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Introduction

Regularity of boundary points for Dirichlet problems became an impor-
tant subject as soon as the notion of generalized solutions was introduced by
0. Perron and N. Wiener (1923). We now know various characterizations
of regularity for the Laplace equation Au=0 (see, e.g., [9; Chaps. 8 and 107).
Perron-Wiener’s method has been applied also for Dirichlet problems of a
more general elliptic partial differential equation Lu =0; and, more generally,
with respect to an axiomatic harmonic structure (see M. Brelot [27], R.-M.
Hervé [10], N. Boboc, C. Constantinescu and A. Cornea [ 17, etc.).

There are many investigations to determine under what conditions the
regularity for the given equation Lu =0 coincides with that for Au=0. Some
of the recent results in this direction may be found in G. Stampacchia [19;
§10] and R.-M. and M. Hervé [11; Théoréme 3. However, in these in-
vestigations, boundary points are assumed to be on the relative boundary of
the domain which is contained in a larger domain where the equation is de-
fined. For instance, consider the case where the domain £ is a bounded one
in the Euclidean space R¢ (d==2) and the equation is

) Liu=Au—qu=0

with ¢—0. For this equation, Perron-Wiener’s method can be applied when-
ever g € L{,.(2) for some p>d/2. The results by Stampacchia and Hervés,
however, only imply that if ¢ € L*(2) (or, ¢ € L{,.(2") for some domain £’ > 2),
then the regularity of & € 02 for (1) is equivalent to that for Au=0.

The main purpose of this paper is to investigate under what conditions
on the function ¢, regularity of a boundary point for (1) follows from that
for Au=0, in case ¢ does not necessarily belong to L’(2). We note that some
results in this direction were obtained by M. Brelot (3], [4] and [5]), but
our results are more general and finer.

In the first chapter, we shall develop a general theory concerning re-
gularity of ideal boundary points with respect to Brelot’s axiomatic harmonic
structures. Then, in the second chapter, we shall discuss regularity for the
equation (1) on a Riemannian manifold £, where A is the Laplace-Beltrami
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operator, still considering an ideal boundary I" of 2. We shall say that ¢ e I
is g-regular if it is regular for the equation (1). Given two non-negative g
and ¢», we shall give a necessary and sufficient condition that a locally ¢:-
regular point on I is also locally ¢,-regular (Corollary 1 to Theorem 2.4).
The condition will be given in terms of the Green function for the equation
Au=gq,u. This condition is then applied in Chapter 3 to the special case
where £ is a bounded domain in R? and the boundary is the usual relative
boundary. We shall obtain conditions on the growth of g near the boundary
point ¢ under which we can assure g-regularity of ¢ (Theorems 3.2, 3.3, 3.4
and 3.5) and g-irregularity of ¢ (Theorem 3.6).

CHAPTER I Regularity of ideal boundary points of a hamonic space

§1.1. Dirichlet problems on a harmonic space.

Let (2, 9)={#(0)}s:0pence be a harmonic space satisfying Axioms 1, 2
and 3 of M. Brelot [2]. By definition, £ is a connected, locally connected,
locally compact Hausdorff space. For an open set o in £, the set of all
superharmonic (resp. non-negative superharmonic) functions on » with res-
pect to (2, ) is denoted by Jy(w) (resp. Ji(w)). The set of all potentials
with respect to (£, ) is denoted by 5. We furthermore assume

Axziom 4. 1€ JH(8R) and Py+{0}.

Let 2* be a compactification of £ and let '=02*— 2. For an open set
o in 2, let o* be the closure of w in £2* and 0*w be the set w*—w. In
particular, 0*2=17. Given an extended real valued function ¢ on 0*w, we
define

bounded below on w

0,9 __ . ) S

1l ={o € Io(w); liminf, s »eop(x)=0(x) for all & € NN VICS

and 22%= —q*»> If inf U2°=sup £2° and it belongs to H(»), then we say
that ¢ is -resolutive with respect to v and denote this harmonic function by
H®, In case w=2, we simply say that ¢ is O-resolutive and write H>=H2-°,
The following lemma is easily obtained by standard arguments (cf. [ 2] and

[7D:

Lemma 1.1. () If 0y, 05 are H-resolutive with respect to w and 1 f 1, Az
are reals, then 1,01+ 2,0, (this function may take any value at a point where
+ 00— o0 or — oo + oo occurs) 18 O-resolutive with respect to v and

H:;?1+7\,20‘2 = hH?;@ + Ksz;Q-

(i) If 01, 0, are -resolutive with respect to w and 6,=0, on 0*w, then H;®
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<H2® on w. In particular, if ¢ is H-resolutive with respect to w and 6=0 on
0*w, then H2%>0.

(iii) Constant functions on 0*w are D-resolutive with respect to v and
H}9<1 on .

Also, we have (see, e.g., [2; Part IV, Theorem 107 or [13; pp. 286-287]):

Lemma 1.2.  Let w and o’ be two non-empty open sets in 2 such that o Cw’.
Let ¢ be a D-resolutive function on 0*w’ and put

o on *w' No*w
61 == ,
He® on o’ No*w.

Then, 0, is D-resolutive with respect to w and
Hgis — H?”@
on o.

If every o € C(I") (=the set of all finite continuous functions on I') is $-
resolutive, then £* is called a ©-resolutive compactification of 2. By
Corollary 3 and Theorem 8 of [ 1], we have

Lemma 1.3.  Let 2* be a -resolutive compactification of 2 and let v be a
non-empty open subset of . Then w* is a D-resolutive compactification of w
in the sense that every o € C(0*w) is O-resolutive with respect to w.

§1.2. 9-regular boundary points.

In this section, let £* be a D-resolutive compactification. For a non-
empty open set w in £, a point £ € 0*w is called D-regular with respect to w
(or, more precisely, with respect to (2%, w)) if

lir;n H2%(x)=0(8)

125, 2€0

for all 6 € C(0*w). &€ is called simply 9-regular if it is H-regular with
respect to 2. £ €I is called locally H-regular if there is a fundamental sys-
tem LF of open neighborhoods of ¢ such that & is 9-regular with respect to
V& for any V € Bf.

ProvrosiTion 1.1. Let £ € I" and let V, V' be two open meighborhoods of &
such that VCV'. If & is O-regular with respect to VR, then it is D-regular
with respect to V'N\L2. Thus, if & € I' is locally D-regular, then it is D-regular.

Proor. Given ¢ € C(@*(V'NQ)), let
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o on *(V"'N2YN*(VN\R2)
f:
HY'N2% on V'N2No*(V'NK2).

Then, by Lemmas 1.2 and 1.3, r is $-resolutive with respect to "\ 2 and
HYNe:2=HV'"2.92 on VNQ. Obviously, r is bounded on 8*(¥N\£2) and con-
tinuous on VNo*(VNR) (Co*(V'NYNo*(VN\L)). Then, we can find i,
T € CO*(V'N2)) such that r,<c<r; on 0*(VN\ L) and ¢,(&)=r1:(§)=7(§). By
assumption,

lim HYN2:9(x)=lim HYN2:9(5)=7(8).
x—E,5€EVNLR x-E,€EVNLQ

Hence, using Lemma 1.1, (ii), we see that

lim HYN2:%(x)=1(8),
x—E,2€EVNR
and hence
lim HYN9(x)=1(§)=0(8).

1-E,XEVNQ
Thus, & is $-regular with respect to "N Q2.

CoroLLARY. If &€ 4s locally D-regular, then it is D-regular with
respect to VN2 for any open neighborhood V of &.

