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§ 0. Introduction

A given embedding / of a topological space X in the real zn-space Rm

induces the continuous map F of the space XxX—Δ (Δ is the diagonal of
XxX) into the unit (m— l)-sphere S™"1 in Rm, which is defined as follows:

F(x, y) = u~?{—"V MI f o r a n ^ distinct points x, y of X.
11/0*0—/(y) 11

Then it is clear that F is equivariant with respect to the symmetry which
interchanges the factors in XxX— Δ and the antipodal map of Sm~ι. Also,
an isotopy ft(t e [0, 1]) of two embeddings /<,, / i of X in Rm induces the equi-
variant homotopy Ft.

A. Haefliger [ΊΓ| investigated the embeddings of compact differentiable
manifolds in Euclidean spaces using the above equivariant maps and proved

THEOREM (Haefliger). Let M be an n-dimensional compact differentiable
manifold. Consider the correspondence which associates with an isotopy class
of a differentiable embedding f: M >Rm the equivariant homotopy class of
the map F defined as above. Then this correspondence is surjective if 2m>
3(72- + 1) and bijective if 2m>3(n

Let the reduced symmetric product space M* be the quotient space ob-
tained from MxM—Δ by identifying (x, y ) ^ ( y , x). Then the projection
MxM—Δ >M* is a double covering, and there exists a sphere bundle
5m~x >(MxM-J)Xz2S

m~ι >M* associated with this covering. Since
there is a one-to-one correspondence between the equivariant homotopy clas-
ses of equivariant maps Mx M—Δ >Sm~1 and the homotopy classes of cross
sections of the above sphere bundle S™"1 >(MxM— A) x zβ

m~x >M*, the
study of this sphere bundle and so the cohomology of M* play an important
part in studying embeddings of M in Rm. In fact, D. Handel Q4] and S.
Feder [2] studied the cohomology of (RPn)* and applied it to the existence
and the classification of embeddings of the real protective spaces RPn in
Euclidean spaces.

In this paper, we try to determine the cohomology of (CPn)* and to
study the double covering CPn x CPn—Δ >(CPn)* and to apply it to the em-
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bedding problem of the complex protective spaces CPn.
This paper is organized as follows: In §1, we construct the double

covering Zw+i>2 >SZn+lf2 in (1.3-4) which is homotopy equivalent to the
double covering CPn x CPn — Δ >(CPn)* of above. We prepare some results
concerning the cohomology of real and complex projective bundles in §2. In
§3, we determine the cohomology of Zn+χ>2 in Theorem 3.1 using the results
of §2. In §4, we determine the cohomology of SZn+1>2 and so the reduced
symmetric product space (CPn)* in Theorems 4.9, 4.10, 4.15. In §5, we cons-
ider the isotopy classification of embeddings of CPn in Rm (m = 4:n, 4n — l,
4n — 2) and so we have the main theorem:

THEOREM 5.5. Let

(1) There exists a unique isotopy class of embeddings of CPn in RAn.
(2) There exist just two isotopy classes of embeddings of CPn in R 4 n l .
( 3 ) There exist just two isotopy classes of embeddings of CPn in R4n~2

for n

The author wishes to express his gratitude to Professors M. Sugawara
and T. Kobayashi for their encouragement and valuable discussions.

§ 1. Construction of the double covering Zn+ιt2 >SZn+ιt2

Let Z7(2) be the unitary group on the complex 2-space C2 and T2 = S1 x
S1 be the maximal torus of 17(2) and let

S1 = {eiθ\O<θ<2π},

f e S \ i = l ,2,3,4} .

Then we have a sequence of inclusions

(1.1) S1 C T2 C G C U(β\

where S1 is embedded in T2 by the diagonal map.
It is clear that G/T2 = Z2 and we have the following

LEMMA 1.2. The quotient spaces U(2)/T2 and U(2)/G are diffeomorphic
to S2 and RP2 respectively, and natural projection U(2)/T2 >U(2)/G corres-
ponds to the double covering S2 >RP2.

Set Wn,2=U(n)/U(n-2). Then ΪFn>2 is the complex Stiefel manifold of
orthonormal 2-frames in Cn, and Z7(2) acts freely on Wn,2 as follows: If a=

a2\ is an element of Z7(2) and (uu u2) e Wn 2, then
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We consider the following quotient manifolds:

Xn,2=Wn,2/S\ Zn>2=Wn>2/T2

(1.3)
SZn>2= Wn,2/G, Gn>2(C)= Wn>2/U{2).

