# The Reduced Symmetric Product of a Complex Projective Space and the Embedding Problem 

Tsutomu Yasui

(Received February 19, 1971)

## §0. Introduction

A given embedding $f$ of a topological space $X$ in the real $m$-space $R^{m}$ induces the continuous map $F$ of the space $X<x-\Delta$ ( $\Delta$ is the diagonal of $X \ltimes X$ ) into the unit ( $m-1$ )-sphere $S^{m-1}$ in $R^{m}$, which is defined as follows:

$$
F(x, y)=\frac{f(x)-f(y)}{\|f(x)-f(y)\|} \text { for any distinct points } x, y \text { of } X .
$$

Then it is clear that $F$ is equivariant with respect to the symmetry which interchanges the factors in $X \ltimes X-\Delta$ and the antipodal map of $S^{m-1}$. Also, an isotopy $f_{t}(t \in[0,1])$ of two embeddings $f_{0}, f_{1}$ of $X$ in $R^{m}$ induces the equivariant homotopy $F_{t}$.
A. Haefliger [3] investigated the embeddings of compact differentiable manifolds in Euclidean spaces using the above equivariant maps and proved

Theorem (Haefliger). Let $M$ be an n-dimensional compact differentiable manifold. Consider the correspondence which associates with an isotopy class of a differentiable embedding $f: M \longrightarrow R^{m}$ the equivariant homotopy class of the map $F$ defined as above. Then this correspondence is surjective if $2 m \geq$ $3(n+1)$ and bijective if $2 m>3(n+1)$.

Let the reduced symmetric product space $M^{*}$ be the quotient space obtained from $M \times M-\Delta$ by identifying $(x, y) \sim(y, x)$. Then the projection $M \times M-\Delta \longrightarrow M^{*}$ is a double covering, and there exists a sphere bundle $S^{m-1} \longrightarrow(M \times M-\Delta) \times_{z_{2}} S^{m-1} \longrightarrow M^{*}$ associated with this covering. Since there is a one-to-one correspondence between the equivariant homotopy classes of equivariant maps $M \times M-\Delta \longrightarrow S^{m-1}$ and the homotopy classes of cross sections of the above sphere bundle $S^{m-1} \longrightarrow(M \times M-\Delta) \times{ }_{{ }_{2}} S^{m-1} \longrightarrow M^{*}$, the study of this sphere bundle and so the cohomology of $M^{*}$ play an important part in studying embeddings of $M$ in $R^{m}$. In fact, D. Handel [4] and S. Feder [2] studied the cohomology of $\left(R P^{n}\right)^{*}$ and applied it to the existence and the classification of embeddings of the real projective spaces $R P^{n}$ in Euclidean spaces.

In this paper, we try to determine the cohomology of $\left(C P^{n}\right)^{*}$ and to study the double covering $C P^{n} \times C P^{n}-\Delta \longrightarrow\left(C P^{n}\right)^{*}$ and to apply it to the em-
bedding problem of the complex projective spaces $C P^{n}$.
This paper is organized as follows: In $\S 1$, we construct the double covering $Z_{n+1,2} \longrightarrow S Z_{n+1,2}$ in (1.3-4) which is homotopy equivalent to the double covering $C P^{n} \times C P^{n}-\Delta \longrightarrow\left(C P^{n}\right)^{*}$ of above. We prepare some results concerning the cohomology of real and complex projective bundles in §2. In $\S 3$, we determine the cohomology of $Z_{n+1,2}$ in Theorem 3.1 using the results of $\S 2$. In $\S 4$, we determine the cohomology of $S Z_{n+1,2}$ and so the reduced symmetric product space $\left(C P^{n}\right)^{*}$ in Theorems 4.9, 4.10, 4.15. In §5, we consider the isotopy classification of embeddings of $C P^{n}$ in $R^{m}$ ( $m=4 n, 4 n-1$, $4 n-2)$ and so we have the main theorem:

## Theorem 5.5. Let $n \geq 4$.

(1) There exists a unique isotopy class of embeddings of $C P^{n}$ in $R^{4 n}$.
(2) There exist just two isotopy classes of embeddings of $C P^{n}$ in $R^{4 n-1}$.
(3) There exist just two isotopy classes of embeddings of $C P^{n}$ in $R^{4 n-2}$ for $n \neq 2^{r}$.

The author wishes to express his gratitude to Professors M. Sugawara and T. Kobayashi for their encouragement and valuable discussions.

## § 1. Construction of the double covering $\boldsymbol{Z}_{\boldsymbol{n}+1,2} \longrightarrow \boldsymbol{S} \boldsymbol{Z}_{\boldsymbol{n}+1,2}$

Let $U(2)$ be the unitary group on the complex 2 -space $C^{2}$ and $T^{2}=S^{1} \times$ $S^{1}$ be the maximal torus of $U(2)$ and let

$$
\begin{aligned}
S^{1} & =\left\{e^{i \theta} \mid 0 \leq \theta<2 \pi\right\}, \\
G & =\left\{\left(\begin{array}{ll}
\gamma_{1} & 0 \\
0 & \gamma_{2}
\end{array}\right), \left.\left(\begin{array}{cc}
0 & \gamma_{3} \\
\gamma_{4} & 0
\end{array}\right) \right\rvert\, \gamma_{i} \in S^{1}, \quad i=1,2,3,4\right\} .
\end{aligned}
$$

Then we have a sequence of inclusions

$$
\begin{equation*}
S^{1} \subset T^{2} \subset G \subset U(2) \tag{1.1}
\end{equation*}
$$

where $S^{1}$ is embedded in $T^{2}$ by the diagonal map.
It is clear that $G / T^{2}=Z_{2}$ and we have the following
Lemma 1.2. The quotient spaces $U(2) / T^{2}$ and $U(2) / G$ are diffeomorphic to $S^{2}$ and $R P^{2}$ respectively, and natural projection $U(2) / T^{2} \longrightarrow U(2) / G$ corresponds to the double covering $S^{2} \longrightarrow R P^{2}$.

Set $W_{n, 2}=U(n) / U(n-2)$. Then $W_{n, 2}$ is the complex Stiefel manifold of orthonormal 2 -frames in $C^{n}$, and $U(2)$ acts freely on $W_{n, 2}$ as follows: If $\alpha=$ $\binom{\alpha_{1} \alpha_{2}}{\alpha_{3} \alpha_{4}}$ is an element of $U(2)$ and $\left(u_{1}, u_{2}\right) \in W_{n, 2}$, then

$$
\alpha\left(u_{1}, u_{2}\right)=\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}, \alpha_{3} u_{1}+\alpha_{4} u_{2}\right) .
$$

We consider the following quotient manifolds:

$$
\begin{array}{ll}
X_{n, 2}=W_{n, 2} / S^{1}, & Z_{n, 2}=W_{n, 2} / T^{2}  \tag{1.3}\\
S Z_{n, 2}=W_{n, 2} / G, & G_{n, 2}(C)=W_{n, 2} / U(2)
\end{array}
$$

Here $X_{n, 2}$ is called the complex projective Stiefel manifold [7] and $G_{n, 2}(C)$ is the complex Grassmann manifold of complex 2-spaces in $C^{n}$.

