K- and KO-Rings of the Lens Space $L^{n}\left(\boldsymbol{p}^{2}\right)$ for Odd Prime p

Toshihisa Kawaguchi and Masahiro Sugawara
(Received September 20, 1971)

§1. Introduction

In the previous note [4], the structures of the K - and $K O$-rings of the standard lens space $L^{n}(4)=S^{2 n+1} / Z_{4}$ are investigated, by considering the canonical complex line bundle and the non-trivial real line bundle over $L^{n}(4)$.

In this note, we shall study the ($2 n+1$)-dimensional standard lens space $\bmod p^{r}$:

$$
L^{n}\left(p^{r}\right)\left(=L^{n}\left(p^{r} ; 1, \ldots, 1\right)\right)=S^{2 n+1} / Z_{p^{r}},
$$

for prime p, by the similar methods to those which were used to determine the K - and $K O$-rings of $L^{n}(p)$ due to T. Kambe [3].

Let η be the canonical complex line bundle over $L^{n}\left(p^{r}\right)$, and

$$
\sigma=\eta-1 \epsilon \widetilde{K}\left(L^{n}\left(p^{r}\right)\right) \text { and } \bar{\sigma}=r \sigma \epsilon \widetilde{K O}\left(L^{n}\left(p^{r}\right)\right)
$$

be the stable class of η and the real restriction of σ. Then we have
Theorem 1.1. (i) Let p be a prime and $r \geqq 1$. Then, the order of the element σ^{k} of $\tilde{K}\left(L^{n}\left(p^{r}\right)\right)$ is equal to $p^{r+h}, h=[(n-k) /(p-1)]$, for $1 \leqq k \leqq n$; and $\sigma^{n+1}=0$.
(ii) Let p be an odd prime and $r \geqq 1$. Then, the order of the element $\bar{\sigma}^{k}$ of $\widetilde{K O}\left(L^{n}\left(p^{r}\right)\right)$ is equal to $p^{r+h^{\prime}}, h^{\prime}=[(n-2 k) /(p-1)]$, for $1 \leqq k \leqq[n / 2]$; and $\bar{\sigma}^{[n / 2]+1}=0$.

For the case $r=2$, the additive structures of $\tilde{K}\left(L^{n}\left(p^{2}\right)\right)$ for prime p and $\widetilde{K O}\left(L^{n}\left(p^{2}\right)\right)$ for odd prime p are determined as follows. Let

$$
\begin{equation*}
n-p^{i}+1=a_{i}\left(p^{i+1}-p^{i}\right)+b_{i} \quad\left(0 \leqq b_{i}<p^{i+1}-p^{i}\right) \quad \text { for } i=0,1, \tag{1.2}
\end{equation*}
$$

and consider the following elements of $\tilde{K}\left(L^{n}\left(p^{2}\right)\right)$:

$$
\begin{align*}
& \sigma=\eta-1, \quad \sigma(1)=\eta^{p}-1=(1+\sigma)^{p}-1, \\
& \sigma(1, k)=\left\{\begin{aligned}
\sigma(1) \sigma^{k}+ & p^{[(n-k) \mid p]} \sigma^{p+k} \\
& \left(\text { if } b_{1} \leqq k<b_{1}+p-1 \text { or } k<b_{1}-(p-1)^{2}\right) \\
\sigma(1) \sigma^{k} \quad & \text { (otherwise) },
\end{aligned}\right. \tag{1.3}
\end{align*}
$$

for $0 \leqq k \leqq \min \left(p^{2}-p-1, n-p\right)$. Then we have the following
Theorem 1.4. Let p be a prime. Then

$$
\tilde{K}\left(L^{n}\left(p^{2}\right)\right) \cong \sum_{k=1}^{m} Z_{t_{k}}, m=\min \left(p^{2}-1, n\right)(\text { direct sum }),
$$

where Z_{t} indicates a cyclic group of order t and

$$
t_{k}=\left\{\begin{array}{l}
p^{2-i+a_{i}}\left(\text { if } p^{i} \leqq k<p^{i}+b_{i}(i=0,1)\right) \tag{1.5}\\
p^{1-i+a_{i}}\left(\text { if } p^{i}+b_{i} \leqq k<p^{i+1}(i=0,1)\right)
\end{array}\right.
$$

Also, the k-th direct summand $Z_{t_{k}}$ is generated by the element

$$
\sigma^{k}(\text { if } 1 \leqq k<p), \quad \sigma(1, k-p)\left(\text { if } p \leqq k<p^{2}\right) .^{1)}
$$

Moreover, the ring structure of $\tilde{K}\left(L^{n}\left(p^{2}\right)\right)$ is given by

$$
\sigma^{p^{2}}=-\sum_{i=1}^{p^{2}-1}\binom{p^{2}}{i} \sigma^{i}, \quad \sigma^{n+1}=0 .
$$

Let $p=2 q+1$ be an odd prime, and consider the following elements of $\widetilde{K O}\left(L^{n}\left(p^{2}\right)\right):$

$$
\bar{\sigma}=r \sigma, \bar{\sigma}(1)=\sum_{i=1}^{q+1} \frac{p}{2 i-1}\binom{q+i-1}{2 i-2} \sigma^{i}
$$

(1.6) $\bar{\sigma}(1, k)= \begin{cases}\bar{\sigma}(1) \bar{\sigma}^{k}+ & p^{[(n-2 k-1) / \not \supset\rfloor} \bar{\sigma}^{q+k+1} \\ & \left.\text { (if }\left[b_{1} / 2\right] \leqq k<\left[b_{1} / 2\right]+q \text { or } k<\left[b_{1} / 2\right]-2 q^{2}\right) \\ \bar{\sigma}(1) \bar{\sigma}^{k} & \text { (otherwise), }\end{cases}$
for $0 \leqq k \leqq \min (p q-1,[n / 2]-q-1)$.
Theorem 1.7. Let $p=2 q+1$ be an odd prime. Then

$$
\widetilde{K O}\left(L^{n}\left(p^{2}\right)\right) \cong \begin{cases}\sum_{k=1}^{m^{\prime}} Z_{s_{k}} & (\text { if } n \neq 0 \bmod 4) \\ \sum_{k=1}^{m^{\prime}} Z_{s_{k}} \oplus Z_{2} & (\text { if } n \equiv 0 \bmod 4)\end{cases}
$$

where $m^{\prime}=\min (q(p+1),[n / 2])$ and $s_{k}=t_{2 k}$ (the number given by (1.5)). Also, the k-th summand $Z_{s_{k}}$ is generated by the element

$$
\bar{\sigma}^{k}(\text { if } 1 \leqq k \leqq q), \quad \bar{\sigma}(1, k-q-1)(\text { if } q<k \leqq q(p+1))
$$

