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In our previous paper [3], the multiplicative product between distribu-
tions was investigated together with the related topics. With the view-
points mentioned there in mind, in this paper we shall study the problems
centering around the notions of the trace, the section, the boundary value
and the canonical extension, for distributions especially in H*. The present
paper is in a sense a continuation of our related paper [2].

The general discussions about these notions are made in Section 1 with
reference especially to the canonical extension. Sections 2 and 3 are devoted
to the discussions about the trace mapping and the canonical extension for
distributions in the space H* and we have tried to make clear the close
relationship between them. Some complements to our previous paper [ 27] are
given with new results. In the final section, the notions of &’-boundary
value and &%’-canonical extension are introduced and discussed. We can speak
of Djz-boundary value and O/:-canonical extension and so on. However, we
do not proceed to the study about these matters, because the treatment in-
volves no essential difficulty, of course, though it is necessary to introduce
modifications into our considerations given in this section in order to obtain
the analogues.

1. Preliminaries

We first recall some notions concerning multiplicative product (or simply
product) between distributions closely connected with the discussions in
the subsequent sections. Let u, v € D'(Ry), where Ry is an N-dimensional
Euclidean space. If the distributional limit lim (u*p;)v exists for any 0-

jooe
sequence {p;}, the limit is uniquely determined, which is called the product
in the strict sense and denoted by u-v. We have shown in [9, p. 225] that if
the limit exists, then lim u(v*p;) exists and

joeo

) lim (u* p;)v=Ilim u(v*p;)
oo e

for any ¢-sequence {p;}. The above definition with {p;} replaced by {¢.}, >0,
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where ¢ € D(Ry), =0, S¢(x)dx —1and ¢e(x):EiN¢(%), yields the product

in the weak sense denoted by uwv [3, p. 161]. This product determines a
multiplication called normal in the sense descrived in [3]. R. Shiraishi has
shown that the product in the weak sense is also obtained when d#-sequences
are confined to the restricted §-sequences in his sense [8, p. 957, and that (1)
holds also for the product in the weak sense. For the one-dimensional
distributions, when p; are subjected to the condition suppp; C (0, =) in either
cases, strict or weak, it can be shown along the line in his proof [ 8, p. 95]
that if lim (u*p,)v is defined for any {p,}, then lim u(v*;) exists and
oo

joree

(2) lim(u*p])l]:lim u(v*é,).
jooo

jooo

This is certainly the case if we replace {p;} by {¢.} with suppgs C (0, =o); if
lifn(u*qﬁg) v is defined, then lim u(v+d,) exists and
€l0 €lo

3) lim (uxg,) v=1im u(v*g,).
€lo €lo

For the sake of simplicity, we shall discuss in the rest of this section
the related notions considered only in the weak sense.

Let Ry=R,.: and denote its points by (¢, x), x=(x1, ---, x,). Let Y and
0 be respectively the Heaviside function and the Dirac measure in R. The
partial product between distributions w e @’'(R) and u € D'(R,.,) was con-
sidered in [3, p. 170 ] and wz means (w®1)z when and only when the latter
is defined. For instance, du is defined as the unique limit lim (0*p;)u or

joeo

equivalently limd(u*,0;) if it exists, where {o;} is an arbitrary restricted
e
0-sequence in R and the notation *, means the partial convolution with re-
spect to the variable ;. Here, of course, {o;} may be replaced by {¢.(¢)} with
the same meaning as given before. In accordance with S. Lojasiewicz [ 6, p.
157 u € D'(R,,1) has a section € D'(R,) for =0 if limu(et, x) exists and is
€lo

not depend on ¢. It will be equivalent to saying that the product du exists.
In fact, from its very definition, » has a section for =0 if and only if
lim<u, ¢ > exists in D'(R,) for any ¢ € D(R) with ¢(¢)=0, S¢(t)dt=1 and,

€10

furthermore, is not depend on 4. Since 0® < u, ¢.> =0(uxd,), the condition
is, in turn, equivalent to the existence of the product du. Then the section

a is lim<u, ¢.> and therefore defined also by the equation lim u(et, x) =1,Q«
€lo €l

or Ju=0«a.

Let R},,={(, x) € R,.,:t>0} and denote by D'(R;.;) the space of
distributions on R;,; and by 9D'(R;,,) the space of distributions D'(R;.,)
which can be extended to distributions € @'(R,.;). The space D'(R},,) is
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provided with the quotient topology as usual and also defined as the strong

dual of Q)(R r+1). Inour previous paper [5], we have considered the canonical
extensions and the distributional boundary values for distributions u in

D'(R},,). Let x € D(R") be arbitrarily chosen so that x(1)—=0 and Sx () dt=

Put p=Yx*x and p(s)(t):p<?>. If limpyu exists in D'(R,,1), the limit,
€lo

denoted by u_, is called canonical extension of u over :t=0. And if the limit
11m<u, xe> exists in D'(R,), the limit, denoted by lim u, is called the boun-

tl
dary value of u. If limu exists, v has the canonical extension u.[5, p. 127].
10

