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Let P(D) be a linear partial differential operator of order m>l with

constant coefficients, where D stands for (Do,Du...,Dn)9 Do=— ί-*—* D\
0 ΐι

= -i-^—, • ••, Dn=-ί-^~. The Cauchy problem for P(D) in Λί+1 = {(ί, χ)\
σxi σxn

t>0} and with initial hyperplane ί = 0 will be understood in the sense of M.
Itano [β~]. If P(D) is hyperbolic with respect to ί-axis, the Cauchy problem
to find u e 2)'(Λί+i) such that

P(D)u=f ini?++1

with initial conditions

\imDiu = aj / = 0, 1, ..., m — 1,
tio

for arbitrarily given /' c Q)'(RZ+1) and aj c ζb'(Rn\ admits a unique solution
u if and only if / has a canonical extension over t = 0. This follows from the
hyperbolicity of P(D) together with Corollary 1 in [5].

Our method of approach to study the problem will much rely upon the
ZΛestimates, where &(m,S)(R»+i) and the spaces related to it will play a
central role. Strong hyperbolicity of P(D) being not assumed, we can not
make use of the energy inequality of Friedrichs-Levy's type in its own form.
C. Peyser has derived an energy inequality from the properly hyperbolic
operator [9]. On the other hand, recently S. L. Svensson has shown Q10]
that any hyperbolic operator is also properly hyperbolic in the sense of
Peyser. Peyser considered the Cauchy problem only in the case of vanishing
initial data, however, it will be possible to develop a more general treatment
based on a modified energy inequality in which the initial data play a part.
This will be done in this paper. By doing so, we have also succeeded in
generalizing a result about a differential system established by J. Kopacek
and M. Sucha \Ίf] with a method of finite difference, and also succeeded
in improving on some results of L. Hδrmander [3, Theorem 5.6.4, p. 140]
and A. Friedman [2, Theorem 14, p. 198] concerning the classical solutions.
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1. Preliminaries

In an Euclidean space Rn+1 = Rx Rn with points (ί, x) = (t, xu x2, •••, χn\
we denote by R++ι the half space {(*, x) a Rn+ι: t>0} and by Vτ, Γ > 0 , the
slab [0, TJxRn. In what follows, we use multi-index notations. Let v
= (vo>> Vi, ••-, vw), vy being non-negative integers, and let D = (D0, Du ••-, Dn\

Dx = (DuD2,...9Dn\ where D0=-i-%-9 D^-i-J?-, •.-, Dn=-iΊ?—. By
(/ί O'Λ I ύxn

n

v' we mean (v1? v2, •••, vn) and write v = (v0, v'). Let us write | v| = Σ »h Du

y = o

= Du

0°D
v

1

1-- Dv

n

n, Dv

χ

/ = Dv

ι

ιDv

2

2 Dv

n

n^nά soon. Let if* be the dual space of i?w wi th
scalar product <x, f > = 2 ŷίyj where f denotes a point of 5Ή. The Fourier

transform φ(ξ) of ^ e Sf(Rn) is defined by ^(ί)=\^(Λ;)e~/<x f>dΛ;, and extend-

ed by continuity to a temperate distribution u e &"(Rn) by the formula

m-\

Let P(D) = D%+Σ ΣavD
u be a differential operator of order m>l

with constant coefficients. Let us consider the Cauchy problem for P(D) in
Rt+ι with initial hyperplane t = 0: To find a solution u of the equation

(1.1) P(D)u=f in Ri+1

with initial data

(1.2)
MO

for given / and a, where / ζ Q)'(Ri+1) and a = (a0, au . •-, αOT_i) e Q)\Rn)

xQ)\Rn)x---xQ)f{Rn).