Here Xn>2 is called the complex projective Stiefel manifold [ 7 ] and Gn>2(C)
is the complex Grassmann manifold of complex 2-spaces in Cn.

The sequence (1.1) induces the following commutative diagram of fibra-
t ions:

S 1 > T2 >G > U(2)

J I !
(i 4) r κ , 2 = r B , 2 — r B , 2 =

where π2: Zn>2 >SZn>2 is a double covering.
Let / : Zn+1>2 >CPn x CPn-Δ be a map defined by

f(π(uu tt2)) =

where [uC\(i = l, 2) is the element of CPn determined by m e S2n+1. Then /
is well-defined and is an equivariant map, which induces the map / : SZn+1>2

>(CPW)* and so we obtain the map of double coverings

Zn+1>2-U CPnxCPn-Δ

(1.5) I

PROPOSITION 1.6. In (1.5), the map f is a homotopy equivalence and f is
a weak homotopy equivalence.

PROOF. Let (uu u2) be a pair of linearly independent unit vectors in

Cn+ι. Then ( M I , - n ^ — z*2, m uλ \ orthonormal vectors in

Cw + 1 which is obtained from (m, u2) by the Gram-Schmidt process, where
<^25 z^i> stands for the inner product of u2 and uι. We define a map ^ :
CPnxCPn-J >Zn+1>2 by

/ Γ ( L ^ I J ? L ^ 2 j ) == 7Γ( Ẑ  15 ~η ' rr )•
\ 11^2 — <^U2) Ul^s* Ul\\ /

Then g is a well-defined map such that gf is the identity map. Let ft
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CPn x CPn - A >CPn x CPn - A be the homotopy defined by

Then /, is a well-defined homotopy between the identity map and fg. Hence
/ is a homotopy equivalence.

By the exact sequences of homotopy groups of fibrations and the five
lemma, / induces isomorphisms of all homotopy groups of SZn+ίt2 and (CPn)*
and so / is a weak homotopy equivalence. Q. E. D.

Let Vn>2 be the real Stiefel manifold of orthonormal 2-frames in the real
zi-space Rn. The orthogonal group 0(2) acts on Vn>2 as follows: If a =

(ai aΛ is an element of (9(2) and (vu v2) c Vn 2, then
\a3 a±j

Let

and consider the quotient manifolds

and the double coverings X^,2 >Zf

n>2, Zr

n>2 >SZ'nt2. Considering the 2-
frame in Rn as that in Cn, we have a map A: F"«,2 >JFn>2. The map A in-
duces the equivariant map Z'nΛ >Zn>2 and so the map of double coverings.
Also, let g: X'n>2 >Zf

nt2 be the equivariant map defined by

where (vu v2) e Vn>2 and π'\ Vnt2 >Xf

n,2, π"\ VHt2 >Z'n>2 are the projec-
tions. Then we obtain the following commutative diagram of double cover-
ings:

xf g >zf h >z
(1.7) I

Z 'f ^ C 7f h C 7

w + i 2 ^*^"W+i 2 — — ^ * ^ " W + 1 2

REMARK. D. Handel Q4] treated the spaces Z^,2 and SZr

n>2 and applied
them to embedding problem for real projective spaces. Our notations are
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due to D. Handel.

§2. Projective bundles

In this section, we prepare some results concerning the cohomology of
projective bundles, which will be applied in §§3-4.

For a complex (or real) ra-plane bundle ξ = (E(ξ)9p(g\ Big)), there deter-
mines the associated sphere bundle S(f) = (S(f), /><>(?), B(ξ)) with S2n~x (or
Sn~ι) as the fiber. Let Pig) be the quotient space of Sig) where two unit
vectors in the same fiber in S(ξ) are identified by the standard free action of
S1 (or Z2) on S2n'1 (or S"'1), and let q(ξ): P(ζ) >B(ξ) be the factorization
of joo(f): S(ξ) >B(ξ) through P(ξ) by the natural projection q'(ξ): S(ξ) >
P(f). The bundle P(e) = (P(ζ\ q(ζ\ £(£)) with CPH~ι (or RPnl) as the fib-
er is the projective bundle associated with ξ.