[^0]Moreover, the ring structure of $\widetilde{K O}\left(L^{n}\left(p^{2}\right)\right)$ is given by

$$
\bar{\sigma}^{q(p+1)+1}=\sum_{i=1}^{q(p+1)}-\frac{p^{2}}{2 i-1}\binom{q(p+1)+i-1}{2 i-2} \bar{\sigma}^{i}, \quad \bar{\sigma}^{[n / 2\rceil+1}=0 .
$$

In §2, we prepare some known results of $\tilde{K}\left(L^{n}(m)\right)$ for any m ano $\widetilde{K O}\left(L^{n}(m)\right)$ for odd m. Th. 1.1 is proved in $\S 3$ by studying some relations or $\sigma^{k}(1 \leqq k \leqq n)$ by means of the two relations:

$$
(1+\sigma)^{p^{r}}=1 \text { and } \sigma^{n+1}=0 .
$$

Also we have a non-immersion (-embedding) theorem for $L^{n}\left(p^{r}\right)$ as a corollary (Cor. 3.6), by the methods of M. F. Atiyah [2].

In $\S 4$, we study some relations on $\sigma(1)^{l} \sigma^{k}$ and prove Th. 1.4. The proofs are based only on the above two relations and the known facts that $\tilde{K}\left(L^{n}(m)\right.$, contains exactly m^{n} elements. ${ }^{2)}$ Th. 1.7 is proved in $\S 5$, by making use of the $2 n$-skeleton $L_{0}^{n}(m)$ of the standard cell complex $L^{n}(m)$, and the complexifica. tion

$$
c: \widetilde{K O}\left(L_{0}^{n}(m)\right) \rightarrow \widetilde{K}\left(L_{0}^{n}(m)\right) \cong \widetilde{K}\left(L^{n}(m)\right)
$$

which is a monomorphism for odd m.

§2. Some results on $\tilde{\boldsymbol{K}}\left(\boldsymbol{L}^{\boldsymbol{n}}(\boldsymbol{m})\right)$ and $\widetilde{\boldsymbol{K} \boldsymbol{O}}\left(\boldsymbol{L}^{\boldsymbol{n}}(\boldsymbol{m})\right)$

The standard lens space $\bmod m$ is defined to be the orbit space:

$$
L^{n}(m)=S^{2 n+1} / Z_{m}, \quad n>1
$$

where the operation on $S^{2 n+1}$ of Z_{m} generated by γ is given by

$$
\gamma\left(z_{0}, z_{1}, \cdots, z_{n}\right)=\left(e^{2 \pi i / m} z_{0}, e^{2 \pi i / m} z_{1}, \ldots, e^{2 \pi i / m} z_{n}\right) .
$$

As is well known, $L^{n}(m)$ has a cell structure given by

$$
L^{n}(m)=e^{0} \cup e^{1} \cup \cdots \cup e^{2 n} \cup e^{2 n+1}
$$

and let $L_{0}^{n}(m)$ be the $2 n$-skeleton of this $C W$-complex:

$$
L_{0}^{n}(m)=e^{0} \cup e^{1} \cup \cdots \cup e^{2 n}
$$

then

[^1]\[

$$
\begin{equation*}
L_{0}^{n}(m) / L_{0}^{n-1}(m)=S^{2 n-1} \bigcup_{m} e^{2 n} \tag{2.1}
\end{equation*}
$$

\]

where the attaching map $m: S^{2 n-1} \rightarrow S^{2 n-1}$ means the map of degree m.
The following lemmas are proved by the same way as [3, §§2-3].
Lemma 2.2. (i)

$$
\tilde{K}\left(S^{2 n-1} \bigcup_{m} e^{2 n}\right) \cong Z_{m}
$$

and $\tilde{K}^{ \pm 1}\left(S^{2 n-1} \bigcup_{m} e^{2 n}\right)=0$. Also, the induced homomorphism

$$
\pi^{!}: \tilde{K}\left(S^{2 n}\right) \rightarrow \tilde{K}\left(S^{2 n-1} \bigcup_{m} e^{2 n}\right)
$$

is an epimorphism, where $\pi: S^{2 n-1} \bigcup_{m} e^{2 n} \rightarrow S^{2 n}$ is the projection collapsing $S^{2 n-1}$ to a point.
(ii) If m is an odd number, then

$$
\widetilde{K O}\left(S^{2 n-1} \bigcup_{m} e^{2 n}\right) \cong Z_{m}(\text { for even } n), \quad=0(\text { for odd } n) ;
$$

and the other results of (i) hold for $\widetilde{K O}$ instead of \widetilde{K}.
Proof. (i) In the Puppe exact sequence

$$
\cdots \rightarrow \tilde{K}^{-1}\left(S^{2 n-1}\right) \xrightarrow{\delta} \tilde{K}\left(S^{2 n}\right) \xrightarrow{\pi^{1}} \tilde{K}\left(S^{2 n-1} \bigcup_{m} e^{2 n}\right) \rightarrow \tilde{K}\left(S^{2 n-1}\right) \rightarrow \cdots,
$$

the boundary homomorphism $\delta: \widetilde{K}^{i}\left(S^{2 n-1}\right) \rightarrow \widetilde{K}^{i+1}\left(S^{2 n}\right) \cong \widetilde{K}^{i}\left(S^{2 n-1}\right)$ is equal to $m^{!}$, and $m^{!}(x)=m x$. Therefore, we have (i) since $\widetilde{K}\left(S^{i}\right) \cong Z$ (for even i) and $=0$ (for odd i). Similarly we have (ii) using the exact sequence for $\widetilde{K O}$, since $\widetilde{K O}\left(S^{i}\right) \cong Z($ for $i \equiv 0,4 \bmod 8), \cong Z_{2}($ for $i \equiv 1,2 \bmod 8)$ and $=0$ (otherwise). q.e.d.