The sequence (1.1) induces the following commutative diagram of fibrations:

where $\pi_{2}: Z_{n, 2} \longrightarrow S Z_{n, 2}$ is a double covering.
Let $f: Z_{n+1,2} \longrightarrow C P^{n} \times C P^{n}-\Delta$ be a map defined by

$$
f\left(\pi\left(u_{1}, u_{2}\right)\right)=\left(\left[u_{1}\right],\left[u_{2}\right]\right),
$$

where $\left[u_{i}\right](i=1,2)$ is the element of $C P^{n}$ determined by $u_{i} \in S^{2 n+1}$. Then $f$ is well-defined and is an equivariant map, which induces the map $\bar{f}: S Z_{n+1,2}$ $\longrightarrow\left(C P^{n}\right)^{*}$ and so we obtain the map of double coverings


Proposition 1.6. In (1.5), the map $f$ is a homotopy equivalence and $\bar{f}$ is a weak homotopy equivalence.

Proof. Let $\left(u_{1}, u_{2}\right)$ be a pair of linearly independent unit vectors in $C^{n+1}$. Then $\left(u_{1}, \frac{u_{2}-<u_{2}, u_{1}>u_{1}}{\left\|u_{2}-<u_{2}, u_{1}>u_{1}\right\|}\right)$ is a pair of orthonormal vectors in $C^{n+1}$ which is obtained from $\left(u_{1}, u_{2}\right)$ by the Gram-Schmidt process, where $<u_{2}, u_{1}>$ stands for the inner product of $u_{2}$ and $u_{1}$. We define a map $g$ : $C P^{n} \times C P^{n}-\Delta \longrightarrow Z_{n+1,2}$ by

$$
g\left(\left[u_{1}\right],\left[u_{2}\right]\right)=\pi\left(u_{1}, \frac{u_{2}-<u_{2}, u_{1}>u_{1}}{\left\|u_{2}-<u_{2}, u_{1}>u_{1}\right\|}\right)
$$

Then $g$ is a well-defined map such that $g f$ is the identity map. Let $f_{t}$ :
$C P^{n} \times C P^{n}-\Delta \longrightarrow C P^{n} \times C P^{n}-\Delta$ be the homotopy defined by

$$
f_{t}\left(\left[u_{1}\right],\left[u_{2}\right]\right)=\left(\left[u_{1}\right],\left[\frac{u_{2}-t<u_{2}, u_{1}>u_{1}}{\left\|u_{2}-t<u_{2}, u_{1}>u_{1}\right\|}\right]\right) .
$$

Then $f_{t}$ is a well-defined homotopy between the identity map and $f g$. Hence $f$ is a homotopy equivalence.

By the exact sequences of homotopy groups of fibrations and the five lemma, $\bar{f}$ induces isomorphisms of all homotopy groups of $S Z_{n+1,2}$ and ( $\left.C P^{n}\right)^{*}$ and so $\bar{f}$ is a weak homotopy equivalence.
Q. E. D.

Let $V_{n, 2}$ be the real Stiefel manifold of orthonormal 2-frames in the real $n$-space $R^{n}$. The orthogonal group $O(2)$ acts on $V_{n, 2}$ as follows: If $\alpha=$ $\left(\begin{array}{ll}\alpha_{1} & \alpha_{2} \\ \alpha_{3} & \alpha_{4}\end{array}\right)$ is an element of $O(2)$ and $\left(v_{1}, v_{2}\right) \in V_{n, 2}$, then

$$
\alpha\left(v_{1}, v_{2}\right)=\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}, \alpha_{3} v_{1}+\alpha_{4} v_{2}\right)
$$

Let

$$
\begin{aligned}
& G^{\prime}=\left\{\left(\begin{array}{ll}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right), \left.\left(\begin{array}{cc}
0 & \varepsilon_{3} \\
\varepsilon_{4} & 0
\end{array}\right) \right\rvert\, \varepsilon_{i}= \pm 1, i=1,2,3,4\right\}, \\
& O(1) \times O(1)=\left\{\left.\left(\begin{array}{ll}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right) \right\rvert\, \varepsilon_{i}= \pm 1, \quad i=1,2\right\}, \quad D=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\right\},
\end{aligned}
$$

and consider the quotient manifolds

$$
X_{n, 2}^{\prime}=V_{n, 2} / D, \quad Z_{n, 2}^{\prime}=V_{n, 2} / O(1) \times O(1), \quad S Z_{n, 2}^{\prime}=V_{n, 2} / G^{\prime}
$$

and the double coverings $X_{n, 2}^{\prime} \longrightarrow Z_{n, 2}^{\prime}, Z_{n, 2}^{\prime} \longrightarrow S Z_{n, 2}^{\prime}$. Considering the 2frame in $R^{n}$ as that in $C^{n}$, we have a map $h: V_{n, 2} \longrightarrow W_{n, 2}$. The map $h$ induces the equivariant map $Z_{n, 2}^{\prime} \longrightarrow Z_{n, 2}$ and so the map of double coverings. Also, let $g: X_{n, 2}^{\prime} \longrightarrow Z_{n, 2}^{\prime}$ be the equivariant map defined by

$$
g\left(\pi^{\prime}\left(v_{1}, v_{2}\right)\right)=\pi^{\prime \prime}\left(\frac{v_{1}+v_{2}}{\sqrt{2}}, \frac{v_{1}-v_{2}}{\sqrt{2}}\right)
$$

where $\left(v_{1}, v_{2}\right) \in V_{n, 2}$ and $\pi^{\prime}: V_{n, 2} \longrightarrow X_{n, 2}^{\prime}, \pi^{\prime \prime}: V_{n, 2} \longrightarrow Z_{n, 2}^{\prime}$ are the projections. Then we obtain the following commutative diagram of double coverings:


Remark. D. Handel [4] treated the spaces $Z_{n, 2}^{\prime}$ and $S Z_{n, 2}^{\prime}$ and applied them to embedding problem for real projective spaces. Our notations are
due to D. Handel.

## §2. Projective bundles

In this section, we prepare some results concerning the cohomology of projective bundles, which will be applied in §§3-4.