From now on, for the sake of simplicity, we shall write a e ζΰf(Rn) if
each component <Xj belongs to Q)'{Rn). A similar abbreviation will be used
for a vector distribution when there occurs no fear of confusions. If a
solution u exists, then u and / must have the canonical extensions u^ and
/^, the equation (1.1) with initial data (1.2) is rewritten with v — u^ in the
form:

m-i

(1.3) P(D) v =/_ + Σ Dl fit® ϊu{a\
k

where γk(a)=-ί Σ ΣΣ
Q k + l \\ o

Conversely any solution v e ζ&'(Ri+ι) of the equation (1.3) is the canonical
extension of a solution u of the equation (1.1) with initial condition (1.2)
[5, p. 19]. Here we note that the mapping
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Γ : α->(r o (α0, ri(αθ, •••> ϊm-i{a))

is an automorphism of ©'(/?„) x ©'(Λ*) x x Q)'(Rn).

LEMMA 1.1. Let u and f have the canonical extensions u^ and f^ respec-

tively. Suppose that there exists a sequence φά c C%(Rn+1), 7 = 1, 2, • •-, with the

properties:

i) (py)~-n*~ inQ)'(Rn+1)

ii) (P(D)cpj)^f^ inQ)f{Rn+ι)

for 7'->oo, £fcew (^ ; ) o Ξ f e ( O , Λ), ΰ o ^ (O, Λ), •••, ΰ j " 1 ^ ^ , Λ ) ) converges to
a e U)'(Rn) for j -> oo5 απd ^ satisfies (1.1) and (1.2) m f t

PROOF. Owing to (1.3) we can wri te

m-\
P(D) (?,)_=(/>(/>) ^ )~ + Σ

Consequenty, since {P(D)(^y)^> and {(P(D)^y)^} converge in Q)'(Rn+1) to
P(D)u^ and/^ respectivety, there exists a r ^ Q)\Rn), k = 0, 1, •, wi —1, such
that r*((?>/)o)-*r*. The mapping Γ: /5^(ro(/5), n(/S), ••-, ϊm-i(β)) being- an
automorphism of Q)XRn)xQ)/(;Rn) x ••• x2)χRπ), it follows that (<pj)0-+a in
Q)f{Rn), and that u-. satisfies the equation (1.3), as desired.

In the rest of this section we shall always assume that / has the
canonical extension over t = 0.

Recall that P(D) is hyperbolic with respect to ί-axis if and only if there
exists a fundamental solution with support in Rn+1. If this is the case, then,
in view of (1.3), we can easily verify that the Cauchy problem has a unique
solution for any given / and a.

As for a system of differential operators, it is well known that under
certain conditions by introducing new unknowns the Cauchy problem can be
reduced to the problem for a system of differential operators of the following
type:

where A (Dx) is an mxm matrix whose components are linear differential
operators in Dx of order <Lp(p^>V) with constant coefficients.

Let Q(D) = det(L(D)). It is easy to verify that Theorem 5.2.2 of
Hδrmander p$] remains valid with an additional requirement R(Dx)u^=Q for
null solution u, where R(DX) is any given non-trivial differential polynomial.
Owing to V. M. Borok's reduction method [1], we can see that the hyperplane
t = 0 is characteristic with respect to Q(D) if and only if L(D)u = 0 admits a
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non-trivial null solution with respect to Ri+1. Observe that the uniqueness
of the solution to the Cauchy problem for L(D) is guaranteed whenever the
hyperplane t = 0 is non-characteristic with respect to Q(D).

L(D) is called hyperbolic with respect to ί-axis if so is Q(D). Suppose
that L(D) is hyperbolic. Consider the Cauchy problem: To find a solution u
of the equation

(1.4) L(D)u=f in Ri+1

with initial data

(1.5)

for given / and α, where f ς Q)'(Ri+1) and aeQ)\Rn) As in the case of a
differential operator, the problem is equivalent to find a solution v = (vi, v2,
..., vn) e Q)'(Ri+ι) of the equation

(1.6)

Taking into account this together with the fact that there exists a funda-
mental solution of L(D) with support in Rn+i, u we can easily conclude that
the Cauchy problem has a unique solution u for any given / and a.

REMARK. One can obtain various charactarizations of the hyperbolicity
of L(D) by relating it to the Cauchy problems. Among them we shall men-
tion here without proof the following results however, they will not be used
in our later discussions.

