HirosHIMA MATH. J.
2 (1972), 205-214

Pseudo-coalescent Classes of Lie Algebras

Osamu Maruo
(Received February 25, 1972)

Introduction

In the study of infinite-dimensional Lie algebras the concepts of sub-
ideals and coalescency seem to play a central role. A subalgebra of a Lie
algebra L is called a subideal of L it is a member of a finite series of sub-
algebras ending with L such that each member is an ideal of the following.
A class % of Lie algebras is called coalescent [4] if in any Lie algebra the
join of any pair of subideals belonging to ¥ is always a subideal belonging to
%X. B. Hartley has shown in [17] that the class of finite-dimensional nilpotent
Lie algebras and the class of finite-dimensional Lie algebras over a field of
characteristic 0 are coalescent. Furthermore, S. Tog6 has shown in [5] that
other eleven classes of Lie algebras, e.g., the class of finite-dimensional
solvable Lie algebras over a field of characteristic 0, are coalescent.

We shall introduce the new concepts, weak ideals and pseudo-coalescen-
cy. We call a subalgebra H of a Lie algebra L to be a weak ideal of L if
L(ad H)"c H for some n>0. Then any subideal of L is a weak ideal but not
conversely. We call a class ¥ of Lie algebras to be pseudo-coalescent if in
any Lie algebra the join of any pair of subideal and weak ideal belonging to
% is always a weak ideal belonging to . We may ask whether the results
for subideals and coalescency hold analogously for weak ideals and pseudo-
coalescency. The purpose of this paper is to investigate weak ideals and
pseudo-coalescency.

Some properties of weak ideals are given in Section 2. For a weak
ideal H of L, H® = /T\H ® and H°= AH ‘ are both characteristic ideals of L
1=0 i=1

(Theorem 2.2), which generalizes the results of E. Schenkman. If H and K
are weak ideals of L such that K idealizes H, then H+K is also a weak ideal
of L. In Section 3 we shall prove the pseudo-coalescency of the class of
finite-dimensional nilpotent Lie algebras over a field of characteristic 0
(Theorem 3.5). In Section 4 we show the three results on pseudo-coalescen-
cy which are analogous to three general theorems on coalescency in [5].
We prove the pseudo-coalescency of all the classes of Lie algebras stated in
[1, Theorems 2 and 5] and [5, Theorem 4.4 (Theorem 4.4). In Section 5
we show by example that a weak ideal is not necessarily a subideal.

The author would like to thank Professor Shigeaki Tog6 for his helpful
suggestions.
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1.

Throughout this paper we shall consider the Lie algebras over a field
@ which are not necessarily finite-dimensional and the characteristic of the
basic field @ will be arbitrary unless otherwise stated.

Let L be a Lie algebra over a field #. We write H<L if H is a sub-
algebra of L and H<L if H is an ideal of L. We denote by < Sy, ..., S,> the
subalgebra generated by subsets Si, ..., S, of L. We recall the definitions of
subideals and coalescency.

DerintTion 1.1. A subalgebra H of L is called an n-step subideal of L
and written H n-si L if there is a finite series of subalgebras

H=H0£H1_<_“'_<_Hn=L

such that H;<\H; ., (0<i < n). His called a subideal of L and written H si
L if it is an n-step subideal of L for some n.

DeriniTiON 1.2. A class X of Lie algebras over a field @ 1is called coales-
cent if H K si L and H, Ke X imply <H, K> st L, € X.

We shall now introduce the new notions corresponding to subideals and
coalescency, that is, weak ideals and pseudoc-coalescency.

Derinttion 1.3, We call a subalgebra H of L an n-step weak ideal of L
and write H n-wt L t+f L{ad H)"< H with n>0. We call H a weak ideal of L
and write Hwi L if it is an n-step weak ideal of L for some n.

Here H 1-wi L is equivalent to each of H 1-si L and H<JL. For n>2,
if H n-si L, then H n-wi L. But the converse does not hold in general, which
we shall show by example in Section 5.

DeriNiTION 1.4. A class X of Lie algebras over a field @ is called pseudo-
coalescent if H st L, K wi L and H, Ke X imply <H, K>wi L, € %.