Let λξ be the complex (or real) line bundle associated with the 5x-bundle
(or double covering) (S(f), q'(g\ Pig)). Then, for the inclusion i: CPnl >
P(ξ) (or iiRP"-1 >P(S)) in any fiber of P(f), ΐ*Af is the canonical line
bundle of CPn~λ (or RP"'1).

Under the above situations, we have

THEOREM 2.1. Let ξ be a complex n-plane bundle and let at e H2(P(i); Z)
be the first Chern class of λf9 the dual of λξ. Then 1, aξ, ,α*~1 form a
base of H*(B(ξ); Z)-module H*(P(g)\ Z). Moreover ? ( f)* : H*(B(ξ); Z) >
H*(P(ξ) Z) is a monomorphism. The ring structure of H*(P($) Z) is given
by

an

ξ=-tciiξ)anfι

ί = 1

where a(g) is the ί-th Chern class of ξ. If H%B{ξ)\ Z) = 0 for ί>2n, then
there is the following relation:

(2.2) ark=-UΣ Σ c^)ci+k^)anr for k>0,
ί = l .7 = 0

where Cj(ξ) is the j-th dual Chern class of ξ.

Similarly, we have

THEOREM 2.3. Let ξ be a real n-plane bundle and let aξ 6 Hλ(P(ξ)\ Z2) be
the first Stiefel-Whitney class of λξ and let Wi(ξ) (resp. Wiig)) be the ί-th
Stiefel-Whitney class (resp. dual Stief el-Whitney class) of ?. Then 1, o f,. .,
anfx form a base of H*(B(φ); Z2)-module H*(P(ξ);Z2). Moreover gr(£)*:
H*(B(ξ); Z2) >H*(P($); Z2) is a monomorphism. The ring structure of
H*(P(ξ);Z2) is given by
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n

i = l

If H*(B(ξ) Z2) = 0 for ί > n, then there is the following relation:

(2.4) α?+*=Σf Σ Wj(ξ)wi+k.j(ξ)aHr * M k>Q.
« = i y=o

PROOF OF THEOREMS 2.1, 2.3. The first half of each theorem is well-
known (e.g. pΓ]), a n ( i the straightforward induction provides the proofs of
(2.2) and (2.4) (see [4]). Q. E. D.

§3. Cohomology of Zn+ίf2

It is easily seen that Xn+ιt2 of (1.3) is the total space of the tangent
sphere bundle of CPn and Zn+ι>2 of (1.3) is the total space of the complex pro-
jective bundle associated with the tangent bundle of CPn. Also, it is well-
known that the j'-th Chern class Ci(CPn) and the ϊ-th dual Chern class Ci(CPn)

of the tangent bundle of CPn are equal to ( n . )zl and (— ΐ)\ n . ι)z\ res-

pectively, where z is the generator of H2(CPn; Z). Therefore the cohomolo-
gy H*(Zn+ι}2; Z) is determined by Theorem 2.1 as follows:

THEOREM 3.1. As H*(CPn; Z)-module, H*(Zn+1>2; Z) has {1, α,.. , α*"1}
as basis, where a (=V0) eH2(Zn+ι>2; Z) is the first Chern class of the dual of
the complex line bundle associated with the S1-bundle n\\ Xn+ι,2 >Zn+ι>2.
The ring structure is given by

where z is the generator of H2(CPn; Z).

Similarly, Z'n+lt2 is the total space of the real projective bundle associ-
ated with the tangent bundle of RPn. Therefore, by Theorem 2.3 we have

PROPOSITION 3.2 [4, Proposition 3.1]. In H*(Z'n+lt2; Z2), the following
relation holds:

v/n+k = nΣ Σ wjiRP^Wi^jiRP")^"-1 for £>0,
ί = l 3 = 0

where υr (=V0) is the first Stiefel-Whitney class of the double covering Xή+i,2

>Zn+lt2 and Wj(RPn) and iΰj(RPn) are the j-th Stief el-Whitney class and the
j-th dual Stief el-Whitney class of RPn, respectively.

COROLLARY 3.3 [4, Corollary 3.2]. // k = maxli | ( ^ t * W ) mod 2,
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/<rcJ, then v'n+k~ι^0, vfn+k = 0.

LEMMA 3.4 [4, Lemma 3.3]. Let u' denote the first Stiefel-Whitney class

of the double covering Z'n+lt2 >SZf

n+ι>2, and & = maxα ( . j^O m ° d 2,

Then u'^^

PROOF. By the diagram (1.7), it is evident. Q. E. D.