Lemma 2.3. (i) The following sequence is exact:

$$
0 \rightarrow \tilde{K}\left(S^{2 n-1} \bigcup_{m} e^{2 n}\right) \rightarrow \tilde{K}\left(L_{0}^{n}(m)\right) \rightarrow \tilde{K}\left(L_{0}^{n-1}(m)\right) \rightarrow 0
$$

and $\tilde{K}\left(L_{0}^{n}(m)\right)$ contains exactly m^{n} elements. Also $\tilde{K}^{ \pm 1}\left(L_{0}^{n}(m)\right)=0$.
(ii) If m is odd, then $\widetilde{K O}\left(L_{0}^{n}(m)\right.$) contains exactly $m^{[n / 2]}$ elements, and $\widetilde{K O^{ \pm 1}}\left(L_{0}^{n}(m)\right)=0$.

Proof. Considering the Puppe exact sequence of (2.1), we can prove inductively the desired results by the above lemma.
q.e.d.

Lemma 2.4. Let $i: L_{0}^{n}(m) \rightarrow L^{n}(m)$ be the inclusion. Then

$$
\begin{equation*}
i^{!}: \widetilde{K}\left(L^{n}(m)\right) \cong \widetilde{K}\left(L_{0}^{n}(m)\right) \tag{i}
\end{equation*}
$$

(ii) If m is odd, then we have the following split exact sequence:

$$
0 \longrightarrow \widetilde{K O}\left(S^{2 n+1}\right) \longrightarrow \widetilde{K O}\left(L^{n}(m)\right) \xrightarrow{i^{\prime}} \widetilde{K O}\left(L_{0}^{n}(m)\right) \longrightarrow 0 .
$$

Proof. This lemma follows immediately from the above lemma and the Puppe exact sequence of $L^{n}(m) / L_{0}^{n}(m)=S^{2 n+1}$.

We shall identify the rings of (i) of the above by $i^{!}$, and denote the element of $\tilde{K}\left(L^{n}(m)\right)$ and its $i^{\text {! }}$-image by the same letter.

Let $C P^{n}=S^{2 n+1} / S^{1}$ be the n-dimensional complex projective space, and

$$
\pi: L^{n}(m) \rightarrow C P^{n} \text { and } \pi: L_{0}^{n}(m) \rightarrow C P^{n}
$$

be the natural projection and its restriction. Then, it is clear that the map $\pi:\left(L_{0}^{n}(m), L_{0}^{n-1}(m)\right) \rightarrow\left(C P^{n}, C P^{n-1}\right)$ induces the projection

$$
\pi: S^{2 n-1} \bigcup_{m} e^{2 n}=L_{0}^{n}(m) / L_{0}^{n-1}(m) \rightarrow C P^{n} / C P^{n-1}=S^{2 n}
$$

of Lemma 2.2.
Lemma 2.5. We have the following commutative diagram of the Puppe exact sequences:

where all of $\pi!$ are epimorphic.
Proof. The upper sequence is the Puppe sequence of $C P^{n} / C P^{n-1}=S^{2 n}$ (cf. [1, Th. 7.2]). Since $\pi^{!}$in the left is epimorphic by Lemma 2.2 (i), we see inductively that π ! in the middle is also epimorphic.
q.e.d.

Let η be the canonical complex line bundle over $C P^{n}$, and denote also by η the canonical complex line bundle $\pi^{!} \eta$ over $L^{n}(m)$ or $L_{0}^{n}(m)$, and by

$$
\sigma=\eta-1 \epsilon \tilde{K}\left(L^{n}(m)\right)=\tilde{K}\left(L_{0}^{n}(m)\right)
$$

the stable class of η. Then
Proposition 2.6. The ring $\tilde{K}\left(L^{n}(m)\right)$ is generated by σ and contains exactly m^{n} elements. Furthermore

$$
\begin{gather*}
(1+\sigma)^{m}=1 \tag{2.7}\\
\sigma^{n+1}=0 \tag{2.8}
\end{gather*}
$$

(2.9) The order of the element σ^{n} is equal to m.

Proof. (2.7) follows from the fact that the first Chern class $c_{1}\left(\eta^{m}\right)$ is equal to $m c_{1}(\eta)=0$ in $H^{2}\left(L^{n}(m)\right) \cong Z_{m}$.

The ring $\tilde{K}\left(C P^{n}\right)$ is generated by $\eta-1$ and $(\eta-1)^{n+1}=0$, and also the element $(\eta-1)^{n}$ generates the subgroup of $\tilde{K}\left(C P^{n}\right)$ which is the image of $\tilde{K}\left(S^{2 n}\right) \cong Z$ in the diagram of Lemma 2.5, (cf. [1, Th. 7.2]). Therefore we have the desired results by Lemmas 2.5 and 2.4 (i).
q.e.d.

Consider the complexification $c: \widetilde{K O}(X) \rightarrow \widetilde{K}(X)$ and the real restriction $r: \widetilde{K}(X) \rightarrow \widetilde{K O}(X)(c f .[1])$, and the element

$$
\begin{equation*}
\bar{\sigma}=r \sigma \epsilon \widetilde{K O}\left(L^{n}(m)\right) \text { or } \widetilde{K O}\left(L_{0}^{n}(m)\right) . \tag{2.10}
\end{equation*}
$$

Proposition 2.11. Let m be an odd number. Then

$$
\begin{equation*}
c: \widetilde{K O}\left(L_{0}^{n}(m)\right) \rightarrow \widetilde{K}\left(L_{0}^{n}(m)\right)=\widetilde{K}\left(L^{n}(m)\right) \tag{i}
\end{equation*}
$$

is a monomorphism. Also, the ring $\widetilde{K O}\left(L_{0}^{n}(m)\right)$ is generated by $\bar{\sigma}$ and contains exactly $m^{[n / 2]}$ elements, and it holds $\bar{\sigma}^{[n / 2]+1}=0$.