Remark 1.1. The converse of the above proposition is not always true.
For example, if 2={x € R?; 0< |x| <1} (d=2) and 2* is the one point com-
pactification, then the point at infinity is regular (for the classical harmonic
structure) but is not locally regular. However, it is known (see, e.g., [ 2; Part
IV, Proposition 207)) that if £ is a relatively compact domain in a larger har-
monic space £’ and £* is the closure of £ in £’, then local $-regularity of
& €I is equivalent to $-regularity.

Remark 1.2. If 1 is harmonic and there exists a barrier at & € I, then &
is locally regular. Here a barrier means a positive superharmonic function w
defined on 7,2 for some neighborhood ¥, of ¢ such that inf, v,_v)rew(x) >0
for any neighborhood 7 of ¢ and lim,;w(x)=0. Proof of the above fact may
be carried out in the same way as in the classical case (see, e.g., [20; Theorem
1.97] or the proof of [9; Lemma 8.207]). In particular, in case £ is a Green
space or a hyperbolic Riemann surface with the classical harmonic structure,
a non-minimal Kuramochi boundary point is locally regular if and only if it
is regular (see [6; Satz 17.25] in case £ is a Riemann surface).

§1.8. Comparison of D-regularity for comparable harmonic structures.

We now consider two harmonic spaces (£, 9;) and (2, ;) with the same
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base space £ and assume that both satisfy Axioms 1~4. Let £* be a com-
pactification of 2. As for resolutiveness, we have the following:

Lemma 1.4. Let w be an open set in 2. If there is a compact set K in »
such that

(1.1) s (0—K)C I (0—K),

then any bounded function on 0*w which is 9.-resolutive with respect to w s
Dq-resolutive with respect to w.

The proof of this lemma is similar to the proofs of Theorems 1 and 2 of

[15]. (Note that condition (1.1) may be replaced by a weaker condition C)
in [157] on each component of w.)

Lemma 1.5.  Let o be an open set in 2. If 3§ (0)C 3%, (0) and 7 1is a non-
negative function on 0*w which is ,-resolutive with respect to w, then

Hy o= Hoo,

This lemma is easily verified by the definition. Observe that ¢ is .-
resolutive with respect to v by the previous lemma.

In the rest of this section, let 2* be a compactification which is both 9;-
and $;-resolutive.

THEOREM 1.1.  Let w be an open set in £ and &, € 0*w. If 3% (0) CI§,(0)
and &y 18 Oq-regular with respect to w, then &, is O:1-regular with respect to w.

Proor. We shall prove

1.2) lim H2 % (x)=0(&)

x—-»g—’o,xem

for all ¢ € C(0*w). If 6220 on 9*w and 0(&y) =sup;cs+0(£), then, by Lemmas
1.1 and 1.5, we have

0=H®*<Hy™=0(&)).

Since HY®:(x)—0(&,) (x—&,) by assumption, (1.2) holds for such ¢. By virtue
of Lemma 1.1, (i), if (1.2) holds for ¢, and ¢,, then it also holds for ¢, —05,.
Therefore, by the above result, (1.2) holds for ¢ for which ¢ (§,) =8Up: ¢o+.0 (&)
or 6(&o)=inf; ¢5+,0(§). Finally, an arbitrary ¢ € C(6*w) can be written as

0= max (6—0a (&), 0)+ min (6—0(&y), 0)-+0a(&).

Since each term of the right hand side has the above property, (1.2) holds
for o.

CorOLLARY. If there is an open neighborhood V of &,€I such that
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VN2 35V and if & 1s locally Dy-regular, them &, is locally ©:-
regular.

The converse of Theorem 1.1 is not true in general. As for the converse
direction, we have the following theorem:

Turorem 1.2. Let » be an open set in 2 and suppose I35, (0) CI5,(w). If
&y € 0% w 18 Di-regular with respect to w and

lim  Ho%(x)=1

£, X €@

for some 01 € C(0%w) such that 0.(£0)=1, then &, is D,-regular with respect
to w.

Proor. If 620 on 0*w and ¢(&,)=0, then
()ng:,@ng;’,-bl

by Lemma 1.5. Hence, lim, . Ho%(x)=0 implies lim, . H°(x)=0. If
g € C(0*w) and ¢(&,)=0, then, by considering ¢* and ¢~, the above result im-
plies lim, ¢, Hy'®(x)=0. For an arbitrary ¢ € C(0*w), we write it in the
form

0=4{0—0(£0)01} +0(&p)01.
Then

lim H®:(x)=lim {H?%%; 0, (%) +0(E0) H2 ()} =0(&0)

x—£q x-£g

by the above results and the assumption on ;.

Finally we prove:

Prorosition 1.2.  Suppose there is an open neighborhood V, of &, € I such
that 35 (Vo 2) CI35,(VonR). If &y is locally O:-regular and -regular,
then it 1s locally Ds-regular.

Proor. Let 7 be any open neighborhood of &, contained in V,. By
assumption, &, is O;-regular with respect to ¥\ £2. On the other hand, since
&, is O,-regular,

1.3) lim HP(x)=1.

x—£&g

Since H?:(x)<1, it follows from Lemma 1.2 that H?:(x)<H]"?*:(x) for
x € VNQ. Since HYN?-*:<1, (1.3) implies that

lim HYM®9(x)=1.

LT

Hence, by Theorem 1.2, &, is 9,-regular with respect to V' "\ 2.
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CHAPTER II g-regularity of ideal boundary points of a

differentiable manifold

§2.1. Harmonic structure 9, on a differentiable manifold.

In this chapter, let 2 be a connected non-compact C*-manifold of dimen-
sion =2 and let (g;;) be a symmetric covariant tensor on £ satisfying the
following condition (G) (cf. [167])

(G): On each relatively compact coordinate neighborhood U in 2, each

gi; is a bounded measurable function on U and there is >0 (which

depends on U and the coordinate) such that

d d
A §1§%§ 2 &i(x)§:€;

i,7=1
for all x € U and real numbers &, ..., &,.

Let dx=v gdxl...dxd be the corresponding volume element on 2, where
g=det(g;;). The Laplace-Beltrami operator A determined by (g;;) is formally
given by

where (g¥) is the inverse matrix of (g;).
We shall use the same notation as in [167] for the following function

spaces on an open set o in 2: LY, .(0), Ci(w), D(w), Dy(») and Dy,.(»). In this
chapter, we shall always assume

(CAY) 1 ¢ Do(2),

i.e., £ is A-semi-adapted in the sense of [16]. We shall also use the notation
D, u, v] to denote the mutual Dirichlet integral of u, v € D(w) over an open
set v (see [16])).

Now, let ¢ be a non-negative measurable function on £ belonging to
L3,.(2) for some p>d/2. A continuous function u on an open set v is called
a solution of L,u=Au—qu=0 on w, or g-harmonic on » (with respect to (gi,))
if v € Do (0) and

D, u, ¢]—|—S quddx=0

for all ¢ € C}(w). (Note that g-harmonic functions are called L,-harmonic in
[16].) Let & ,(w)={u; g-harmonic on w}. Then, it is known that ,= {X,
()} o:0pen defines a harmonic structure on 2 satisfying Axioms 1~3 (see [16;
Theorem 2.1, [11; Théoréme 1] or [8; Theorem 3.17]). Also, by virtue of
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the assumptions g0 and (2.1), we see that Axiom 4 is also satisfied by this
harmonic structure (see [16; Corollary to Proposition 2.5 and Corollary 1 to
Proposition 3.27; also [11; §37]). For simplicity, we shall use the following
notation: J;(w) for J§ (0), P, for Py and Df(w) for D, (w) (see [16] for
the space D o(0)).

Lemma 2.1.  (cf. [8; Theorem 4.27)) Let w be an open set in 2. If q1=q:
on w, then

Jir(0) CIi ().