COROLLARY 3.5. // rc>4, then u/4

§4. Cohomology of (CPn)*

By the mapping cylinder considerations, the diagram (1.4) gives rise t o
the commutative diagram of fibrations:

Wn+ι>2— TFn+1>2=JFn+1>2= Wn+1>2

(4.1)
\ M P2 \ Pi \ Pi

—^-^BG —i3_^ BU(2).

The cohomology structures of SZn+χ>2 and BG are unknown. On t h e
other hand, the cohomology of Zn+ι>2 has been determined in §3 and the coho-
mology of Xn+ι,2 was determined by C.A. Ruiz Q7], and the others are well-
known :

(4.2) H*(Wn+1>2; Z) = Λ(wn, wn+1) where deg Wi = 2i-1 (i = n, n + ϊ).

(4.3) H*(BU(2);Z) = Z\:cuc2Ί

where c, (ί = l, 2) is the universal i-th Chern class.

(4.4) H*(BT2; Z) = Z[xu χ2j where deg Xi = 2 (i = l, 2),

and there are the relations

(4.5) ί*ί*cι = xι + x2, i$i*c2 = xιx2.

For Gn+ιt2(C)9 it is known that

+ ( j l 5 . . . 5 yn+1)

where deg ^ = 2(i = l,.. , n + ΐ) and 5(j i , . . , yk) is the ring of symmetric
polynomials of k variables yl9••., yk with integral coefficients and 5+(ji,.. , yk)
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is the ideal generated by the elements of positive degree [ΊL, Proposition
31.1].

Let (Ti(i = ly.., n — 1) be the z'-th elementary symmetric function with
respect to n—1 variables j 3 ? - ?>+i and let cι= yι + y2, c2 = yτy2. Then the
ideal S+(yu...,yn+1) is generated by the elements 0Ί + ci, <T2 + 0ICI + C2, 0",- +
σz _ici + σx _2c2(ί>2)5 where σ, = 0 for z>7i. By a straightforward induction,
we obtain

(4.6) σr=Σ(-ΐ)r-(r^i)cr

1-
2lci forr^l,

and

(4.7) H*(Gn+1>2(C); Z)=

From now on, we shall study the cohomology of SZn+ι>2 and BG. Con-
sider the following commutative diagram of fibrations:

T2 >U(2) >U(2)/T2 = S2

—• 17(2) >U(2)/G =

This diagram induces the following two commutative diagrams such that
each row is a fibration and each column is a double covering:

S2 >ZH+1,2 - ^

(4.8) j | .
RP2 >SZn+lf2-^Gn+ι,2(C), RP2 >BG

Therefore SZn+lt2 and BG are the total spaces of the real protective bundles
over Gn+ι>2(C) and BU(2\ respectively.

Since H*(Gn+1>2(C); Z) and £Γ*(Bί7(2); Z) have no torsion, we adopt the
same symbol for each element of H*(Gn+1>2(C); Z) and H*(BU(2); Z) and its
image in H*(Gn+ί,2(C); Z2) and H*(BU(2); Z2) by the mod 2 reduction, in the
rest of this paper.

THEOREM 4.9. Let ri>A and let υ e Hι(SZn+ιi2\ Z2) be the first Stiefel-
Whitney class of the double covering Zn+ι>2-^-+SZn+ι>2. Then, as H*(Gn+ι,2
(C); Z2)-module, H*(SZn+ι,2; Z2) has {1, v, v2} as basis and πf: jH"*(GΛ+if2(C);
Z2) >H*(SZn+ιt2; Z2) is a monomorphism. Moreover the ring structure of
H*(SZn+ι>2; Z2) is given by

where c\ 6 H*(Gn+ι,2(C); Z2) is the mod 2 reduction of the element of (4.7).

PROOF. The first half follows from Theorem 2.3. Hence it is sufficient
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to show that υ3 = cxv. By (1.7), we have h*v = u'9 the first Stiefel-Whitney
class of the double covering Z'n+lt2 >SZ'n+lt2. Since u/3^ψ0 for π->4 by Co-
rollary 3.5, we have v3^0. On the other hand, H3(SZn+1,2; Z2) = Z2 and its
generator is cxv by the first half of this theorem. Therefore we have v3 =
dv. Q. E. D.

Let δ2: H*( Z2) >H*+1( Z) be the Bockstein homomorphism associa-
ted with the exact sequence 0 >Z-^Z-^-+Z2 >0.