For a complex (or real) $n$-plane bundle $\xi=(E(\xi), p(\xi), B(\xi)$ ), there determines the associated sphere bundle $S(\xi)=\left(S(\xi), p_{0}(\xi), B(\xi)\right.$ ) with $S^{2 n-1}$ (or $S^{n-1}$ ) as the fiber. Let $P(\xi)$ be the quotient space of $S(\xi)$ where two unit vectors in the same fiber in $S(\xi)$ are identified by the standard free action of $S^{1}$ (or $Z_{2}$ ) on $S^{2 n-1}$ (or $S^{n-1}$ ), and let $q(\xi): P(\xi) \longrightarrow B(\xi)$ be the factorization of $p_{0}(\xi): S(\xi) \longrightarrow B(\xi)$ through $P(\xi)$ by the natural projection $q^{\prime}(\xi): S(\xi) \longrightarrow$ $P(\xi)$. The bundle $P(\xi)=(P(\xi), q(\xi), B(\xi))$ with $C P^{n-1}$ (or $R P^{n-1}$ ) as the fiber is the projective bundle associated with $\xi$.

Let $\lambda_{\xi}$ be the complex (or real) line bundle associated with the $S^{1}$-bundle (or double covering) ( $S(\xi), q^{\prime}(\xi), P(\xi)$ ). Then, for the inclusion $i: C P^{n-1} \longrightarrow$ $P(\xi)$ (or $i: R P^{n-1} \longrightarrow P(\xi)$ ) in any fiber of $P(\xi), i^{*} \lambda_{\xi}$ is the canonical line bundle of $C P^{n-1}$ (or $R P^{n-1}$ ).

Under the above situations, we have
Theorem 2.1. Let $\xi$ be a complex n-plane bundle and let $a_{\xi} \in H^{2}(P(\xi) ; Z)$ be the first Chern class of $\lambda_{\xi}^{*}$, the dual of $\lambda_{\xi}$. Then $1, a_{\xi}, \ldots, a_{\xi}^{n-1}$ form a base of $H^{*}(B(\xi) ; Z)$-module $H^{*}(P(\xi) ; Z)$. Moreover $q(\xi)^{*}: H^{*}(B(\xi) ; Z) \longrightarrow$ $H^{*}(P(\xi) ; Z)$ is a monomorphism. The ring structure of $H^{*}(P(\xi) ; Z)$ is given by

$$
a_{\xi}^{n}=-\sum_{i=1}^{n} c_{i}(\xi) a_{\xi}^{n-i}
$$

where $c_{i}(\xi)$ is the i-th Chern class of $\xi$. If $H^{i}(B(\xi) ; Z)=0$ for $i>2 n$, then there is the following relation:

$$
\begin{equation*}
a_{\xi}^{n+k}=-\sum_{i=1}^{n-k} \sum_{j=0}^{k} \bar{c}_{j}(\xi) c_{i+k-j}(\xi) a_{\xi}^{n-i} \quad \text { for } k \geq 0 \tag{2.2}
\end{equation*}
$$

where $\bar{c}_{j}(\xi)$ is the $j$-th dual Chern class of $\xi$.
Similarly, we have
Theorem 2.3. Let $\xi$ be a real n-plane bundle and let $a_{\xi} \in H^{1}\left(P(\xi) ; Z_{2}\right)$ be the first Stiefel-Whitney class of $\lambda_{\xi}$ and let $w_{i}(\xi)$ (resp. $\left.\bar{w}_{i}(\xi)\right)$ be the i-th Stiefel-Whitney class (resp.dual Stiefel-Whitney class) of $\xi$. Then 1, $a_{\xi}, \ldots$, $a_{\xi}^{n-1}$ form a base of $H^{*}\left(B(\xi) ; Z_{2}\right)$-module $H^{*}\left(P(\xi) ; Z_{2}\right)$. Moreover $q(\xi)^{*}$ : $H^{*}\left(B(\xi) ; Z_{2}\right) \longrightarrow H^{*}\left(P(\xi) ; Z_{2}\right)$ is a monomorphism. The ring structure of $H^{*}\left(P(\xi) ; Z_{2}\right)$ is given by

$$
a_{\xi}^{n}=\sum_{i=1}^{n} w_{i}(\xi) a_{\xi}^{n-i} .
$$

If $H^{i}\left(B(\xi) ; Z_{2}\right)=0$ for $i>n$, then there is the following relation:

$$
\begin{equation*}
a_{\xi}^{n+k}=\sum_{i=1}^{n-k} \sum_{j=0}^{k} \bar{w}_{j}(\xi) w_{i+k-j}(\xi) a_{\xi}^{n-i} \quad \text { for } k \geq 0 \tag{2.4}
\end{equation*}
$$

Proof of Theorems 2.1, 2.3. The first half of each theorem is wellknown (e.g. [5]), and the straightforward induction provides the proofs of (2.2) and (2.4) (see [4]).
Q. E. D.

## §3. Cohomology of $\boldsymbol{Z}_{\boldsymbol{n}+1,2}$

It is easily seen that $X_{n+1,2}$ of (1.3) is the total space of the tangent sphere bundle of $C P^{n}$ and $Z_{n+1,2}$ of (1.3) is the total space of the complex projective bundle associated with the tangent bundle of $C P^{n}$. Also, it is wellknown that the $i$-th Chern class $c_{i}\left(C P^{n}\right)$ and the $i$-th dual Chern class $\bar{c}_{i}\left(C P^{n}\right)$ of the tangent bundle of $C P^{n}$ are equal to $\binom{n+1}{i} z^{i}$ and $(-1)^{i}\binom{n+i}{i} z^{i}$, respectively, where $z$ is the generator of $H^{2}\left(C P^{n} ; Z\right)$. Therefore the cohomology $H^{*}\left(Z_{n+1,2} ; Z\right)$ is determined by Theorem 2.1 as follows:

Theorem 3.1. As $H^{*}\left(C P^{n} ; Z\right)$-module, $H^{*}\left(Z_{n+1,2} ; Z\right)$ has $\left\{1, a, \ldots, a^{n-1}\right\}$ as basis, where $a(\neq 0) \in H^{2}\left(Z_{n+1,2} ; Z\right)$ is the first Chern class of the dual of the complex line bundle associated with the $S^{1}$-bundle $\pi_{1}: X_{n+1,2} \longrightarrow Z_{n+1,2}$. The ring structure is given by

$$
a^{n+k}=-\sum_{i=1}^{n-k} \sum_{j=0}^{k}(-1)^{j}\binom{n+j}{j}\binom{n+1}{i+k-j} z^{i+k} a^{n-i} \quad \text { for } k \geq 0
$$

where $z$ is the generator of $H^{2}\left(C P^{n} ; Z\right)$.
Similarly, $Z_{n+1,2}^{\prime}$ is the total space of the real projective bundle associated with the tangent bundle of $R P^{n}$. Therefore, by Theorem 2.3 we have