Let uz—g;i with v e @D'(R;},;). Then u has the canonical extension if and

only if limv exists [5, p. 14]. For an n-tuple (ay, .-, a,) of non-negative

integers, the sum Zaf, will be denoted by |a|. With D=(D,, D,)=(D,, D,
1 0 1 0

v —_ (l: al.'. tln m:DmDm

D,), D,= TR , D; R T we put D¢ =Df...Di» and D 7 "

for an integer m —=0. In a local representation, lim u =« means that for any
tlo

bounded open non-empty subset (—a, ) <G C R, 1, there exists a continuous
function F on R,.; with support in R}, such that for some positive integer

k we can write
4) u.=YRa+ DIDEF on (—oo, a) XG,

where F=o(]|t|*) uniformly as t—0 [4, p. 405]. Let u € D'(R,.,). If the

restriction u|R},, has the canonical extension (resp. the boundary value), we

shall also call it in this paper the canonical extension (resp. the boundary

value) of u over :=0 and denote it by u, (resp. lifn v). If u,=u, u is called
tio0

to be canonical. The same discussions are applied to the lower half space

The notations, such as u_ and limu, will then have an obvious mean-
t10

nHl
ing.

According to S. Lojasiewicz [ 6, p. 237] we shall say that v € D'(R,,:) has

no mass on the hyperplane t=0 if leimeu(et, x)=0. One can immediately

verify [ 6, p. 23] that, if v has the sectlioon for +=0, » and D,u have no mass

on t=0. From the local representation (4) we see that u, has no mass on

t=0.

Prorosition 1. Let u € D'(R,.1) have the same boundary value o from
both sides of t=0, that s, limu=limu=ca. If u has no mass on t=0, then u

. tio t10
has the section « for t=0.

Proor. Let (—a, a)XGCR,,, be any bounded open subset. We can
choose k sufficiently large so that we can write



408 Mitsuyuki ITaNO
v, =YRa+DIDiF,, u_=1-Y)RQa+ D:D:F_ on (—a, a)XG,
where F=o(|t|*) uniformly as ¢ —0 and therefore
u,+u_=1,Qa+DtDEF,

which means that ., + u_ has the section « for :=0. Consider the distribu-
tion v —u,—u_. It has no mass on t=0 since by hypothesis u does so, and,
furthermore, its support lies on t=0. Consequently we see that u=u, +u_.

Prorosition 2. Suppose the canonical extension v, exits. Then the pro-
duct Yu exists 1 f and only if u has no mass on t=0.

Proor. Suppose the product Yu exists. Let v€ @D'(R,.1) be chosen such

that uzg—;’. Since %C:O for j=1,2, ..., n, the product dv exists [3, p.
i

1687, and therefore v has the section for t=0, and, in turn, z has no mass on

t=0.

Conversely, suppose u has no mass on t=0. For any ¢, ¢ € D(R) such
that ¢(z) =0, ¢(t) =0, Sqﬁ(t)dt: Ssb(t)dt: 1, and supp¢ C (0, =), we put p= Vg,
c=Y+¢ and x=p—0. Then x € D(R) and 0(¢yu =0 u— %@ u, where peu and
x@u converge in D'(R,.1) to u, and O respectively as ¢ | 0, and therefore
0w converges in D'(R,,1) to u,. Thus we see that the product Yu exists
and equals u.,.

Prorosition 8. Let u € D'(R},,). Then the product Yu exists (or u is
canonical) 1 f and only if u has no mass on t=0.

Proor. Suppose the product Yu exists or u is canonical. Then u.
exists. Owing to the preceding proposition, we see that » has no mass.

Conversely, suppose that z has no mass on t=0. Since u=0 for <0,
the canonical extension u_ exists. From Proposition 2 we see that the
product (1—Y)u exists and therefore Yu exists and equals u.. Since u—u,
has no mass and its support lies on t=0, we can conclude that u=u..

Finally we note that if £iff)10<e)u (resp. lgrlr; x:u) exists for any x € D(R™)

such that x(:)=0 and gx(t)dtsl, where o= Yx*x, then lifn Y (ux%) (resp.
&0

lilm 0(ux,%.)) exists and
elo

limoyu=Ilim Y(ux, %) (resp. limz.u=1im 0(ux,%:)).
elo €lo €lo el0
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2. The trace and the section for distributions in the space H*

Let Zy be the dual space of Ry. For any x € Ry and & € By, the scalar

N 1

product <zx, £> is defined by <x, €>= Zx,é, and we put |&]|=(3]|&;]%2.
i=1

For any ¢ € &, its Fourier transform ¢ is deﬁned by the formula
3O=|_ d@e < da,
and for any u € &, i is defined by

b, p>=<u, $> for any ¢ € &.

A positive-valued continuous function x#(£) defined on Ey is called a tem-
perate weight function if there exist positive constants C and & such that

uE+)=CQA+|&*u(y)  for any &, € By.

s+ pe, 11 42 and ﬂi are temperate weight functions with #; and #,.
1

Consider the space H*(Ry) (or simply H*) of u € &£'(Ry) such that & is a
function satisfying

IIuII,%=SENI a(§)|*u*(§)ds < + oo, déz(%)NdS
H*(Ry) is a Hilbert space with the inner product
(wl0={2©)5@ @ ae.
Its strong dual space is H i(RN) where we have
(wy, u)=<w, a>= Sﬁz(é)ﬁ({-‘)dgﬁ for any w € H%(RN) and u € H*(Ry).