Proor. It is enough to show that H; (o) CJj,(») for any open set
o'Cw (cf. [12; Proposition 7.27). If u € ] (v'), then, for any ¢ € Cj(w") with
$=0,

0=D,[ u, ¢:|~I—g quug dx
=D, [ u, ¢]+Sm/qzu¢ dx + Sm/(ql—qg)mﬁ dx

=D, Lu, 41+ gous dx.

Hence, u is an L,,-supersolution on o’ (cf. [16; 2.17]). Since u is continuous,
Proposition 2.5 of [167] implies that u is L,,-superharmonic on '.

§2.2. L,-Green functions.

Since 2 is L,-semiadapted ([16; 3.17]), there is the L,-Green function
gLe(x) in the notation in [16; 3.47], which will be denoted by G%(x, y) in this
paper. Since L¥=L,, G'(x, y)=G‘(y, x) in our case. By a local study of L-
Green function in [11; §97], we see that, given a relatively compact coordinate
neighborhood U in £, there are constants &, &k, >0 such that

k k .
Wﬁécq (.’)C, y)gflx_i’;ld,f lf dzg;

(2.2)

ky logﬁg(;q(x, V) <ks log—lxiiyl if d=2

for all x, y € U. This implies that, for a fixed x € 2, G%(x, +) € L}, .(2) for
p'<d/(d—2). Thus, by Holder’s inequality and continuity of the mapping
(%, y)>G'(=, y) (x#y), we have

LemMa 2.2. For any f e L3, .(2) (p>d/2) and for any relatively compact
open set w in 2,
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[ Dirlay <o

for all x € 2 and v(x)zg G (x, y)f (y)dy is a continuous function on 2.

It also follows that, for f € L2,.(2) (p>d/2) with fgo,ggcq(x, NFGdy
is finite everywhere on £ if it is finite at one point.

(2.2) also implies Axiom D for ©, (cf. [11; p. 3387]); in particular, we
have the following maximum principle of Frostman’s type:

Lemma 23. If felL3,(2)(p>d/2) and f=0 on 2, then
q — q
sup{ 6*Cx, ) f(ndy=sup § 6%, y) f(dy,
where S(f) s the support of f.

Now we prove

Lemma 2.4. Let feL{,.(2) (p>d/2), f=0 on 2 and suppose v(x)=
SgG"(x, y)f(y)dyis finite (at one point, and hence at every point). Then v
18 a continuous function on £ belonging to P,NDio(2) and

2.3) Da[v, ¢]+Sﬂqv¢ dngﬂ fo dx
for all ¢ € CY{(£2).

Proor. By a general theory (cf. e.g., [10; Corollary to Proposition 17.
17), we see that v e D,,.

First suppose S(f) is compact. By Lemma 2.2, v is continuous on £.
By Sobolev’s lemma, (see e.g., [19; Lemma 1.37]), we see that the mapping ¢—

sfgbdx is continuous on D,(£2), and hence on D{(2). Hence, there is v; € D{(2)
such that

@4 Dalon, g[)]—}—gﬂqvlg/) dnggfg/) dx

for all ¢ € D4(2). Let ¢ ¢ C}(2) and consider G(¢)=G’+?(¢) in the notation
of [16]. Then, by definition, G%(¢) € D{(2) and

Dyl v, GUp) ]+ quleq(qﬁ) dx= nglqﬁ dzx.
Thus, taking ¢ =G%(¢) in (2.4), we have
(2.5) ng dngg FGU($) dx

for all ¢ € C{(2). On the other hand, by Theorem 3.1 of [147],
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G @(N={ 67 o) dx.
Hence, (2.5) implies
[ @s@de={{ 61 180 f(dy dx={ v da

for any ¢ € C{(2). This implies that v=wv, almost everywhere on 2. Hence,
v € D}(2) CD(2) and (2.4) shows that v satisfies (2.3).
Next let f be arbitrary (=0). Let v be a relatively compact open set in

2 and let x, be the characteristic function of w. Then U‘"(x):S.an(x’ ¥)

f(y)x.(y)dy belongs to Dj(2) by the above result. Obviously, v—v, is ¢-
harmonic on w. Hence, v € Di,.(w). Since w is arbitrary, we have v € D,.(2).
Given ¢ € C}(2), choose w such that v > S(¢). Since v—v, is g-harmonic on o,

(2.6) Do o, ¢j+gggv¢ dx—=Dg[w,, ¢]+quum¢ dx.

By the above result for compact S(f), we see that the right hand side of
(2.6) is equal to ngx,,,qﬁ dnggfqﬂ dx. Hence, we obtain (2.3).

Lemma 25. If ¢1=q. on 2, then G"(x,y)=G%(x, y).

Proor. Let f € C}(2) and f=0. By the previous lemma, both v; (x)=
SgG‘“(x, M f(y) dyand vz(x):SQG‘“ (x, y)f(y) dy belong to Dioc(2) and

Dol v, ¢+ quiwﬁ dnggqu dx
for any ¢ € C}(2), i=1, 2. Hence, if $—>0, then
Dol vi—wvs, ¢]+g292(01—02)¢ dx:gg(lIz—qOUl(ﬁ dx=0.

This means that v, —wv, is an L,-supersolution on £. Since v, € D§(2) (see
the proof of the previous lemma), it follows from Proposition 3.1 of [ 167] that
vi=vs.  Since f(€ Cy(2), =0) is arbitrary, we conclude that G%(x, y)=

G(x, ).
§2.8. Dirichlet solution A and g-regular ideal boundary points.

Now we consider a Do-resolutive compactification £2* of 2. By Lemmas
1.4 and 2.1, it is also $,-resolutive for any ¢—=0. For a D,-resolutive function
o on 0*w (resp. on I'=2*—0), the Dirichlet solution H&®«(resp. H2:) will
be denoted by H2'? (resp. HZ), for simplicity.
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We shall need the following result to prove our main theorem in the
next section:

ProrosiTioN 2.1.  Let g1=q, on 2 and let ¢ be a bounded non-negative 9, -
resolutive function on I'. Then

@1 HE@ZHE + [ 69, )igan)— (IS dy

forall x € 2. If, furthe'rmore,g 6i(x, Yig(y)—qi (N} HE (y)dy<oco for
2
some x € 2, then

(28) HIMx)=H?(x)+ SQG‘“(x, g:y) —q1()y H3(y) dy
Sor all x € 2.

The proof of this proposition will be given in the Appendix at the end of
this chapter. Remark that, in case £ is a locally Euclidean space and ¢, and
g» are locally Holder continuous, this is an easy consequence of the results in
[14; §3.4 and §3.5]. Also, inequality (2.7) is given in [3; Lemma 4] for a
special case.

9,regular (resp. locally O,-regular) boundary points will be simply
called g-regular (resp. locally g-regular). By virtue of Lemma 2.1, the results
in Chapter I can be stated as follows:

TuEOREM 2.1.  Let o be an open set in 2 and § € 0*w. If ¢1=qg:om w and
¢ is gq-regular with respect to w, then & is gi-regular with respect to w.

CoroLLARY. If there is a meighborhood V of & eI such that gi.=qg> on
VR and 1 f ¢ is locally q.-regular, then & is locally q,-regular.

Tueorem 2.2.  (cf.[4; n°® 127]) Let w be an open set in 2 and suppose g1=<q>
on o. If ¢&e€0*w is gi-regular with respect to w and

lim  H2%(x)=1

X>E,XEW®

Sfor some ¢, € C(0*w) such that 6,(§)=1, then ¢ is g.-regular with respect to w.

