Some Oscillation Criteria for nth Order Nonlinear Delay-Differential Equations

Hiroshi Onose

(Received September 2, 1971)

1. Introduction.

Let us consider the nth order nonlinear delay-differential equation

(1)
$$x^{(n)}(t) + \sum_{i=1}^{m} f_i(t) F_i(x_{d_{i,0}}(t), x'_{d_{i,1}}(t), \cdots, x^{(n-1)}_{d_{i,n-1}}(t)) = 0,$$

where

$$x_{d_{i,k}}^{(k)}(t) = x^{(k)}(t - d_{i,k}(t))$$

and the delays $d_{i,k}(t)$ are assumed to be continuous functions, nonnegative and bounded by some constant M on the half-line $[t_0, +\infty)$. In the special case where $d_{i,k}(t)=0$ for i=1, 2, ..., m, k=0, 1, ..., n-1, equation (1) clearly reduces to the ordinary differential equation

(2)
$$x^{(n)} + \sum_{i=1}^{m} f_i(t) F_i(x, x', \dots, x^{(n-1)}) = 0.$$

Let F be the family of solutions of (1) which are indefinitely continuable to the right. A solution x(t) in F is said to be oscillatory if it has no last zero, i, e., if $x(t_1)=0$ for some t_1 , then there exists some t_2 , $t_2>t_1$, for which $x(t_2)=0$; otherwise a solution in F is nonoscillatory.

The purpose of this paper is to investigate the oscillatory properties of (1), giving sufficient conditions that all solutions of (1) in F are oscillatory in the case where n is even and are oscillatory or monotone in the case where n is odd. Our results generalize to arbitrary $n \ge 2$ recent results of Staikos and Petsoulas [6] for the case n=2. It is to be noted that, still in the reduced case of the ordinary differential equation (2), our results improve previous results due to Kartsatos [1] and the present author [4], [5].

The author wishes to thank Professor T. Kusano for his interest in this work and for several helpful suggestions.

2. Oscillation Theorems.

We shall prove the following theorems.

THEOREM 1. Assume for equation (1) that

- (i) $f_i(t) \ge 0$ for every $t \in [t_0, \infty), i=1, 2, \dots, m$;
- (ii) $\operatorname{sgn} F_i(x_1, x_2, \dots, x_n) = \operatorname{sgn} x_1 \text{ and } F_i(-x_1, -x_2, \dots, -x_n) = -F(x_1, x_2, \dots, x_n) \text{ for every } (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, i=1, 2, \dots, m;$
- (iii) there is an index j such that
 - (a) $F_j(\lambda x_1, \lambda x_2, ..., \lambda x_n) = \lambda^{2p+1} F_j(x_1, x_2, ..., x_n)$ for every $(x_1, x_2, ..., x_n)$ $\in \mathbb{R}^n, \lambda \in \mathbb{R}$ and some integer $p \ge 0$;

(b)
$$\int_{t_0}^{\infty} f_j(t) dt = \infty$$
.

Then if n is even, each solution of (1) in F is oscillatory, while if n is odd, each solution in F is either oscillatory or tends monotonically to zero together with its first n-1 derivatives.

THEOREM 2. In addition to the hypotheses (i) and (ii) of Theorem 1, assume that

- (iii') there exists an index j such that
 - (a') for any $k, 2 \leq k \leq n$, and any $c \geq 0$ $\liminf_{x_{k-1} \to \infty, x_k \to c, x_{k+1} \to 0, \dots, x_n \to 0;$ (b') $\int_{-}^{\infty} f_j(t) dt = \infty.$

Then each solution of (1) in F is oscillatory when n is even, and each solution in F is either oscillatory or tends to zero together with its first n-1 derivatives when n is odd.