Let N=n-+1 and denote the points of &,.; by (z, &), £€=(£1, - -, En).
For a polynomial P(r, &) in (r, &), we put P(D)=P(D,, D,) and P(z, &)
1
= ( 2 |D¢DgP(x, £)|%2.

r+i@l=o
Let us recall the notion of a trace mapping. For any u(¢, x) € D(R,.1),
the trace u(0, x) on R, clearly belongs to D(R,). D(R,.1) is dense in
H*(R,.1). If the mapping u— u(0, x) can be continuously extended from
H*(R,.,) into D'(R,), then the extended mapping is called a trace mapping
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1
on the hyperplane and the image of u ¢ H#(R,,,) by this mapping is called

1
the trace of u on t=0 [2, p. 13]. This means that 0&¢ € H*(R,,,) for any
¢ € D(R,). It is known [12, p. 36; 2, p 147] that the trace mapping for

H*(R,.,) is defined if and only ifS gy 4T< T oo, that s, [ s AT <

+ oo for every € € E,. We can simllarly consider the trace mapping on t=¢,

and the trace of u on t=to. We denote it by u(¢y, +) (or u(zy)).

Suppose S 22(c.0) dr< -+ and put 2}5) :S,az(l, B) 2v. Consider the

A~

map: D(R,.1) 3 u(t x)—> 7 u € D(R,,,) for any t=t,. Since (r_,u)" =e'"a
and |[u(to, )|, = |lull.[2, p. 157, the mapping is unitary. Thus the trace
u(ty, - ) for any u e H*(R,.,) belongs to the space H*(R,). For any u
€ H*(R,.,) there exists a sequence {u;}, u; € D(R,,,) such that u=limu; in

joeo

H*(R,.1). From the inequality
||uj(tO) ')‘u(tO, ')Hu g””ﬁ'"_u”/‘

we see that u;(z9, +) converges in H*(R,) to u(ty, ) uniformly with respect
to to. Since t—u;(t, -) are H*(R,)-valued continuous funections, u(¢, -) may
be considered as an H*(R,)-valued continuous function of ;. Then we have

the following

Prorosition 4. Suppose S/?(Tl‘ O)~a’r< +oo. Then every u € H*(R,,) 18
identified as a distribution with the H* (R,,)-valued continuous function a(s)

(that is, an element of C(H”)), where S (E) g "2(%25")“{1—

Proor. For any ¢ € D(R,.;) we put
<ll, ¢> :g<u(t)9 ¢(t’ ')>dt'

If we take u(t)=u(t, x) € D(R,.1), then we have <u, ¢>=<u, d>g 0.
Since the space D(R,.,) is dense in H*(R,.,) we see that this relation holds
true of any u € H*(R,.,), completing the proof.

From the discussions given in the preceding section, we can show the

following

TueoreMm 1. For the space H*(R,.,) the following statements are equi-
valent :

(@) The trace mapping is defined.

(b) The section exists for every u € H*.

(b)" The condition (b) holds in the strict sense.

() The product 0u exists for every u € H*.
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(e)" The condition (c) holds in the strict sense.
(d) The distributional limit lim (uxp;) 0 exists for a fixed 0-sequence {o,},
oo

0; € @(Rnfl)-

(e) The distributional limit limo;u exists for a fixed 0-sequence {p;},
joeo

0;j € D(R).

() The boundary value lim u exists for every u € H*.
tlo

&) The condition (f) holds in the strict sense.
(g) The distributional limit limp;u exists for a fized 0-sequence {o;},

oo

0; € D(R) with support C(0, o).

Proor. The equivalence of (b) and (¢) (resp. (b)’ and (¢)’) is shown in
Section 1. Since the implications (¢)'= (c), (d), (e) are trivial from the de-
finition of the product between distributions, if we can show the implications
(a)=(c), (d)=(a) and (e)= (a), then we see that the statements (a), (b)’, (¢)’,
(d) and (e) are equivalent and we can therefore conclude that the statements
(a) through (g) are equivalent to each other.

(a)=(c)’. Suppose (a) holds. Then Q¢ € H " for any ¢ € D(R,). Let
u € H* and let {p;}, 0, € D(R,.1) be any d-sequence. Then uxp; converges in
H* to u. From the equation <(ux0,)0, ¢>go 0= <uxp; 0Q}(0, x)> pu ru,
¢ € D(R,,1), we see that the distributional limit lim (uxp;)0 exists for any

jreo

{0;}, that is, the product 0-u exists.

(d)=(a). Suppose (d) holds for a fixed &-sequence {o;}, 0; € D(R,.1).
Then the map H* 3 u— (ux0;)0 =0 (uxp;) (0, x) € D'(R,,,) is continuous for
each j. Since the space H* is barrelled, so the map H* > u—lim(u*p;)0

en
€ D'(R,,1) is continuous. For any ¢ € D(R,. ;) there exists w¢,CH/‘ such
that

<lim (ux0;)0, $>or,0=<u, Wy > g o, g
oo

If we take u=a € D(R,,,), then <da, ¢> ¢ o= <, 0QRH0, x)> =<, wy>.
D(R,.1) is dense in H*. Thus dQR¢(0, x)=w, € H%

(e)=(a). Suppose (e) holds for a fixed d-sequence {p;}, p; € D(R). The
map H*>u—p;u€D(R,,;) is continuous. From a theorem of Banach-
Steinhaus the map H*> u—>11m pju € D'(R,,,) is continuous. Since limp;u

j—oroo

=0Qu(0, x) for any u € Q)(R,,+1) we see that the trace mapping is defined.