$$
\widetilde{K O}\left(L^{n}(m)\right) \cong\left\{\begin{array}{lr}
\widetilde{K O}\left(L_{0}^{n}(m)\right) & (\text { for } m \equiv 0 \bmod 4) \tag{ii}\\
\widetilde{K O}\left(L_{0}^{n}(m)\right) \oplus Z_{2}(\text { for } m \equiv 0 \bmod 4),
\end{array}\right.
$$

and the subring of $\widetilde{K O}\left(L^{n}(m)\right)$ generated by $\bar{\sigma}$ is isomorphic to $\widetilde{K O}\left(L_{0}^{n}(m)\right)$.
(iii) The following equality holds:

$$
\begin{equation*}
c \bar{\sigma}=\sigma^{2} /(1+\sigma)=\sigma^{2}-\sigma^{3}+\sigma^{4}-\cdots . \tag{2.12}
\end{equation*}
$$

Proof. (i) It is well-known that $r c=2$, and so this is isomorphic for $\widetilde{K O}\left(L_{0}^{n}(m)\right)$ by Lemma 2.3 (ii). Therefore c is monomorphic and r is epimorphic. We see $\sigma^{[n / 2]+1}=0$ by (iii) and (2.8). In the commutative diagram

$\pi^{!}$on the left side is epimorphic by Lemma 2.5, and hence $\pi^{!}$on the right is also so. Therefore we see the desired results because the ring $\widetilde{K O}\left(C P^{n}\right)$ is generated by $r(\eta-1)[6$, Th. (3.9)].
(ii) σ is of odd order by the above proposition, and so is $\sigma \epsilon \widetilde{K O}\left(L^{n}(m)\right)$. Therefore (ii) follows from (i) and Lemma 2.4 (ii).
(iii) This equality is well known since $\sigma+1=\eta$ is a complex line bundle (cf. [3, Lemma (3.5), ii)]). q.e.d.

§3. Proof of Theorem 1.1

Henceforth, we consider the case $m=p^{r}$ where p is a prime and $r \geqq 1$.

Let $B \in K\left(L^{n}\left(p^{r}\right)\right)$ be the element such that

$$
B=\sum_{i=1}^{p-1} \frac{1}{p^{r}}\binom{p^{r}}{i} \sigma^{i-1}=\sum_{i=1}^{p-1} \frac{1}{i}\binom{p^{r}-1}{i-1} \sigma^{i-1}
$$

then we have
Proposition 3.1. In $\tilde{K}\left(L^{n}\left(p^{r}\right)\right)$,

$$
\begin{align*}
p^{r-2+h}\left(p B \sigma^{k}+\sigma^{k+p-1}\right)=0 & \text { for } 1 \leqq k \leqq n-p+1 \tag{3.2}\\
p^{r+h} \sigma^{k}=0 & \text { for } 1 \leqq k \leqq n \tag{3.3}
\end{align*}
$$

where $h=[(n-k) /(p-1)] . \quad$ Furthermore,

$$
\begin{equation*}
p^{r-2+h} \sigma^{n-(h-1)(p-1)}=-p^{r-1+h} \sigma^{n-h(p-1)} \tag{3.4}
\end{equation*}
$$

for $n-h(p-1) \geqq 1, h>0$.
Proof. Multiplying σ^{k-1} to $(1+\sigma)^{p^{r}}-1=0$ of (2.7), we have

$$
\begin{equation*}
p^{r} B \sigma^{k}+\binom{p^{r}}{p} \sigma^{k+p-1}+\sum_{i=p+1}^{p r}\binom{p^{r}}{i} \sigma^{i+k-1}=0 \tag{}
\end{equation*}
$$

Since the constant term of B is 1 , this equality and $\sigma^{n+1}=0$ of (2.8) imply (3.3) for $k=n, n-1, \cdots, n-p+2$, i.e., for $h=0$.

Assume (3.3) inductively for $h<h_{0}$, and consider the case $h=h_{0}$. In the equality $\left({ }^{*}\right) \times p^{h-1}$,

$$
p^{h-1}\binom{p^{r}}{p} \sigma^{k+p-1}=p^{r-2+h}\binom{p^{r}-1}{p-1} \sigma^{k+p-1}=p^{r-2+h} \sigma^{k+p-1}
$$

because $\binom{p^{r}-1}{p-1} \equiv 1 \bmod p$ and $p^{r-1+h} \sigma^{k+p-1}=0$ by the inductive assumptions. Also, if $i=j p^{s}>p$ and $(j, p)=1$, then

$$
(p-1)(h-s)-(n-k-i+1) \geqq j p^{s}-(s+1)(p-1)>0
$$

and so $p^{h-1}\binom{p^{r}}{i} \sigma^{k+i-1}=0$ for $i>p$ by the inductive assumptions. Therefore, we have (3.2) for $h=h_{0}$, and so (3.3) for $h=h_{0}$ multiplying p to (3.2). Thus we have (3.2-3).

Consider (3.2) for $k=n-h(p-1)$, then we have

$$
p^{r-2+h} \sigma^{n-(h-1)(p-1)}=-p^{r-1+h} B \sigma^{n-h(p-1)}
$$

and so (3.4), since the constant term of B is equal to 1 and $p^{r-1+h} \sigma^{n-h(p-1)+i}=0$ for $i>0$ by (3.3).
q.e.d.

Remark. By the above proofs, we see that the above proposition follows
from (2.7) for $m=p^{r}$ and

$$
\begin{equation*}
p^{r-k} \sigma^{n+k}=0 \quad \text { for } 0<k \leqq r \tag{3.5}
\end{equation*}
$$

instead of (2.8).
Now, we are ready to prove Th. 1.1.
Proof of Theorem 1.1. (i) The order of σ^{k} is a power of p by Prop. 2.6 for $m=p^{r}$, and $p^{r+h} \sigma^{k}=0$ by (3.3). Assume $p^{r-1+h} \sigma^{k}=0$ for some $k \leqq n$. Then $p^{r-1+h} \sigma^{n-h(p-1)}=0$ since $n-h(p-1) \geqq k$, and hence $p^{r-1} \sigma^{n}=0$ by (3.4). This contradicts to (2.9) for $m=p^{r}$.
(ii) Since the complexification c is a ring homomorphism, we have

$$
c\left(\bar{\sigma}^{k}\right)=\sigma^{2 k} /(1+\sigma)^{k}
$$

by (2.12), and so the desired results by (i) and Prop. 2.11.
q.e.d.