Proposition 3.2 [4, Proposition 3.1]. In $H^{*}\left(Z_{n+1,2}^{\prime} ; Z_{2}\right)$, the following relation holds:

$$
v^{\prime n+k}=\sum_{i=1}^{n-k} \sum_{j=0}^{k} \bar{w}_{j}\left(R P^{n}\right) w_{i+k-j}\left(R P^{n}\right) v^{\prime n-1} \quad \text { for } k \geq 0
$$

where $v^{\prime}(\neq 0)$ is the first Stiefel-Whitney class of the double covering $X_{n+1,2}^{\prime}$ $\longrightarrow Z_{n+1,2}^{\prime}$ and $w_{j}\left(R P^{n}\right)$ and $\bar{w}_{j}\left(R P^{n}\right)$ are the $j$-th Stiefel-Whitney class and the $j$-th dual Stiefel-Whitney class of $R P^{n}$, respectively.

Corollary 3.3 [4, Corollary 3.2]. If $k=\max \left\{i \left\lvert\, \begin{array}{c}n+i \\ i\end{array}\right.\right) \neq 0 \bmod 2$,
$0 \leq i \leq n\}$, then $v^{\prime n+k-1} \neq 0, v^{\prime n+k}=0$.
Lemma $3.4 \quad\left[4\right.$, Lemma 3.3]. Let $u^{\prime}$ denote the first Stiefel-Whitney class of the double covering $Z_{n+1,2}^{\prime} \longrightarrow S Z_{n+1,2}^{\prime}$, and $k=\max \left\{\begin{array}{c}i\end{array} \left\lvert\, \begin{array}{c}n+i \\ i\end{array}\right.\right) \neq 0 \bmod 2$, $0 \leq i \leq n\}$. Then $u^{\prime n+k-1} \neq 0$.

Proof. By the diagram (1.7), it is evident.
Q. E. D.

Corollary 3.5. If $n \geq 4$, then $u^{\prime 4} \neq 0$.

## §4. Cohomology of $\left(\boldsymbol{C P}^{n}\right)^{*}$

By the mapping cylinder considerations, the diagram (1.4) gives rise to the commutative diagram of fibrations:


The cohomology structures of $S Z_{n+1,2}$ and $B G$ are unknown. On the other hand, the cohomology of $Z_{n+1,2}$ has been determined in $\S 3$ and the cohomology of $X_{n+1,2}$ was determined by C.A. Ruiz [7], and the others are wellknown:
(4.2) $\quad H^{*}\left(W_{n+1,2} ; Z\right)=\wedge\left(w_{n}, w_{n+1}\right)$ where $\operatorname{deg} w_{i}=2 i-1 \quad(i=n, n+1)$.
(4.3) $H^{*}(B U(2) ; Z)=Z\left[c_{1}, c_{2}\right]$
where $c_{i}(i=1,2)$ is the universal $i$-th Chern class.

$$
\begin{equation*}
H^{*}\left(B T^{2} ; Z\right)=Z\left[x_{1}, x_{2}\right] \quad \text { where } \operatorname{deg} x_{i}=2 \quad(i=1,2), \tag{4.4}
\end{equation*}
$$

and there are the relations

$$
\begin{equation*}
i_{2}^{*} i_{3}^{*} c_{1}=x_{1}+x_{2}, \quad i_{2}^{*} i_{3}^{*} c_{2}=x_{1} x_{2} \tag{4.5}
\end{equation*}
$$

For $G_{n+1,2}(C)$, it is known that

$$
H^{*}\left(\boldsymbol{G}_{n+1,2}(C) ; Z\right)=S\left(y_{1}, y_{2}\right) \otimes S\left(y_{3}, \cdots, y_{n+1}\right) / S^{+}\left(y_{1}, \ldots, y_{n+1}\right)
$$

where deg $y_{i}=2(i=1, \ldots, n+1)$ and $S\left(y_{1}, \ldots, y_{k}\right)$ is the ring of symmetric polynomials of $k$ variables $y_{1}, \ldots, y_{k}$ with integral coefficients and $S^{+}\left(y_{1}, \ldots, y_{k}\right)$
is the ideal generated by the elements of positive degree [1, Proposition 31.1].

Let $\sigma_{i}(i=1, \ldots, n-1)$ be the $i$-th elementary symmetric function with respect to $n-1$ variables $y_{3}, \cdots, y_{n+1}$ and let $c_{1}=y_{1}+y_{2}, c_{2}=y_{1} y_{2}$. Then the ideal $S^{+}\left(y_{1}, \ldots, y_{n+1}\right)$ is generated by the elements $\sigma_{1}+c_{1}, \sigma_{2}+\sigma_{1} c_{1}+c_{2}, \sigma_{i}+$ $\sigma_{i-1} c_{1}+\sigma_{i-2} c_{2}(i>2)$, where $\sigma_{i}=0$ for $i \geq n$. By a straightforward induction, we obtain

$$
\begin{equation*}
\sigma_{r}=\sum_{i \geq 0}(-1)^{r-i}\binom{r-i}{i} c_{1}^{r-2 i} c_{2}^{i} \quad \text { for } r \geq 1 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{*}\left(G_{n+1,2}(C) ; Z\right)=Z\left[c_{1}, c_{2}\right] /\left(\sigma_{n}, \sigma_{n+1}\right) \tag{4.7}
\end{equation*}
$$

From now on, we shall study the cohomology of $S Z_{n+1,2}$ and $B G$. Consider the following commutative diagram of fibrations:


This diagram induces the following two commutative diagrams such that each row is a fibration and each column is a double covering:


Therefore $S Z_{n+1,2}$ and $B G$ are the total spaces of the real projective bundles over $G_{n+1,2}(C)$ and $B U(2)$, respectively.

Since $H^{*}\left(G_{n+1,2}(C) ; Z\right)$ and $H^{*}(B U(2) ; Z)$ have no torsion, we adopt the same symbol for each element of $H^{*}\left(G_{n+1,2}(C) ; Z\right)$ and $H^{*}(B U(2) ; Z)$ and its image in $H^{*}\left(G_{n+1,2}(C) ; Z_{2}\right)$ and $H^{*}\left(B U(2) ; Z_{2}\right)$ by the mod 2 reduction, in the rest of this paper.