Since p2δ2 = Sqλ and Sq1v = v2\0 in H*(SZn+1>2; Z2), we have
Put δ2υ = u eH2(SZn+lt2; Z). Then we have

THEOREM 4.10. Let rc>4. Then H*(Gn+lt2(C) Z)-module H*(SZn+1>2 Z)
has {1, u} as generators and π%: H*(Gn+ιt2(C); Z) >H*(SZn+ιt2; Z) is a
monomorphism. Moreover there are the following relations:

PROOF. The first two relations follow from the fact that δ2v = u.
In the integral cohomology spectral sequence of the fibration RP2 >

SZn+ι>2-^->Gn+it2(C), E2-term is given as follows:

,H8(GH+U2(C);Z) ίort = 0

Es

2>t=Hs(Gn+lt2(C)', H\RP2; Z)) = FS(GW + 1,2(C); Z2) for t = 2

0̂ otherwise.

Therefore, each differential is trivial and so we have E2=E00. Hence we
obtain the following exact sequence:

0 >EL'° >Hs(SZn+1>2; Z) >EL'2>2 >0.

This gives rise to the exact sequence

(4.11) 0 >Hs(Gn+1>2(C); Z) >Hs(SZn+1,2; Z) >Hs~2(Gn+1,2(C); Z2) >0.

(4.11) induces that H2s-\SZn+1,2; Z) = 0 for all s and H2s(SZn+1>2; Z) has no
p-torsion for odd prime p. Since H2s~ι(SZn+ι>2; Z) = 0, the Bockstein coho-
mology exact sequence associated with the exact sequence of coefficients
0 >Z-^^Z—^-^Z2 >0 induces the exact sequence

0 >H2s\+χ, )

H2s(SZn+lf2; Z)-^-+H2s(SZn+ι>2; Z2)

This exact sequence implies that the torsion part of H2s(SZn+ίt2; Z) is
isomorphic to H2s'λ{SZn+lf2; Z2) by δ2. Since H2s-2(Gn+1>2(C); Z2) is isomor-
phic to H28-\SZn+lt2; Z2) by the cup product with υ, H2s-2(Gn+1>2(C); Z2)
is isomorphic to the torsion part of H2s(SZn+ι>2; Z), which is given by
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uH2s-2(Gn+ιt2(C); Z). Therefore the exact sequence (4.11) is split. Thus
H*(Gn+ιf2(C); Z)-module H*(SZn+ι>2; Z) has {1, u} as generators and π%:
H*(Gn+lf2(C); Z) >H*(SZn+1>2; Z) is a monomorphism.

Since p2u
2 = v* in H*(SZn+l)2; Z2) and h*v* = u'*\0 by (1.7) and Corollary

3.5, we have ^2^=0 in H*(SZn+ι>2\ Z). On the other hand, the torsion part of
HA(SZn+ι>2; Z) is Z2 and its generator is cLu. Therefore we have the last
relation u2 = cγu. Q. E. D.

The integral and the mod 2 cohomology of BG are given by the same
way as Theorems 4.9-10 and we omit the details.

THEOREM 4.12. Let n>4: and let v e H\BG; Z2) be the first Stiefel-Whit-
ney class of the double covering BT2—^BG and let u = δ2v. Then H*(BU(2);
Z2)-module H*(BG; Z2) has {1, v, v2} as basis and H*(BU(2); Z)-module
H*(BG;Z) has {1, u} as generators, and ί*:H(BU(2); Z2) >H*(BG;Z2)
and if: H*(BU(2); Z) >H*(BG;Z) are both monomorphic. Moreover the
following relations hold:

REMARK. If we notice that the transgression of the fibration Wn+i>2 >
Gn+i,2(C) >BU(2) is given by twi = ct(i = n, ra + 1), the universal i-th dual
Chern class of the complex 2-plane bundle, and that if is a monomorphism
because i$i% is so, we see easily

H*(SZn+1>2; Z) = H*(BG; Z)/(i*cH9 i%cH+1) for n

H*(SZn+1,2; Z2) = H*(BG; Z2)/(ί*cm ί*cn+1) for n

LEMMA 4.13. Let ra>4. Then the homomorphism π\: H*(SZn+ιy2 Z2)
H*(Zn+lf2; Z2) is given by

where α, z in H*(Zn+ιt2; Z2) are the images of α, z in H*(Zn+ι>2; Z) respective-
ly, by the mod 2 reduction.