Corollary 3.6. For an odd prime p and $r \geqq 1$, the lens space $L^{n}\left(p^{r}\right)$ cannot be immersed in the Euclidean space $R^{2 n+2 L\left(n, p^{r}\right)}$, and cannot be embedded in $R^{2 n+2 L\left(n, p^{r}\right)+1}$, where

$$
L\left(n, p^{r}\right)=\max \left\{i \mid i \leqq[n / 2],\binom{n+i}{i} \equiv 0 \bmod p^{r+[(n-2 i) /(p-1)]}\right\} .
$$

Proof. By the methods of M. F. Atiyah [2] using the r-operation of the stable tangent bundle, we have the desired results by taking

$$
L\left(n, p^{r}\right)=\max \left\{i \left\lvert\,\binom{ n+i}{i} \bar{\sigma}^{i} \neq 0\right.\right\}
$$

(cf. [4, Prop. 7.6]). This number is equal to the above one by (ii) of Th. 1.1.

§4. Proof of Theorem 1.4

Now, consider the following elements of $\tilde{K}\left(L^{n}\left(p^{r}\right)\right)$ if $n \geqq p$ and $r \geqq 2$:

$$
\begin{equation*}
\sigma(1)=\eta^{p}-1=(1+\sigma)^{p}-1=p A \sigma+\sigma^{p} \tag{4.1}
\end{equation*}
$$

where

$$
A=\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} \sigma^{i-1}=\sum_{i=1}^{p-1} \frac{1}{i}\binom{p-1}{i-1} \sigma^{i-1} .
$$

Then we have the following lemmas in $\tilde{K}\left(L^{n}\left(p^{r}\right)\right)$.
Lemma 4.2. Let $h=[(n-k) /(p-1)]$, then

$$
\begin{gather*}
p^{r-2+h}\left(p A \sigma^{k}+\sigma^{k+p-1}\right)=p^{r-2+h} \sigma(1) \sigma^{k-1}=0, \tag{4.3}\\
p^{r-2+h} \sigma^{k+p-1}=-p^{r-1+h} A \sigma^{k}, \tag{4.4}
\end{gather*}
$$

for $1 \leqq k \leqq n-p+1$; and

$$
\begin{equation*}
p^{r-1+h} \sigma^{k}=-p^{r-1+h+p} \sigma^{k-p(p-1)} \quad \text { for } p(p-1)<k \leqq n . \tag{4.5}
\end{equation*}
$$

Proof. Since $\frac{1}{i}\binom{p^{r}-1}{p-1} \equiv \frac{1}{i}\binom{p-1}{i-1} \bmod p \quad$ for $1 \leqq i<p$, we have (4.3-4) by Prop. 3.1 and the definitions of B and A. By (4.4),

$$
p^{r-1+h} \sigma^{k}=(-1)^{p} p^{r-1+h+p} A^{p} \sigma^{k-p(p-1)} .
$$

It is easy to see that the constant term of the integral polynomial A^{p} of σ is equal to 1 and the coefficient of σ^{i} is a multiple of p for $1 \leqq i<p-1$. Therefore, we have (4.5) using (3.3).
q.e.d.

Lemma 4.6. Let

$$
l_{k}=[(n+p-1-k) / p], \quad \text { i.e., } n \leqq p l_{k}+k \leqq n+p-1 \text {, }
$$

then we have

$$
p^{r-1-l} \sigma(1)^{l_{k}+l} \sigma^{k}=0 \quad \text { for } 0<l \leqq r-1 .
$$

Proof. In fact, the left hand side is equal to

$$
p^{r-1-l}\left(p A \sigma+\sigma^{p}\right)^{l^{\prime}} \sigma^{k}=\sum_{i=0}^{l^{\prime}}\binom{l^{\prime}}{i} A^{i} p^{r-l-1+i} \sigma^{p l^{\prime}+k-i(p-1)}, l^{\prime}=l_{k}+l,
$$

and each term of this summation is 0 by (3.3), since $\left[\left(n-\left(p l_{k}+p l+k\right)+\right.\right.$ $i(p-1)) /(p-1)\rfloor \leqq-l-1+i$ by the definition of l_{k}.
q.e.d.

By this lemma and the equality

$$
\begin{equation*}
\left((1+\sigma(1))^{p^{r-1}}-1\right) \sigma^{k}=0 \tag{4.7}
\end{equation*}
$$

which follows from (2.7) for $m=p^{r}$ and (4.1), we have the following
Proposition 4.8. Let $r \geqq 2$ and $n \geqq p$. In $\tilde{K}\left(L^{n}\left(p^{r}\right)\right)$,

$$
\begin{equation*}
p^{r-1+j} \sigma(1)^{l} \sigma^{k}=0, \quad j=[(n+p-1-p l-k) / p(p-1)], \tag{4.9}
\end{equation*}
$$

for $l \geqq 1, k \geqq 0$ and $j<r$.

$$
\begin{equation*}
p^{r-3+j} \sigma(1)^{l_{k}-(j-1)(p-1)} \sigma^{k}=-p^{r-2+j} \sigma(1)^{l_{k}-j(p-1)} \sigma^{k} \tag{4.10}
\end{equation*}
$$

for $l_{k}-j(p-1) \geqq 1$ and $j>0$, where l_{k} is the number defined in the above lemma.

Proof. We notice that j of (4.9) is equal to $\left[\left(l_{k}-l\right) /(p-1)\right]$. Then, we can prove (4.9-10) using the above lemma and (4.7), by the same methods to prove (3.3-4) using (3.5) and (2.7) for $m=p^{r}$, (cf. Remark after Prop. 3.1).
q.e.d.

