Notes on Hausdorff Dimensions of Cartesian Product Sets

Kaoru Hatano

(Received February 19, 1971)
§1. In the present paper we shall be concerned with evaluation of upper and lower bounds of fractional dimensions of Cartesian product sets by means of the fractional dimensions of their components. Various results on this problem have been obtained by A. S. Besicovitch, P. A. P. Moran, J. M. Marstrand and M. Ohtsuka ([1], [4], [6]). One of results is the following: for given $\alpha, 0 \leqq \alpha \leqq n$, and $\beta, 0 \leqq \beta \leqq m$, if E_{1} is a subset of R^{n} with $\operatorname{dim}\left(E_{1}\right)=$ α and E_{2} is a subset of R^{m} with $\operatorname{dim}\left(E_{2}\right)=\beta$, then $\alpha+\beta \leqq \operatorname{dim}\left(E_{1} \times E_{2}\right) \leqq \min$ $\{n+\beta, m+\alpha\}$.

We use the notation $\Lambda_{\alpha}(E)$ for the α-dimensional measure of a set E in a Euclidean space. Note that $\operatorname{dim}(E)=\alpha$ is equivalent to $\Lambda_{\alpha-\varepsilon}(E)=\infty$ and $\Lambda_{\alpha+\varepsilon}(E)=0$ for any $\varepsilon>0$.

In this note we shall show that for any given $\alpha, 0 \leqq \alpha<n, \beta, 0 \leqq \beta<m$, and γ such that $\alpha+\beta<\gamma<\min \{n+\beta, m+\alpha\}$, there exist $E_{1} \subset R^{n}$ and $E_{2} \subset R^{m}$ which satisfy $0<\Lambda_{\alpha}\left(E_{1}\right)<\infty, 0<\Lambda_{\beta}\left(E_{2}\right)<\infty$ and $0<\Lambda_{\gamma}\left(E_{1} \times E_{2}\right)<\infty$.
§2. Let R^{n} be the n-dimensional Euclidean space and let $h(r)$ be a continuous increasing function of r such that $h(r)>0$ for $r>0$ and $h(0)=0$. The Hausdorff Λ_{h}-measure of a subset E of R^{n} is defined as follows. First, for $\rho>0$, we set

$$
\Lambda_{h}^{(\rho)}(E)=\inf \left\{\sum_{\nu=1}^{\infty} h\left(d_{\nu}\right)\right\},
$$

where the infimum is taken over all coverings of E by at most a countable number of n-dimensional open (or closed) cubes I_{ν} with the sides $d_{\nu} \leqq \rho$. Then the Hausdorff measure of E is defined by

$$
\Lambda_{h}(E)=\lim _{\rho \rightarrow 0} \Lambda_{h}^{(\rho)}(E) .
$$

If $h(r)=r^{\alpha}(\alpha>0)($ resp. $h(r)=1 / \log (1 / r))$, then we use the notation Λ_{α} (resp. Λ_{o}) instead of Λ_{h}. It is called the α-dimensional measure (resp. logarithmic measure).

The fractional dimension $\operatorname{dim}(E)$ of a subset $E \subset R^{n}$ is defined by

$$
\operatorname{dim}(E)=\inf \left\{\alpha ; \Lambda_{\alpha}(E)=0\right\}
$$

Let \mathfrak{A} be the family of non empty open subsets in R^{n} which is determined by the following properties:
(1) any n-dimensional open cube belongs to \mathfrak{N},
(2) if ω_{1} and ω_{2} belong to 2 ., then so does $\omega_{1} \cup \omega_{2}$,
(3) if ω is an element of \mathfrak{N}, then there exists a finite number of n-dimensional open cubes $I_{\nu}(\nu=1,2, \ldots, N)$ such that $\omega=\bigcup_{\nu=1}^{N} I_{\nu}$.

We shall refer the definition of the n-dimensional symmetric generalized Cantor set $E_{(n)}$ constructed by the system [l, $\left.\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=1}^{\infty}\right]$ to our previous paper [2]. In what follows we suppose $l=1$ and leave out l from the system. Also we set $\delta_{q}=\left(\lambda_{q-1}-k_{q} \lambda_{q}\right) /\left(k_{q}-1\right)(q \geqq 1)$, where $\lambda_{0}=1$.
§3. Lemma. (P. A. P. Moran [5]) Let F be a compact set in R^{n} and let $\mathfrak{\vartheta}$ be the family defined in §2. Assume that there exists a non-negative set function Φ on \mathfrak{A} satisfying the following conditions:
(1) if $\omega=\bigcup_{i=1}^{N} \omega_{i}, \omega_{i} \in \mathfrak{\mathcal { H }}(i=1,2, \ldots, N)$, then $\Phi(\omega) \leqq \sum_{i=1}^{N} \Phi\left(\omega_{i}\right)$,
(2) if $\omega \in \mathfrak{Z}$ contains F, then $\Phi(\omega) \geqq b$, where b is some positive constant,
(3) there exist positive constants a and d_{o} such that if I is any n-dimensional open cube with the side $d \leqq d_{o}$, then $\Phi(I) \leqq a h(d)$.