PROPOSITION 1.1. L(D) is hyperbolic if and only if any of the following
conditions is satisfied

i) There exists a unique fundamental solution e 2)'(jf?w+i) with support
in Ri+1.

ii) There exists a unique solution e ζD'(R%+1) of the Cauchy problem (1.4)
with (1.5) for all a e C^(Rn) andf=0.

o

iii) When considered in Vτ, the Cauchy problem with a e C^(Rn) and

/ = 0 admits a solution u e Q)XVT) with bounded support in Vτ.

From now on we assume that P(D) is hyperbolic with respect to ί-axis.
As observed in Introduction, P(D) is also properly hyperbolic in the sense of
C. Peyser, and therefore, an obvious modification of his method of estimation
enables us to obtain the following energy inequality:

(1.7) \ \φ(t,x)\2dx<Cτ\[ Σ \(D»φ)(0,x)\2dx +
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where Cτ is a constant independent of φ e C^(Rn+ϊ). A sharp form of this
inequality will be given in Section 2.

Let dt{s)(Rn) be understood as in [3, p. 45]. It is a Hubert space
with norm v—HM|(S):

(1.7) holds also for φ e £f(Rn+1) since both sides of (1.7) are continuous in the
topology of y(Rπ+1). Consequently we obtain from (1.7)

(E)s \\φ(t, O I I ^

t\\(P(D)φ)(t', OIIL^Ί, 0^ί<Γ, φe

where Cτ is a constant independent of φ e C%(Rn+1).

2. The Cauchy problem for hyperbolic differential equations

Throughout this section we shall assume that P(D) is hyperbolic with
respect to ί-axis. Clearly then the same is true of P*(D), the formal adjoint
of PCD).

To begin with, we shall give a brief account for notations encountered
in the subsequent discussions. According to L. Hδrmander [Ί5], we shall
mean by ^ ( f f > s ) (Λί + 1 ), ^fΛc)(Λί+i) and so on respectively the spaces introduced
there [3, Chap. 2]. Let us denote by £(σ>s)(R++ι) the space of all u e Q)'(RZ+1)
such that φu belongs to ^ ( σ > s ) (i?ί + 1 ) when φ(t) is taken arbitrarily in C^(R).
The protective locally convex topology is introduced there (in accordance
with the general principle) so that the mappings u-^φu e ^ ( σ , s ) (i?+ + 1 ) may
be continuous. Thus ^ ( f f > s )(Λί+ 1) wil![ be a Frechet space as seen from the
case of 9ί\^s){RUύ [3, P 60]. By 8t%tS)(Rt+1) we also mean the adjoint
space of <^(_σj_s)(J?++1), which consists of the elements of β6(σ>s)(R++1) with
support in Q0, T^\xRn for some positive Γ > 0 . It is to be noticed t h a t

£C(*,s)(RΪ+ι) and ά(σ>s)(R^+ι) may be identified for \σ\ < y [6, Proposition 7].

Similarly for &Cσt8)(Ri+ι) and gt{σ,s)(RUι)

Let λ(ξ) = (l+ \ξ |2)2. We shall denote by λ(Dx) the convolution operator

with symbol λ(ξ). The operator (DQ — ΐλ(Dχ))"1 with symbol (r
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defines the isomorphism between έk{σ>s)(R++ι) and &(tr+ltS)(R];+1) [3, p. 53],

which will be extended to the isomorphism between dt{<TiS)(Rn+i) and

dtw+ι,s)(Rn+i) i n a n obvious way.
Let us write H ( s ) instead of the product space &(S+m-i)(Rn) x £%(s+m-2

x -x&ω(R*), a n d Hf s ) i n s t e a d of gC{s){Rn)χgC{s+l){Rn)x ••• xdt{8+

We shall also use the notation <o?(^(s)) to denote the space of all the con-
tinuous <^(s)(i?w)-valued functions u(t) defined on Q0, ©o). The space is pro-
vided with topology defined by the semi-norms sup| |u(ί) | | ( s ), and therefore a

0<,t<T

Frechet space. Similar notations will be used for the others when the
meanings seem to be obvious.