PROOF. It is easily seen that π%v = 0. Since Wn+ι,2 is 6-connected for
rc>4, p*i(i = l, 2, 3, 4) is isomorphic in degree smaller than 7. Therefore
there exists a unique element ar in H2(BT2; Z2) such that p%a' = a. Since
§ = π*ιa=p*ιί

:\ar and p\ is isomorphic in degree 2, we have i%a' = 0. On the
other hand, the generator of H2(BU(1);Z2) is i\Xl = i\x2. Therefore the
kernel of ί\ of degree 2 is generated hy xx +x2. Hence we have af = xλ +
X2 = ί*cι by (4.5) and so we have π%cχ = a.

By Theorem 3.1, πfc2 has the form π%c2 = eιa2 + e2az + esz2, where ε/ = 0
or l(ΐ = l, 2, 3). Then we have
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π%Sq2c2 = π* ( c i c 2) — £i«3 + ε2a
2z + ε3az2.

However we have

Sq2π%c2 = Sq2(ειa2 + e2az + ε3z
2) = e2a

2z + ε2az2.

Comparing the coefficients of the corresponding terms of π%Sq2c2 and
Sq2π%c2, we obtain εi = 0 and ε2 = ε3, since rc>4. Assume that 62 = 63 = 0.
Then 0 = π$c2=p%i%c2=p%(χiχ2). This contradicts the fact thatp% is isomo-
rphic in degree 4. Therefore we have π%c2=az + z2. Q. E. D.

PROPOSITION 4.14. Let rc>4 and set n = 2r-\-s, 0<^s<2r — 1. The follow-
ing relations hold in H*(SZn+ι>2; Z2):

PROOF. By Lemma 4.6, we have σr= Σ(T~
 l\l~2ic2' for r > l in £Γ*

ί̂ o\ ι /

(GΛ+i,2(C);Z2). If r>n, then σr = 0. Therefore we obtaincfr+1-1 = 0. To
prove the second relation, it is sufficient to show that cfr+1~2c|^=0 and so
τzi(cf+1-2cI)^f0 in H*(Zn+lt2; Z2). By Theorem 3.1, we have

π*2(c2r+1-2cs

2) = nΣbia\ h e H*(CPn; Z 2 ).
x = 0

On the other hand, by Theorem 3.1 and Lemma 4.13, we have

Γι ι z)szs =
t

\n-(2

r-t-2) 2

r-t-2

Σ Σ

where cj(CPn\ cj(CPn) are the y-th Chern and dual Chern classes of CPn.
Comparing the coefficients of αw"\ we have

bn-ι =

— LΛ I f { or f 1 )Z
t=o\t/\ & —t — i j

(2r+14-5 t 1\n r _ j J = 0 or =V0 according as

t<Ls-\ or ί = 5, and so we obtain bn.1 = zH-1^ψ0 in H*(CPn; Z2). Q. E. D.

Using the above proposition, we have
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THEOREM 4.15. Let rc>4. Then SZn+ι>2 is an unorientable (4:n-2)-dimen-
sional manifold which is weakly homotopy equivalent to the reduced symmetric
product of CPn,and H4n~2(SZn+1>2; Z) = Z2 with the generator c\r+ι~2cs

2u for

§5. Classification of embeddings of CPn in Euclidean spaces

A. Haefliger investigated the embeddings in the stable range pΓ | and
proved the following theorem.

THEOREM 5.1 (Haefliger). Let M be an n-dimensional compact differen-
tiable manifold. The correspondence which associates with a given differen-
tiate embedding f: M >Rm the equivariant map F: MxM—Δ >Sm~ι

f(χ)— f(γ)
defined by F(x, y)= * y y induces the correspondence which associates

with a given isotopy class of f the equivariant homotopy class of F. This cor-
respondence is surjective if 2m~>3(n +1) and bijective if 2m>3(ra

We now know that there exists a one-to-one correspondence between the
equivariant homotopy classes of equivariant maps MxM—Δ >Sm~1 and
the homotopy classes of cross sections of the sphere bundle Sm'1 >{Mx
M— Δ) x z2S

m~1 >M* associated with the double covering Mx M— Δ >M*.
Let λ be the real line bundle over (CPn)* associated with the double

covering CPn x CPn-Δ >(CPn)*. Then the sphere bundle

S™-1 >(CPn x CPn-Δ) x Z2S
m-τ >(CPn)*

is the sphere bundle associated with mλ, the Whitney sum of m copies of λ.
Therefore we have

PROPOSITION 5.2. (1) Let 2m>3(2n + l). If mλ has a non-zero cross sec-
tion, then there exists an embedding of CPn in Rm.