Then $\Lambda_{h}(F) \geqq b / a$.
Using the Lemma we shall prove the following theorem.
Theorem 1. Let $E_{(n)}$ be the n-dimensional symmetric generalized Cantor set constructed by the system $\left[\left\{k_{q}\right\}_{q=1}^{\infty},\left\{\lambda_{q}\right\}_{q=1}^{\infty}\right]$. Then
(i) $\quad 2^{-3 n} \lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} \lambda_{q}^{\alpha} \leqq \Lambda_{\alpha}\left(E_{(n)}\right) \leqq \lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} \lambda_{q}^{\alpha}(0<\alpha \leqq n)$.
(ii) $\quad 2^{-3 n} \lim _{q \rightarrow \infty}\left(k_{1} k_{2} \cdots k_{q}\right)^{n} /\left(-\log \lambda_{q}\right) \leqq \Lambda_{o}\left(E_{(n)}\right) \leqq \lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} /\left(-\log \lambda_{q}\right)$.

Proof. From the definition of the Hausdorff measure the right-hand inequalities are obvious. Hence we shall prove the left-hand inequalities. We shall prove (i). If $\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} \lambda_{q}^{\alpha}=0$, then $\Lambda_{\alpha}\left(E_{(n)}\right)=\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} \lambda_{q}^{\alpha}=0$. In this case the inequality (i) is obvious. We set $\lim _{q \rightarrow \infty}\left(k_{1} k_{2} \ldots k_{q}\right)^{n} \lambda_{q}^{\alpha}=A>0$. Let B be an arbitrary number such that $0<B<A$. Then there exists a positive integer q_{0} such that $\left(k_{1} k_{2} \ldots k_{q}\right)^{n} \lambda_{q}^{\alpha}>B$ for $q \geqq q_{0}$. We choose sequences $\left\{\lambda_{q}^{\prime}\right\}_{q=q_{0}}^{\infty}$ and $\left\{\delta_{q}^{\prime}\right\}_{q=q_{0}+1}^{\infty}$ such that $\left(k_{1} k_{2} \ldots k_{q}\right)^{n} \lambda_{q}^{\prime \alpha}=B$ for $q \geqq q_{0}$ and $k_{q} \lambda_{q}^{\prime}+\left(k_{q}-1\right)$ $\delta_{q}^{\prime}=\lambda_{q-1}^{\prime}$ for $q \geqq q_{0}+1$. Clearly $\lambda_{q}^{\prime}=B^{1 / \alpha}\left(k_{1} k_{2} \cdots k_{q}\right)^{-n / \alpha}<\lambda_{q}$ and $\delta_{q}^{\prime}=B^{1 / \alpha}\left(k_{q}^{n / \alpha}-\right.$ $\left.k_{q}\right)\left(k_{1} k_{2} \ldots k_{q}\right)^{-n / \alpha}\left(k_{q}-1\right)^{-1}$. It is easy to see that the sequence $\left\{N_{q}(\omega) \lambda_{q}^{\prime \alpha}\right\}_{q=q_{0}}^{\infty}$
 mensional closed cubes in the q-th approximation of $E_{(n)}$ which meet ω. Now we define a set function Φ on \mathfrak{A} by $\Phi(\omega)=\lim _{q \rightarrow \infty} N_{q}(\omega) \lambda_{q}^{\prime \alpha}$. We can easily see that Φ satisfies conditions (1) and (2) of the Lemma with $F=E_{(n)}$ and $b=B$.

We set $a=2^{3 n}$ and $d_{0}=\lambda_{q_{0}+1}$. Let I be any open cube with the side $d \leqq d_{0}$. Then there exist uniquely determined positive integers $q\left(\geqq q_{0}+1\right)$ and $j\left(1 \leqq j \leqq k_{q+1}-1\right)$ such that $\lambda_{q+1}<d \leqq \lambda_{q}$ and $j \lambda_{q+1}+(j-1) \delta_{q+1}<d \leqq(j+1) \lambda_{q+1}$ $+j \delta_{q+1}$. Since $E_{(n)}$ is symmetric, we have $N_{q+1}(I) \leqq(2 j)^{n}$. We observe

$$
\Phi(I) \leqq(2 j)^{n} \lambda_{q+1}^{\prime \alpha}=2^{n} \lambda_{q+1}^{\prime \alpha} \leqq 2^{n} \lambda_{q+1}^{\alpha} \leqq 2^{n} d^{\alpha}<a d^{\alpha} \quad \text { if } j=1
$$

and

$$
\Phi(I) \leqq(2 j)^{n} \lambda_{q+1}^{\prime \alpha} \leqq 2^{n}\left(j \lambda_{q+1}^{\prime}+(j-1) \delta_{q+1}^{\prime}\right)^{\alpha} \quad \text { if } 2 \leqq j \leqq k_{q+1}-1 .
$$