LEMMA 2.1. Let / e M{k>s){Ri+ι) and α e H M ) ) k being a non-negative
integer. Then there exists one and only one solution u e c%(k,S)(Rn+ι) to the
Cauchy problem (1.1) with (1.2) such that

Dj

ou e <S?(^(s+*_y)), ; = 0 5 l 5 ...,*.

PROOF. Consider the case k = 0. We shall first show that the graph

is everywhere dense in the product space M(0>s)(R^+1)xΊlω, where we have
denoted by φ0 a vector function (φ(0, x\ D0φ(0, x), ..., D%-1φ(0, x)) in H ( s ) .
Let w e ̂ * ( 0 , - s ) ( ^ ί + i ) and β e Hf_5_w+1) be such that

(P(Z>>, w) + (<p0, /9) = 0, for any ψ e C?(Λ++1).

To our end it is sufficient to show that w = β = 0. Since (P(D)φ, w) = 0 for
any φ e Q(i?ί + 1 ), we obtain (φ, P*(D)w) = 0 and therefore

= 0 in Λί+1.

On the other hand, there exists a Γ > 0 such that w = 0 for t>-=- since

w e ̂ * ( 0 _ s )(Λί+ 1), whence lim(w, D o^ 5 ••-, ̂ " 1w;) = 0. Observing that

is hyperbolic with respect to ί-axis, we see that w = 0. Consequently (<p0, β)
= 0 for any φ e CQ(R£+1)> which implies that /? = 0, because the set {<p0: φ
e Co(R%+i)} is everywhere dense in H ( 5 ) [3, Theorem 2.5.7].

Now we can choose a sequence {#>/}, φj 6 CQ(RU+I), such that

Pφ)Ψj^f in dt^{Ri+ί\

and
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(̂ •(0, x\ φj(0, x\ ..., DΓVX0, x))-+a in H(s).

In virtue of the estimate (E)s (see Section 1), {ψj} is a Cauchy sequence in
&°t(£6ω) and therefore converges in £°t(£6ω) to an element w, which must
coincide with u because of Lemma 1.1 and uniqueness of the solution.

The general case will be proved by induction on k. Suppose that k>0
and that the assertion of Lemma 2.1 is true for k — 1. Let fe dt{ktS){Ri+ι)
and a e H{s+k). We must show that

From our assumption on induction we have

D j ^ g J ^ H ) ) , 7 = 0,1, ..., A-l.

Put v = Dou and g=Dof. We can write

m-l

D$-1v = D%u = f- Σ Σ avD
vu.

From this and the fact that lim/ e ^C^s+k_V!(Rn) [3, Theorem 2.5.6] we obtain

MO

Consequently, since υ satisfies the equation

P(D)v = g€^1>s)(R:+1) in Λ++1,

we obtain

βJt egJC^Ww)), ; = 0,l, ...,Λ-

which, in turn, implies

and therefore ^ e <$(k,S)(Rn+ι) by Theorem 2.5.4 of L. Hδrmander [ 3 ] . Thus
the proof is complete.

With the aid of the lemma just proved we can show the following

PROPOSITION 2.1. For any^given fe $(0>s)(R++1) and a e H ( s ), there exists
one and only one solution u e έ%(0>S)(R++1) such that

e S?(^ ( s _ y ) ), 7 = 0,1, . . . , m - l .

PROOF. Owing to the uniqueness and the existence theorem of the
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solution, we can write u = uι + u2, where m and u2 are the solutions to the
Cauchy problems:

P(D)Uι=f iniC+i,

lim(uuDoul9 .-., 2)?- 1 "i) = 0,
ί 10

and

P(D) u2 = 0 mR++l9

\im(u2,D0u2, •••, D^~1u2)=a.
f 10

We then obtain from Lemma 2.1

D{u2 e g?(^(,_y)), 7 = 0, 1, ..., ττι-1.

Consequently we have only to show that

flί^eδj^-y,), 7 = 0,1, ..., ττι-1.