REMARK. Theorem 1 is a generalization of a recent result due to Staikos and Petsoulas for the case n=2 [6, Theorem 1]. When equation (1) is reduced to equation (2) it still generalizes the corresponding results that the author has established in [4] and [5]. Theorem 2 is an extension of a theorem of Kartsatos [1, Theorem 3] concerning oscillations of the equations of the form

 $x^{(2n)} + f(t)F(x, x') = 0.$

3. Proofs.

We begin by stating two lemmas which inform us of the possible behavior of a nonoscillatory function defined on the half-line $[t_0, \infty)$.

LEMMA 1. Suppose $\phi(t) \in C^n[t_0, \infty)$, $\phi(t) \ge 0$ and $\phi^{(n)}(t) \le 0$ on $[t_0, \infty)$. Then exactly one of the following is true:

(1) $\phi'(t), \dots, \phi^{(n-1)}(t)$ tend monotonically to zero as $t \to \infty$;

(11) there is an odd integer k, $1 \leq k \leq n-1$, such that $\lim_{t \to \infty} \phi^{(n-j)}(t) = 0$ for $1 \leq j \leq k-1$, $\lim_{t \to \infty} \phi^{(n-k)}(t) \geq 0$ (finite), $\lim_{t \to \infty} \phi^{(n-k-1)}(t) > 0$ and $\phi^{(t)}(t), \phi^{(t)}(t), \cdots, \phi^{(n-k-2)}(t)$ (t) tend to ∞ as $t \to \infty$.

For the proof we refer to the papers by Kiguradze [2, Lemma 1], Kneser [3, pp. 410, 418-419] and the author [4, p. 111], [5, p. 877].

LEMMA 2. Let $\phi(t)$ be a function such that $\phi \in C^n[t_0, \infty), \phi(t) > 0$ and $\phi^{(n)}(t) \leq 0$ on $[t_0, \infty)$, and let $d_i(t), i=0, 1, ..., n-1$, be continuous functions, nonnegative and bounded by some common constant M on $[t_0, \infty)$. Then

(3)
$$\lim_{t\to\infty}\frac{\phi^{(i)}(t-d_i(t))}{\phi(t-d_0(t))} = 0 \text{ for } 1 \leq i \leq n-1,$$

unless $\phi(t)$ and its first n-1 derivatives tend to zero as $t \rightarrow \infty$. The exceptional case may arise only when n is odd.

PROOF. Suppose that the case 1 of Lemma 1 holds. Then, as the proof of Lemma 1 shows, $\phi(t)$ is monotone non-decreasing or non-increasing on $[t_0, \infty)$ according as n is even or odd. Hence, noteing that $\phi^{(i)}(t-d_i(t)) \rightarrow 0$ as $t \rightarrow \infty$ for $1 \leq i \leq n-1$, the assertion follows unless $\lim_{t \to \infty} \phi(t) = 0$, which is possible only when n is odd.

Suppose now that the case 11 of Lemma 1 holds. It is clear that (3) is true for $n-k \leq i \leq n-1$. If $i \leq n-k-1$, $\phi^{(i)}(t)$ is (ultimately) non-decreasing, so that we have

(4)
$$0 \leq \lim_{t \to \infty} \frac{\phi^{(i)}(t - d_i(t))}{\phi(t - d_0(t))} \leq \lim_{t \to \infty} \frac{\phi^{(i)}(t)}{\phi(t - M)}.$$

By using L' Hospital' s rule we easily obtain

$$\lim_{t\to\infty}\frac{\phi^{(i)}(t)}{\phi(t-M)}=0 \text{ for } 1\leq i\leq n-k-1.$$

Thus it follows from (4) that (3) holds also for $1 \leq i \leq n-k-1$.

This completes the proof of the lemma.

PROOF OF THEOREM 1. Suppose (1) has a nonoscillatory solution x(t) in F. Since, by condition (ii), -x(t) is again a solution of (1), we can assume that x(t) > 0 for $t \ge t_1$, t_1 being sufficiently large. From (1),

$$x^{(n)}(t) = -\sum_{i=1}^{m} f_i(t) F_i(x_{d_{i,0}}(t), x'_{d_{i,1}}(t), \dots, x^{(n-1)}_{d_{i,n-1}}(t))$$

and so our hypotheses imply that $x^{(n)}(t) \leq 0$ for $t \geq t_2 \geq t_1 + M$.