ProrosiTioN 2.2. Suppose there is a neighborhood V of &€ I such that
G1=qzon VL. If ¢ 1slocally q:-regular and q,-regular, then it is locally q»-
regular.

§2.4. Criterions for ¢-regularity.

Let &, € I'=2%— 2. The filter of all neighborhoods of &, will be denoted
by B¢,. First, we prepare
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Lemma 2.6.  Let f be a non-negative function in L?,.(2) withp>d/2. If
there is Vo € Be, such that

2.9) lim G D f(dy=0,

x-£

then
lim sup G (x, y)f (y)dy=0.
vne

VGB% X€Q

Proor. By Lemma 2.3,

sup| e, ) f() dy=sup | 610x, )/ (2)dy.

x€QNV*

Hence, for any 7 € B, such that V' V,,

OSS;’B%SVA.@GQ(% Py

—sup {  Gix, ) f(5) dy

xEQNV*

=sup

Gi(x, dy.
sup | G f () dy
The last term tends to 0 along 7 € ¥, by virtue of the assumption (2.9).

In case ¢=0, the corresponding Green function G°(x, y) will be denoted
by G(x, y). We have

TreoreM 2.3. If &, 1s q-regular, then

(2.10) limSV GG () dy=0

Eat)

Sfor some V, € B, and

lim SupSVNzG(x, y)g(y) dy=0.

VeEB, x€Q

Proor. By virtue of the previous lemma, it is enough to prove (2.10).
Since lim,_;, H{(x)=1, there is V, € ¥;, such that H{(y)=1/2 for ye VN L.
On the other hand, by Proposition 2.1 (applied for ¢, =0 and ¢.=g¢),

l—H‘{(x)gSQG(x, Vg HI y) dy.

Hence,

0=, 6@, ye( dy
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I\

2, 6 1)q() Hiy) dy

=2 6, 1)g() HY() dy <20-H{)).
The last term tends to 0 as x—&,. Hence, we have (2.10).
Cororrary 1. (cf. [5; n° 4]) If every £ €I is g-regular, theng G(x, y)
Q2
g(y)dy< oo,

CoroLLARY 2. if &, 18 g-regular, then, for any q' € L},.(2)(p>d/2) such
that ¢’ =0 on 2 and ¢'=q on a neighborhood of &,

: q’ s —q 1 =
1£rggvunQG (%, ¥){g9(»)—q' ()} dy=0

Sfor some V, € B, and

lim supSVNzG”"(x, ¥){q(y)—q'(y)} dy=0.

VeEB, x€Q

Proor. By Lemma 2.5, G*(x, y)<<G(x, y). Thus, this corollary imme-
diately follows from the theorem.

As for the converse direction, we have the following result, which is our
main theorem in this chapter.

Tueorem 2.4.  Suppose q1=qz on VoL for some V, € B¢, If &, is locally
qi-regular and if either

lim{ , 69(x, )00~} dy =0
Ving

x—£q

Sfor some Vi € By, such that Vo C Vo, or

211)  lim supgwcql(x, g(N— ()} dy =0,

Ve %50 X€EQ
then &, 1s locally gs-regular (and hence g;-regular).

Proor. By virtue of Lemma 2.6, it is enough to prove the theorem under
the assumption (2.11). First remark that, by (2.11), there is V; € ¥, such
that 7, CV, and

(2.12) supgv 67, 1) g(0)— ()} dy <o

xX€EQ

For any ¢>0 (¢<1), choose V', € L, such that V¥V, and

(2.13) E‘SBSV 1@ D) —qu(p)} dy <e.
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Let fi=xv ne and fe=xy ~o(the characteristic functions of 1N\ 2 and V. N 2).
By Proposition 2.1 and (2.12), we have

(2.14) Hglll(x):Hil‘*‘fl(‘Iz—ql)(x)

+§9041(x, A7) = (DY) HPH 10 () dy.
Now,

.69 P~ g AEE () dy

2

= 6, gD~ (I~ el I HE 40 () dy
+ 69Ce, 1) {0 =@M fey) HE0(y) dy
=[,67G 1) (=g} LD —Fe (I} HEr 0@ () dy

{0 67 ) ()= ar()} dy.
By (2.7) and (2.13), the last expression is less than
H{(x)— HH+ 1000 (x) g,
Hence, (2.14) implies
(2.15) H{ 1@ () > H it 1m0 @-a) (x) —¢

for all x € 2. Since g1+ (f1—fe)(gz—q1)=¢: on V.N2 and & is locally ¢:-
regualr, we see that &, is locally ¢+ (f1—f:)(¢2—q1)-regular, and hence it is
g1+ (f1—f¢) (qz2—q1)-regular. Hence,

lim HO+1- o= (x)=1,

x—-Eg

Hence, by (2.15),

liminf H{1+/11%-0 (x)>1—e.

x—-£&g

Since ¢>0 is arbitrary and H{+/1‘%~% <1 we conclude that

lim HOH @ () =1,

x-E&g

Thus, by Theorem 2.2, &, is g1+ f1 (g2—q1)-regular. Then, by Proposition
2.2, &, is locally g1+ f1 (q2—q1)-regular. Since g+ f1 (g2—q1)=g. on V1N,
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it follows that &, is locally g,-regular.
Combining the above theorem with Corollary 2 to Theorem 2.3, we obtain

CoroLLARY 1. Suppose q1=gq, on Vo2 for some V, € B; and suppose
&y 1s locally g.-regular. Then the following four assertions are equivalent :

(a) & 18 locally g.-regular;

(b) &, is go-regular;

© limg 67 G —qa(5)} dy=0 for some Vi such that V< Vo

%—E/ Vo

(d) lim supg G0 ) 1g2(y) = ()} dy =0.

VEB x€2)VN

CoroLLARY 2. If &y s locally g-regular and if ¢'<2q on V,N\2 for
some Vy € By and 21>0, then &, is locally q'-regular.

Proor. By Theorem 2.3, limgv, QG (%, ¥)g(y)dy=0 for some V{ e B,
1Y

2=/ Vy

contained in ¥,. Then, by the assumption ¢'<<1g on V', 2,

jl;rggvgng(; (%, ¥)q'(y) dy =0.
Since &, is locally 0-regular (Corollary to Theorem 2.1), it is locally ¢'-regular
by Theorem 2.4.

By a similar method, we also have

CoroLLARY 3. If &, s locally qi-regular as well as locally g.-regular,
then it is locally (X1g1+ A2q2)-regular for any nonnegative numbers i, and 1..

CoroLLARY 4. Let g1, g2(=0) be given. If &, is locally g,-regular and if
either

1imgv . G"(x, y) max {g.(y)—q:1(y), 0} dy=0

x-Eg

for some V, € By, or

lim sup| G(x, y) max {5:()—qu(y), O} dy=0,

VEB, ¥€2

then &, s locally g,-regular.

Proor. Since max {g:(y)—q:1(y), 0} = max {g2(y), ¢1(y)} —q:(y), The-
orem 2.4 implies that &, is locally max(gi, ¢»)-regular. Hence, by the cor-
ollary to Theorem 2.1, &, is locally g,-regular.

§2.5. An application to Dirichlet problems of non-homogeneous

equations.

Let 2* be a 9o-resolutive compactification again and we consider a
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boundary value problem

(2.16)

{ Lu=Au—qu=fon
u=0on /.

By a solution of (2.16), we mean a continuous function u on £* such that
u I ¢ Dloc(g),

Dalu, $3+ qup dw=—{ 1 dx

for all ¢ € C{(2) and u=0o0n I.
As an application of the results in the previous section, we have the

following theorem (cf. [4]):

Tueorem 2.5. Suppose f € L],.(2) with p> d/2.