Thus we complete the proof of the equivalence of the statements (a)
through (g).

Remark 1. Suppose limu =« exists for every u € H*. Then for any 0-
tlo
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sequence {0}, 0; € D(R), limp,u converges in H'*'"V™™ ¢>1 to 0Qa, where

oo

’,;z%gzgz%gjdf' In fact, » may be considered as an H*(R,)-valued con-
tinuous function u(z). For any ¢ € D(R,,,) we have the estimates with a

constant C

e )1 = [ oi0rue), 02, Da

={" o@lu@ILlp, lzde
< max|u(2)], max|lg(z, -z
§C||u||u”¢||(1+|fl)ﬂg,

which means ||o; ull(1+-y-.=C||u||,. Consider « which can be written in the
form u=¢,(t)Q ¢:(x) with ¢, € D(R) and ¢, € D(R,). Observe that the set
16:1(1) @ ¢a(x)} is total in H* Since [p;(¢:1&¢2) — ¢1(0)6®¢2”(1+l7|)”u:
l0;¢1—61(0) 0|1+ 171y-lB2ll, and p;¢; converges in H'*'"™D(R) to $,(0)0, it
follows from the Banach-Steinhaus theorem that lim o,u converges in H (A+lrh=o
to 0Qa for every u € H* ’

Now let P(D) be a differential polynomial such that P(r, &)= Z i ri(€),
m=0 and 7,(§)==0. We have shown in [2, p. 147] that the trace (P(D)u)(O <)
exists for every u € H* if and only if

2
(T 5) oo =3
)] S 8 dr<+ for some £ € 5,

or equivalently

P(z,8)|? -
6 Slé dr<+ for every ¢ € 5,.
® 4z, §) - Ve
If lim P(D)u exists for every u € H*, then in the same way as in the proof
tlo
of the implication (e)=>(a) in Theorem 1 we see that the trace (P(D)u)(O0, -)
exists for every u € H “ We note that u, D,u, ..., D%u have the sections for

t=0 if and only 1fg e 0) dr <+ oo

CoroLLARY 1. limP(D)u exists for every ue€ H* +f and only +if
tlo

2m
Szf—dr< + oo, that s, limu, lim D;u, ..., lim D”u exist for every u € H".
#3(z, 0) tio  tlo tio

Proor. Suppose li}nP(D)u exists for every u € H*. Then the trace
tio
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(P(D)u)(0, -) exists. Taking &é=¢&, such that 7,,(&,) %0, we see from (6) that
sz
2m
Conversely, suppose STZT%—O)—JT< +oo. Then u, Du, ..., D?u have the
traces on t=0 for every u € H* and therefore have the boundary values.
Thus lim P(D)u exists.
tio

8. The canonical extension for distributions in the space H*
Prorosition 5. The canonical extension u, exists for every u € H*(R,,1)

if and only if S(1+r2)1p¢2(r, oy T+

Proor. Let v be such that u=D,v—iv. Then u, exists if and only if

1
limv exists. Since the mapping »— (D;—:i)v is an isomorphism of H+""**
tlo

onto H*, Proposition 5 follows from Theorem 1.

CoroLLARY 2. Let P(D) be a differential polynomial considered in
Corollary 1. (P(D)u), exists for every ue€ H*(R,..) if and only if
2m

Smd1< + oo, that is, u., (Diu)., ---, (D%u), exist for every u € H*.

Proor. Suppose (P(D)u), exists for every u € H*. As in the proof

1
of Proposition 5 limP(D)v exists for every ve H®+™** and therefore
tlo

sz
| ety ey oy 2T
The converse follows from Corollary 1 and Proposition 5 since limu,

110
lim D,u, ---, lim D7 'u(u. if m=0) and, a fortiori, u_, (D,u),, ---, (D™u), exist,
10 tlo

which implies the existence of (P(D)u), for every u € H*.
If the map Y: D(R,.1) 3 u—>u, € D(R,,,) can be continuously extended
from H*(R,,,) into @'(R,.1), then we shall denote this extended mapping by

N 1 cp o
the same symbol Y. We note that ¢, € H* for any ¢ € D(R,,,) if Y is defined,

since the map D(R,.1) 3 ¢ > (¢, ¢.)=(¢,, ¢) can be extended to a continuous
linear form on H*.

We shall show the following theorem which is an analogue of Theorem 1.

Tueorem 2. For the space H*(R,.1) the following statements are equi-
valent

(a) The map Y is defined.
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(b) The product Yu exists for every u € H".

(b)’ The condition (b) holds in the strict sense.

() The distributional limit lim(uxp;) Y ewists for a fixed 0-sequence
{0i}, 0; € D(R,.1). ’

(d) The distributional limit lim(Yxp;)u exists for a fized 0-sequence
{0j}, 0; € D(R). o

(e) The canonical extension u. exists for every u € H”.

()’ The condition (e) holds in the strict sense.

(£) The distributional limat llm(Y*pJ)u exists for a fixed O0-sequence

{0;}, 0j € D(R) with supportC(O o).

Proor. Since the implications (b)'= (b), (¢) and (d) are trivial, if we
can show the implications (a)= (b)’, (¢)=>(a) and (d)= (a), then we see that
the statements (a), (b)’, (¢) and (d) are equivalent and we can therefore
conclude that the statements (a) through (f) are equivalent to each other.