On the other hand,

$$
\begin{aligned}
& j \lambda_{q+1}^{\prime}+(j-1) \delta_{q+1}^{\prime} \leqq j\left(\lambda_{q+1}^{\prime}+\delta_{q+1}^{\prime}\right) \leqq 2 j B^{1 / \alpha}\left(k_{1} k_{2} \cdots k_{q}\right)^{-n / \alpha} k_{q+1}^{-1} \leqq 2 j \lambda_{q} k_{q+1}^{-1} \\
& \quad \leqq 2 j\left(\lambda_{q+1}+\delta_{q+1}\right) \leqq 4\left\{j \lambda_{q+1}+(j-1) \delta_{q+1}\right\}<4 d, \quad \text { if } 2 \leqq j \leqq k_{q+1}-1
\end{aligned}
$$

Hence $\Phi(I) \leqq 2^{n} 4^{\alpha} d^{\alpha} \leqq 2^{3 n} d^{\alpha}=a d^{\alpha}$. Thus Φ satisfies condition (3) of the Lemma. By the Lemma we obtain $\Lambda_{\alpha}\left(E_{(n)}\right) \geqq 2^{-3 n} B$. Since B is an arbitrary
 the desired inequality. By the same method we obtain the inequality (ii).

Proposition. Let n and m be positive integers and α and β be positive numbers such that $\alpha<n$ and $\beta<m$. Let E_{1} be the n-dimensional symmetric generalized Cantor set constructed by the system $\left[\left\{k_{2 q-1}\right\}_{q=1}^{\infty},\left\{\lambda_{2 q-1}\right\}_{q=1}^{\infty}\right]$ which satisfies $\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n} \lambda_{2 q-1}^{\alpha}=1, q=1,2, \ldots$, and let E_{2} be the m-dimensional symmetric generalized Cantor set constructed by the system $\left[\left\{k_{2 q}\right\}_{q=1}^{\infty},\left\{\lambda_{2 q}\right\}_{q=1}^{\infty}\right]$ which satisfies $\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m} \lambda_{2 q}^{\beta}=1, q=1,2, \ldots$. If at least one of the sequences $\left\{k_{2 q-1}\right\}^{\infty}=1,\left\{k_{2 q}\right\}_{q=1}^{\infty}$ is bounded, then

$$
\operatorname{dim}\left(E_{1} \times E_{2}\right)=\alpha+\beta
$$

We can prove this proposition by the method of F. Hausdorff [3], p. 177 and we omit the proof. This proposition shows that the lower bound of the fractional dimension of Cartesian product sets is attained. (cf. Section 1)

Theorem 2. Let n and m be positive integers and α, β and γ be positive numbers such that $n \leqq m, \alpha<m$ and $\alpha+\beta<\gamma<\min \{n+\beta, m+\alpha\}$. Then there exist subsets $E_{1} \subset R^{n}$ and $E_{2} \subset R^{m}$ such that $0<\Lambda_{\alpha}\left(E_{1}\right)<\infty, 0<\Lambda_{\beta}\left(E_{2}\right)<\infty$ and $0<\Lambda_{\gamma}\left(E_{1} \times E_{2}\right)<\infty$.

Proof. We shall take as E_{1} the n-dimensional symmetric generalized Cantor set constructed by the system [$\left.\left\{k_{2_{q-1}}\right\}_{q=1}^{\infty},\left\{\lambda_{2 q-1}\right\}_{q=1}^{\infty}\right]$ which satisfies ($\left.k_{1} k_{3} \ldots k_{2 q-1}\right)^{n} \lambda_{2 q-1}^{\alpha}=1, q=1,2, \ldots$, and as E_{2} the m-dimensional symmetric generalized Cantor set constructed by the system $\left[\left\{k_{2 q}\right\}_{q=1}^{\infty},\left\{\lambda_{2 q}\right\}_{q=1}^{\infty}\right]$ which satisfies $\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m} \lambda_{2 q}^{\beta}=1, q=1,2, \ldots$. One can easily check that $0<\Lambda_{\alpha}\left(E_{1}\right)$
$<\infty$ and $0<\Lambda_{\beta}\left(E_{2}\right)<\infty$.
Case 1: $\gamma<n$. We choose two sequences $\left\{k_{2 q-1}\right\}_{q=1}^{\infty},\left\{k_{2 q}\right\}_{q=1}^{\infty}$ such that $k_{2 q+1}=\left[\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{\delta}\right]^{1)}$ and $k_{2 q}=\left[\left(k_{2} k_{4} \ldots k_{2 q-2}\right)^{-1} \times\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(\gamma-\alpha) / \alpha m}\right]$, where $k_{0}=1$ and $\gamma(\gamma-\alpha-\beta) / \alpha \beta<\delta<n(\gamma-\alpha-\beta) / \alpha \beta$. We can easily check that they satisfy the following conditions:
(1-2) $\quad\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n / \alpha} k_{2 q+1} \leqq\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m / \beta}$,
$(1-3) \quad\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(\gamma-\beta) / \beta} \leqq M\left(k_{1} k_{3} \cdots k_{2 q+1}\right)^{n}$,
(1-4) $\quad\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m} \leqq\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n(\gamma-\alpha) / \alpha} \leqq M\left(k_{2} k_{4} \cdots{ }_{2 q}\right)^{m}$,
where M is a positive constant.
Case 2: $n \leqq \gamma<n+\beta-\beta n / m$. Choose $\left\{k_{q}\right\}_{q=1}^{\infty}$ such that $k_{2 q+1}=\left[2^{-m / \beta}\right.$ $\left.\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(\gamma-\alpha-\beta) / \alpha(n+\beta-\gamma)}\right]$ and $k_{2 q}=\left[\left(k_{2} k_{4} \cdots k_{2 q-2}\right)^{-1}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{\beta n(n-\alpha) / \alpha m}\right.$ $\left.{ }^{(n+\beta-\gamma)}\right]$, where $k_{0}=1$. They satisfy the following conditions:

