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1. Introduction.

Let us consider the nth order nonlinear delay-differential equation

m

(1)

where

and the delays di>k(t) are assumed to be continuous functions, nonnegative
and bounded by some constant M on the half-line Cίo>+°°) I n the special
case where di>k(t) = O for i = l, 2, , m, A = 0, 1, • •, n — 1, equation (1) clearly
reduces to the ordinary differential equation

(2) *<"> Σ

Let F be the family of solutions of (1) which are indefinitely continuable
to the right. A solution x(t) in F is said to be oscillatory if it has no last
zero, i, e., if x(tι) = 0 for some tu then there exists some t2, t2>tu for which
χ(t^) = Q\ otherwise a solution in F is nonoscillatory.

The purpose of this paper is to investigate the oscillatory properties of
(1), giving sufficient conditions that all solutions of (1) in F are oscillatory in
the case where n is even and are oscillatory or monotone in the case where
n is odd. Our results generalize to arbitrary n^>2 recent results of Staikos
and Petsoulas [6] for the case n = 2. It is to be noted that, still in the reduced
case of the ordinary differential equation (2), our results improve previous
results due to Kartsatos [V] and the present author Q4], Q5].

The author wishes to thank Professor T. Kusano for his interest in
this work and for several helpful suggestions.

2. Oscillation Theorems.

We shall prove the following theorems.
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THEOREM 1. Assume for equation (1) that

(i) fiiO^Ofor every t e [_t0, <*>), ΐ = l, 2,..., m;
(ii) sgn Fi(xu x2, , *w) = sgn xx and Fi( — xu — χ2,- , — *«) =—F(xu

x29- 9 xn) for every (xu x29- 9 χn) e Rn, ΐ = l, 2, , τn;
(iii) there is an index j such that

(a) Fj(λxi,λx29 9 λxn) = λ2p+1Fj(xu x29 , xn) for every (xi9x2y, xn)
6 Rn, λe R and some integer p^>0

(b) \~fj(t)dt= oo.

Then if n is even, each solution of (1) in F is oscillatory, while if n is odd,
each solution in F is either oscillatory or tends monotonically to zero together
with its first n — 1 derivatives.

THEOREM 2. In addition to the hypotheses (i) and (ii) of Theorem 1, assu-
me that

(iiiQ there exists an index j such that
(a') for any k, 2^k^n, and any cJ>0

lim inf Fj(xu x2,- , χn)>0 or oo, as Λ;I->OO, ,

(bθ \~fj(t)dt = oo.

Then each solution of (1) in F is oscillatory when n is even, and each solution
in F is either oscillatory or tends to zero together with its first n — 1 derivatives
when n is odd.

REMARK. Theorem 1 is a generalization of a recent result due to Staikos
and Petsoulas for the case n = 2 [β, Theorem 1]. When equation (1) is re-
duced to equation (2) it still generalizes the corresponding results that the
author has established in [4] and [5J. Theorem 2 is an extension of a the-
orem of Kartsatos [1, Theorem 3J concerning oscillations of the equations of
the form

x(2n)+f(t)F(x,x') = 0.

3. Proofs.

We begin by stating two lemmas which inform us of the possible beha-
vior of a nonoscillatory function defined on the half-line \j0, oo).

LEMMA 1. Suppose φ(t) e Cn[_tQ, °o)? φ(t)~^>0 and φ(n)(t)^O on [><>, °°)
Then exactly one of the following is true:

(1) φf(t), - , φ{n~ι\t) tend monotonically to zero as ί->°o;

(11) there is an odd integer k, l<,k<;jι — l, such that lim φ(n~J\t) = O for

1 ^ / ^ - 1 , Mm φ(n~k)(t)^O (finite), \imφ(n-k-1\t)>0 andφ(t),φ\t)y. ,φ^n-k-2)

(t) tend to oo as t-^^o.
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For the proof we refer to the papers by Kiguradze Q2, Lemma 1], Kneser
[3, pp. 410, 418-419] and the author [4, p. I l l ] , [5, p. 877].

LEMMA 2. Let φ(t) be a function such that φ e Cn[_t0, co)5 φ(t)>0 and φ(n)

(OSSO on [jo, °°), and let df (ί), i = 0, 1, , n — 1, be continuous functions,
nonnegative and bounded by some common constant M on Qί0? °°) Then

(3) lim^-yff =0for l<i<Λ-l,
V J φ(td(t)) J = =

unless φ(t) and its first n — 1 derivatives tend to zero as ί—•oo. The exceptional
case may arise only when n is odd.