(a)=(b)’. Suppose (a) holds. Then ¢Y=¢. € H/l‘ for any ¢ € D(R,.1).
Let v € H* and {o;}, 0; € D(R,.1) be any d-sequence. Then ux*p,; converges in
H*to u. From the equation <(ux0,)Y, ¢ >0 0= <u*0j, ¢.> g« gs We see
that the distributional limit lim(uxp;) Y exists for any {o;}, that is, the pro-
duct Y-u exists. ’

(¢)=>(a). Suppose (¢) holds for a fixed J-sequence {o;}, 0; € D(R,.1).
Then the map H*3 u— (uxp,) Y € D'(R,.,) is continuous and the Banach-

Steinhaus theorem implies that the map H* 5 u —lim (ux*p;) Y is continuous.
joeo

1
For any ¢ € D(R,,1) there exists wy € H* such that <lim(uxp,)Y, ¢>o 0
j—oo
=<u, wy>pgapr 1f we take u=aeD(R,,,), then <a¥, ¢>=<a, ¢, >

1
=<a, wg>. Thus we have ¢, =w, ¢ H~
(d)=(a). In the same way as in the proof of the implication (¢)= (a)
we can prove that map H* > u—limu(Yxp;)) € D'(R,.1) is continuous, where

7
{o;} is a fixed d-sequence with p; € D(R) and we can write limu(Yx*p;)=u,

for any u € D(R,.1). This means that Y is defined. ’

Thus the proof is complete.

Remark 2. Suppose v, exists for every u € H*. Then for any d-sequence

{0}, 0; € D(R), (Y*p;)u converges in Q)Lz to u,. In fact, let v e H*+™% be

1

such that Dywv—iv=u and puty; =1+~ )2,a and — Z(S) S 2o ) dt. Then

(Y*p,)u=(D,—i)((Y*p;)v)+ip;,v and p;v converges in H**™ *1 to dQ(limv).
tio
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Given >0, there exists a j, such that Y«(o;—p0;) vanishes in || =¢ for every
j» ' with j, j'=j,. For any ¢ € D(R,.:) there exists a constant € such that
for every j, j'=jo

[((Yx0;))v—(Y*0;)v, )]

=[" 1= IO l0, Dl e
<cermax|voll, {{” o, Il af

1
=Ce?||v[l,,[|]]1 -

Consequently we can confer that (Yxp;)v—(Y*p,)v is a Cauchy sequence

in H*, and therefore (D,—i)((Y*p;)v—(Y*p1)v) is so in H**™ 1 Thus

(Y*0;)u—(Y*p,)u is a Cauchy sequence in H'*™ **!, Let ¢ be such that

H*CH(Rui1). Then (Y*p;)u belongs to the space H(y(R,.1). If we put

1 o

£(t, &)=min((1+7*) "2y, (1+17%+|£]?)2), then (Y*p;)u converges in H* to
u..

Assume that the product Yu exists for every u € H* and, in addition,

that Yu € H*. Then Y is a continuous linear map of H* into itself. If we

1 1

consider the adjoint map of Y, we see that Yv exists in H* for every v € H*

2
and, a fortiori, SEIS?TO) dr<+oco. We denote by H%(resp. H*) the subspace

consisting of the elements of H*(R,.,) with support in R}, (resp. support in
R;.1). Then we have

ProrosiTioN 6. Suppose Yu exists for every u € H*(R,.,). Then the fol-
lowing conditions are equivalent:

(a) Yu € H* for every u € H~.

(b) Yuce Hf17 for every u € Hf17

() ¢Ye Hf% for every ¢ € D(R,.,) and H*=H!+ H* (topological sum).
(d) @Y€ H* for every ¢ € D(R,,1) and H /%:Hfl;—FH_/L‘ (topological sum).

Proor. It suffices to prove the equivalence between (a) and (c).

Suppose (a) holds. Then Yu=u,c H* and 1—Y)u=u_€ H*. Thus u
=u,.+tu_€ H*+ H* Owing to Proposition 83 we see that every u ¢ H* has
no mass on t=0 and so does for every u € H* and therefore we can conclude
that H¢NH*={0}.
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Conversely, suppose (¢) holds. The spaces D(R},;) and D(R,,,;) are
dense in H* and H* respectively. Consider the map I: D(R;.,)+D(R;,,) 3
b1+ de— 1 € D(RE,,). Then we have the estimate with a constant C

1201+ )l =b1]l, = Cll1 + Bl

and therefore / can be continuously extended from H* into H%. It is sufficient
to show that I(¢)=¢, for every ¢ € D(R;}.,)+D(R,,,) which is dense in H*
This is an immediate consequence of the definition of the map /. Thus the

proof is complete.

With the aid of a theorem due to E. M. Stein [10] we can prove the fol-
lowing

ProrosiTion 7. Suppose that u satisfies the inequality :

o el med

Then Yu € H(R, 1) for every u € H*(R,,,) and (Y*p;)u converges in H*(R,,,)
to Yu for any 0-sequence {o;}, 0; € D(R).

Proor. By a simple calculation we obtain ﬂ(fl 0 <C'A+|z|)'A" for

1
A+ 4(z, 0)

some constant C’, which implies S dv<+ oo, so the product

Yu exists for every u € H*.

