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Introduction

The aim of this paper is to give theorems on the existence of solutions
of equations of the forms

(a) Lu + Au=f

and

(b) u + LAu=f,

where L is a linear mapping and A is a nonlinear mapping.

It is known that if L is a linear maximal monotone mapping and A is a
bounded pseudomonotone mapping, then (a) and (b) have solutions (see [4
THEOREM 1] and [Ί THEOREM YJ). H. Brezis [β~] introduced a class of non-
linear mappings, called of type M, of a Banach space into its dual space, which
contains the class of pseudomonotone mappings, and then showed in [2~}
that if L is a linear monotone mapping which is F-regular and A is a bounded
mapping of type M, then (a) has a solution. We shall show that if L is a
linear maximal monotone mapping and A is a bounded mapping of type M,
then (a) and (b) admit solutions thus the above two results are corollaries
to our theorem.

§ 1. Definitions and notation

Let V be a real reflexive Banach space and F* its dual space with the
dual norm. We denote the norm of x e V by \\χ\\v, the norm of x* e F* by
||#*||r* and the natural pairing between V* and V by <, >. We use the
symbols "—s—•", "—^-*" and "_EEL»" to denote the convergence in the strong,
weak and weak* topology respectively.

Let T be a multivalued mapping of V into V* (i.e., to each x e V, a
subset Tx of F* is assigned). The sets D(T) = {x e V\ Tx^φ}, R(T) = \J Tx

and G(T) = {(x, #*) 6 VxV*\ x* e TV/ are called the domain, the range and
the graph of Γ respectively. The inverse Γ"1 of Γ is the multivalued map-
ping defined by T~ιχ* = {x eV;x*e Tx} with the domain D(T~ι) = R(T).

A multivalued mapping T of V into F* is called monotone if for any
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and it is called maximal monotone if there is no proper monotone extension
of T. A multivalued mapping T is called coercive if

inf <f],x> ->oo as ||*||F-»oo, x e D(T).
x*eTx \\x\\V

A singlevalued mapping T of D(T) = V into F* is called of type M([βJ)
if it satisfies the following conditions (Mi) and (M2).

(Mλ) If {*,-} is a net such that \\xi\\v<K, Xi-^x inF, r*z--^->** in
Γ* and limsup< ΓΛ;,-, :*;,><<**, X>, then Γ* = Λ;*.

(M2) The restriction of T to any finite dimensional subspace of V is
continuous with respect to the weak* topology.

We generalize the notion of mappings of type M to the multivalued case.
For a multivalued mapping T of D( T) = V into F*, we consider the following
conditions.

(mi) If {xi} and {xf} are nets such that xf e Txh \\χi\\v<K, Xi-^x in
j7 ^ * _ E 1 ^ * in Γ* and limsup<Λ;f? Xi><<x*, χ>, then Λ;* e Tx.

i

(m2) The restriction of T to any finite dimensional subspace F of Γ is
upper semicontinuous with respect to the weak* topology, that is, for any
x e F and any weak*-neighborhood C/* of Tx, there exists a neighborhood U
of x in Fsuch that £/*^ T(U) = \J Tx.

xeu

(m3) For each x e V, Tx is a bounded closed convex subset of Γ*.
REMARK 1. It is easy to see that if T is bounded, that is, T maps bound-

ed subsets of V to bounded subsets of Γ*, then (mi) and (m3) imply (m2), and
if V is finite dimensional, then (m2) and (m,3) imply (ττii).

Let / be the duality mapping of V, that is, / be defined by/x = {^*eF*;
<#*, #> = ||#||& ||^*lk*=||^lk} for each x a V. In general, / i s multivalued.
The inverse 7"1 is the duality mapping of F*. It is known that if Γ* is
strictly convex, then Jx consists of a single element for each x e V.

§2. Multivalued mappings satisfying (πii), (m2) and (zn3)

In the rest of this paper we assume that V is a real reflexive Banach
space.

THEOREM 1. Let A be a multivalued mapping of D(A)=V into V*
satisfying (mi), (m2) and (m3). Let C be a bounded closed convex subset of V
containing the origin 0 in its interior. Suppose that
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, x > > 0 for any x edC and any x* e Ax,

where dC is the boundary of C. Then the set S= {x e C; 0 e Ax} is non-empty
and weakly compact.

To prove this theorem we use the following lemma.