Theorem 4.9. Let $n \geq 4$ and let $v \in H^{1}\left(S Z_{n+1,2} ; Z_{2}\right)$ be the first StiefelWhitney class of the double covering $Z_{n+1,2} \xrightarrow{\pi_{2}} S Z_{n+1,2}$. Then, as $H^{*}\left(G_{n+1,2}\right.$ (C); $Z_{2}$ )-module, $H^{*}\left(S Z_{n+1,2} ; Z_{2}\right)$ has $\left\{1, v, v^{2}\right\}$ as basis and $\pi_{3}^{*}: H^{*}\left(G_{n+1,2}(C)\right.$; $\left.Z_{2}\right) \longrightarrow H^{*}\left(S Z_{n+1,2} ; Z_{2}\right)$ is a monomorphism. Moreover the ring structure of $H^{*}\left(S Z_{n+1,2} ; Z_{2}\right)$ is given by

$$
v^{3}=c_{1} v
$$

where $c_{1} \epsilon H^{*}\left(G_{n+1,2}(C) ; Z_{2}\right)$ is the mod 2 reduction of the element of (4.7).
Proof. The first half follows from Theorem 2.3. Hence it is sufficient
to show that $v^{3}=c_{1} v$. By (1.7), we have $\bar{h}^{*} v=u^{\prime}$, the first Stiefel-Whitney class of the double covering $Z_{n+1,2}^{\prime} \longrightarrow S Z_{n+1,2}^{\prime}$. Since $u^{\prime 3} \neq 0$ for $n \geq 4$ by Corollary 3.5 , we have $v^{3} \neq 0$. On the other hand, $H^{3}\left(S Z_{n+1,2} ; Z_{2}\right)=Z_{2}$ and its generator is $c_{1} v$ by the first half of this theorem. Therefore we have $v^{3}=$ $c_{1} v$.
Q. E. D.

Let $\delta_{2}: H^{*}\left(; Z_{2}\right) \longrightarrow H^{*+1}(; Z)$ be the Bockstein homomorphism associated with the exact sequence $0 \longrightarrow Z \xrightarrow{\times 2} Z \xrightarrow{\rho_{2}} Z_{2} \longrightarrow 0$.

Since $\rho_{2} \delta_{2}=S q^{1}$ and $S q^{1} v=v^{2} \neq 0$ in $H^{*}\left(S Z_{n+1,2} ; Z_{2}\right)$, we have $\delta_{2} v \neq 0$. Put $\delta_{2} v=u \in H^{2}\left(S Z_{n+1,2} ; Z\right)$. Then we have

Theorem 4.10. Let $n \geq 4$. Then $H^{*}\left(G_{n+1,2}(C) ; Z\right)$-module $H^{*}\left(S Z_{n+1,2} ; Z\right)$ has $\{1, u\}$ as generators and $\pi_{3}^{*}: H^{*}\left(G_{n+1,2}(C) ; Z\right) \longrightarrow H^{*}\left(S Z_{n+1,2} ; Z\right)$ is a monomorphism. Moreover there are the following relations:

$$
2 u=0, \quad \rho_{2} u=v^{2}, \quad u^{2}=c_{1} u .
$$

Proof. The first two relations follow from the fact that $\delta_{2} v=u$.
In the integral cohomology spectral sequence of the fibration $R P^{2} \longrightarrow$ $S Z_{n+1,2} \xrightarrow{\pi_{3}} G_{n+1,2}(C), E_{2}$-term is given as follows:

$$
E_{2}^{s, t}=H^{s}\left(G_{n+1,2}(C) ; H^{t}\left(R P^{2} ; Z\right)\right)= \begin{cases}H^{s}\left(G_{n+1,2}(C) ; Z\right) & \text { for } t=0 \\ H^{s}\left(G_{n+1,2}(C) ; Z_{2}\right) & \text { for } t=2 \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, each differential is trivial and so we have $E_{2}=E_{\infty}$. Hence we obtain the following exact sequence:

$$
0 \longrightarrow E_{\infty}^{s, 0} \longrightarrow H^{s}\left(S Z_{n+1,2} ; Z\right) \longrightarrow E_{\infty}^{s-2,2} \longrightarrow 0 .
$$

This gives rise to the exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{s}\left(G_{n+1,2}(C) ; Z\right) \longrightarrow H^{s}\left(S Z_{n+1,2} ; Z\right) \longrightarrow H^{s-2}\left(G_{n+1,2}(C) ; Z_{2}\right) \longrightarrow 0 . \tag{4.11}
\end{equation*}
$$

(4.11) induces that $H^{2 s-1}\left(S Z_{n+1,2} ; Z\right)=0$ for all $s$ and $H^{2 s}\left(S Z_{n+1,2} ; Z\right)$ has no $p$-torsion for odd prime $p$. Since $H^{2 s-1}\left(S Z_{n+1,2} ; Z\right)=0$, the Bockstein cohomology exact sequence associated with the exact sequence of coefficients $0 \longrightarrow Z \xrightarrow{\times 2} Z \xrightarrow{\rho_{2}} Z_{2} \longrightarrow 0$ induces the exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{2 s-1}\left(S Z_{n+1,2} ; Z_{2}\right) \xrightarrow{\delta_{2}} H^{2 s}\left(S Z_{n+1,2} ; Z\right) \xrightarrow{\times 2} \\
& H^{2 s}\left(S Z_{n+1,2} ; Z\right) \xrightarrow{\rho_{2}} H^{2 s}\left(S Z_{n+1,2} ; Z_{2}\right) \longrightarrow 0 .
\end{aligned}
$$

This exact sequence implies that the torsion part of $H^{2 s}\left(S Z_{n+1,2} ; Z\right)$ is isomorphic to $H^{2 s-1}\left(S Z_{n+1,2} ; Z_{2}\right)$ by $\delta_{2}$. Since $H^{2 s-2}\left(G_{n+1,2}(C) ; Z_{2}\right)$ is isomorphic to $H^{2 s-1}\left(S Z_{n+1,2} ; Z_{2}\right)$ by the cup product with $v, H^{2 s-2}\left(\boldsymbol{G}_{n+1,2}(C) ; Z_{2}\right)$ is isomorphic to the torsion part of $H^{2 s}\left(S Z_{n+1,2} ; Z\right)$, which is given by
$u H^{2 s-2}\left(G_{n+1,2}(C) ; Z\right)$. Therefore the exact sequence (4.11) is split. Thus $H^{*}\left(G_{n+1,2}(C) ; Z\right)$-module $H^{*}\left(S Z_{n+1,2} ; Z\right)$ has $\{1, u\}$ as generators and $\pi_{3}^{*}$ : $H^{*}\left(G_{n+1,2}(C) ; Z\right) \longrightarrow H^{*}\left(S Z_{n+1,2} ; Z\right)$ is a monomorphism.