(@) Ifevery ¢el uslocally g-regular and (q+ |f|)-regular (or, equi-
valently, if every & €I islocally (qg+ |f|)-regular), then the boundary value
problem (2.16) has a (unique) solution.

(b) Ifevery &€l is locally g-regular and if (2.16) has a solution for a
given f =0, then every & € I' is (q+ f)-regular.

Proor. (a) By Corollary 1 to Theorem 2.8,SQG"(x, Y f(y)ldy <eo for
any x € £. By assumption, H{(x)—1 and H{*'/'(x)—>1 as x—¢& for any &€l
It also follows from Harnack’s principle that a=inf,.,H{"'/'(x)>0. Then,
using Proposition 2.1, we have

0=| 6%x, 1)1 f()| dy

=2 61 DIF I dy

= L@ - BP0 (-9),
ie,
lim{ 6*x, 1)1/ (2)1dy=0

for any € € I'. Hence, the function

u(x)={—g,ﬁ"<x, Nfy)dy ifxel
0 ifxel

is continuous on 2* and, by virtue of Lemma 2.4 (considering f* and f-), it
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is a solution of (2.16).
(b) Let u be a solution of (2.16) for a given f=0. Then

Dgylu, ¢]+quu¢ dx <0

for any ¢ € C}(2) with $—=>0. Therefore, —u is L,-superharmonic on £ (Pro-
position 2.5 of [16]). Since u=0on /', —u € P,. Then we can show that

—u(x)= SQG"(x, y)f (y) dy

for x € 2 (cf. [11] and [167]). Therefore,

lir?SgG“(x, V() dy =0
for all £ € I'. Then, by Theorem 2.4, every ¢ € I" is (¢+ f)-regular.

CoroLLArY. Let feLi,.(2) (p>d/2) and 6€ CUI"). If every €l 1s
locally g-regular and (q+ | f|)-regular (or, equivalently, if every & € I" is locally
(g+ | f1)-regular), then the boundary value problem

{ Lu=Au—qu=f on 2
u=0 on I’

has a solution which s continuous on 2*.

Proor. Let u; be the solution of (2.16). Then u=u,+ H?is the re-
quired solution.
Appendix: Proof of Proposition 2.1.

We prepare five propositions, which are known in case £ is a locally
Euclidean space and ¢’s are locally Hélder continuous (see [14]).

PropositioNn A-1. For any x € 2,

67 g ay=t.

Proor. First, suppose S(g) is compact. Then, by Lemma 2.4, v(x)=
SQGq(x, yv)q(y) dy belongs to P,NDyo.(2) and

Dg [ v, ¢:|+qu1;¢ dx=ggq¢ dx
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for all ¢ € C}(2). Hence, Do[1—o, ¢j+g g(1—v)pdx=0 for all § € CY(2), ie.,
1—wv is g-harmonic on 2. Since v € P, we have 1—v=>0.

Next, let ¢ be arbitrary. Since £ is countable at infinity (cf. [16]),
there is a sequence {x,} of non-negative measurable functions on 2 such that
each S(x,) is compact and x,(x) 1 1(n—>o0) for each x ¢ 2. By the above
result,

[ 67, g1y dy =1,
By Lemma 2.5, G**(x, y)=G*(x, y). Hence,

SQG"(x, y)g(y)xa(y) dy =<1.

Letting n—co, we obtain the proposition.

ProrosiTioN A-2. If q:=<q; on 2 and 6=>0 is O, -resolutive, then the
greatest g;-harmonic minorant of HI' is equal to HZ:.
Proof of this proposition is similar to [14; Lemma 3.87].

ProrosiTion A-3. Let ¢1=q, on 2 and o be a bounded O, -resolutive
Sunction on I'.  Then

HB()=HE@)+ | 6%, ) {g:(0) —u(0)YHEy) d.
Proor. It is enough to prove this for ¢.>0. By Proposition A-1,

v={ 61, 1) 12—} HH() dy <eo.

Hence, by Lemma 2.4, » is continuous and
D[, 61+ g208 dw={ (g:—q0) H$ da

for all ¢ € C}(2). On the other hand, since H% is g;-harmonie,

DL, §1+ | oty dx={ (q:—g0) HE9 dx.
Hence,

DoLHE v, §1+ | gu(t1s—0)p dx =0

for any ¢ € C}(2), i.e., Hi—v is g;-harmonic. Since v € P,, it follows that

H'—v is the greatest g,-harmonic minorant of HZ. Hence, by the above
proposition, Hi*—y=HZ,
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ProrosiTioN A-4. Let {q.} be a monotone increasing sequence converg-
ing to q. (We are assuming that ¢, ¢ are non-negative and belong to
L}, .(2), p>d/2.) Then, for any 9, -resolutive non-negative function o on I,

Hin (x) | Hi(x) (n—>o0)
at every point x € 2.
Proof is similar to [14; Theorem 3.4, by the aid of Proposition A-3.

ProrosiTioN A-5. If q:=<qg; on 2 and q,=q, outside a compact set in 2
and if 6=0 is bounded 9, -resolutive, then the least q,-harmonic magjorant of
H?: is equal toH 2.

Proor. Let u be the least g;-harmonic majorant of HZ:. Obviously,
H}<u=H?. Let v eU2?*(U2*'=12-°¢). Then v—H?¥ € I;,(2). Since g1=gq;
on 2—K for some compact set K in &, v—H% € J;(2—K). Let M=sup ¢
and choose w € 9,, such that w>M on a neighborhood of K. Then v;=min
M, v—H?4w) € I7(2) and v, +u=v,+ H*>min (M, v). Hence, v, +u € U2 4,
ie., vi+u=H¥%. Taking infimum of v, we have

min (M, w)+u=H?.
Since min (M, w) € P, it follows that u>H2. Hence u=H%.

Proor of ProrosiTioN 2.1. First suppose ¢; =g, outside a compact set in
2. Then, by Lemma 2.2,390‘“(% ¥) 192(y) —q1(¥)} dy<eco and an argument

similar to the proof of Proposition A-3 gives (2.8), by the aid of Proposition
A-5.

Next, we prove the general case. Let x, be as in the proof of Proposi-
tion A-1. By the above result, we have

) Hi()=Hp0 ()
+ 695, 1) {ga() — (I HE =90 y) dy,

Since Hu*n2=90> 122 (*) implies
HE()ZHE ) + [ 690e 21,00 120~ (0} HEy) dy.

Letting n—oco, we obtain (2.7).

Now, since

G(x, y)xa(y) {g2(y) —qu(y)} HI+*» 9= 1(y)
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=(sup 0) G"(x, y) {g2(y) —q1(Y) I HT(y),

the conditionSQG‘h(x, ¥) 4q2(y) —q:1(y)} H{(y)dy < oo guarantees the applica-

tion of Lebesgue’s convergence theorem on letting n—oo in (¥). Thus, since
Hitxal2=10 | [f2 hy Proposition A-4, we obtain (2.8).

CHAPTER III Conditions for g-regularity of relative boundary points

In this chapter, we consider a bounded domain 2 in the Euclidean space
R? and the usual closure 2 in R? as a compactification of 2. For simplicity,
we shall consider only the case (g;;)=(0};), so that A is the ordinary Laplacian.
We shall always assume that ¢ is a non-negative function on £ belonging to
L$,(2), p> d/2.