If n is even, it follows from Lemma 2 that

(5)
$$\lim_{t\to\infty} \frac{x^{(i)}(t-d_{j,i}(t))}{x(t-d_{j,0}(t))} = 0 \text{ for } i=1, 2, \dots, n-1;$$

it is not difficult to see that

$$\lim_{t\to\infty}\frac{x(t-d_{j,0}(t))}{x(t)}=1.$$

Let $y = x^{(n-1)}/x$. Then, in view of the fact that x'(t) and $x^{(n-1)}(t)$ are ultimately nonnegative, we have

$$y'(t) = rac{x^{(n)}(t)}{x(t)} - rac{x'(t)x^{(n-1)}(t)}{x^2(t)} \leq rac{x^{(n)}(t)}{x(t)}$$

for $t \ge t_3 \ge \max(t_1 + M, t_2)$. Integrating the above inequality over $[t_3, t]$ and using (1), we have

(6)
$$y(t) - y(t_3) \leq -\int_{t_3}^t \frac{f_j(s)}{x(s)} F_j(x_{d_{j,0}}(s), x'_{d_{j,1}}(s), \dots, x^{(n-1)}_{d_{j,n-1}}(s)) ds$$

$$\leq - [x_{d_{j,0}}(t_3)]^{2p} \int_{t_3}^t f_j(s) \frac{x_{d_{j,0}}(s)}{x(s)} F_j \Big(1, \frac{x'_{d_{j,1}}(s)}{x_{d_{j,0}}(s)}, \dots, \frac{x^{(n-1)}_{d_{j,n-1}}(s)}{x_{d_{j,0}}(s)} \Big) ds,$$

where we have used condition (iii) (a) and the monotonicity of x(t). Using (iii) (b) and (5), we derive the contradiction $-y(t_3) \leq -\infty$ by letting $t \rightarrow \infty$ in (6).

This completes the theorem for the case of even n.

We now turn to the case where n is odd. Let x(t) be a nonoscillatory solution of (1) in F. The case I I of Lemma 1 is impossible for x(t), because the same argument as above leads to a contradiction. Suppose x(t) satisfies

(7)
$$\lim_{t\to\infty} x(t) = c > 0, \lim_{t\to\infty} x^{(i)}(t) = 0 \text{ for } 1 \leq i \leq n-1.$$

Integrating the inequality

$$x^{(n)}(t) \leq -f_j(t)F_j(x_{d_{j,0}}(t), x'_{d_{j,1}}(t), \cdots, x^{(n-1)}_{d_{j,n-1}}(t))$$

which follows from (1) over $[t^*, t]$ yields

(8)
$$x^{(n-1)}(t^*) - x^{(n-1)}(t) \ge \int_{t^*}^t f_j(s) F_j(x_{d_{j,0}}(s), x'_{d_{j,1}}(s), \cdots, x^{(n-1)}_{d_{j,n-1}}(s)) ds.$$

We see that

$$\lim_{t\to\infty} F_j(x_{d_{j,0}}(t), x'_{d_{j,1}}(t), \dots, x^{(n-1)}_{d_{j,n-1}}(t)) = F_j(c, 0, \dots, 0) > 0$$

and hence in view of (iii) (b)

174

$$\int_{t^*}^{\infty} f_j(s) F_j(x_{d_{j,0}}(s), x_{d_{j,1}}'(s), \cdots, x_{d_{j,n-1}}^{(n-1)}(s)) ds = \infty$$

If we let t tend to infinity in (8), we have the contradiction $x^{(n-1)}(t^*) \ge \infty$. Thus we can conclude that a nonoscillatory solution of (1) in F, if it exists, tends to zero together with its first n-1 derivatives as $t \to \infty$.

This finishes the proof of Theorem 1.