PROOF. Suppose that the case 1 of Lemma 1 holds. Then, as the proof
of Lemma 1 shows, φ(t) is monotone non-decreasing or non-increasing on [ j 0 ?

oo) according as n is even or odd. Hence, noteing that^ (0(ί —c?/(ί))->0 as £-•
oo for l<Lί<:n — 1, the assertion follows unless lim φ(t) = O, which is possible

only when n is odd.
Suppose now that the case 11 of Lemma 1 holds. It is clear that (3) is

true for n — k^ί^n — 1. If i<^n — k — 1, φ(i\t) is (ultimately) non-decreasing,
so that we have

(4) l i m < l i m -

By using L' HospitaΓ s rule we easily obtain

φ(t — M)

Thus it follows from (4) that (3) holds also for l<Lί<Ln-k-l.
This completes the proof of the lemma.

PROOF OF THEOREM 1. Suppose (1) has a nonoscillatory solution x(t) in
F. Since, by condition (ii), — x(t) is again a solution of (1), we can assume
that x(t)>0 for t^>tu tλ being sufficiently large. From (1),

and so our hypotheses imply that x(n\t)^0 for t^>t2^>tι
If n is even, it follows from Lemma 2 that

(5) lim "*}'-?'$$ =0 for i = l, 2,.., n-
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it is not difficult to see that

χ(t)

Let γ=x(n~1)/x. Then, in view of the fact that x'(t) and x{n~ι\t) are ulti-
mately nonnegative, we have

y w=- x{i) x2(t) ~ x(t)

for t^>t3^> max (tχ + M, t2). Integrating the above inequality over Qί35 ί]
and using (1), we have

(6) yiO-γih)^-^ Jψ-Fj(xd.Js), O X , *&--i(*)) ds

where we have used condition (iii) (a) and the monotonicity of x(t). Using
(iii) (b) and (5), we derive the contradiction — γ(t3)<^ — °o by letting t—>°°
in (6).
This completes the theorem for the case of even n.

We now turn to the case where n is odd. Let x(t) be a nonoscillatory
solution of (1) in F. The case I I of Lemma 1 is impossible for χ(t), because
the same argument as above leads to a contradiction. Suppose x(t) satisfies

(7) lim x(t) = c >0, lim x^\t) = § ίoτ l<,ί<,n-1.

Integrating the inequality

which follows from (1) over Qί*, f\ yields

(8) X^Kn-X^Kt)^ f^Fjix^s), x'djΛ(s)y; xfrZ
J t*

We see that

l im Fj(xdjt0(tl χf

djΛ(t)y.., xd»^1(t)) = Fj(c, 0 ?.. 5 0 ) > 0

and hence in view of (iii) (b)
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If we let t tend to infinity in (8), we have the contradiction
Thus we can conclude that a nonoscillatory solution of (1) in F, if it exists,
tends to zero together with its first n — 1 derivatives as ί->oo.

This finishes the proof of Theorem 1.

PROOF OF THEOREM 2. Suppose x(t) is a nonoscillatory solution of (1) in
F. By condition (ii) we can assume that x(t)>0 for t sufficiently large, say
ίΞ>£i. From (1) we have

(9)

which implies x(n)(t)<L0 for t^>t2 = tι
An integration of (9) from t2 to t and by Lemma 1, we have

do) x^-'Kh)^ Γ fj(.s)Fj(xdjtt(s), *;,»,. . . , *&-„-.(*))

for
We distinguish two cases:

Case 1. There exists k, Q<k^n — 1, such that lim x(i)(t) = oo for 0<?ί<^

k — 1, lim xik) = c>0 and lim x(i\t) = 0 for k + l^i<[n — l. Then, because of

(iiiO (aθΓ

lim inf Fj(xdjt0(t), ^ f l ( ί ) , , ̂ Γ«-i(

for some positive constant ε, so that there exists a t3^>t2 such that

FyO^.Ct), *;,r l(ί), , *i"--.(0)^e for all ί^ί3.

It is obvious that inequality (10) remains valid if we replace t2 by t3. Thus
we obtain

and consequently ^(w~1)(i2) = o o

? a contradiction.

Case 2. lim *(ί) = c>0 and lim * ( ί )(ί) = 0 for ^ ^

If c<oo5 then by the continuity of F,, for any given positive ε with ε<F/c,
0, , 0) there is a £3Ξ>£2 such that

Fj(χdj>Q(t\ *Syil(0,- , ^ir»-i(O)^iy(c, 0,.. , 0)-ε for ί^ί3.

Then, from (10) with t2 replace by t3, we find
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}(c,0,...,0)-ε]Γ/}0)^for
J ίq

which again leads to a contraciction. If c = oo? then by (iii') (a') we have
also a contradiction.

This completes the proof of Theorem 2.
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