It is well-known that 2 is a resolutive compactification of 2 (see, e.g.,
[9; Theorem 8.117]). Also, as remarked in Chapter I (Remark 1.1), if £ €02
=0— 8 is regular (=0-regular), then it is also locally regular. Thus, by
Theorem 2.1 and Corollary 1 to Theorem 2.4, we have

Tueorem 3.1. (a) &,€08 <is locally g-regular if and only if it is ¢-
regular.
(b) Suppose &, € 082 is regular. Then it s g-regular if and only if either

lim supg
70 X€Q J 2NB(&y7

)G(x, ¥)q(y) dy=0,
or, for some ry >0

lim S
2-£0,€ 2 J2NB(Ey;7y)

G(x, y)q(y) dy=0.
Here, B(§g; r)={x € R%; |x—&| <r}.

§3.1. The case where there is no condition on the boundary.

First, we state a theorem, which is a consequence of a general theory
(see [19; Théoréme 10.27] and [11; Théoreme 37]; also cf. [12; Corollary 7.77]):

Tueorem 3.2. If &,€08 is regular and if g€ L(2N\V), p>d/2, for
some neighorhood V of &,, then &, is g-regular.

We can give an elementary proof to this theorem using Theorem 3.1 and
Hoélder’s inequality. Note that a result in [5; n° 6] is an immediate con-
sequence of this theorem.

TueoreM 8.3. If q(x)=¢(|x—§&¢|) on B(§o;r0) N\ L (r0>0) for a non-
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negative locally summable function ¢ on (0, ro | such that

S;Otgb(t)dt < oo, if d=3
3.1) ‘
Soot logvlt—g[)(t)dt <oo,1f d=2,

then &, is g-regular whenever it is regular.

Proor. Let F(x, y)=|x—y|*?if d=38, F(x, y)=log(k/|x— y|) if d=2,
where £>0 is so chosen that F(x, y)=27G(x, y) for all x, ye 2. For
0<t<r, let

U= P, 0+10)dS0),
S(0;1)

where S(0; 1) is the unit sphere and dS is the surface element on S(0; 1).
By a classical theory, it is known that U, is constant on B(&; ) and

sup Uy(x)=U;(§0)
XEQ

oat>? (d=3)
- S F(0; 16) dS(0)= {
5051) 27 log (k/t) (d=2),

where adzgs( [ d50).  Let c;=(d—2), if d=8, c;=2r if d=2. Then
0;
F(x,y)=cG(x, v) for all x, y€ 2. Hence, for 0<r<r,

wSB(EwNG(x, y)q(y)dyégB(En;r)F(x, MO y—&oDdy

= S;gb(t)t"‘lU,(x) dt

[ o [ wear (a=3)
<

1 27rS:gb(t) <log_’§)zdt (d=2)

for any x € 2. By (3.1), the last term tends to 0 as r—0. Hence, Theorem
3.1 implies that &, is g-regular if it is regular.

Remark 3.1. Either Theorem 3.2 or Theorem 3.3 implies that if &, is
regular and g(x)<<1|x—&,| >*¢ on B(&o; ro) N\ L for some 12>0 and &>0, then
&y is g-regular. Applying this result to the corollary to Theorem 2.5, we
obtain a theorem given by K. Miller [17; Theorem 4]. We can improve it
by using Theorem 3.5 below (§3.3).
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§3.2. The case where the boundary is a Liapunov-Dini surface.

A non-negative continuous function ¢(¢) defined on [0, ¢, ](z,>0) is called

a Dini function ([227]) if it is monotone increasing on [0, #, ], &(¢)/t is mono-
to

tone decreasing on (0, ¢, | andg [e(t)/t] dt<oo. Given a bounded domain £
0

and &, € 02, we shall say (following K.-O. Widman [ 22]) that the part of the

boundary 02N B (&; ro) (ro>0) is a Liapunov-Dini surface if there are a C*-

function F on B(&;; ro) and a Dini function &(¢) on [0, ro] satisfying the

following two conditions:
(a) S=082NB(&);r,) is a C'-surface represented by F, ie., S={f¢€
B(§o; r); F(©)=0} and grad F=(-2F", .. 08 )00 on s;
0x, 0x4

(b) For any &, &2€ S,
I en -l |=siei—el)y i=1, -\ d.
Xi 0x,-

TueorEM 3.4. Suppose S=02N\B(&y;ro) 18 @ Liapunov-Dini surface for
some ro >0. Let ¢ be a non-negative locally summable function on (0, ro ] such
that

3.2) S;Otgb(t) dt < oo

and f be a C'-function on B(&,; ro) such that f(x)=0on S, 2NB(&y; ro)=
{x € B(&; 10); f(x)>0} and grad f(£,)70. If, for such ¢ and f, we have

(3.3) g(x) = ¢(f(x))

Jor all x € 2N B(&o5r0), then &, is g-regular.

Proor. It is easy to see that the boundary 02 satisfies the Poincaré ex-
terior cone condition at &,, and hence &, is regular.

Without loss of generality, we may assume that §,=0 and grad f(0)=
6,0, ..., 0) with 6>0. For x=(x1, ---, x4) € R%, let x’=(x3, ---, x4). We write
Q,={x; |x:1]| <r, |2'| <r} and Q} ={x € Q,; x,>0}. Since grad f(0)=~0, there
is 00 >0 (0o=<r,/2) such that by the mapping

D: x=(x1, x/)_’(f(x)a x/))

D,=0"'Q,,) CB(0; r,/2), 3f/0x,=>0/2 on D, and @ is one-to-one on D, . Since
D,, is a neighborhood of &, it is enough to prove that &, is g-regular with
respect to D} =D, N2 (Theorem 3.1, (a)), i.e., we may assume that 2=D;.
Thus, let G(x, y) be the Green function of D;,. For 0<r<p,,let D,=0"'(Q,)
and D}f=07'(Q;). Obviously, D;=D,N2 and {D,}<,<,, is a fundamental
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system of neighborhoods of £,=0. By virtue of Theorem 3.1, (b), it suffices
to show

34) lim supg ,G(x, v)q(y) dy=0.

r—0 X€Q

Let 7' (v)=(h(v), v') for v ¢ Q,. Then & is a C'-function on Q,,

35) o<t w=(Lo W) =2 oo,

and SN\D, = {(h(0, v"), v); |v'| <po}. By condition (3.3) and by the change
of variables v=0@(y), we have

[,.6G 9 dy =66, »oCr() dy

=, 6Gx, 0 @) 2 <v> dv
2 (7 -1 /
§’6—80¢(t) dtgvl=t,lv’l<fc<x, ¢ (v))dv ’

where, in the last inequality, we used (3.5). Now we put

U,(x) =§ Glx, 0~ (v))dv’
v1=t,10"|<py/2
for 0<t<p,/2. We shall show that there is £>0, independent of x, ¢, such
that
(3.6) U(x) < kt

for all x € £ and 0<t<po/2. Then, for 0<r<p,/2,
EE}?S LGz, y)g(y) dy= S t)(t) dt.

Condition (3.2) implies that the right hand side tends to 0 as r—»0. There-
fore, we obtain (3.4) and the theorem is proved.

To prove (3.6), we consider two cases.

The case d=3: In this case, first we remark that

(8.7 G(x, y) < kylx—y|*?

for all x, ye€ 2, where k;=c;! is independent of x, y. On the other hand,
since S is a Liapunov-Dini surface, the arguments in the proof of Theorem
2.3 of [22] can be repeated and we obtain
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(3.8) G(x, y)<k, dist (», S)-dist (y, S)|x—y|™*

for all x, y € D}, ,, where k; >0 is independent of x, y. Now

Hence, (3.8) implies

(3.9)

for all x, y € D},;,, where k;>0 is independent of x, y. Let S,;={x; f(x)=¢,
| 2’| <po/2}. For 0<t<po/2, S;CDj 5.

and (3.9), we have

dist (x, S) < x1—h(0, x°) g%f ().