Lemma 4.11. If $n<p l+k \leqq n+p-1$, then

$$
p^{r-2+j} \sigma(1)^{l-j(p-1)} \sigma^{k}=-p^{r-2+j p} \sigma^{p l+k-j p(p-1)}
$$

for $l-j(p-1) \geqq 1, j>0$.
Proof. By the definition of l_{k} in Lemma 4.6 and the assumption, we have $l=l_{k}$. Therefore,

$$
\begin{align*}
& p^{r-2+j} \sigma(1)^{l-j(p-1)} \sigma^{k}=(-1)^{j} p^{r-2} \sigma(1)^{l} \sigma^{k} \tag{4.10}\\
& =(-1)^{j} \sum_{i=0}^{l-1}\binom{l-1}{i} A^{i} p^{r-2+i} \sigma(1) \sigma^{p l+k-p-i(p-1)} \tag{4.1}\\
& =(-1)^{j} p^{r-2} \sigma(1) \sigma^{p l+k-p} \\
& =(-1)^{j} p^{r-1} A \sigma^{p l+k-p+1} \\
& =p^{r-1+j p} A \sigma^{p l+k-p+1-j p(p-1)} \\
& =-p^{r-2+j p} \sigma^{p l+k-j p(p-1)} \\
& \text { (by (4.3) and the assumption) } \\
& \text { (by the assumption and (2.8)) }
\end{align*}
$$

Remark. By the same proofs, we have the following equality for $j=0$:

$$
p^{r-2} \sigma(1)^{l} \sigma^{k}=p^{r-1} A \sigma^{p l+k-p+1}, \quad \text { if } n<p l+k \leqq n+p-1, l \geqq 1 .
$$

According to this lemma, we consider the following elements of (1.3):

$$
\sigma(1, k)= \begin{cases}\sigma(1) \sigma^{k}+p^{a_{1}(p-1)} \sigma^{p+k} & \left(\text { if } b_{1} \leqq k<b_{1}+p-1\right) \\ \sigma(1) \sigma^{k}+p^{\left(a_{1}+1\right)(p-1)} \sigma^{p+k} & \text { (if } \left.k<b_{1}-p^{2}+2 p-1\right) \\ \sigma(1) \sigma^{k} & \text { (otherwise), }\end{cases}
$$

for $0 \leqq k \leqq \min \left(p^{2}-p-1, n-p\right)$, where

$$
n-p+1=a_{1}\left(p^{2}-p\right)+b_{1}, \quad 0 \leqq b_{1}<p^{2}-p
$$

Lemma 4.12. $\quad t_{p+k} \sigma(1, k)=0$ in $\tilde{K}\left(L^{n}\left(p^{r}\right)\right)(r \geqq 2, n \geqq p)$, where

$$
t_{p+k}=p^{r+1+[(n-p-k) \mid p(p-1)]}=\left\{\begin{array}{l}
p^{r-1+a_{1}} \text { for } 0 \leqq k<b_{1} \\
p^{r-2+a_{1}} \text { for } b_{1} \leqq k<p^{2}-p
\end{array}\right.
$$

is the number of (1.5) if $r=2$.
Proof. For the case $b_{1} \leqq k<b_{1}+p-1$ or $k<b_{1}-p^{2}+2 p-1$, it holds

$$
n<p+j p(p-1)+k \leqq n+p-1
$$

where $j=[(n-p-k) / p(p-1)]+1=a_{1}$ or $a_{1}+1$, and $j>0$ since $k \leqq n-p<b_{1}$ if $a_{1}=0$. Thus we have the desired equality by the above lemma.

For the other cases, we have $[(n-p-k) / p(p-1)]=[(n-1-k) / p(p-1)]$, and so the desired equality by (4.9).
q.e.d.

Now, we are ready to prove Th. 1.4 which gives the additive structure of $\tilde{K}\left(L^{n}\left(p^{2}\right)\right)$.

Proof of Theorem 1.4. $\tilde{K}\left(L^{n}\left(p^{2}\right)\right)$ is generated additively by the elements $\sigma^{k}, 1 \leqq k \leqq \min \left(p^{2}-1, n\right)$, and the order of σ^{k} is a power of p, by Prop. 2.6 for $m=p^{2}$. On the other hand, the integral polynomial $\sigma(1, k-p)$ on σ is $\sum_{i=k-p+1}^{k} \alpha_{i} \sigma^{i}$ with $\alpha_{k}=1$ or $1+p^{j(p-1)}, j=a_{1}$ or $a_{1}+1$, and $j>0$ (cf. the proofs of the above lemma). Therefore, we see that $\tilde{K}\left(L^{n}\left(p^{2}\right)\right)$ is generated additively by the first n elements of

$$
\begin{equation*}
\sigma, \ldots, \sigma^{p-1}, \sigma(1,0), \ldots, \sigma\left(1, p^{2}-p-1\right) \tag{*}
\end{equation*}
$$

Hence, the number of the elements of $\tilde{K}\left(L^{n}\left(p^{2}\right)\right)\left(n \geqq p^{2}-1\right)$ is not larger than

$$
\left(p^{2+a_{0}}\right)^{b_{0}}\left(p^{1+a_{0}}\right)^{p-1-b_{0}}\left(p^{1+a_{1}}\right)^{b_{1}}\left(p^{a_{1}}\right)^{p(p-1)-b_{1}}=p^{2 n}
$$

by (3.3) and the above lemma for $r=2$, and is equal to $p^{2 n}$ by Prop. 2.6. Thus the theorem is proved for $n \geqq p^{2}-1$.

Similarly, we have the theorem for the case $n<p^{2}-1$ considering the first n elements of $\left(^{*}\right)$, since

$$
\begin{aligned}
& \left(p^{2+a_{0}}\right)^{b_{0}}\left(p^{1+a_{0}}\right)^{p-1-b_{0}}\left(p^{1+a_{1}}\right)^{b_{1}}=p^{2 n} \quad \text { if } p-1 \leqq n<p^{2}-1 \\
& \quad\left(p^{2+a_{0}}\right)^{b_{0}}=p^{2 n} \quad \text { if } n<p-1 .
\end{aligned}
$$

In connection to Th. 1.1 (i) and (4.9), we have
Proposition 4.13. The order of $\sigma(1)^{l} \sigma^{k}$ of $\widetilde{K}\left(L^{n}\left(p^{2}\right)\right)$ is equal to p^{1+j}, $j=$ $[(n+p-1-p l-k) / p(p-1)]$, for $l \geqq 1, k \geqq 0, p l+k<n+p ;$ and $\sigma(1)^{l} \sigma^{k}=0$ if $p l+k \geqq n+p$.