$$
\begin{align*}
& \left(k_{2} k_{4} \cdots k_{2 q-2}\right)^{m / \beta} k_{2 q} \leqq\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n / \alpha}, \tag{2-1}\\
& \left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n / \alpha} k_{2 q+1} \leqq\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m / \beta}, \tag{2-2}\\
& \left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n /(\gamma-\alpha) / \alpha} k_{2 q+1}^{\gamma-n} \leqq M\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m} \tag{2-3}\\
& M^{-1}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n(n-\alpha) / \alpha} \leqq\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(n+\beta-\gamma) / \beta} \tag{2-4}\\
& \quad \leqq\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n(n-\alpha) / \alpha}, \\
& \left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n(\gamma-\alpha-\beta) / \alpha(n+\beta-\gamma)} \leqq M k_{2 q+1}, \tag{2-5}
\end{align*}
$$

where M is a positive constant
Case 3: $n+\beta-\beta n / m \leqq \gamma<m$. Take the same $\left\{k_{q}\right\}_{q=1}^{\infty}$ as in case 2. They satisfy the following conditions:

$$
\begin{align*}
& 2\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m / \beta} \leqq\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n / \alpha} k_{2 q+1}, \tag{3-1}\\
& 2\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n / \alpha} \leqq\left(k_{2} k_{4} \cdots k_{2 q-2}\right)^{m / \beta} k_{2 q}, \tag{3-2}\\
& \left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(\gamma-\beta) / \beta} \leqq M\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n}, \tag{3-3}\\
& \left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(n+\beta-\gamma) / \beta} \leqq\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{(n-\alpha) / \alpha} \tag{3-4}\\
& \quad \leqq M\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(n+\beta-\gamma) / \beta},
\end{align*}
$$

$$
\begin{equation*}
\left(k_{2} k_{4} \cdots k_{2 q 2}\right)^{m(m-\beta) / \beta} \leqq M\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(m+\alpha-\gamma) / \alpha} \tag{3-5}
\end{equation*}
$$

[^0] following we use this notation without explanation.
where M is a positive constant.
Case 4: $m \leqq \gamma<\min \{n+\beta, m+\alpha\}$. Choose $\left\{k_{q}\right\}_{q=1}^{\infty}$ such that $k_{2 q+1}=$ $\left[\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{(m+n-\gamma)(\gamma-\alpha-\beta)(n+\beta-\gamma)(m+\alpha-\gamma)}\right]$ and $k_{2 q}=\left[k_{2} k_{4} \cdots k_{2 q-2}\right)^{-1}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)$ $\left.{ }_{\beta n(n-\alpha) / \alpha m(n+\beta-\gamma)}\right]$, where $k_{0}=1$. They satisfy the following conditions:
\[

$$
\begin{align*}
& \left(k_{2} k_{4} \cdots k_{2 q}\right)^{m / \beta} \leqq M\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n / \alpha} k_{2 q+1} \tag{4-1}\\
& \left(k_{1} k_{3} \cdots k_{2 q+1}\right)^{n / \alpha} \leqq M\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m / \beta} k_{2 q+2} \tag{4-2}\\
& \left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(m-\beta) / \beta} \leqq M\left(k_{1} k_{3} \cdots k_{2 q+1}\right)^{n(m+\alpha-\gamma) / \alpha} \tag{4-3}\\
& \left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(n+\beta-\gamma) / \beta} \leqq\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n(n-\alpha) / \alpha} \tag{4-4}\\
& \quad \leqq M\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(n+\beta-\gamma) / \beta}
\end{align*}
$$
\]

where M is a positive constant.
First let us prove $\Lambda_{\gamma}\left(E_{1} \times E_{2}\right)<\infty$. In case $1, E_{1} \times E_{2}$ is covered by $\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m}$ mutually congruent cubes in R^{n+m} with the side $\lambda_{2 q-1}$. Hence

$$
\begin{aligned}
\Lambda_{\gamma}\left(E_{1} \times E_{2}\right) & \leqq \lim _{q \rightarrow \infty}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m} \lambda_{2 q-1}^{\gamma} \\
& \leqq \frac{\lim _{q \rightarrow \infty}}{}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{-n(\gamma-\alpha) / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m} \leqq 1<\infty .
\end{aligned}
$$