Let v9 g£ M(m-ι,S)(Rn+i) be defined by the relations:

v = (D0-ίλ(Dx)r^~^uu and g=(DQ-iλ(Dx)r(m-1)f'

It follows then t h a t lim(v, Z>0^5 ••, i)^~ 2t ') = 0, and therefore, from t h e rela-
1

t 10

tion D$-1v = uι-?Σ(mj1)(--iλ(Dx))m-1-iDJ

ov, we obtain limD$-1v = 0. Con-
y=o / i o

sequently, since P{D)v — g in Λ^+1, we see from Lemma 2.1 that

Z ^ g ? ( ^ ( 5 + w _ W ) ) , ; = 0 , 1, ..-, 771-1.

Since ge M(m-i,S)(Rn+ι), it follows from [6, Proposition 4J that

ί>^eg?(^ ( s+m-|-A))C<S?(^(S-i-*)), * = 0, 1, -.., m-2.

From this and the relations:

/)?+*» = -D*ίp-'Σ Σ «,-0"^o^ * = 0, 1, ..., m-2,

we get

D ί κ g ? ( 4 + , - i - i ) ) 5 7 = 0, 1, ..-, 2τ7i-2.

On the other hand, we can write down
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m-1

D{,u1=Σΰ(
mϊ1X-iλ(Dx)r-ι-kDi+><v, / = 0, 1, .... m - 1 .

Then using the fact that

i e g?(<5K(._Λ), j , k = 0, 1, ..., m - 1 ,

we have

flί«ie^(,-, ,), y=0, 1, .... m-1,

which comletes the proof.

Owing to the closed graph theorem, Proposition 2.1 implies that

ι o , ) i ι ? y . c Σ i

where Cj is a constant independent of u. Especially if we take u = φ
€ C£(Λί+1), we have a sharp form of the energy inequality (E)s given in

Section 1.

m-1 . m-1

Σ\\D}

oφ(t, 'W-j^CTlΣW
j=0 j=0

for any φ e Cj(i?ί+ 1).

Now we are in a position to show the following

THEOREM 2.1. Lei σ + -iΓbe positive, but not an integer and let k = \<τ + -«- .

For cmi/ griven / c ̂ ( ( Γ l S )(Sί + 1 ) απd α e H ( s + σ ) ; Then there exists one and only
one solution u 6 ̂ (m+σ>s_m)(R^+ι) to the Cauchy problem (1.1) with (1.2) such
that

PROOF. When &>0, by applying JD0, D§, •••, i^o"1 to both sides of the
equation, we are led to the case & = 0. Therefore, without loss of generality,

we may assume that | < χ | < — . If we let gι = (D0 — iλ(Dx)y1f and g2

= -iλ(Dx)(D0-ίλ(Dx))-1f, then

gi e ά(σ+i,S)(R:+ι) and g2 e J ( f f + i , 5 _ i ) ( ^ + 1 ) .
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Let us consider the following Caucht proplems:

t lo

and

>, Dow, • •-, D%~ιw)=-a.
tio

In virtue of Lemma 2.1, we have

Z)ίt;eg?(^ ( , + σ + W ) ), 7=0, 1, ..., ττι-1,

and

i ) > e g ? ( 4 + - i ) ) 5 7=0,1, •••, m - 1 .

On the other hand, git<$(σ+1>s)(R++1) and σ + l>-o~ 5 and therefore

?(^ ( s + σ + i ) ) E65 Proposition 4]. This together with the relation D%v =
m-l

Σ
ml

— Σ ΣavD
vv shows that

0 \\<

Now, since u = Dov + w, in view of Theoerm 4.3.1 of L. Hδrmander [β~] it
follows that u has the required properties. The proof is complete.

If we assume in the preceding theorem that

then we must have

Dζu e g?

Indeed, this follows from the relation

Σ avD
vu.

Let Γ*(P: N) be the convex cone introduced by L. Hormander [3, p. 137]
which is associated with P(D) and TV. Here we take iV=(l, 0, 0, , 0) e Ξn+1.
Let (ί0, Λ;0) € Ri+i be an arbitrary point. Owing to Corollary 5.3.3 of L.
Hδrmander [3] u eQ)f(Rn+ι) vanishes in the interior of ((ί0, χo)—Γ*(P: NJ)
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if satisfies the conditions:
P(D)u=0 in the interior of ((*<,, χo)-Γ*(P:

and

lim(uyDou, ...9D^1u) = 0 on ((ί0, xo)-Γ*(P: N))Γ\{t =
tio

From these considerations we shall obtain the following theorem as an
immediate consequence of Theorem 2.1.

