8(K(Z, m); Zs)=0, then we have

6:(V)=0
modulo the indeterminacy Q(6y; (L"(3))*).

Proor. Clearly 47 =0. Since m<2(k—1), we have 9*1V=0and P*V=
0. From the fact that p,(v)=0, we have P'V=g¢p:(v)=0, where ¢: H*(L"(3);
Z3y)—>H"*((L*(3))"; Z5) is the Thom isomorphism. Therefore f*p.x=p,f*k
=(Pr-1, Pt P, 4)(V)=0, and hence the double secondary operation 6,(f*r)
and the double functional operation (a.Pa:)(B:k, Br£) are defined, where
=P U4+ 44+0—P* and a, =P34+ (2k/3—1)4D? — 4D*+*4+0. According to
the second formula of Peterson-Stein for double operations (cf. [4, Theorem
10.87]), we have

0:(f*r) = — (rDar) s(Bik, Bek)

modulo the total indeterminacy f*H™**(K(Z, m); Z;)EDf*H™ **+*8(K(Z, m);
Z3)+Q(0®,; (L"(3))"). By the assumptions, the indeterminacy is reduced to
QOy; (L"(3))")-

Since Bk =(P* 'k, Ptk, Pk, 4£)=(0, 0, D'k, 0) and (0D(— 4P**))(y, y)
=(0, —4P**'y)=(0, 0) for any element y of degree m+4, we may choose
zero for (a,@Dai);(Bik, Bek). Therefore we have 6,(V)=0 modulo Q(6,;
(L"(3)*). Q. E.D.

LemMmA 7.6.  Let s and t be integers with 0<t<s, m be an even integer >0
and N be an integer>0. Set M=N3°*'1+8°—38" and k=8°. Let vy be an m-
dimensional vector bundle over L"(3) such that the ith Pontrjagin class mod 3
18 given by

p)=(" ),

where v is a generator of H*(L"(8); Zs). Then we have f*H™***(K(Z, m); Z3)
=0 and f*H"**(K(Z, m); Z3)=0.



On Some Secondary Cohomology Operations 71

Proor. For the first part, any element of f*H™***(K(Z, m); Zs) (C
H"**((L"(8))*; Z3)) is of the form f*Plg=Pf*re=PV=D"...P'«(V), where
the degree of I={i,, -, i,} is 4k. It is sufficient to prove 2’V =0 for admis-
sible I, that is, for the sequence {ii, .-, i,} such that ;;>3i;,, for j=1, 2,...,
g—1. In case I={k}, P"V=¢pu(»)=0, since p,(v)=0. In case I is decompo-
sable, it is clear that 9'V=0 for 0<i,<8. If s—1=¢, obviously PV =0.
So we may assume s—2=>t. Let ¢ be any integer with t<<c<s—2, and set
j=as13'+---+a13+ag, where 0<a,<2 for r=0, 1,..., s—1, and where at
least one of the integers a.,i, -, a;_1 is non-zero. Then j==3°*!. Let = be
the projection of the tangent bundle of L”(8). Put 3°=I. Then we have

PIPY =PI (pi(v)) =P (V' U(—n*v?))

= — DIV U — DI Pirpt— PIHY Pyt

=G GE(Fa o

While, by calculation it can be proved that the coefficient of the above
value is congruent to zero modulo 8. Therefore we get $/9P'V=0 for j=3'
=38°*! and hence 9'V=0 for admissible I.

The second part is proved similarly. Q. E.D.

§8. Applications

Let % be the real restriction of the canonical complex line bundle over
L*(3). On the number of linearly independent cross-sections of myp=7PH - Dy
(m-fold), we have the next result.

Tueorem 8.1. Let r, s and t be integers such that r—1>s>t>1. Put
n=2:83°+3"—1. Then (3"—n—1)y does nmot have 2:3"+3'—3n independent
€T1088-8€¢Ct1ons.

Proor. Suppose that (83"—n—1)y has b independent cross-sections,
where 5=2.3"+3"—38n. Then there is a (2.-3°—3)-dimensional vector bundle
y such that (3"—n—1)y=vPbd.

According to [6, Theorem 17, there is a natural homeomorphism: L3 !
B)/L¥ " 23)~(L"(8))3"*~1n  According to [5, Lemma 2.4, there is a
natural homeomorphism: (L*(8))*®*~S%(L"(3))*. Thus we have a compo-
site homeomorphism:

@i L¥1(3)/L¥ " 2(3)= S"(L"(3))".

We set [=8"—38°"'=N8°*!, m=8°—3" and k=3°. Since Nz=0 (mod 3),
by Theorem 7.4, ®,(w'*™) is defined for w'*™ € H**+>*(L=(8); Z;), and we have
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(8.2) 04(w'*™)5=0 modulo Q(8y; L=(3)).

Let j: L¥~'(8)—>L>(8) be the inclusion, g: L¥"~'(8)—>L3"~*(3)/L* " *(3)
be the projection, and ¢ be the b-fold suspension. Now consider the dia-
gram 5, in which we denote L"(8), L=(8) and L*~*(8)/L* ~"~2(8) by L", L~ and
L respectively, the coefficient group Z; is omitted, and ¢ =21+ 2m.

HY(L™) — O eI H (L) /0(6,; L)

¥ i7*
Hq(LST—l) &—JI'I+4k(L37—1)@Hq+4k+8(L37_1)/Q(@k; LST—I)
tg* tg*
HY(L)— % He S I)QHT (L) /Q(04; L)
% o™
H"(S"(L”)”)Q’a-—»H"*“(S”(L”)”)EBH‘”“’”B(S”(L”)“)/Q(@k; S*(L*)”)
ta? fa?

H23((Lm)) -2 B3 ) HO (L)) /Q(64; (L")

Diagram 5

It is clear that the assumptions of Lemma 7.6 are satisfied, and hence by
Theorem 7.5, for ¥V € H**~3((L*(3))*; Zs), @,(V) is defined, and we have

(8.3) 0,(V)=0 modulo Q(8,; (L"(3))").

But, as is easily seen, each of the vertical homomorphisms is an isomor-
phism. Thus (8.2-3) give rise to a contradiction. Q. E.D.

Tueorem 8.4. Let s and t be integers with s>t>1. If n=2-34+3'—1,
then L*(3) cannot be immersed in Euclidean (3n—3'—1)-space.

Proor. Suppose that L*(3) be immersed in Euclidean (8n—3'— 1)-
space, then (8"?—n—1)y has 2.3"?—38n+38' independent cross-sections by
[7, Theorem 1]. This contradicts Theorem 8.1. Q. E.D.
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