Proof. Assume $p^{j} \sigma(1)^{l} \sigma^{k}=0$ for some l and k. Since $k^{\prime}=n+p-1-$ $j p(p-1)-p l \geqq k$, we have $p^{j} \sigma(1)^{l} \sigma^{k^{\prime}}=0$. On the other hand,

$$
p^{j} \sigma(1)^{l} \sigma^{k^{\prime}}=-p^{j p} \sigma^{p l+k^{\prime}} \quad \text { if } j>0
$$

by Lemma 4.11 for $r=2$, and the order of $\sigma^{p l+k^{\prime}}$ is equal to $p^{j p+1}$ by Th. 1.1 (i), which is a contradiction. If $j=0$,

$$
\sigma(1)^{l} \sigma^{k^{\prime}}=p A \sigma^{p l+k^{\prime}-p+1}=p A \sigma^{n}=p \sigma^{n} \neq 0
$$

by Remark after Lemma 4.11 and Th. 1.1 (i) for $r=2$, which is a contradiction. Therefore, we have the desired results using (4.9) for $r=2$.
q.e.d.

Concerning with $L^{n}\left(p^{r}\right)(r \geqq 3)$, the above proofs based on Prop. 2.6, (3.3) and Lemma 4.12 are efficient for the special case $n<p^{2}$, and we have

Theorem 4.14. Let p be a prime, $r \geqq 3$ and $1 \leqq n<p^{2}$. Then

$$
\tilde{K}\left(L^{n}\left(p^{r}\right)\right) \cong \sum_{k=1}^{n} Z_{t_{k}} \quad(\text { direct sum })
$$

where $t_{k}=p^{r-1}$ if $p \leqq k \leqq n,=p^{r+[(n-k) /(p-1)]}$ if $1 \leqq k<p$. Also the k-th summand $Z_{t_{k}}$ is generated by

$$
\sigma^{k}(\text { if } 1 \leqq k<p), \quad \sigma(1, k-p)(\text { if } p \leqq k \leqq n)
$$

where $\sigma(1, k-p)$ is the element of (1.3), i.e.,

$$
\sigma(1, k-p)= \begin{cases}\sigma(1) \sigma^{k-p}+p^{p-1} \sigma^{k} & \text { if } \left.p \leqq k<n-p^{2}+2 p\right) \\ \sigma(1) \sigma^{k-p} & \left(\text { if } n-p^{2}+2 p<k \leqq n\right)\end{cases}
$$

§5. Proof of Theorem 1.7

Now, let $p=2 q+1$ be an odd prime.
Using the element $\bar{\sigma}=r \sigma$ of (2.10), we define the element

$$
\begin{equation*}
\bar{\sigma}(1)=\sum_{i=1}^{q+1} \frac{p}{2 i-1}\binom{q+i-1}{2 i-2} \bar{\sigma}^{i} \tag{5.1}
\end{equation*}
$$

of $\widetilde{K} O\left(L^{n}\left(p^{r}\right)\right)$ or $\widetilde{K O}\left(L_{0}^{n}\left(p^{r}\right)\right)$.
Lemma 5.2. For the complexification c,

$$
c \bar{\sigma}(1)=\left((1+\sigma)^{p}-1\right) \sigma /(1+\sigma)^{q+1}=\sigma(1) \sigma /(1+\sigma)^{q+1} .
$$

Proof. By (2.12),

$$
\begin{aligned}
c \bar{\sigma}(1) & =\sum_{i=1}^{q+1} \frac{p}{2 i-1}\binom{q+i-1}{2 i-2} \frac{\sigma^{2 i}}{(1+\sigma)^{i}} \\
& =\frac{1}{(1+\sigma)^{q+1}} \sum_{j=2}^{p+1}\left\{\sum_{i=1}^{j-1} \frac{p}{2 i-1}\binom{q+i-1}{2 i-2}\binom{q+1-i}{j-2 i}\right\} \sigma^{j} \\
& =\frac{1}{(1+\sigma)^{q+1}} \sum_{j=2}^{p+1} \frac{p}{j-1}\left\{\sum_{i=1}^{j-1}\binom{q+i-1}{j-2}\binom{j-1}{2 i-1}\right\} \sigma^{j}
\end{aligned}
$$

$$
=\frac{1}{(1+\sigma)^{q+1}} \sum_{j=2}^{p+1}\binom{p}{j-1} \sigma^{j}=\frac{\sigma(1) \sigma}{(1+\sigma)^{q+1}},
$$

using the lemma due to T. Kambe [3, Lemma (3.7)].
q.e.d.

Lemma 5.3. In $\widetilde{K O}\left(L_{0}^{n}\left(p^{2}\right)\right)$ and $\widetilde{K O}\left(L^{n}\left(p^{2}\right)\right)$, it holds

$$
\bar{\sigma}^{q(p+1)+1}=\sum_{i=1}^{q(p+1)}-\frac{p^{2}}{2 i-1}\binom{q(p+1)+i-1}{2 i-2} \bar{\sigma}^{i} .
$$

Proof. We can show that the c-image of the left hand side minus the right hand side is equal to $\left((1+\sigma)^{p^{2}}-1\right) \sigma /(1+\sigma)^{q(p+1)+1}$ similarly as the proofs of the above lemma. Thus we have the lemma by (2.7) and Prop. 2.11 for $m=p^{2}$.
q.e.d.