THEOREM 2.Γ. Let β and k be chosen as in Theorem 2.1. Then, for any
given fe dί[^s){R^+1) and aeHι

{^σ), there exists one and only one solution
u e 9t\Slm,s-m)iR^-d to the Cauchy problem (1.1) with (1.2) such that

For non-negative integers k, j , we shall denote by CkJ(Rn+i) the space of
functions u defined on Rn+ι which are continuous with their partial deriva-
tives Dvu, vo<λ, v*+W\<>k+j.

Theorem 2.1' allows us to state a generalization of Theorem 5.6.4 of
L. Hδrmander [βj with respect to the classical solutions.

COROLLARY 2.1. Let r = Γ-|-Ί + l. For any given fe C°'r+m(R^+1) and

atCr+2m-l(Rn)xCr+2m-2(Rn)x--xCr+m(Rn), there exists one and only one
solution u e Cm(Rn+ι) to the Cauchy problem (1.1) with (1.2).

More generally let k and j be non-negative integers For any given
f 6 C*'r+'"(ΛJ+1) and a e Cr+k+j+m-ι(Rn) x Cr+k+J+m-\Rn) x x Cr+k+i(Rn\ there
exists one and only one solution u e Ck+ιJ~ι(R^ι), l=mm(m, j), to the Cauchy
problem (1.1) with (1.2).

PROOF. Owing to Sobolev's lemma we have

[^ + 1 j ) R n X y = 0 , 1, ••••

Combining with Theorem 2.1' yields the conclusions of Corollary 2.1.

3. The Cauchy problem for hyperbolic systems
σ

L e t u s c o n s i d e r a t e m p e r a t e w e i g h t f u n c t i o n k ( σ > s ) ( r , ξ) = (l + t 2 + \ξ\ 2p)ΐ
s

x (1 + I ξ 12)2 where σ and 5 are real numbers, and p is a positive integer.
We shall denote by dCk{β,s){Rn+ι) the space of the temperate distributions
u € y'(Rn+ι) such that the Fourier transform ύ is a function and
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We consider 9tkι ΛRn+ι) as a Hubert space with norm ||u||*, . defined by

From our definition we see that dtk{as)(Rn+ι) = £t{σ>s)(Rn+ι) for p = l. It
is clear that most of the statements concerning the space £6(σ>s)(Rn+ι) will be
extended in a natural fashion to those of the space c%k{<,>s)(Rn+i) Thus the

related spaces such as <kk{β}S)(Rn+i), dCk{a>s){.Rn+ι) and s o o n are defined in a
similar way as done for dt{σ,sy

The present section is devoted to the Cauchy poblem for the system
L(D) which is assumed hyperbolic with respect to ί-axis. We denote by C0L(D)
the matrix formed by the cofactors in L(D), thus

where / stands for the mXm unit matrix, m being a positive integer > 2 .

PROPOSITION 3.1. Let d + —^~ be positive, but not an integer and let k

exists one and only one solution u e έ%>k{a+m>s_pm)(Rn+ι) to the Cauchy problem
(1.4) with (1.5) such that

Diu e <S?(^( S + ^-/)X y = 0, 1, ..., τ τ ι - 1 ,

DJ

Qu e S j ( ^ ( 5 _ w 4 l + / , ( σ + w _ i _ y ) ) ) , 7 = 77i, 771 + 1, . . . , k + m — 1.