(2) Let 2m>S(2n + l). Then there exists a one-to-one correspondence
between the isotopy classes of embeddings of CPn in Rm and the homotopy clas-
ses of cross sections of the sphere bundle associated with mλ over (CPn)*.

By Propositions 1.6 and 5.2, the obstructions for mλ to have a non-
zero cross section are the elements of Hi+1(SZn+ί)2; K^S™'1)) and its pri-
mary obstruction for even m is the Euler class x(mλ) of mλ, and the obstruc-
tions for two given cross sections to be homotopic are the elements of

LEMMA 5.3. Let y be a real line bundle. Then the Euler class X(2ΎJ) is
given by
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where wι(rj) is the first Stiefel-Whitney class of η.

PROOF. Let ξ be the canonical line bundle over RP°°. By the univer-
sality of f, it is sufficient to show that x(2ξ) = δ2wι(ξ). Consider the
Bockstein cohomology exact sequence of RP°°

0 >H\RP°°', Z2)-^H2(RP°°; Z)-^H2(RP°°; Z)-^->H2(RP°° Z2) >0,

where H\RP°°; Z2) = Z2 with the generator Wl(ξ) and H2(RP°°; Z) = Z2 with
the generator δ2wλ(ξ). Since ρ2χ(2ξ)=w2(2ξ) = wι(ξ)2^0, it follows t h a t
%(2f)=V0 in H2(RP°°; Z) and so we have x(2ξ) = δ2wι(ξ). Q. E. D.

REMARK. The above lemma is generalized as follows: Let rjι and ζn be
a real line bundle and a real zi-plane bundle over the same space with

. Then we have

By the above considerations, we have the following theorem, which is
already known ([6], [8], [9]):

THEOREM 5.4. (1) CPn is embeddable in R4n~2 for rc

(2) CP2r is embeddable in R2r+2~ι but not embeddable in R2r+2~2 for r>2.

PROOF. The obstructions for the existence of a non-zero cross section
of (An — l)λ are in Hi+1(SZn+lf2; 7Γz (S4w~2)) which is 0, since SZn+1>2 is a
(An — 2)-dimensional manifold. Hence CPn is embeddable in R4nl by Pro-
position 5.2, (1). The obstructions for the existence of a non-zero cross sec-
tion of (An — 2)λ are in Hi+1(SZn+1>2; 7T,(54w"3)) and non-trivial obstruction is
the Euler class x((4:n-2)λ) in H4n-2(SZn+1>2; Z). By Lemma 5.3, we have

= u = δ2v and using Proposition 4.14, we have

( = 0 for n

t for n = 2r.

Therefore by Proposition 5.2 (1), it follows that CPn is embeddable or not
embeddable in RAn2 according as n^2r or n = 2r. Q. E. D.

Our main theorem is the following

THEOREM 5.5. Let π>̂

(1) There exists a unique isotopy class of embeddings of CPn in R4n.
(2) There exist just two isotopy classes of embeddings of CPn in RAn~λ.
(3) There exist just two isotopy classes of embeddings of CPn in R4n~2

for n

PROOF. The obstructions for two non-zero cross sections of Anλ being
homotopic are the elements of H\SZnΛ.χf2\ Ki(SAn~1)) which is jθ for all ί.
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This implies (1). The obstructions for two non-zero cross sections of
(4n — l)λ being homotopic are in Hi(SZn+1>2; 7rz (S4w~2)) and

ί° for u

1,2 πi(SAn~2)) = <

[Z2 for ί = An — 2,

by Theorem 4.15. Therefore we have (2). By Theorems 4.9-10, 4.15,

ίO for i=V4rc-2

[z2 for ί = 4n — 2,

and so we have (3). Q. E. D.

REMARK 1. W.-T. Wu [10] proved that any two embeddings of an n-
dimensional differentiate manifold in R2n+1 are isotopic.

REMARK 2. T. Watabe [9~] proved that any two immersions of CPn in
gtn-i a r e r e g U i a r i y homotopic for even n.
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