In case 2,3 and $4, E_{1} \times E_{2}$ is covered by at most $\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m}$ $\left(2 \lambda_{2 q-1} / \lambda_{2 q}\right)^{n}$ mutually congruent closed cubes in R^{n+m} with the side $\lambda_{2 q}$. Hence

$$
\begin{aligned}
\Lambda_{\gamma}\left(E_{1} \times E_{2}\right) & \leqq \lim _{q \rightarrow \infty}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m}\left(2 \lambda_{2 q-1} / \lambda_{2 q}\right)^{n} \lambda_{2 q}^{\gamma} \\
& \leqq 2^{n} \underline{\lim }_{q \rightarrow \infty}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{-n(n-\alpha) / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(n+\beta-\gamma) / \beta} \leqq 2^{n}<\infty
\end{aligned}
$$

Next using the Lemma we shall show $\Lambda_{\gamma}\left(E_{1} \times E_{2}\right)>0$. It is easy to see that $\lim _{q \rightarrow \infty} N_{q}(\omega) \lambda_{2 q-1}^{\alpha} \lambda_{2 q}^{\beta}$ exists for every $\omega \in \mathfrak{A}$, where $N_{q}(\omega)$ is the number of product sets of n-dimensional closed cubes in the q-approximation of E_{1} and m-dimensional closed cubes in the q-approximation of E_{2} which meet ω. Now we define a non negative set function Φ on \mathfrak{A} by $\Phi(\omega)=\lim _{q \rightarrow \infty} N_{q}(\omega) \lambda_{2 q-1}^{\alpha} \lambda_{2 q}^{\beta}$. We can easily see that Φ satisfies (1) and (2) of the Lemma with $F=E_{1} \times E_{2}$ and $b=1$. We shall show that Φ satisfies (3) of the Lemma in each of the cases. Let I be any open cube with the side $d \leqq \lambda_{1}$. Then there is a uniquely determined positive integer such that $\lambda_{2 q+1}<d \leqq \lambda_{2 q-1}$. In case 1 , we shall estimate $N_{q+1}(I)$ by means of conditions (1-1) and (1-2), in each of the following four cases.
(i) If $\lambda_{2 q+1}<d \leqq \lambda_{2 q+2}+\delta_{2 q+2}$, then $N_{q+1}(I) \leqq 2^{n+m}$ and

$$
\Phi(I) \leqq 2^{n+m} \lambda_{2 q+1}^{\alpha} \lambda_{2 q+2}^{\beta} \leqq 2^{n+m} M \lambda_{2 q+1}^{\gamma} \leqq 2^{n+m} M d^{\gamma} .
$$

(ii) If $\lambda_{2 q+2}+\delta_{2 q+2}<d \leqq \lambda_{2 q}$, then

$$
\begin{aligned}
& N_{q+1}(I) \leqq 2^{n+m}\left(d /\left(\lambda_{2 q+2}+\delta_{2 q+2}\right)\right)^{m} \leqq 2^{n+m} k_{2 q+2}^{m}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m^{2} / \beta} d^{m-\gamma} d^{\gamma} \\
& \leqq 2^{n+m} k_{2 q+2}^{m}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m \gamma / \beta} d^{\gamma}
\end{aligned}
$$

and

$$
\Phi(I) \leqq 2^{n+m}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(\gamma-\beta) / \beta}\left(k_{1} k_{3} \ldots k_{2 q+1}\right)^{-n} d^{\gamma} \leqq 2^{n+m} M d^{\gamma}
$$

(iii) If $\lambda_{2 q}<d \leqq \lambda_{2 q+1}+\delta_{2 q+1}$, then $N_{q+1}(I) \leqq 2^{n+m} k_{2 q+2}^{m}$ and $\Phi(I) \leqq 2^{n+m} \lambda_{2 q}^{\gamma}<2^{n+m} M d^{\gamma}$.
(iv) If $\lambda_{2 q+1}+\delta_{2 q+1}<d \leqq \lambda_{2 q-1}$, then

$$
\begin{aligned}
& N_{q+1}(I) \leqq 2^{n+m} k_{2 q+2}^{m}\left(d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n} \\
& \leqq 2^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n^{2 / \alpha}} d^{n} \\
& \leqq 2^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n \gamma / \alpha} d^{\gamma}
\end{aligned}
$$

and

$$
\Phi(I) \leqq 2^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(\gamma-\alpha) \alpha}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{-m} d^{\gamma} \leqq 2^{n+m} M d^{\gamma}
$$