LEMMA 1. Let V be finite dimensional and A be a multivalued mapping
of D(A) = V into V* such that

(1) Ax is a bounded closed convex subset of V* for each x e V,
(2) A is upper semicontinuous.

Let C be a bounded closed convex subset of V. Then there exist χ0 c C and
χ% e AXQ such that

<χ%, χ0 — χ><0 for all x e C.

We omit the proof of LEMMA 1, since this lemma is a special case of
THEOREM 6 in [6].

PROOF OF THEOREM 1: Let { Va a e Λ} be the family of all finite dimen-
sional subspaces of V, ja the canonical injection of Va into V and j* the
adjoint of ja. We define an order " < " in the index set A by inclusion of
corresponding subspaces, that is, for α, β e Λ, a<^β if and only if VaC Vβ.
Then A is a directed set. For each ae A, we set Aa=βAja. It is easy to
see that each Aa satisfies conditions (1) and (2) in LEMMA 1. Therefore there
exist xa e Cr\Va and xt e Axa such that

(2.1) <xt, xa-χ><0 for all x a CΓ\Va.

In the case where xa £ C—dC,we have

(2.2) <χ% x> =0 for all x e Va.

In the case where xaedC, noting that <χt, ^ « > > 0 by hypothesis and
<χt, # « > < 0 by (2.1), we obtain <χt-> xa>=0- Thus also in this case we
have (2.2). Hence,

(2.3) ;S*ί = 0.

Since C is weakly compact, there exists a subnet {χttι} of {χa}aeΛ such
that Xai-W->x0 e C. By (2.3), #*,-£!» 0 and limsupOS., χ%

Λi> =0. Condition

(mi) implies 0 e Aχ0. Thus S is non-empty. The weak compactness of 5
follows from (mi). q.e.d.

COROLLARY. Let A be a multivalued mapping of D(A)=V into V*
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satisfying (mi), (m2) and (m3). Suppose that A is coercive. Then R(A) = V*.

PROOF. Let y* be an arbitrary element of F*. We define a mapping

Ar by Arx — Ax — j * . It is easy to see that A' satisfies conditions (mi), (m2)

and (ra3). By the coerciveness of A, there exists a positive numberr such

that<Λ;*, # > > 0 for any xedBr and any x* e A'x, where Br — {χeV\

\\χ\\v<r}. Therefore by THEOREM 1 we obtain R(A') 3 0, that is, R(A) 3 y*.

Thus R(A)=V*. q.e.d.

§ 3. Nonlinear functional equations

In this section we shall show the existence of solutions of nonlinear func-

tional equations of the forms (a) and (b).

The existence of solutions of (a) is given by the following theorem.

THEOREM 2. Let C be a bounded closed convex subset of V containing the

origin 0 in its interior. Let L be a multivalued maximal monotone mapping

of D(L)C V into V* such that the graph G(L) is a linear subspace in Vx V*

and A be a bounded multivalued mapping of D(A) = V into V* satisfying (mλ)

and (m3). Suppose that

(3.1) <Λ;*5 Λ ; > > 0 for any x edC and any x* e Ax.

Then the set S={x e C; Lx + Ax 9 0} is non-empty and weakly compact.

The method of proof is based on that of THEOREM 19 in [3]. To prove

the above theorem, we prepare three lemmas.

LEMMA 2. Let T be a multivalued maximal monotone mapping of

D(T)CV into V*. Then x*ne Txm rc = l,2, ...,χns->Xo and χ*-^x* imply

that x0 e D(T) and x% e Tx0.

PROOF. From the monotonicity of T it follows that

<**-**, χn-x>>0 for any (x, x*)eG(T).

Letting n -> 00 5 we have

<**-**, x0-x>>0 for any (x, x*)eG(T).

The maximal monotonicity of T implies that (x0, x%) e G(T). q.e.d.

REMARK 2. From LEMMA 2 it follows that the graph G(L) of the mapping

L in THEOREM 2 is strongly closed in Vx V*. Since G(L) is a linear subspace,

it is weakly closed in Vx V*.
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LEMMA 3. Let V and V* be strictly convex and L be as in THEOREM 2.
For ε>0, we set Lε = (L'1~\-εJ'1)~1. Then Lε is a singlevalued, bounded, demi-
continuous (i.e., χn

 s > x implies that Lεxn

 w*>Lεx) and maximal monotone
mapping with the domain D(Lε) = V and 1̂ 0 = 0.