We need the following classes of Lie algebras over @.

%: the class of finite-dimensional Lie algebras.

& : the class of finitely generated Lie algebras.

9 : the class of abelian Lie algebras.

9 : the class of nilpotent Lie algebras.

©&: the class of solvable Lie algebras.

L e if and only if <L implies H si L.

Le X if and only if H< L implies H< I.(H), where I;(H) is the idealizer
of Hin L.
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2.

In this section we shall show several results on weak ideals. As an
easy consequence of Definition 1.3, we have

Lemma 2.1. ) If Hwi L and K<L, then HN\K wi K.

2) If Hwi K and K wi L, then H wi L.

@) If Hwi L and KL, then H+ K wi L.

(4) Let f be a homomorphism of L onto a Lie algebre L. If H wi L, then
f(H) wi L. If Hwi L, then f*(H) wi L.

Proor. (1), (2) and (4) are obvious. If H n-wi L and K<L, then
Lead(H+K)'cL(ad H)"+ K< H+ K .
Hence H+ K n-wi L and (3) is proved.
If Hsi L, then it is known [2, 8] that H®= f\H“’ and H°= Z\H " are

i=0
characteristic ideals of L. We generalize this in the following

Tueorem 2.2. If H wi L, then H and H® are characteristic ideals of L.

Proor. Let M be the semi-direct sum L+ (L), where D(L) is the deri-
vation algebra of L. Assume that H n-wi L. Then, since LM, H (n+1)-wi
M. By induction we see that [ M, H* < M(ad ,,H)* for k>>1. Hence

(M, H")c[M, H""']c M(ad yH)" "' c H.
Therefore, by induction on & we have
(M, H*™ ) c H®, k>0.

It follows that [ M, H“ )< H®), that is, H®<JM. Thus H® is a characteris-
tic ideal of L. On the other hand, we can see by induction on % that

(M, H*"]cH!"  k>1.
Hence H* is characteristic in L. This completes the proof.
Lemma 23. If Hy K wi L and [H, K |C H, then H+ K wi L.

Proor. Let H n-wi L and K m-wt L for some n and m. If m=1, KL
and therefore H+ K wi L by Lemma 2.1. So we may assume that m>1.
Put iI=n(m—1)+1. Then

L(ad (H+K))'= ) L(ad NVy)-.-(ad N;)

where N; is either Hor K for i=1, 2,..., /. We shall consider
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M=L(ad N,)...(ad N)).

Let % be the number of N; which equals H and consider the two cases £ >n
and k<n.
The case k>>n: First we show that

L(adK)'(ad H)/(ad K) < L(ad H)’(ad K) < L(ad H)’ for j>1.

The first inclusion is obvious and the second inclusion follows by induction
on j, since we have

L(ad H)(adK)< L(ad H)'"Y(ad[H, K )+ L(ad H)’(ad K )(ad H)
cLadH) + Lad H)’~'(ad H)
=L(ad H).
Now owing to this formula we have
McL(adH)*c Had H)* "cH.
The case k<n: We then have either
M=L(ad N,)..-(ad N,_,)(ad K)™ or
M=L(ad Ny)...(ad N,)(ad K)"(ad H)(ad Ny msi2)---(ad N)).
Since K m-w1 L, in the first case we have
Mc L(@adK)"cK
and in the second case we have
McK(ad H)(@d Nyimy2)---(dN)S H.
Thus we conclude that L(ad(H+K))/cHUKCH+K and H+K wi L,
completing the proof.
3.

In this section we shall show the pseudo-coalescency of N for a field
@ of characteristic 0. This will be fundamental for showing the pseudo-
coalescency of other classes in Section 4.

We begin with

Lemma 8.1. If H K<L and [H, K]< H, then
(H+K)"CcH*+(H+K)(adK)" !, n=123, ...

Proor. We can prove this by induction on n. If n=1, the statement
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is obvious. Assume the case n=k—1, k>>2. Then
(H+K)*c[H*+(H+K)(@adK)* %, H+ K]
CH*+(H+K)(@adK)* '+ K(adK)*%(ad H)
CH*+(H+K)(@adK)* '+ H@ad K)**
=H*+(H+K)(adK)*'.
Hence we have the case n=Fk and the statement is proved.