Therefore Φ satisfies condition (3) of the Lemma with $a=2^{n+m} M$ and $d_{0}=\lambda_{1}$. By the Lemma, we obtain $\Lambda_{\gamma}\left(E_{1} \times E_{2}\right) \geqq 2^{-(n+m)} M^{-1}>0$. Thus this case is proved. In case 2, we shall estimate $N_{q+1}(I)$ by means of conditions (2-1) and (2-2), in each of the following four cases.
(i) If $\lambda_{2 q+1}<d \leqq \lambda_{2 q+2}+\delta_{2 q+2}$, then $N_{q+1}(I) \leqq 2^{n+m}$ and

$$
\Phi(I) \leqq 2^{n+m} \lambda_{2 q+1}^{\alpha} \lambda_{2 q+2}^{\beta} \leqq 2^{n+m} M \lambda_{2 q+1}^{\gamma} \leqq 2^{n+m} M d^{\gamma}
$$

(ii) If $\lambda_{2 q+2}+\delta_{2 q+2}<d \leqq \lambda_{2 q}$, then

$$
\begin{aligned}
& N_{q+1}(I) \leqq 2^{n+m}\left(d /\left(\lambda_{2 q+2}+\delta_{2 q+2}\right)\right)^{m} \\
& \leqq 2^{n+m} k_{2 q+2}^{m}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m^{2} / \beta} d^{m-\gamma} d^{\gamma} \leqq 2^{n+m} k_{2 q+2}^{m}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m \gamma / \beta} d^{\gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi(I) \leqq 2^{n+m}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m(\gamma-\beta) / \beta}\left(k_{1} k_{3} \ldots k_{2 q+1}\right)^{-n} d^{\gamma} \\
& \leqq 2^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(n-\alpha)(\gamma-\beta) / \alpha(n+\beta-\gamma)}\left(k_{1} k_{3} \ldots k_{2 q+1}\right)^{-n} d^{\gamma} \\
& \leqq 2^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2}(\gamma-\alpha-\beta) / \alpha(n+\beta-\gamma)} k_{2 q+1}^{-n} d^{\gamma} \leqq 2^{n+m} d^{\gamma} .
\end{aligned}
$$

(iii) If $\lambda_{2 q}<d \leqq \lambda_{2 q+1}+\delta_{2 q+1}$, then $N_{q+1}(I) \leqq 2^{n+m} k_{2 q+2}^{m}$ and $\Phi(I) \leqq 2^{n+m} k_{2 q+2}^{m} \lambda_{2 q+1}^{\alpha} \lambda_{2 q+2}^{\beta} \leqq 2^{n+m} M d^{\gamma}$.
(iv) If $\lambda_{2 q+1}+\delta_{2 q+1}<d \leqq \lambda_{2 q-1}$, then

$$
\begin{aligned}
& N_{q+1}(I) \leqq 2^{n+m} k_{2 q+2}^{m}\left(d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n} \\
& \leqq 2^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2} / \alpha} d^{n-\gamma} d^{\gamma}
\end{aligned}
$$

and

$$
\Phi(I) \leqq 2^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(\gamma-\alpha) / \alpha} k_{2 q+1}^{\gamma-n}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{-m} d^{\gamma} \leqq 2^{n+m} M d^{\gamma} .
$$

Therefore Φ satisfies condition (3) of the Lemma with $a=2^{n+m} M$ and $d_{0}=\lambda_{1}$. By the Lemma we obtain $\Lambda_{\gamma}\left(E_{1} \times E_{2}\right) \geqq 2^{-(n+m)} M^{-1}>0$. Thus this case is proved. In case 3 , we shall estimate $N_{q+1}(I)$ by means of conditions (3-1) and (3-2), in each of the following four cases.
(i) If $\lambda_{2 q+1}<d \leqq \lambda_{2 q+1}+\delta_{2 q+1}$, there exists a positive integer $j(1 \leqq j \leqq$ $\left.k_{2 q+2}-1\right)$ such that $j\left(\lambda_{2 q+2}+\delta_{2 q+2}\right)<d \leqq(j+1)\left(\lambda_{2 q+2}+\delta_{2 q+2}\right)$. Then $N_{q+1}(I) \leqq$ $2^{n+m} j^{m}$ and

$$
\begin{aligned}
& \Phi(I) \leqq 2^{n+m} j^{m}\left(k_{1} k_{3} \ldots k_{2 q+1}\right)^{-n}\left(k_{2} k_{4} \cdots k_{2 q+2}\right)^{-m} \\
& \leqq 2^{n+m} M\left(j k_{2 q+2}^{-1}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{-m / \beta}\right)^{\gamma} \leqq 2^{n+m} M d^{\gamma} .
\end{aligned}
$$