Since $\rho_{2} u^{2}=v^{4}$ in $H^{*}\left(S Z_{n+1,2} ; Z_{2}\right)$ and $\bar{h}^{*} v^{4}=u^{\prime 4} \neq 0$ by (1.7) and Corollary 3.5, we have $u^{2} \neq 0$ in $H^{4}\left(S Z_{n+1,2} ; Z\right)$. On the other hand, the torsion part of $H^{4}\left(S Z_{n+1,2} ; Z\right)$ is $Z_{2}$ and its generator is $c_{1} u$. Therefore we have the last relation $u^{2}=c_{1} u$.
Q. E. D.

The integral and the mod 2 cohomology of $B G$ are given by the same way as Theorems 4.9-10 and we omit the details.

Theorem 4.12. Let $n \geq 4$ and let $v \in H^{1}\left(B G ; Z_{2}\right)$ be the first Stiefel-Whitney class of the double covering $B T^{2} \xrightarrow{i_{2}} B G$ and let $u=\delta_{2} v$. Then $H^{*}(B U(2)$; $\left.Z_{2}\right)$-module $H^{*}\left(B G ; Z_{2}\right)$ has $\left\{1, v, v^{2}\right\}$ as basis and $H^{*}(B U(2) ; Z)$-module $H^{*}(B G ; Z)$ has $\{1, u\}$ as generators, and $i_{3}^{*}: H\left(B U(2) ; Z_{2}\right) \longrightarrow H^{*}\left(B G ; Z_{2}\right)$ and $i_{3}^{*}: H^{*}(B U(2) ; Z) \longrightarrow H^{*}(B G ; Z)$ are both monomorphic. Moreover the following relations hold:

$$
v^{3}=c_{1} v, \quad u^{2}=c_{1} u, \quad p_{3}^{*} v=v, \quad p_{3}^{*} u=u
$$

Remark. If we notice that the transgression of the fibration $W_{n+1,2} \longrightarrow$ $G_{n+1,2}(C) \longrightarrow B U(2)$ is given by $\tau w_{i}=\bar{c}_{\imath}(i=n, n+1)$, the universal $i$-th dual Chern class of the complex 2-plane bundle, and that $i_{3}^{*}$ is a monomorphism because $i_{2}^{*} i_{3}^{*}$ is so, we see easily

$$
\begin{array}{ll}
H^{*}\left(S Z_{n+1,2} ; Z\right)=H^{*}(B G ; Z) /\left(i_{3}^{*} \bar{c}_{n}, i_{3}^{*} \bar{c}_{n+1}\right) & \text { for } n \geq 1, \\
H^{*}\left(S Z_{n+1,2} ; Z_{2}\right)=H^{*}\left(B G ; Z_{2}\right) /\left(i_{3}^{*} \bar{c}_{n}, i_{3}^{*} \bar{c}_{n+1}\right) & \text { for } n \geq 1 .
\end{array}
$$

Lemma 4.13. Let $n \geq 4$. Then the homomorphism $\pi_{2}^{*}: H^{*}\left(S Z_{n+1,2} ; Z_{2}\right) \longrightarrow$ $H^{*}\left(Z_{n+1,2} ; Z_{2}\right)$ is given by

$$
\pi_{2}^{*} c_{1}=a, \quad \pi_{2}^{*} c_{2}=a z+z^{2}, \quad \pi_{2}^{*} v=0,
$$

where $a, z$ in $H^{*}\left(Z_{n+1,2} ; Z_{2}\right)$ are the images of $a, z$ in $H^{*}\left(Z_{n+1,2} ; Z\right)$ respectively, by the mod 2 reduction.

Proof. It is easily seen that $\pi_{2}^{*} v=0$. Since $W_{n+1,2}$ is 6 -connected for $n \geq 4, p_{i}^{*}(i=1,2,3,4)$ is isomorphic in degree smaller than 7. Therefore there exists a unique element $a^{\prime}$ in $H^{2}\left(B T^{2} ; Z_{2}\right)$ such that $p_{2}^{*} a^{\prime}=a$. Since $0=\pi_{1}^{*} a=p_{1}^{*} i_{1}^{*} a^{\prime}$ and $p_{1}^{*}$ is isomorphic in degree 2, we have $i_{1}^{*} a^{\prime}=0$. On the other hand, the generator of $H^{2}\left(B U(1) ; Z_{2}\right)$ is $i_{1}^{*} x_{1}=i_{1}^{*} x_{2}$. Therefore the kernel of $i_{1}^{*}$ of degree 2 is generated by $x_{1}+x_{2}$. Hence we have $a^{\prime}=x_{1}+$ $x_{2}=i_{2}^{*} c_{1}$ by (4.5) and so we have $\pi_{2}^{*} c_{1}=a$.

By Theorem 3.1, $\pi_{2}^{*} c_{2}$ has the form $\pi_{2}^{*} c_{2}=\varepsilon_{1} a^{2}+\varepsilon_{2} a z+\varepsilon_{3} z^{2}$, where $\varepsilon_{i}=0$ or $1(i=1,2,3)$. Then we have

$$
\pi_{2}^{*} S q^{2} c_{2}=\pi_{2}^{*}\left(c_{1} c_{2}\right)=\varepsilon_{1} a^{3}+\varepsilon_{2} a^{2} z+\varepsilon_{3} a z^{2} .
$$

However we have

$$
S q^{2} \pi_{2}^{*} c_{2}=S q^{2}\left(\varepsilon_{1} a^{2}+\varepsilon_{2} a z+\varepsilon_{3} z^{2}\right)=\varepsilon_{2} a^{2} z+\varepsilon_{2} a z^{2} .
$$

Comparing the coefficients of the corresponding terms of $\pi_{2}^{*} S q^{2} c_{2}$ and $S q^{2} \pi_{2}^{*} c_{2}$, we obtain $\varepsilon_{1}=0$ and $\varepsilon_{2}=\varepsilon_{3}$, since $n \geq 4$. Assume that $\varepsilon_{2}=\varepsilon_{3}=0$. Then $0=\pi_{2}^{*} c_{2}=p_{2}^{*} i_{2}^{*} c_{2}=p_{2}^{*}\left(x_{1} x_{2}\right)$. This contradicts the fact that $p_{2}^{*}$ is isomorphic in degree 4. Therefore we have $\pi_{2}^{*} c_{2}=a z+z^{2}$.
Q. E. D.