Lemma 8.2. (1) If Kwi L and Ke N, then adK is a nil set of deriva-
tions of L.
@ If H<L,Kwi L, Ke% and [H, K]C H, then (H+K)/H? € N.

Proor. (1) Let K n-wi L and K”=(0). Then
Lad K)""™ 'cK(ad K)"'=K"=(0).

(2) Assume that H<L, H(adK)"cK, K"=(0) and [H, K] H. Then
by Lemma 3.1, we have

(H+K)"""C H*4+ (H+K)(ad K)"+™~1
CH*+KG@dK)" 14K
=H?.
Since H?<Q H+K, it follows that ((H+K)/H?)"*"=(0) and therefore (H+K)/
H? ¢ N, completing the proof.
Lemma 38. If H<L,Kwi L, H KeNR and [H, K< H, then H+K € 9.

Proor. By assumption H<JH+K and He N. Furthermore Lemma 3.2
tells us that (H+K)/H? e N. Therefore we conclude that H+ K € N.
If D is a nil derivation of L over a field of characteristic 0, then expD=

f} D"/n! is an automorphism of L. Let M be a subspace of L and S a subset
n=0

of the derivation algebra of L. We shall denote by M the smallest sub-
space of L containing M and invariant under S.

LemMA 3.4. Let @ be of characteristic 0. If M is a finite-dimensional
subspace of L and S is a finite-dimensional nil subspace of the derivation
algebra of L, then there exist automorphisms ay, s, ---, &, which are products
of finite number of elements exp D(D € S), such that

MS=3 M.

i=1
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For the proof, see B. Hartley [1, Corollary to Theorem 8]. We can now
show the following

Tueorem 3.5. Let @ be of characteristic 0. Then NNF 1s pseudo-
coalescent.

Proor. Assume that H n-si L, K wi L and H, K € "N\ for an arbitrary
Lie algebra L. We must show that J=<H, K> wi L, e RNE. If n=1,
then H< L and therefore H+K wi L, € "N\F by Lemmas 2.3 and 3.3. So we
may assume that n>1. Since adK is a finite-dimensional nil subspace of
D(L) by Lemma 3.2, it follows from Lemma 3.4 that

<H2dK>=<Ha1, . Ha">,

where «; is a product of finite number of elements exp(ad x)(x ¢ K). Evi-
dently H% si L and H% ¢ "N\ for each ;. Hence by the coalescency of
RNF (1, Theorem 27]) we have

<HY¥> si L, e RN .

Now J=K+ <H*( > and [<H"“X > K]lc<H*¥>. Hence we can use
Lemmas 2.3 and 3.3 to see that J wi L, € "NG.
Thus the theorem is proved.

CoroLLARY 3.6. Let @ be of characteristic 0. Then NNF, NNG, DNEG,
DING, ING and INGS are all equal. Therefore these classes are pseudo-
coalescent.

Proor. By Lemma 1 in [ 1] any subalgebra of a nilpotent Lie algebra
is its subideal, which shows that t<®. Obviously ©cJ Therefore we
have RNFSDNFSING and RNGDNG=JING.  Since NNS<F by
Lemma 1 in [1], we have RNF=NNGS. It is known [1, Corollary to
Theorem 4] that & is a class of locally nilpotent Lie algebras. Therefore
INGSNRNG, whence ING=NNG. This completes the proof.

4.

Let ¥ be any class of Lie algebras. Following the notations in [5] we
denote by %, the class of Lie algebras L such that L/L € X and by ¥, the
class of Lie algebras L such that L/L° ¢ X. Consider the operations getting
from X another classes X, &N\X, RNX, FNX, X,y and X,. Then S. Togo has
shown in [5] that the application of the above operations to % and M, NG
produces the classes §, SNF, NNF, By Boo RNHwyy ENFay (GNFw) @)
Ry NG, NN, SNN,NG, (N,NG)(,y and (ENN,NS)). We shall show at
the end of this section that these classes are pseudo-coalescent.