(ii) If $\lambda_{2 q+1}+\delta_{2 q+1}<d \leqq \lambda_{2 q}$, then
$N_{q+1}(I) \leqq\left(2 d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n}\left(2 d /\left(\lambda_{2 q+2}+\delta_{2 q+2}\right)\right)^{m}$
$\leqq 2^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2} / \alpha}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{m^{2} / \beta} d^{n+m-\gamma} d^{\gamma}$
$\leqq 2^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2} / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{-m(n-\gamma) / \beta} d^{\gamma}$
and
$\Phi(I) \leqq 2^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(n-\alpha) / \alpha}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{-m(n+\beta-\gamma) / \beta} d^{\gamma} \leqq 2^{n+m} M d^{\gamma}$.
(iii) If $\lambda_{2 q}<d \leqq \lambda_{2 q}+\delta_{2 q}$, then $N_{q+1}(I) \leqq\left(2 k_{2 q+2}\right)^{m}\left(2 d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n}$
$\leqq 2^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2} / \alpha} d^{n-\gamma} d^{\gamma}$
$\leqq 2^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2} / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(\gamma-n) / \beta} d^{\gamma}$
and
$\Phi(I) \leqq 2^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n(n-\alpha) / \alpha}\left(k_{2} k_{4} \ldots k_{2 q}\right)^{-m(n+\beta-\gamma) / \beta} d^{\gamma} \leqq 2^{n+m} M d^{\gamma}$.
(iv) If $\lambda_{2 q}+\delta_{2 q}<d \leqq \lambda_{2 q-1}$, then
$N_{q+1}(I) \leqq\left(2 d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n}\left(2 k_{2 q+2} d /\left(\lambda_{2 q}+\delta_{2 q}\right)\right)^{m}$

$$
\begin{aligned}
& \leqq 2^{n+m} k_{2 q+1}^{n}\left(k_{2 q} k_{2 q+2}\right)^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2 / \alpha}}\left(k_{2} k_{4} \ldots k_{2 q-2}\right)^{m^{2} / \beta} d^{n+m-\gamma} d^{\gamma} \\
& \leqq 2^{n+m} k_{2 q+1}^{n}\left(k_{2 q} k_{2 q+2}\right)^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{-n(m-\gamma) / \alpha}\left(k_{2} k_{4} \ldots k_{2 q-2}\right)^{m^{2} / \beta} d^{\gamma}
\end{aligned}
$$

and

$$
\Phi(I) \leqq 2^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{-n(m+\alpha-\gamma) / \alpha}\left(k_{2} k_{4} \cdots k_{2 q-2}\right)^{m(m-\beta) / \beta} d^{\gamma} \leqq 2^{n+m} M d^{\gamma}
$$

Therefore Φ satisfies condition (3) of the Lemma with $a=2^{n+m} M$ and $d_{0}=\lambda_{1}$. By the Lemma we obtain $\Lambda_{\gamma}\left(E_{1} \times E_{2}\right) \geqq 2^{-(n+m)} M^{-1}>0$. Thus this case is proved. In case 4, we shall estimate $N_{q+1}(I)$ by means of conditions (4-1) and (4-2), in each of the following four cases. By the above conditions (4-1) and (4-2), there exists a constant $C(\geqq 1)$ such that $\lambda_{2 q+1}+\delta_{2 q+1} \leqq C \lambda_{2 q}$ and $\lambda_{2 q}+\delta_{2 q} \leqq C \lambda_{2 q-1}$.
(i) If $\lambda_{2 q+1}<d \leqq \lambda_{2 q+1}+\delta_{2 q+1}$, then $N_{q+1}(I) \leqq 2^{n}\left(2 C d /\left(\lambda_{2 q+2}+\delta_{2 q+2}\right)\right)^{m}$
and

$$
\begin{aligned}
& \Phi(I) \leqq 2^{n+m} C^{m}\left(k_{1} k_{3} \cdots k_{2 q+1}\right)^{-n}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(m-\beta) / \beta} d^{m-\gamma} d^{\gamma} \\
& \leqq 2^{n+m} C^{m}\left(k_{1} k_{3} \cdots k_{2 q+1}\right)^{-n(m+\alpha-\gamma) / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m(m-\beta) / \beta} d^{\gamma} \leqq 2^{n+m} C^{m} M d^{\gamma} .
\end{aligned}
$$

(ii) If $C^{-1}\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)<d \leqq \lambda_{2 q}$, then

$$
\begin{aligned}
& N_{q+1}(I) \leqq\left(2 C d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n}\left(2 C^{2} d /\left(\lambda_{2 q+2}+\delta_{2 q+2}\right)\right)^{m} \\
& \leqq\left(2 C^{2}\right)^{n+m} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n^{2} / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{m^{2} / \beta} d^{n+m-\gamma} d^{\gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi(I) \leqq\left(2 C^{2}\right)^{n+m}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n(n-\alpha) / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{-m(n+\beta-\gamma) / \beta} d^{\gamma} \\
& \leqq\left(2 C^{2}\right)^{n+m} M d^{\gamma} .
\end{aligned}
$$