First we observe thatl ilf it ng?ﬂrllfvllu for any weL*(%,.,), the
space of square integrable function with respect to d$=<~2—17[—>n+1d5. In
fact, owing to the equality —il?: Y—70, we can write

|

Now for any ¢ € D(R,.1)

1

—— %, W
it

=N o —mw]| 1o < 27 [|(Yew) || e+ 7|0l 22 < 87 | 2.

w(Lwp)=LwGw+ 1 b ouc, s)(”(f,?) 1)

Here
H 1 * (¢ﬂ)” < 37||pul|:=37||¢||,

and
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IS 3@ Du, 5)( ((’ ?) 1)ds’

|1

1$(c/, )| ulc', &) dr'.

In virtue of Lemma 1 in [ 10, p. 250 ], we obtain with a constant C;

s oue, (L2 -1)ar

ng C1||¢”/,,

Combining these inequalities, we obtain with a constant C;

1 Y8l = Callgl]

which implies that Yu belongs to the space H* for every u € H*.

Let {o;}, 0;€ D(R) be any 0d-sequence. Since we can write (Yxp,)"

zépﬂ— 70, we obtain, as before %‘%*,w
12

<38x||w||z: for any @ € L*(E,. ).

|12
Then proceeding along the same line as in the above proof, we can conclude
that for any ¢ € D(R,,1) there exists a constant C; independent of ;j such

that
[1(Y*0) 8]l = Csll8l|,,

and therefore (Y*p,)u € H* for every u € H*

We shall now show that u(Yxp,) converges in H* to Yu as j— oo for any
v € H*. To do this, owing to the Banach-Steinhaus theorem it suffices to
confine ourselves to the case where u ¢ #(R,,;) and @(c/, £)=0 for |¢/| =M,

A,

M being a positive constant. For any @€ L?*(E,.,) we can write ﬂil *,

A._l . i
&r*_rw
T

=2n((Y*p;)w— Yw)", so that we have '
{

L= 27||(Y*0,— Y)wl 12k

n+1)

which converges to 0 as j —»co. Put

pic—cH—1 ., ’ u(c, §) (D) @
(PR a0 ue, ) (L5 —1)ar =0 (e, O +0P (s, 0,

where

1](‘1): pJ(T T) 1 i ’ AE’ S) o /
’ Sh i<k T— (@, &) ulc, $)<,a(z", £) 1>df s

@ pir—cH—1_ / u(7, )
v gh =k r—17 i (7', &) (@, ( , &) ].)dz‘
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Let k& be a positive constant which will be determined later on.

For any

¢>0, we can choose a j, such that for every j =>j, we have |p;(r)—1| <e for

|t|=<k. Then from the inequality

r |8

7
le—7’

o (e, ) < ceﬁl-l |42, &) (', §)d,

we obtain with a constant C,
loP |l = Cyellul|,.
Consider the case #=>0. Using the inequalities

o

le—7'| = |<|Pf|lc—7/|PF 7

and

loP(z, &) §2XW|T“1_?W |a (e, )| u(T, §)dr,

we obtain with constants Cs, Cs

[flopc, o2arae

IA

L = R L CADICA Y

1

gcﬁ k1>2§Hu”IZH

W, e e f G5 D, $ar'| as

Let k be chosen so large that we have -k—lc‘:—sﬁ<sz. From these estimates we

can see that (Yxp;)u converges in H* to Yu.

For the case <0 the proof will be carried out in a similar way. Thus

the proof is complete.

RemaArk 3. Let # be a temperate weight function written in the form

A=+ 2EPTE, o] <4.

Then the condition (7) is clearly satisfied.
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We shall denote by 1(D,) the operator with symbol 1(¢).

Tueorem 3. Let u be a temperate weight function such that for every
u € H*(R,,,) the product Yu exists and belongs to the same space H*(R,, ), and

k
put up=(c2+A%(&))2u for any positive integer k, where A(£) is a temperate
weight function such that t2+4 1%(¢&) 1s also a temperate weight function. Then
we have

H# 4+ H*={y ¢ H*: limu=lim Du= ... =lim D* u =0}.
tlo tio tio

In other words, for any u € H** the product Yu belongs to the space H** i f and

only if limu=limD,u=...=lim D¥ 1u=0.
tio tio tio

2(k—1)

Proor. Since Shdr< + oo, for every u € H** u, D;u, ..., D¥ *u have
I ANS]
the boundary values (or the sections) on ¢t=0. It follows then that H#*
+ H* C{u € H: lilm u=limD;u =---=lim D¥ 'y =0}.
tlo tio tio
Conversely, if we H* and limu=limD,u=---=limD* 1y =0, then

ti0 tl

0 tlo
(D, —i2(DY)* Yu=Y(D,—il(D,))*u, where (D,—iA(D,))*u € H*. Our assump-
tion then implies Y(D,—il(D,))*u € H*. Thus we obtain Yu ¢ H#:. Similarly
we have (1— Y)u € H**. Consequently we can write u=Yu+(Q1—Y)u € H%*
-+ H*Ex,

As an immediate consequence of Theorem 3 we have

CororLLARY 3. Let u, y, be temperate weight functions considered in
Theorem 3, k being a positive integer. Let u € H**. Then, according to the
cases (1) limu =0, (2) limz =0, (3) limu=1lim D,u=0, ..., (k+1) limu=1lim D,u

tlo tlo tlo tlo tio tlo
=...=lim D¥ 'u=0, Yu belongs to the spaces H*, H*, ..., H** respectively.