PROOF OF THEOREM 2. Suppose x(t) is a nonoscillatory solution of (1) in F. By condition (ii) we can assume that x(t)>0 for t sufficiently large, say $t \ge t_1$. From (1) we have

(9)
$$x^{(n)}(t) \leq -f_j(t)F_j(x_{d_{j,0}}(t), x'_{d_{j,1}}(t), \cdots, x^{(n-1)}_{d_{j,n-1}}(t)),$$

which implies $x^{(n)}(t) \leq 0$ for $t \geq t_2 = t_1 + M$.

An integration of (9) from t_2 to t and by Lemma 1, we have

(10)
$$x^{(n-1)}(t_2) \ge \int_{t_2}^t f_j(s) F_j(x_{d_{j,0}}(s), x'_{d_{j,1}}(s), \cdots, x^{(n-1)}_{d_{j,n-1}}(s)) \ ds$$

for $t \geq t_2$.

We distinguish two cases:

Case 1. There exists $k, 0 < k \le n-1$, such that $\lim_{t \to \infty} x^{(i)}(t) = \infty$ for $0 \le i \le k-1$, $\lim_{t \to \infty} x^{(k)} = c > 0$ and $\lim_{t \to \infty} x^{(i)}(t) = 0$ for $k+1 \le i \le n-1$. Then, because of (iii') (a'),

$$\lim_{t \to \infty} \inf F_j(x_{d_{j,0}}(t), x'_{d_{j,1}}(t), \cdots, x^{(n-1)}_{d_{j,n-1}}(t)) > \varepsilon$$

for some positive constant ε , so that there exists a $t_3 \geq t_2$ such that

 $F_j(x_{d_{j,0}}(t), x'_{d_{j,1}}(t), \cdots, x^{(n-1)}_{d_{j,n-1}}(t)) \geq \varepsilon$ for all $t \geq t_3$.

It is obvious that inequality (10) remains valid if we replace t_2 by t_3 . Thus we obtain

$$x^{(n-1)}(t_2) \geq \varepsilon \int_{t_3}^t f_j(s) ds,$$

and consequently $x^{(n-1)}(t_2) = \infty$, a contradiction.

Case 2.
$$\lim_{t\to\infty} x(t) = c > 0$$
 and $\lim_{t\to\infty} x^{(i)}(t) = 0$ for $1 \le i \le n-1$.

If $c < \infty$, then by the continuity of F_j , for any given positive ε with $\varepsilon < F_j(c, 0, \dots, 0)$ there is a $t_3 \ge t_2$ such that

$$F_j(x_{d_{j,0}}(t), x'_{d_{j,1}}(t), \cdots, x^{(n-1)}_{d_{j,n-1}}(t)) \ge F_j(c, 0, \cdots, 0) - \varepsilon \text{ for } t \ge t_3.$$

Then, from (10) with t_2 replace by t_3 , we find

Hiroshi Onose

$$x^{(n-1)}(t_2) \geq [F_j(c, 0, \dots, 0) - \varepsilon] \int_{t_3}^t f_j(s) ds$$
for $t \geq t_3$

which again leads to a contraciction. If $c = \infty$, then by (iii') (a') we have also a contradiction.

This completes the proof of Theorem 2.

References

- [1] A. G. Kartsatos, Some theorems on oscillation of certain nonlinear second-order ordinary differential equations, Arch. Math., 18 (1967), 425-429.
- [2] I. I. Kiguradze, Oscillation properties of solutions of certain ordinary differential equations, Soviet Math. Dokl., 3 (1962), 649-652.
- [3] A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann., **42** (1893), 409-435.
- [4] H. Onose, Oscillatory property of certain nonlinear ordinary differential equations, Proc. Japan Acad., 44 (1968), 110-113.
- [5] H. Onose, Oscillatory property of certain nonlinear ordinary differential equations II, Proc. Japan Acad., 44 (1968), 876-878.
- [6] V. A. Stakos and A. G. Petsoulas, Some oscillation criteria for second order nonlinear delaydifferential equations, J. Math. Anal. Appl., 30 (1970), 695-701.

Faculty of Engineering Ibaraki University Hitachi

176