(iii) If $\lambda_{2 q}<d \leqq \lambda_{2 q}+\delta_{2 q}$, then $N_{q+1}(I) \leqq\left(2 k_{2 q+2}\right)^{m}\left(2 C d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n}$ $\leqq 2^{n+m} C^{n} k_{2 q+1}^{n} k_{2 q+2}^{m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{n^{2} / \alpha} d^{n-\gamma} d^{\gamma}$
and

$$
\begin{aligned}
& \Phi(I) \leqq 2^{n+m} C^{n}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n(n-\alpha) / \alpha}\left(k_{2} k_{4} \cdots k_{2 q}\right)^{-m(n+\beta-\gamma) / \beta} d^{\gamma} \\
& \leqq 2^{n+m} C^{n} M d^{\gamma} .
\end{aligned}
$$

(iv) If $C^{-1}\left(\lambda_{2 q}+\delta_{2 q}\right)<d \leqq \lambda_{2 q-1}$, then

$$
\begin{aligned}
& N_{q+1}(I) \leqq\left(2 C^{2} d /\left(\lambda_{2 q+1}+\delta_{2 q+1}\right)\right)^{n}\left(2 k_{2 q+2} C^{2} d /\left(\lambda_{2 q}+\delta_{2 q}\right)\right)^{m} \\
& \leqq\left(2 C^{2}\right)^{n+m} k_{2 q+1}^{n}\left(k_{2 q} k_{2 q+2}\right)^{m}\left(k_{1} k_{3} \cdots k_{2 q-1}\right)^{n^{2} / \alpha}\left(k_{2} k_{4} \cdots k_{2 q-2}\right)^{m^{2} / \beta} d^{n+m-\gamma} d^{\gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi(I) \leqq\left(2 C^{2}\right)^{n+m}\left(k_{1} k_{3} \ldots k_{2 q-1}\right)^{-n(m+\alpha-\gamma) / \alpha}\left(k_{2} k_{4} \ldots k_{2 q-2}\right)^{m(m-\beta) / \beta} d^{\gamma} \\
& \leqq\left(2 C^{2}\right)^{n+m} M d^{\gamma}
\end{aligned}
$$

Therefore Φ satisfies condition (3) of the Lemma with $a=\left(2 C^{2}\right)^{n+m} M$ and $d_{0}=\lambda_{1}$. By the Lemma we obtain $\Lambda_{\gamma}\left(E_{1} \times E_{2}\right) \geqq\left(2 C^{2}\right)^{-(n+m)} M^{-1}>0$. Thus the theorem is proved.
§4. We can establish the following theorems.
Theorem 3. Let n and m be positive integers and β and γ be positive numbers such that $\beta<\gamma<\min \{n+\beta, m\}$. Then there exist subsets $E_{1} \subset R^{n}$ and $E_{2} \subset R^{m}$ such that $0<\Lambda_{0}\left(E_{1}\right)<\infty, 0<\Lambda_{\beta}\left(E_{2}\right)<\infty$ and $0<\Lambda_{\gamma}\left(E_{1} \times E_{2}\right)<\infty$.

Theorem 4. Let n and m be positive integers. For any given positive number γ smaller than $\min \{n, m\}$, there exist subsets $E_{1} \subset R^{n}$ and $E_{2} \subset R^{m}$ such that $0<\Lambda_{0}\left(E_{1}\right)<\infty, 0<\Lambda_{0}\left(E_{2}\right)<\infty$ and $0<\Lambda_{\gamma}\left(E_{1} \times E_{2}\right)<\infty$.

References

[1] A.S. Besicovitch and P.A.P. Moran: The measure of product and cylinder sets, J. London Math. Soc., 20 (1945), 110-120.
[2] K. Hatano: Evaluation of Hausdorff measures of generalized Cantor sets, J. Sci. Hiroshima Univ. Ser. A-I Math., 32 (1968), 371-379.
[3] F. Hausdorff: Dimension und äusseres Mass, Math. Ann., 79 (1919), 157-179.
[4] J. M. Marstrand: The dimension of Cartesian product sets, Proc. Cambridge Philos. Soc., 50 (1954), 198-202.
[5] P.A.P. Moran: Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc., 42 (1946), 15-23.
[6] M. Ohtsuka: Capacité des ensembles produits, Nagoya Math. J., 12 (1957), 95-130.

Department of Mathematics,
 Faculty of Science, Hiroshima University

[^0]: 1) The Gaussian notation [x] stands for the greatest integer not exceeding a real number \mathbf{x}. In the