PROOF. It is evident that Zr1 is a maximal monotone mapping with the
domain D(L~ι) = R(L)CV*. From a result in [5] it follows that L^ + eJ'1:
D(L~ι) = R(L)^» V is a maximal monotone coercive mapping and R(L~ι + eJ~ι)
= V. Thus D(Le) = V and L€ is a bounded maximal monotone mapping.

Let x* and j * be contained in Lεx. Then L~ι x* + ε J'1 x* B X and L~τ y*
+ ej~1y* B x. Therefore there exist I ' e Γ 1 ^ * and / e Γ 1 ^ * such that

We have

x*-yr-eΓιy*>

Hence ||Λ;*||F.= | |y* | |^ and < y*, Jιχ*> = | | j * | | ^ . This implies χ* = j * .
Thus L£ is singlevalued.

Let x\ — Lεxn and xn

 s >x0. By the boundedness of Lε, there exists a
subsequence {̂ Wλ;} such that X*k-Wl+X*. From LEMMA 2 it follows that
χ% = Lεx0. This implies that x*-l^x% = Lεx0. Thus Z£ is demicontinuous.

Since G(L) is linear, 0 e Z " ^ . Therefore we have 0 6 Z,-10 = L"10 + e/-10
= Z£0. q.e.d.

LEMMA 4. Lβί V and V* be strictly convex, and let C, A and L be as in
THEOREM 2; (3.1) is assumed as well. For each ε>0 and each a e A, we set

where Lε = (L~ι-{-εJ~1)~1 and A, j a and jt are as in the proof of THEOREM 1.
Then each Aε>a is bounded and satisfies conditions (mi), (m3) and the boundary
condition:

(3.2) <#*, Λ ; > > 0 for any x ed(Cr\Va) and any x* e Aε>aχ.

PROOF. It is clear that each Aε>a is bounded and satisfies (m3). Since
<Lεx, χ>>0 for any Λ e Γ b y LEMMA 3, we have (3.2), by making use of
(3.1).

To verify condition (mi) for Aε>a, it is sufficient to show that G(A€,a) is
closed in Va x V%. Let {xn} C Va and {y*} be sequences such t h a t j * e AεiOLxm
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xn->x in Va and yί-^y* in Vζ. For each n we have y* =jt(Lεxn + x*) for
some Λ;* 6 ^# w . Since 4̂ is bounded, there is a subsequence {χ*k} of {#J}
such that χ*k-%Z+χ* in F*. Since xw-^->x in V and Lexn-^UL€x by LEMMA
3, we obtain

0 = lim<y*, —jtLεχnk, χnk-χ>
k

*jfc? x n i c — x >

;*A;5 Xnk> — < * * , x>

and 7*=7'S(Z(CΛ; + Λ;*). By condition (mi) for J, we have x* e Ax, and hence
y* ej%(Lε + A)jax = Aε,aχ. Thus G(Aε>a) is closed in Γα x Π q.e.d.

PROOF OF THEOREM 2: Since Γ is reflexive, there exists a norm on V
equivalent to the initial norm with respect to which V and F* are strictly
convex (see [1]). Thus, we may assume that V and F* are strictly convex
from the beginning.

For each ε>0 and each aeΛ we consider the mapping Aε>a which is
given in LEMMA 4. By REMARK 1 and THEOREM 1, there exist xε>a e CΓ\Va

and xffa € Axε>a such that

(3.3) <Lεxε>a + xίta, χ>=0 for all x e Va.

By the weak compactness of C and the boundedness of A and Lε, there exists
a cofinal subdirected set {a{} of A such that χε,ai—^xε €" C, Λ ; * ^ - ^ ^ ^ * and
£6Λ;etβ<-El>Z?. From (3.3) it follows that xf + X? = 0 in Γ*.