Proposition 4.14. Let $n \geq 4$ and set $n=2^{r}+s, 0 \leq s \leq 2^{r}-1$. The following relations hold in $H^{*}\left(S Z_{n+1,2} ; Z_{2}\right)$ :

$$
c_{1}^{2^{r+1}-1}=0, \quad c_{1}^{2^{r+1}-2} c_{2}^{s} v^{2} \neq 0 .
$$

Proof. By Lemma 4.6, we have $\sigma_{r}=\sum_{i \geq 0}\binom{r-i}{i} c_{1}^{r-2 i} c_{2}^{i}$ for $r \geq 1$ in $H^{*}$ $\left(G_{n+1,2}(C) ; Z_{2}\right)$. If $r \geq n$, then $\sigma_{r}=0$. Therefore we obtain $c_{1}^{2^{r+1}-1}=0$. To prove the second relation, it is sufficient to show that $c_{1}^{2^{r+1}-2} c_{2}^{s} \neq 0$ and so $\pi_{2}^{*}\left(c_{1}^{2^{r+1}-2} c_{2}^{s}\right) \neq 0$ in $H^{*}\left(Z_{n+1,2} ; Z_{2}\right)$. By Theorem 3.1, we have

$$
\pi_{2}^{*}\left(c_{1}^{2_{1}^{r+1}-2} c_{2}^{s}\right)=\sum_{i=0}^{n-1} b_{i} a^{i}, \quad b_{i} \in H^{*}\left(C P^{n} ; Z_{2}\right) .
$$

On the other hand, by Theorem 3.1 and Lemma 4.13, we have

$$
\begin{aligned}
\pi_{2}^{*}\left(c_{1}^{2^{r+1}-2} c_{2}^{s}\right)= & a^{2^{r+1}-2}(a+z)^{s} z^{s}=\sum_{t=0}^{s}\binom{s}{t} a^{2^{r+1}+s-t-2} z^{s+t} \\
& =\sum_{t=0}^{s}\binom{s}{t}^{n-\left(2^{r}-t-2\right)} \sum_{i=1}^{2^{r}-t-2} \sum_{j=0} \bar{c}_{j}\left(C P^{n}\right) c_{i+2^{r}-t-2-j}\left(C P^{n}\right) z^{s+t} a^{n-i},
\end{aligned}
$$

where $c_{j}\left(C P^{n}\right), \bar{c}_{j}\left(C P^{n}\right)$ are the $j$-th Chern and dual Chern classes of $C P^{n}$. Comparing the coefficients of $a^{n-1}$, we have

$$
\begin{aligned}
b_{n-1} & =\sum_{t=0}^{s}\binom{s}{t}^{2^{r}-t-2} \sum_{j=0} \bar{c}_{j}\left(C P^{n}\right) c_{2^{r}-t-1-j}\left(C P^{n}\right) z^{s+t} \\
& =\sum_{t=0}^{s}\binom{s}{t} \bar{c}_{2^{r-t-1}}\left(C P^{n}\right) z^{s+t} \\
& =\sum_{t=0}^{s}\binom{s}{t}\binom{2^{r+1}+s-t-1}{2^{r}-t-1} z^{2^{r+s-1}}
\end{aligned}
$$

By a simple calculation, we have $\binom{2^{r+1}+s-t-1}{2^{r}-t-1}=0$ or $\neq 0$ according as $t \leq s-1$ or $t=s$, and so we obtain $b_{n-1}=z^{n-1} \neq 0$ in $H^{*}\left(C P^{n} ; Z_{2}\right) . \quad$ Q. E. D.

Using the above proposition, we have

Theorem 4.15. Let $n \geq 4$. Then $S Z_{n+1,2}$ is an unorientable (4n-2)-dimensional manifold which is weakly homotopy equivalent to the reduced symmetric product of $C P^{n}$, and $H^{4 n-2}\left(S Z_{n+1,2} ; Z\right)=Z_{2}$ with the generator $c_{1}^{2^{r+1}-2} c_{2}^{s} u$ for $n=2^{r}+s, 0 \leq s \leq 2^{r}-1$.

## §5. Classification of embeddings of $\boldsymbol{C P}{ }^{\boldsymbol{n}}$ in Euclidean spaces

A. Haefliger investigated the embeddings in the stable range [3] and proved the following theorem.

Theorem 5.1 (Haefliger). Let $M$ be an n-dimensional compact differentiable manifold. The correspondence which associates with a given differentiable embedding $f: M \longrightarrow R^{m}$ the equivariant map $F: M \times M-\Delta \longrightarrow S^{m-1}$ defined by $F(x, y)=\frac{f(x)-f(y)}{\|f(x)-f(y)\|}$ induces the correspondence which associates with a given isotopy class of $f$ the equivariant homotopy class of $F$. This correspondence is surjective if $2 m \geq 3(n+1)$ and bijective if $2 m>3(n+1)$.

We now know that there exists a one-to-one correspondence between the equivariant homotopy classes of equivariant maps $M \times M-\Delta \longrightarrow S^{m-1}$ and the homotopy classes of cross sections of the sphere bundle $S^{m-1} \longrightarrow(M \times$ $M-\Delta) \times{ }_{z_{2}} S^{m-1} \longrightarrow M^{*}$ associated with the double covering $M \times M-\Delta \longrightarrow M^{*}$.

Let $\lambda$ be the real line bundle over $\left(C P^{n}\right)^{*}$ associated with the double covering $C P^{n} \times C P^{n}-\Delta \longrightarrow\left(C P^{n}\right)^{*}$. Then the sphere bundle

$$
S^{m-1} \longrightarrow\left(C P^{n} \times C P^{n}-\Delta\right) \times_{z_{2}} S^{m-1} \longrightarrow\left(C P^{n}\right)^{*}
$$

is the sphere bundle associated with $m \lambda$, the Whitney sum of $m$ copies of $\lambda$.
Therefore we have
Proposition 5.2. (1) Let $2 m \geq 3(2 n+1)$. If $m \lambda$ has a non-zero cross section, then there exists an embedding of $C P^{n}$ in $R^{m}$.
(2) Let $2 m>3(2 n+1)$. Then there exists a one-to-one correspondence between the isotopy classes of embeddings of $C P^{n}$ in $R^{m}$ and the homotopy classes of cross sections of the sphere bundle associated with m $\lambda$ over $\left(C P^{n}\right)^{*}$.

By Propositions 1.6 and 5.2, the obstructions for $m \lambda$ to have a nonzero cross section are the elements of $H^{i+1}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{m-1}\right)\right)$ and its primary obstruction for even $m$ is the Euler class $\chi(m \lambda)$ of $m \lambda$, and the obstructions for two given cross sections to be homotopic are the elements of $H^{i}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{m-1}\right)\right)$.