S. Togo [5] has shown three general theorems on coalescency. We here
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show similar results on pseudo-coalescency. We say that a class ¥ of
Lie algebras has the property (P) if L € ¥ and N<]L imply L/N¢€ %.

TueoreM 4.1. Let X be a class of Lie algebras over a field @ having the
property (P). If % is pseudo-coalescent, then so are X, and X,.

Proor. Assume that Hst L, Kwt L and H, K€ %X, Put J=<H, K>.
By Theorem 2.2, H”<]L and K> <]L. Hence I=H“+K“<L. By Lemma
2.1 we have (H+1I)/Isi L/T and (K+I)/Twit L/I. Since H/H®™ ¢ ¥ and
% has the property (P),

(H+ 1)/ I~H/(INH)~(H/H“)/((INH)/H®) € ¥ .

Similarly (K+1)/IcX. Since X is pseudo-coalescent, J/Twi L/I, ¢ X. It
follows from Lemma 2.1 that Jwi L. Since I<J“), J/J~J/I)/(J/I).
But J/I¢ % and X has the property (P). Therefore J/J € %, that is, J € ¥,,.
Thus %, is pseudo-coalescent.

The pseudo-coalescency of %, is similarly proved.

Tueorem 4.2. Let X be a class of Lie algebras over a field ® contained in
N, and having the property (P). If X and NNE are pseudo-coalescent, then so
18 SNX.

Proor. Let H si L, Kwi L and H, Ke @NX. Since % is pseudo-coales-
cent, J=<H,K> wi L, ¢X. To see the pseudo-coalescency of SN%, it
suffices to show that J e &. By Theorem 2.2 I=H*+K°<JL. It follows that
(H+I)/Isi L/Tand (K+1)/Iwi L/I. We have

(H+I)/I~H/(INH)>~(H/H*)/((INH)/H*).

Since XcN,, He N, and therefore H/H* e N. Hence (H+1)/IeN. Since %
has the property (P), it follows that (H+1I)/Ie€X. Similarly, (K+1)/I¢
NRNZE. Since NNX is pseudo-coalescent, J/Te RNX. But Ie¢&. Hence
J €. This completes the proof.

THrEOREM 4.3. Let X be a class of Lie algebras over a field & having the
property (P). If X and NNZX are pseudo-coalescent, then so is N(,yNX.

Proor. Let Hsi L, K wi L and H, K € R,,NX. Then J=<H, K> wi L,
¢ X since X is pseudo-coalescent. It suffices to show that JeN. Since
I=H®+K®L, we have (H+1)/Isi L/I and (K+1)/Iwi L/I. Since
H, K € Rt,yN¥ and ¥ has the property (P), it follows that (H+1)/I, (K+1)/I
€ NNX. Since NNZX is pseudo-coalescent, J/ITe "NE. But then J® I <L
J© for some n and therefore I=J“. It follows that Je N, completing
the proof.

By making use of these three theorems, we shall show the following
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theorem which is the analogue of Theorem 4.4 in [5] for the pseudo-coales-
cency case.

THEOREM 4.4. If @ is of characteristic 0, then the classes

%’ @m%a %m%, %(w)s %ma
(mm%)(w)a ®m%w9 (@m%m)(w)’ 9&(m)f\%,
NNG, BNARNG, RNB®)), (GNRNG),

are all pseudo-coalescent.
If @ is of arbitrary characteristic, any classes containing U, e.g., N, S, D
and ¥, are not pseudo-coalescent.

Proor. Let Hst L, Kwi L, H Ke§ (resp. N,NS) and J=<H, K>.
By Theorem 2.2 we have H°=H’</L and K*=K’<L for some p and q.
Therefore I=H°+K“<JL. We have (H+1)/Isi L/I,(K+1)/Iwi L/I and
(H+1)/I, (K+1)/Ie¢N"NE. Hence by Theorem 3.5, J/I wi L/I, € RNG.
Therefore Jwt L. Since I € ¥, we have J e § (resp. Since J/Te R, J" <IT<J*
for some m and therefore I=/7°. Hence Je N, whence Je N NE&.). Thus
% (resp. N,NG) is pseudo-coalescent.