G(x, y) Zksf(x)f(y)x—yl™*

Uz<x)§g Gz, 07'(v)) dv’

vy=t,|2"— v |=t, 107 1<py/2

+S G(x, 0~ (v)) dv’
v1=t,1%"—0"|>1,|v7|<pyl2

< =07 ()| 4dv
vy=t,|2"—v"|st, |0 <pg/2
+hat? 5= 07\ (0)| v’
vi=t,|2"—0v"|>t,12"1<pgl2
<k | —v'| 2y’
|x”—v’ | <t
+k3tzg Ix/_v/,—ddvl
12/ —v’|>t

¢ w .
=k10'd—1S dop +k30'd~1t23 0~ 2dp = kt,
0 t

where k= (k,+ks3)0,_; is independent of x, t. Hence

for all ¢ € (0, po/2).
The case d=2:

sup Ui(x) < kt

X€E S,

Now (3.6) follows from Lemma 2.3.

In this case, we identify R? with a complex plane, so

If x €S, (0<t<po/2), then, by (3.7)

that x=(x1, x,) € R? is identified with z=x,+ix;. Let w=¢&(z) be a confor-
mal mapping of the simply connected domain D}, onto the right half plane
{Re w>0} such that £ has a continuous extension to f,f for which £(0)=0.
Then, by a theorem of S. Warschawski ([21; Zusatz 1 zum Satze 10]; also

cf. [20; Theorem IX. 9, (ii)]),

(3.10)

0< i< |8 (2) | Sz < oo
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for all z € D},;,. On the other hand, since G(¢*(w), £ '()) is the Green func-
tion of {Re w>0},

:—%—log [1+4(Re w) (Re u)|u—w|~>].

G (€ w), & (w) = log| 4 EE

Hence,

G(x, y)=i10g [1+4(Re £(x)) Re £(y)) [&(x)—&(y)] 7%,
2

If x, y € D}, then, by (3.10),
Re £() =tz {1 —h(0, %)} <7421 ()

and

[€(x)—C(y) | =u1lx— y| =p1| %2— 2.

Hence, if x, y€ S; (0<t<00/2), then
Gz, P=g-log [14+ M| 23— 32| 2]

where M= (44,)/(0 1) is independent of x, y. Hence, for x € S; (0<t<po/2),

U,(x)z& 6, 07 (w) do,

v1=1,12;1=pg

<1

S log [14+M2t* | x3—vy|~%] dvs
2 Jivyl=pgl2

< MtSZlog (A+s5%ds = Mnzs.

Therefore, we obtain (3.6) also for the case d=2.

CoroLLARY 1. Suppose S=02N\B(&y;ro) 8 a Liapunov-Dini surface
for some ry>0. If

311  g(x) < ¢ dist (x, S))  for all x € 2N B (&o; ro)

for a non-negative monotone decreasing function ¢ on (0, ro | satisfying (3.2),
then &, is g-regular.

Proor. Let S be represented by a C!-function F satisfying condition (a)
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for a Liapunov-Dini surface. We may assume that F(x)>0 on 2N\B(&o; ro).
It is easy to see that there is ¢;,>0 such that dist(x, S)=0,F(x) for all
x € 2N B(&y; r9/2). Since ¢ is monotone decreasing,

q(x) = ¢(dist(x, S)) =< ¢ (0:1F (%))

for x € 2N B(&o; r0/2). Hence, taking f(x)=0,F(x) in the theorem, we
obtain this corollary.

CoRroOLLARY 2. Suppose S=02NB(&; ry) is a C®-surface for some ry>0.
If (3.11) holds for a mon-negative locally summable function ¢ on (0, ry ] satis-
Sfying (3.2), then &, is g-regular.

Proor. Obviously, a C*-surface is a Liapunov-Dini surface with a Dini
function e(¢)=at (a: const.>0). Furthermore, if S is a C?-surface, then

dist(x, S) for x € 2N\ B(&o; ro)
f(x)= ) _
—dist(x, S) for x € B(&,;r9)— &£
is a C'-function on B(&; r;) for a sufficiently small r; >0 (r;=r,) and grad
f(£0)70. Hence this corollary follows from the theorem.

Remark 3.2. As an immediate consequence of Corollary 1 above, we see
that if 2 is bounded by a closed Liapunov-Dini surface S(i.e., 82=2S) and if

g(x) < k {dist (x, S)}2*¢

for all x € 2 for some £>0 and ¢>0, then every point of 92 is g-regular.
Thus, applying Theorem 2.5, (a), we have the following result:

If 02 is a Liapunov-Dini surface and if
(3.12) | f(x)] <k {dist (x, S)}2*¢
for all x € £ with £>0 and ¢>0, then the boundary value problem
Au=fon £ and u=0on 08

has a continuous solution.

In this connection, we remark that G. Prodi [18] gave an existence
theorem for a similar problem under the assumption (3.12).

§3.8. The case where the boundary satisfies cone conditions.

We shall say that the boundary 02 satisfies the exterior (resp. interior)
cone condition at &, € 0.2 if there exists a truncated circular open cone C with
vertex at &, such that 2N\C=0 (resp. CC 2). In this section, we give con-
ditions for g-regularity of &, when 02 satisfies such cone conditions at &,.
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Lemma 3.1, Let C, be the cone
Co={x=(x1, x) € R; x:>a|x'|} (a>0)

and let C¥=R*—Co. Let Go(x, y) and G¥(x, y) be the Green functions of C,
and C¥, respectively. Also, let e=(1,0,...,0), S={x € Cy; |x|=1, x1=2ka|x"|}
with k>1 and S*={x € R*—C,; |x|=1}. Then, for some constants cy>0,
B0>0, ¢1>0 and c; >0, we have

c1lx|% for x € CENB(0; 1)
(3.13) SS GH(x, 0)dS(0) <

ci1|x| %92 for x € C¥— B(0; 1),

and

(8.14) Go(te, 0) = cot= P72 fort >1
for all 6 € S.

Proor. Let u be the harmonic measure of S* with respect to the doma-
in CENB(0;1). For 0<t<1, let w(t)=supges«u(¢6). Obviously, w(1)=1 and
0<w()<1 for 0<z<1. By the maximum principle, we have

u(x) = o) u(x/t)
for |x| <t. Hence, if t'<t, then

o) =< o) 0t'/t) < o(0).

It follows that w(¢) <2%¢* for 0<t<1, where «,>0 is so chosen that 2% =
[w(1/2)]'. Therefore, u(x)<<2%|x|% for 0< |x|<1. Now, w(x)=SS*G?,‘(x, 0)
dS(0) is non-negative harmonic on CFN\B(0; 1), w=0 on 0C¥N\B(0; 1) and w
is bounded on S*. Hence, w<c'u on C¥"\B(0; 1) for some ¢’>0. Thus we
obtain (3.13) for x €e C¥"\B(0; 1). By considering the Kelvin transformation
of u, we similarly obtain (3.13) for x € C¥— B(0; 1).