Lemma 5.3. Let $\eta$ be a real line bundle. Then the Euler class $x(2 \eta)$ is given by

$$
x(2 \eta)=\delta_{2} w_{1}(\eta)
$$

where $w_{1}(\eta)$ is the first Stiefel-Whitney class of $\eta$.
Proof. Let $\xi$ be the canonical line bundle over $R P^{\infty}$. By the universality of $\xi$, it is sufficient to show that $\chi(2 \xi)=\delta_{2} w_{1}(\xi)$. Consider the Bockstein cohomology exact sequence of $R P^{\infty}$

$$
0 \longrightarrow H^{1}\left(R P^{\infty} ; Z_{2}\right) \xrightarrow{\delta_{2}} H^{2}\left(R P^{\infty} ; Z\right) \xrightarrow{\times 2} H^{2}\left(R P^{\infty} ; Z\right) \xrightarrow{\rho_{2}} H^{2}\left(R P^{\infty} ; Z_{2}\right) \longrightarrow 0,
$$

where $H^{1}\left(R P^{\infty} ; Z_{2}\right)=Z_{2}$ with the generator $w_{1}(\xi)$ and $H^{2}\left(R P^{\infty} ; Z\right)=Z_{2}$ with the generator $\delta_{2} w_{1}(\xi)$. Since $\rho_{2} x(2 \xi)=w_{2}(2 \xi)=w_{1}(\xi)^{2} \neq 0$, it follows that $x(2 \xi) \neq 0$ in $H^{2}\left(R P^{\infty} ; Z\right)$ and so we have $\chi(2 \xi)=\delta_{2} w_{1}(\xi)$.
Q. E. D.

Remark. The above lemma is generalized as follows: Let $\eta^{1}$ and $\zeta^{n}$ be a real line bundle and a real $n$-plane bundle over the same space with $w_{1}\left(\eta^{1}\right)=w_{1}\left(\zeta^{n}\right)$. Then we have

$$
x\left(\eta^{1} \oplus \zeta^{n}\right)=\delta_{2} w_{n}\left(\zeta^{n}\right)
$$

By the above considerations, we have the following theorem, which is already known ([6], [8], [9]):

Theorem 5.4. (1) $C P^{n}$ is embeddable in $R^{4 n-2}$ for $n \geq 4, n \neq 2^{r}$.
(2) $C P^{2^{r}}$ is embeddable in $R^{2^{r+2}-1}$ but not embeddable in $R^{2^{r+2}-2}$ for $r \geq \mathbf{2}$.

Proof. The obstructions for the existence of a non-zero cross section of $(4 n-1) \lambda$ are in $H^{i+1}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{4 n-2}\right)\right.$ ) which is 0 , since $S Z_{n+1,2}$ is a ( $4 n-2$ )-dimensional manifold. Hence $C P^{n}$ is embeddable in $R^{4 n-1}$ by Proposition 5.2, (1). The obstructions for the existence of a non-zero cross section of (4n-2) $\lambda$ are in $H^{i+1}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{4 n-3}\right)\right)$ and non-trivial obstruction is the Euler class $x((4 n-2) \lambda)$ in $H^{4 n-2}\left(S Z_{n+1,2} ; Z\right)$. By Lemma 5.3, we have $x(2 \lambda)=u=\delta_{2} v$ and using Proposition 4.14, we have

$$
\chi((4 n-2) \lambda)=x(2 \lambda)^{2 n-1}=u^{2 n-1}=u c_{1}^{2 n-2} \begin{cases}=0 & \text { for } n \neq 2^{r} \\ \neq 0 & \text { for } n=2^{r} .\end{cases}
$$

Therefore by Proposition 5.2 (1), it follows that $C P^{n}$ is embeddable or not embeddable in $R^{4 n-2}$ according as $n \neq 2^{r}$ or $n=2^{r}$.
Q. E. D.

Our main theorem is the following

## Theorem 5.5. Let $n \geq 4$.

(1) There exists a unique isotopy class of embeddings of $C P^{n}$ in $R^{4 n}$.
(2) There exist just two isotopy classes of embeddings of $C P^{n}$ in $R^{4 n-1}$.
(3) There exist just two isotopy classes of embeddings of $C P^{n}$ in $R^{4 n-2}$ for $n \neq 2^{r}$.

Proof. The obstructions for two non-zero cross sections of $4 n \lambda$ being homotopic are the elements of $H^{i}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{4 n-1}\right)\right)$ which is 0 for all $i$.

This implies (1). The obstructions for two non-zero cross sections of $(4 n-1) \lambda$ being homotopic are in $H^{i}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{4 n-2}\right)\right)$ and

$$
H^{i}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{4 n-2}\right)\right)= \begin{cases}0 & \text { for } i \neq 4 n-2 \\ Z_{2} & \text { for } i=4 n-2\end{cases}
$$

by Theorem 4.15. Therefore we have (2). By Theorems 4.9-10, 4.15,

$$
H^{i}\left(S Z_{n+1,2} ; \pi_{i}\left(S^{4 n-3}\right)\right)= \begin{cases}0 & \text { for } i \neq 4 n-2 \\ Z_{2} & \text { for } i=4 n-2\end{cases}
$$

and so we have (3).
Q. E. D.

Remark 1. W.-T. Wu [10] proved that any two embeddings of an $n-$ dimensional differentiable manifold in $R^{2 n+1}$ are isotopic.

Remark 2. T. Watabe [9] proved that any two immersions of $C P^{n}$ in $R^{4 n-1}$ are regularly homotopic for even $n$.

## References

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
[2] S. Feder, The reduced symmetric product of a projective space and the embedding problem, Bol. Soc. Mat. Mexicana, 12 (1967), 76-80.
[3] A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv., 37 (1962), 155-176.
[4] D. Handel, An embedding theorem for real projective spaces, Topology, 7 (1968), 125-130.
[5] D. Husemoller, Fiber Bundles, McGraw-Hill, 1966.
[6] I. M. James, Some embeddings of projective spaces, Proc. Camb. Phil. Soc., 55 (1959), 294-298.
[7] C.A. Ruiz, The cohomology of the complex projective Stiefel manifold, Trans. Amer. Math. Soc., 146 (1969), 541-547.
[8] B.J. Sanderson, Immersions and embeddings of projective spaces, Proc. London Math. Soc., 14 (1964), 134-153.
[9] T. Watabe, Imbeddings and immersions of projective spaces, Sci. Rep. Niigata Univ., 2 (1965), 11-16.
[10] Wen-Tsün Wu, On the isotopy of $C^{r}$-manifolds of dimension $n$ in Euclidean $(2 n+1)$ Space, Science Records (N.S.) 2 (1958), 271-275.

Department of Mathematics<br>Faculty of Science<br>Hiroshima University