There exists a such that ^ e Fa. Therefore by (3.3) we have

and by the monotonicity of Lε

liminf<Z6Λ;(c,Q:., xε>a—xε>>\im<Lεxε,
i ι i

Thus it follows that

(3.4)

Now condition (mi) for A and (3.4) imply that x* € Axε.
Set Xt,a = Lεx€ta- Then ^ e ί ^ I f . β + ε / " 1 ! ^ and hence # e,α

-εJ^Xf.a € L-ιXt>a. By the monotonicity of L1 and the fact 0 6 L^O, we
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have 0<<Xf>a, x€>a — εJ1Xt>a>. Using this relation and (3.3) we infer
that

(3.5)

* 112

- 6,a\\v*

Since {χ€,a}CC and A is bounded, — <xf>a, x£,a><LK where K is a constant
which is independent of ε and a. Therefore from (3.5) it follows that

(3.6)

Then \\ρ£\\v<^ SinceTherefore we may assume that Vc/^Xf^.-^-

Xt^t Lixe^-eJ-'XtaO, Xt,ai-^-χt and ^

we have — xf e L(xε — ̂ ep£) by LEMMA 2 and REMARK 2.

Since {Λ;£; ε>0}CC and {xf ε>0} is bounded by the boundedness of
J , there exists a sequence {ε*} tending to 0 such that χ£k

 w >%o £ C and

xΐk-^->x^. Then \lekp€k—^-^0 and χ6k — \lεlp6k-JL+XQm By LEMMA 2 and
REMARK 2 again, we have — χ$ e Lx0, and hence, using the monotonicity of L,

It follows that

(3.7)

, x£k>

= <xf, xo>

Condition (mi) and (3.7) imply that x^ e Ax0. Thus 0 = — χ* + χ* e LxQΛ- Ax0,
that is, S^φ. The weak compactness of S follows from condition (τni) for
4̂ and the maximal monotonicity of L. q.e.d.

As an immediate consequence of THEOREM 2 we have

COROLLARY 1. Let A be a bounded coercive mapping of type M of D(A)
= V into V* and L a linear maximal monotone mapping of D(L) C V into V*.
Then for any given f e F * the equation Lx + Ax—f has a solution and the set
of all solutions is weakly compact.

PROOF. For / e Γ * we define a mapping Af by Afx = Ax—f. By the
coerciveness of A there exists a positive number r such that <Afx, x
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for all x edBr. Therefore by THEOREM 2 the equation Lx + Afx = 0 has a
solution in Br. The weak compactness of the set of all solutions follows
from the coerciveness of A, (Mi) and the maximal monotonicity of L. q.e.d.

The next three corollaries give the existence of solutions of equations of
type (b).

COROLLARY 2. Let A be a bounded mapping of type M of D(A) = V into
F*, and let C be a bounded closed convex subset of V containing the origin 0
in its interior. Suppose that <Ax, x > > 0 for all x e dC. Let L be a linear
maximal monotone mapping of D(L)C V* into V. Then the set S={χ € C;
x + LAx = 0} is non-empty and weakly compact.

PROOF. Since S={xeC; L~1x-\-Ax 9 0}, Lι is maximal monotone and
the graph GiL'1) is linear, THEOREM 2 implies that 5 is non-empty and
weakly compact. q.e.d.

REMARK 3. COROLLARY 2 is a generalization of THEOREM 19 in [SJ.

COROLLARY 3. Let A be a bounded mapping of type M of D (A) — V into
V* such that for each x0 e V

and L a linear maximal monotone mapping of D(L)CV* into V. Then
R(I+LA)=V.

PROOF. For any x0 e V we define a mapping AXQ by AXoχ = A(xo + x).
Clearly AXQ is a bounded coercive mapping of type M. By the coerciveness
of AXo there exists a positive number r such that <AXox, x>>0 for all
x 6 dBr. Therefore, by COROLLARY 2, γ+LAXQγ=0 has a solution in Br, that
is, x + LAx = x0 has a solution. q.e.d.

COROLLARY 4. Let Lbea linear maximal monotone mapping of D(L) C V*
into V and A a coercive mapping of type M of D(A)=V into V*. Suppose
that A'1 is coercive and for each x* e R(A), A~1x* is closed and convex in V.
Then R(I+LA)=V.

PROOF. By the COROLLARY of THEOREM 1 we have R(A)—V^. By
hypotheses A~ι is a coercive bounded mapping of D(A-λ)=V* into V. It is
easy to see that A"1 satisfies conditions O i ) and (m3). Therefore by
THEOREM 2 there exists a point x* 6 F * such that A~1x* + Lx* 2 0, that is,
there exists x e A~λx* such that x + LAx = 0. Just as in COROLLARY 1 we
can show the existence of a solution of x + LAx = x0 for each x0 β V. q.e.d.
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