tlo

ExampLE 1. Let us consider the space &, (R,.1) [1, p.51], where

lo—k| <A1— , k is a positive integer and ¢, s are real numbers. The space

H (-1, (Ry:1) satisfies the assumption of the preceding theorem. As a result,
for any u € X, o(Rui1), Yu € K, sy(Ryv1) if and only if limu=limDu=---

tlo tlo

=lim D% 'u=0. This statement is an extension of Proposition 6 in [5, p. 167].
tlo

ExampLE 2. Every u e 96(%,5)(1_{,;1) does not have limu in general. In
tlo

fact, since 9’6(%,3)(1?;1) is a closed subspace of 96’(;3) (R,.1), we can write

KR ) = (B ) DI,
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where 9 is an orthocomplement of jﬁ(%.s)(ﬁiﬂ)- For any u ¢ 906(,;,5)(1?,;1) and

» € I we have (u]v)=0 and therefore (@ |#(1+c%+ &2 (1+ |£]2))2=0. If

we take ueD(R;.,), then we see that (D,+id(Dy))?(Di—ii(Dy)EA(D,)*v
vanishes in R;,,; and therefore we obtain [1, p. 53; 11, p. 457

D, +id(D.)
D,—iA(D,) >ZU ¢ gg( (R,

1
where 1(&)=(1+ [&]%)2 If we put g=v— (g‘—l—zﬁgg’g)% then we can show
t x

that g€ %@,5—1)(3“1), and so we obtain
®) gg(é,w(RnH):%Q,s)(ﬁ;ﬂ)+g°5<;,s)(l_{;+1)+5’5<§,s—1)(Rn+1)-

If llmu existed for every u € 5’6( ,(Ri.1), then the equation (8) implies that

11m u would exist for every u € 56( sy(Rns1), which is a contradiction.
tio

ExampLE 3. Every u ¢ 576(_;,8)(1?;,1) does not have the canonical exten-
sion u, in general. In fact, the map v— D;v —iAd(D,)v is an isomorphism
from Jé( o(Ry.,) onto 5’2(;%,5)(1?%1). If u. existed for every u € jf(-%,s)(l_{;ﬂ),
then, as shown in the following section, limv would exist for every v
€ 5?6(%,5)(1?;“), which is a contradiction as seetri 0from Example 2.

4. The canonical extension and the boundary value for distributions
in the space &' (R,,1)

Let u € ¥ (R,,1) and let ¢ be an arbitrary element of D(R) such that
#(t) =0, Sq&(t)dt:l and suppgC (0, o). We shall say that ¥’-limu exists
1

Lo
if {@.u} convergesin &'(R,,1) as ¢ | 0 and also say that u has the &’-canoni-
cal extension u,. if {p.yu} converges in ¥'(R,.:), where p=Yx¢. As for
v € S (R}.,), a similar terminology will be applied.

Lemma 1. If u is &'-canowical, then &'-lim (Yx*;u)=0.
tlo
Proor. There exists a positive integer m and a constant C such that

@ |I<w,9>|=C sup sup | (1+2%) 21+ | x| D AD*Y)(t, )|, 6 € F(R,.).

t,%) €ERpy1 1pI<m

Let ¢ be an arbitrary element of D(R) such that ¢ =0, gqs(t)dt:l and supp¢
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(0, =) and take a € D(R) such that =1 in a 0-neighbourhood. Then we
can write

<@e(Y*p u), 9> =10 +1& + 1,

where
IV = < au, que(s) O(s, x)ds>

[@=—<au, Y+ ($:)>
[=<(A—a)u, ¥* ($:0)>.

Clearly leilmIé”:O. We shall show that lilmIfgl’: <u, a(t) 90, x)> and
0 elo
IimI® = — <u,a(t) (0, x)>. To do this, we write

€lo

§t =90, )+ O, )+ o+ gy ?,f:m L0, 5) 4+ ralt, ),

0

rlts )=y 1),8 -0y
Then we have
1= <u, ) 90, )> + <aw, [pe(s)ri(s, ) ds>

=<u, a(t) P(0, x) > +e<u, a(t) Be(x)>,

where
8y ={s()(( 2% (0es, x)d0)ds.

From (9) we obtain an estimate

sup| (L4698 (L4 || DF Do) () | < M,

pI<m
where M 1is a constant independent of . Thus we see that lgn I& =

0

<u, aft) P(0, x)>.

We can write I as follows:

—I&= Z <au, Yt e 20 (0, x)>+ <awu,Y x4 (ferm) >
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‘; < 29 (0,0)> +

+ Z"TejT)!_< u, a(t) st”‘qﬁ(s)g:(l ) a:lff (Oes, x)dO ds>,

where &/ <(Y *, (t/$)e) u, a(t) 6’¢1 (0, x)> tends to 0 when ;>0 and to

<u, a(t) (0, x)> when j=0as ¢ ,L 0, since u is ¥’-canonical. Put

1 1 m
re(t, x)ze'ﬂgfsmqs(s)g 1—6"19"9 (ges, %) d6 ds.
0 0 0t
Then from (9) we have an estimate
sup| (L4197 (L+ x| D@O) 7e(t, 1) | < M,
pI<m

where M’ is a constant independent of c. Thus liEnI‘emz —<u, a(t) ¢, x)>.
€lo

The proof is complete.