Proof of Theorem 1.7. By Prop. 2.11 and the above lemma, $\widetilde{K O}\left(L_{0}^{n}\left(p^{2}\right)\right)$ is generated additively by the elements $\bar{\sigma}^{k}, 1 \leqq k \leqq \min (q(p+1)$, [$n / 2]$), and the order of $\bar{\sigma}^{k}$ is a power of p. On the other hand $\bar{\sigma}(1, k-q-1)$ of (1.6) is $\sum_{i=k-q}^{k} \beta_{i} \bar{\sigma}^{i}$ with $\beta_{k}=1+p^{j(p-1)}, j=a_{1}$ or $a_{1}+1$, and $j>0$ by definition. Therefore, $\widetilde{K O}\left(L_{0}^{n}\left(p^{2}\right)\right)$ is generated additively by the first $[n / 2]$ elements of

$$
\bar{\sigma}, \cdots, \bar{\sigma}^{q}, \bar{\sigma}(1,0), \cdots, \bar{\sigma}(1, p q-1)
$$

Now, we see that

$$
c \bar{\sigma}(1, k)=\sigma(1,2 k+1) /(1+\sigma)^{q+k-1}
$$

by (2.12), Lemma 5.2 , (1.5) and (1.3), and hence the order of $\bar{\sigma}(1, k)$ is

$$
p^{1+a_{1}}\left(\text { if } 0 \leqq k<\left[b_{1} / 2\right]\right), \quad p^{a_{1}}\left(\text { if }\left[b_{1} / 2\right] \leqq k<p q\right),
$$

by Th. 1.4 and Prop. 2.11 (i). Also, the order of $\bar{\sigma}^{k}$ is equal to

$$
p^{2+a_{0}}\left(\text { if } 1 \leqq k \leqq\left[b_{0} / 2\right]\right), \quad p^{1+a_{0}}\left(\text { if }\left[b_{0} / 2\right]<k \leqq q\right)
$$

by Th. 1.1 (ii). Therefore, the theorem follows from these facts, Prop. 2.11 and

$$
\left(p^{2+a_{0}}\right)^{\left[b_{0} / 2\right]}\left(p^{1+a_{0}}\right)^{q-\left[b_{0} / 2\right]}\left(p^{1+a_{1}}\right)^{\left[b_{1} / 2\right]}\left(p^{a_{1}}\right)^{p q-\left[b_{1} / 2\right]}=p^{2[n / 2]}
$$

if $[n / 2] \geqq q(p+1)$,

$$
\left(p^{2+a_{0}}\right)^{\left[b_{0} / 2\right]}\left(p^{1+a_{0}}\right)^{q-\left[b_{0} / 2\right]}\left(p^{1+a_{1}}\right)^{\left[b_{1} / 2\right]}=p^{2\lceil n / 2]}
$$

if $q \leqq[n / 2]<q(p+1)$, and $\left(p^{2+a_{0}}\right)^{\left[b_{0} / 2\right]}=p^{2\lceil n / 2]}$ if $[n / 2]<q$, together with Lemma 5.3. q.e.d.

The following result follows immediately from Prop. 2.11, Lemma 5.2
and Prop. 4.13.
Proposition 5.4. For an odd prime p, the element $\bar{\sigma}(1)^{l} \bar{\sigma}^{k}$ of $\widetilde{K O}\left(L^{n}\left(p^{2}\right)\right)$ or $\widetilde{K O}\left(L_{0}^{n}\left(p^{2}\right)\right)$ is of order $p^{1+j}, j=\left[(n+p-1-(p l+l+2 k)) /\left(p^{2}-p\right)\right]$, for $l \geqq 1$, $k \geqq 0, p l+l+2 k<n+p$; and $\bar{\sigma}(1)^{l} \bar{\sigma}^{k}=0$ if $p l+l+2 k>n+p$.

We notice that the above proofs are valid for $L^{n}\left(p^{r}\right)(r \geqq 3)$ with $n<p^{2}$ according to Th. 4.14, and we have

Theorem 5.5. Let p be an odd prime, $p=2 q+1, r \geqq 3$ and $1 \leqq n<p^{2}$. Then

$$
\widetilde{K O}\left(L^{n}\left(p^{r}\right)\right) \cong \begin{cases}\sum_{k=1}^{[n / 2]} Z_{s_{k}} & (\text { if } n \neq 0 \bmod 4) \\ \sum_{k=1}^{[n / 2]} Z_{s_{k}} \oplus Z_{2} & (\text { if } n \equiv 0 \bmod 4),\end{cases}
$$

where $s_{k}=p^{r-1}$ if $q<k \leqq[n / 2]$ and

$$
s_{k}=t_{2 k}=p^{r+[(n-2 k) /(p-1)]} \quad \text { if } 1 \leqq k \leqq q .
$$

Also, the k-th summand $Z_{s_{k}}$ is generated by

$$
\bar{\sigma}^{k}(\text { if } 1 \leqq k \leqq q), \quad \bar{\sigma}(1, k-q-1)(\text { if } q<k \leqq[n / 2])
$$

where

$$
\bar{\sigma}(1, k-q-1)=\left\{\begin{array}{l}
\bar{\sigma}(1) \bar{\sigma}^{k-q-1}+p^{p-1} \sigma^{k}\left(\text { if } q<k \leqq\left[b_{1} / 2\right]-2 q^{2}+q\right) \\
\bar{\sigma}(1) \bar{\sigma}^{k-q-1}\left(\text { if }\left[b_{1} / 2\right]-2 q^{2}+q<k \leqq[n / 2]\right)
\end{array}\right.
$$

References

[1] J. F. Adams: Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
[2] M. F. Atiyah: Immersions and embeddings of manifolds, Topology, 1 (1962), 125-132.
[3] T. Kambe: The structure of K_{A}-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
[4] T. Kobayashi and M. Sugawara: K_{A}-rings of lens spaces $L^{n}(4)$, this journal, 253-271.
[5] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris, 271 (1970), 639-642.
[6] B. J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3), 14 (1964), 137-153.

Kurayoshi-Higashi Senior High School and
Department of Mathematics
Faculty of Science
Hiroshima University

[^0]: ${ }^{1)}$ We notice that these generators are slightly different from those in [4, Th. A] for $p=2$.

[^1]: 2) According to N . Mahammed [5], it is announced that $K\left(L^{n}(m)\right)=Z[\eta] /<(\eta-1)^{n+1}, \eta^{m}-1>$ for any m.