Next, let 3o=max {2, (d—1)a’*+1} and consider the function

o) =(xd—a?| &' | )07 5 — o | ~2ud+?

on C, —{e}. v is a C~-function on C,— {e} and, by a direct computation, we
see that Av=0 on C,—{e}, so that » is subharmonic there. Let U be a neigh-
borhood of S such that T C Cyand let #=1inf,cov ges Go(x, 0) and A =sup.eovv(x).
Then, 0< #, A< oo and

(8.15) Go(x, 0) z—f{—v(x)
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for all x €¢dU and 0 € S. Since v is subharmonic on C,—U, v=0 on aC, and
v(x)—0 as |x|—>co, (3.15) holds for all x € C,— U and 6 € S. Thus we obtain

(8.14), since

’U(te):tﬁﬂ I t— 1 I —2Bp—d+2 -2_ t_ﬁo_d_,,z

for t1=>1.
Next, we prepare an elementary lemma:

Lemma 3.2. Let f be a non-negative locally summable function on (0, to]
(to>0) and let

11
t

M:):tag e f(s)ds  (@>0)

and
o=t s7f () ds  (8>0)

for 0<t<t,. Then, given «, >0, 1lim, F.(t)=0 ¢f and only 1 f lim,_.,Gz(¢)
=0. Hence, if lim, (F,(t)=0 for some a>0, then it holds for all >0 and
lim, oG z(t)=0 for all 3>0; i f lim,.Gz(t)=0 for some B3>0, then it holds for
all >0 and lim,_F,(t)=0 for all a>0.

Proor. First, we assume that limsup,_, Gz(z) <oo (, and hence G4(z) < oo
for each ¢t € (0, t,]). We have

t‘“Fa(t)—(2t)‘“Fa(2t)=Sjts_“f(s) ds

and
(20)°6 5(28) — 1°G 5(1) = gft s#F(s) ds

for ¢ € (0, t,/27]. Since
2t 2t
Sr s (s)ds < t‘(‘”ﬁ)g sPF(s) ds
t

and
2t 2t
5, PF(s)ds < (Zt)‘”ﬁg s4f(s) ds,
t
we have
Fo(t)—27%F,(2t) < 2°G(2t)

and



On Regularity of Boundary Points for Dirichlet Problems of the Equation du=qu(g=0) 401

Gp(2) —27PC 5(1) < 2°F o (1)
for ¢ € (0, t,/2]. It then follows that limsup,., F.(t) <o,
1—-2"%) liznﬁsuop F.(t) <2° liﬂs%p Gs(t)
and
1-27%) li;rlflgp Gplt) < 2¢ li,"lS}}p Fo(2)

under the assumption limsup,., Gz(t)<e. Hence, we obtain the lemma
under this assumption.

We shall next show that limsup,., Gs(t)=cc implies limsup,., F.(¢)
=oo, If limsup,., Gg(t)=co, then, given M>0, we can find a sequence
{t,} C(0, to,/27] such that ¢,—0 and

2t,,
S $8 F(s) ds = 2%F MiE.
tn

2t

For, otherwise, there is ¢" € (0, ¢, ] such that S sPF(s) ds < 2% Mt” for all ¢t €
t

(0, ¢, so that

-n

Co=1" % Ior?

_("‘H)f
< FREEY 3 270 DR B = 2w A28 1) Y
n=0
for all ¢ € (0, ¢, which is a contradiction. Now,
2t,
Fa(z,,)gt;:g s f(s) ds
tﬂ
2t,
=) 2] 5 £5) ds
tﬂ

=>1t2(2t,) @22 B ME = M,
Hence, limsup;_, F.(t)=M. Since M is arbitrary, limsup,., F.(t)=oco.

Remark 3.3. By the above proof, we see that limsup,., F,(¢)=co if
and only if limsup,., Gz(z)=c0. Also, it is easy to see that if Stu f(s) ds is
finite, then lim,_, F.(:)=0 and lim,_, G4(:)=0 for all e, 8>0. The converse
is not always true; for example, if f(¢:)=[¢ log(1/¢)]"", then lim,,, F,(t)=0
but Sof(s)dszoo.

Tueorem 3.5. If 02 satisfies the exterior cone condition at &, € 0.2 and if
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(3.16) g(x)=¢(Jx—¢&|)

Jor all x € 2N B(&y; r9) (rg>0) for a non-negative locally summable function ¢
on (0, ro] such that

(3.17) lim f"S;r““gb(r) dr =0

t—0
Sfor some a>0, then &, is g-regular.

Proor. We may assume that &,=0and CfN\B(0;ry) D> 2NB(0; r,), where
C¥ is the set defined in Lemma 3.1. Obviously, & =0 is regular. By virtue of
Theorem 3.1 and our assumption (3.16), it is enough to prove

(3.18) lim

-0 SC:f\B(O;rO

)Gak(x, )¢ yl)dy =0.
Using the relation G¥(x, r0) =r*"?G¥(x/r, 6) for r>0 and (8.13), we have

)Gé‘(x, ey dy

Sczr\B(O;ro

:S;Ord‘lg/)(r) dr SS* G (x, r0) dS (6)
- g:0r¢ (r) dr Ss* G3(x/r, 0) 45 (0)
<ec; {Slxlr¢(r)<LfJ)'an_d+2 dr+ S:!rﬁb (r)< ’—f—l>aﬂ dr}

x| 0
=c; {|x|—ao—d+2 SO r1+a0+d—2¢(r) dr+ [x | a[,g 'rl—a0¢(r) dr}

|x
Applying Lemma 3.2 with f(¢)=t¢(¢), we see that the last expression tends
to zero as x—0, by virtue of the assumption (3.17). Hence we have (3.18).

CoroLLARY. If 08 satisfies the exterior cone condition at &, and i f

lim [x—&0]%g(x)=0,
2

x—-£9,X€
then &, is g-regular.

Finally, we give a sufficient condition for g-irregularity of &, € 2, which
shows that the results in this chapter (Theorems 3.2, 3.3, 3.4 and 3.5) are
fairly sharp (cf. Corollaries 1 and 2 below).

THEOREM 3.6. Suppose 02 satisfies the interior cone condition at &, € 08
and let C be a truncated circular open cone with vertex at &, such that CC L.

If
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(3.19) limsup t‘ﬂg |x— &0 #~4*2q(x) dx > 0
t—0

C’NB(&yst)

for some B3>0 and a truncated circular closed cone C' with vertex at &, such
that C'—{0} CC, then &, is g-irregular.

Proor. We may assume that &,=0, C=C,"\B(0;r,) and C’
={x; |x|<r¢, x1=2ka|x’|} with 0<r,<r; and £>1. By Theorem 3.1, it is
enough to prove that, for any o with 0<p<lr,,

limsup

20 SC’/\B(Q;P)G()(’C’ }’)q(y) dy >O’

or,
(3.20) limsupSZrd'l drSSGo(ze, r0)q(r0)dS(6) > 0,
-0
in the notation of Lemma 3.1. Since G, (te, r0)=r?"G,((¢t/r)e, 0), (3.14) of
Lemma 3.1 implies that, for 0<t<p,
SZrH drgSGO(te, r6)q(r6)d.S(0)

t

= r(£) et qeorasofar

0
d+2 t 1 d-2
— ¢y ¢ Ro—d Sor +Bord- {Ssq(rﬁ)dS(ﬁ)} dr.
Let f (r)zrgsq(rﬁ)dS(ﬁ), which is defined almost everywhere and is locally
summable on (0, r, | by Fubini’s theorem. By (3.19),

t
limsup +# | 7 £(r) dr > 0.
t—0 0

Hence, by Lemma 3.2,

t—0

t
limsup ¢~ #-4+2 §0r1+ﬂo+d—2 {{ gc0ras}ar > o.
Thus we have (3.20).

CoroLLARY 1. If 08 satisfies the interior cone condition at &, € 02 and
if
q(x) = (| x—£ol)

for all x € C for a truncated circular cone C with vertex at &, such that CC £
and for a non-negative locally summable function ¢ on (0, ry ] such that

t
limsup ¢~# S P8 () dr >0
0

t—0

for some 3>0, then &, is g-irregular.
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CoroLLARY 2. If 02 satisfies the interior cone condition at &, € 02 and

of Uminf, ¢ ceclx—&o|*q(x)>0 for a truncated circular cone C with vertex
at &, such that CC 8, then &, is g-irregular.
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