Owing to Theorem VI in [7, p. 2897, for a given u € ¥'(R,,;) we can find

a positive integer k such that Y, *, v is an ¥’-valued continuous function of ¢
tk'—l

vanishing for : <0, where Y, stands for (k—il)—' .

ProrositionN 8. Let u, ve &' (R},,) satisfy the equation :
Diu—ii(D)u=v,

where 1(&) € Oy. Then the following conditions are equivalent :

(a) v has the & -canonical extension v._.

(b) &’-limu exists.

tlo

Proor. Let p=Yx*¢, where ¢ € D(R) is chosen as in the proof of Lemma
1. The implication (b)=>(a) is trivial from the equation p:(D;u—i2(D;)u)
:Dt(ﬂ(g) u,) + l¢5 u— il(D,,)p(E) u.

Suppose (a) holds. Let Ue #'(R,.;) be such that U=u for :1>0. Then
U is written in the form U=7}] DD f, 4(¢, x), where f; 5 are slowly increas-
ing continuous functions defined on R,.,. Put u;=);DiD2(f:s).. Then
the support of D, u;—ii(D,)u;—v_- lies in the hyperplane :=0 and therefore
there exist a; € ¥'(R,), j=0, 1, ..., m such that

Dyur—id(Dy) ui=v-+ 3 DioRa,.
i=0

Here we may take m=0. Indeed, suppose m>0. Putting us=u,— D7 10Qxp,
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we can write after simple calculation
m—1 .
Dz ll,z—ll(Dx) uz:U~+ Z D; 6®61
j=o

Let k& be the least positive integer such that &#’-lim(Y,*;u,)=0. Then
tlo
we can write

(10) Yk—l *,u1+l(Dx)(Yk *,ul):iYk Xy v-+iYk®ao.

Suppose £ =>2. Applying Lemma 1 together with the relation (10), we obtain
.V’-lilm (Yi_1%,u1)=0, which is a contradiction. Thus we see that k=1, which
tlo
implies that &’-limu=ia,. The proof is complete.
tlo
By making use of the preceding proposition we show the following

ProrosiTioN 9. Let A(¢) be a temperate weight function on E, such that
A(&)=c>0, ¢ being a positive constant, and such that t>+21%(&) is also a
temperate weight function on Z,... If u, ve€ S (R,.1) are related by the
equation

1) D2+ A(Dy)iu=v,

then the following conditions are equivalent:
(a) v has the ¥ -canonical extension v..
(b) y’-lilm u exists.
tio

Proor. Suppose (a) holds. Setting f =<
11

%%)%u’ we obtain from
t—1 %

(Di—iA(D)) f=v.

Applying Proposition 8, we can see that &’-lim f exists. Let us write

tlo
L (t—ik(&)\} 7
2) “—(?:LT@) S

1
_po 1202 Nay o5\ (2640 VL, ,
== (z‘+i/1(§—‘)>f+ +( 1)<2><r+il($)>f+ (5 O

Then we can find a constant C such that

1(5)1”1

(13) |re(e, &) | =C———+1 -
(x2+22%(8) 2
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_ 20 _ 1 .
In fact, we put z= i@ Clearly |z]<2. For |z]| < 5 ri(t, &) being
1
considered as the remainder term of Taylor’s expansion of (1—2z)2 at z=0 of

order %, we can find a constant C with the required property. For ‘;_g | z]|

1
<2, 14z, 5):(1—z);—{1——%z+---+(~1)k<§>zk} is bounded since |1—z| =

1, so we can also find a constant C as desired.
Putting &= 202(%) ) 2 f. we show that &-limw exists. To this end, we

t+iA(¢E tlo
write

Dyw+id(D)w=2i2(Dy) f,

then, since 2(D,) f has the #’-canonical extension, it follows from Proposition
8 that &'- llmw exists. Repeated use of this process allows us to infer the

tlo D, + ZZ(D
Thus if we can show that ¥’-limr,(D,, D,) f exists, we can conclude from
tlo

(12) that &’-lim u exists.
ti0
Note that f can be written in the form

&’-lim <ﬂD"—))>f exists for each j, j=0,1, ..., k

f=A++ 2w,

where m is a positive integer and we H(_,,(R,,1). By a simple calculation
we can verify that for p+|8|=2m we have with a constant C’ and a
positive integer £’

L4
D2 DEri(e, )| <¢/—AF £
(12 F

From these considerations it will be not difficult to see that r.(D,, D) f can
be written in the form:

(14) re(Dy, D) f = 2 t'x7 f4 g,

p+lﬁ[$2m

where f, 56 X miri1,-#)(Rur1). Consequently if we take k=m, it follows
from (14) that &-limr,(D;, D,) f exists. Thus we have shown the implica-
tlo

tion (a)= (b).
Conversely, let us suppose (b) holds. Put f —(%”i u. Then
t x

(D;—iA(D.)) f=v and u can be written in the form u=1-+:*+ |x|%)™w, where
m is a positive integer and w € H(_(R,,1). In the same way as in the proof
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of the implication (a)=>(b) we can show that &’-lim f exists. Then it follows

tlo

from Proposition 8 that » has the .#’-canonical extension v,.

(1]
[2]

(3]
[4]

[5]

[6]
(7]
(8]

(9]
(10]
(11]
[12]

Thus the proof is complete.
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