PROOF. First consider the case where |σ| <-^- In virtue of the trace
Li

t h e o r e m of M. I t a n o [ 4 ] , w e h a v e l i m ^ / e ^ ( s + ί ( σ + m _ 3 _ y ) ) ( / ? „ ) , y = 0, 1, •••,
t 10 2

ττι — 2. If we combine this with the relations Dr

o

 + 1u = Dr

of+A(Dx)Dr

ou, r = 0,
1, , 771 — 2, it is easy to verify that lim(α, Dou, , D™~ιu) 6 H ( ί + i ) σ ) .

tio
Now applying C0L(D) to both sides of the system (1.4), we are led to the

Cauchy problem for Q(D) where each component of u is a solution of the
problem of the following type:

Q(D)w = g iniC+i

with

tio

where g e glk{βiS){R^+ι) and β e H(s+Pσ). We shall show that w e
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and ^ i c f g j ^ ^ ^ ) , ; = 0, 1, ..., m-1.
Let us write g in the form g—Dogi + g2, where gι — (D0 — iλp(Dx')^1g

e ^*(,+1,.,(Λί+i) and y2 = (-ίAί(Z),))(i)o-»^(i>,))-1fi'e^*(.+1,..,)(Λ;+1). Here

^(f) = (l + |f I 2*)2*. If we observe that dk..,1JRϊ+1)cA0..+p(σ+i»(R;+ι) and
~ _ ~ _

&k{,+1,8-p)(RZ+i)C&io,s+p*)(RZ+i\ we can proceed along the line of the proof of
Theorem 2.1 to reach the conclusion that w e dCk{β+m s-pm)(Rn+i) a n ( i DJow

egS(«( ί + ^)),y=O, 1, -.., m-1.
Let us turn to the general case where A; is a positive integer. Applying

Dg*"1, Djf, ..., D$+m~2 to both sides of our system successively, as in the proof
of Theorem 2.1, the same reasoning will allow us to conclude the assertions
of Proposition 3.1.

THEOREM 3.1. Let σ + -=-be positive, but not an integer and let k = \ 0" + -~- L

For any given f e <ζKk{as)(R%+1) and ae dC{s+Pσ){Rn) there exists one and only
one solution u e ̂ k{a+Uspm)(R^+1) to the Cauchy problem (1.4) with (1.5) such
that

Diu eg?(^(s+*(σ-m+ W ) )), 7 = 0, 1, ..., A.

PROOF. We can write / in the form

where

Let then υr, r = 0, 1, , 771 — 1, be respectively the solutions of the following
Cauchy problems:

no

and

in

\\mvm_ι=a.
tio

Then owing to Proposition 3.1, we have
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Since we can write u = D$~1v0 + D%~~2vi-\ hι>m-i, it follows that

Combining this with the relations Dr

o

+1u = Dr

of—A(Dx)D^u, r = 0, 1, • ••, k — 1,
yileds the required properties of u.

REMARK. Consider the case where p = l. Then we see that Theorem 3.1
is a generalization of the result due to Kopacek and Sucha [8].

As in Section 2 we can show the following

THEOREM 3.1'. Let G and k be chosen as in Theorem 3.1. Then for any
given f e dί{™s)(R++1) and a e 9i\0

slpσ){R^) there exists one and only one solution
u e £Cl™+1 s_pm)(Rn+i) to the Cauchy problem (1.4) with (1.5) such that

DJΊI F ^0(J^ίθC λ Ί 0 1 h
JJ0U t Ot^cTϋis+piσ-m + 1-j))), 7 ~ U ? 1 ? " ' 9 fc-

For non-negative integers k, j\ we shall denote by C^'(Rn+ι) the space of
functions u defined on Rn+ι which are continuous with their partial deriva-
tives Dvu, Vo<k,pvQ+ \v'\<pk+j.

As an immediate consequence of Theorem 3.1/ we have the following
corollary which is a generalization of a result of A. Friedman [2, Theorem
14 p. 198].

COROLLARY 3.1. Let Γ = Π-5-Ί + l. For any given fe C°^+pm(R++1) and

a e Cr+pm(Rn) there exists one and only one solution u e C}$(R%+1) to the Cauchy
problem (1.4) with (1.5).

More generally let k, j be non-negative integers. Then for any given
f£Cϊtf+*m+J(RZ+1) and a e Cr+pm+i+p\Rn) there exists one and only one solution
u e C^UJ(Ri+1) to the Cauchy problem (1.4) with (1.5).
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