% and NNF have obviously the property (P) and are pseudo-coalescent
by Theorem 3.5 and the first part of the proof. Hence by Theorem 4.1 F.,),
Fo and (NNF) . are pseudo-coalescent, and by Theorem 4.3 N,,N\F is pseudo-
ccalescent. FcN, and ¥ has the property (P). Hence by Theorem 4.2,
€N is pseudo-coalescent.

New we see that §, (resp. R,N®) has the property (P). In fact, let
L¢ g, (resp. N,NE) and NI L. Then (L/N)°*<]L/N by Theorem 2.2. There-
fore (L/N)*=M/N with M<1L. Since L/L® € (resp. ),

(L/N)/(L/N)* = L/M=(L/L*)/(M/L*) € § (resp. N),

that is, L/N €%, (resp. N,). It follows that ¥, (sesp. N,NS) has the pro-
perty (P), as desired.

Observing the facts that §,c N, and RNF, =NNG, it now follows from
Theorem 4.2 that €N§, is pseudo-coalecent. It is immediate that SN,
has the property (P). Therefore by Theorem 4.1 (€NF,)., is pseudo-coales-
cent. N, NG is pseudo-coalescent and has the property (P). Hence by
Theorem 4.1, (R,N\®),,, is pseudo-coalescent. Since N,NG and NNN,NG)
=NNF are pseudo-coalescent, so is SN\N,NG by Theorem 4.2. It follows
from Theorem 4.2 that (€NN,NG),,, is pseudo-coalescent.

It has been shown by I. Stewart [4, Theorem 12.17] that there exists a
Lie algebra L over any field @ such that 1) L is the semi-direct sum V+/J,
VAL, VNJ=(0); 2) Ve, J=<H, K> where H, K are abelian subalgebras
of L, H is infinite-dimensional and K is 1-dimensional; 3) H, K si L and
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J=I;(J). Then Hsi L, Kwi L and H, K€ . Suppose that Jwi L. Then
L(adJ)"<J for some n. It follows that L(adJ)" 'cI.(J)=J by 3). Con-
tinuing this procedure, we have LcI;(J)=J, which is a contradiction.
Hence J is not a weak ideal of L. Thus this example shows that any class
containing 9 is not pseudo-coalescent.

Thus the theorem is completely proved.

We remark that if @ is of characteristic p, then any classes containing
ANG, e.g., all the classes in Theorem 4.4, are not pseudo-coalescent. In fact,
let 4 be a p-dimensional abelian Lie algebra over a field @ of characteristic
p with a basis e, e1, ---, €,-1. We consider linear transformations of 4:

x:ei — e, ep1 — 0 (i=0,1, ..., p—2)
y: 30~—’0, e; ——lej_1 (lzl, 2, ,P—l)
zie; — e (i=0,1, ..., p—1).

Then Q=(x, y, z) is a nilpotent Lie algebra over @. Let L be the semi-direct
sum A+ Q (see B. Hartley [17]). Since

(x)<](e,b713 x)< (eﬁ~25 €p-1y x)<] 4A_l_(x)<]f4+(xa Z)<]L,

H=(x) st L. Since L(ad y)?*?*=(0), K=(y) wi L. However, their join <H,
K> =Q, which contains z, is its own idealizer in L. Therefore <H, K> is
not a weak ideal of L. Thus any class containing AN is not pseudo-
coalescent.

5.

In Section 1, we noted that a weak ideal is not necessarily a subideal.
We show it by example. Let L be a 3-dimensional simple Lie algebra over
a field of characteristic =2, with a basis «x, y, z such that

[x) z]:2x> [}’, Z]:—z% [xa y]:Z .

Let H=(x). Then it is immediate that A 2-w¢ L. But H is not a subideal
of L, since L has no non-zero proper ideals.

Another kind of coalescency of a class X of Lie algebras might be de-
fined by the condition that in any Lie algebra the join of a pair of weak
ideals belonging to X is always a weak ideal belonging to ¥. However, this
is not interesting for us. Because the join of two 1-dimensional weak ideals
may be even simple which is shown as follows. Let L be the Lie algebra
stated above. Then H=(x) and K=(y) are both abelian weak ideals of L.
Since <H, K>=L, <H, K> wi L and < H, K> is simple.
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