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Introduction

In the study of infinite-dimensional Lie algebras the concepts of sub-
ideals and coalescency seem to play a central role. A subalgebra of a Lie
algebra L is called a subideal of L it is a member of a finite series of sub-
algebras ending with L such that each member is an ideal of the following.
A class X of Lie algebras is called coalescent [4] if in any Lie algebra the
join of any pair of subideals belonging to X is always a subideal belonging to
X. B. Hartley has shown in [IT] that the class of finite-dimensional nilpotent
Lie algebras and the class of finite-dimensional Lie algebras over a field of
characteristic 0 are coalescent. Furthermore, S. Togo has shown in [_5Γ\ that
other eleven classes of Lie algebras, e.g., the class of finite-dimensional
solvable Lie algebras over a field of characteristic 0, are coalescent.

We shall introduce the new concepts, weak ideals and pseudo-coalescen-
cy. We call a subalgebra H of a Lie algebra I to be a weak ideal of L if
L(&dH)n^Hΐor some n>0. Then any subideal of I is a weak ideal but not
conversely. We call a class X of Lie algebras to be pseudo-coalescent if in
any Lie algebra the join of any pair of subideal and weak ideal belonging to
X is always a weak ideal belonging to X. We may ask whether the results
for subideals and coalescency hold analogously for weak ideals and pseudo-
coalescency. The purpose of this paper is to investigate weak ideals and
pseudo-coalescency.

Some properties of weak ideals are given in Section 2. For a weak

ideal Hoi L, H(ω)=f\H(i) and Hω=Γ\Hi are both characteristic ideals of L
ί = 0 ί = l

(Theorem 2.2), which generalizes the results of E. Schenkman. If H and K
are weak ideals of L such that K idealizes H, then H+K is also a weak ideal
of L. In Section 3 we shall prove the pseudo-coalescency of the class of
finite-dimensional nilpotent Lie algebras over a field of characteristic 0
(Theorem 3.5). In Section 4 we show the three results on pseudo-coalescen-
cy which are analogous to three general theorems on coalescency in [5J.
We prove the pseudo-coalescency of all the classes of Lie algebras stated in
[1, Theorems 2 and 5] and [5, Theorem 4.4] (Theorem 4.4). In Section 5
we show by example that a weak ideal is not necessarily a subideal.

The author would like to thank Professor Shigeaki Togo for his helpful
suggestions.
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1.

Throughout this paper we shall consider the Lie algebras over a field
Φ which are not necessarily finite-dimensional and the characteristic of the
basic field Φ will be arbitrary unless otherwise stated.

Let L be a Lie algebra over a field Φ. We write H<L if H is a sub-
algebra of L and H<\ L if H is an ideal of L. We denote by < Si, , Sn > the
subalgebra generated by subsets Si, •••, Sn of L. We recall the definitions of
subideals and coalescency.

DEFINITION 1.1. A suhalgebra H of L is called an n-step subideal of L
and written H n-si L if there is a finite series of subalgebras

H=H0<H1< <Hn = L

such that Hi<\Hi+ι ( 0 < i < n). H is called a subideal of L and written H si
L if it is an n-step subideal of L for some n.

DEFINITION 1.2. A class 3c of Lie algebras over a field Φ is called coales-
cent if H, K si L and H, Ke X imply <ϋΓ, K> si L, e X.

We shall now introduce the new notions corresponding to subideals and
coalescency, that is, weak ideals and pseudo-coalescency.

DEFINITION 1.3. We call a subalgebra H of L an n-step weak ideal of L
and write H n-wi L if L(a,dH)n<^H with n>0. We call H a weak ideal of L
and write H wi L if it is an n-step weak ideal of L for some n.

Here Hl-wi L is equivalent to each of Hl-si L and H<\L. For
if H n-si L, then H n-wi L. But the converse does not hold in general, which
we shall show by example in Section 5.

DEFINITION 1.4. A class 36 of Lie algebras over a field Φ is called pseudo-
coalescent if H si L, K wi L and ϋΓ, Keϋ imply <H, K>wi L, e ϊ .

We need the following classes of Lie algebras over Φ.
^ : the class of finite-dimensional Lie algebras.
®: the class of finitely generated Lie algebras.
31: the class of abelian Lie algebras.
9ΐ: the class of nilpotent Lie algebras.
©: the class of solvable Lie algebras.
L e ® if and only if H<^L implies H si L.
L e $ if and only if H<L implies H< IL(H)9 where IL(H) is the idealizer

of HinL.
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2.

In this section we shall show several results on weak ideals. As an
easy consequence of Definition 1.3, we have

LEMMA 2.1. (1) If H wi L and K<L, then HΓ\K wi K.
(2) // H wi K and K wi L, then H wi L.
(3) If Hwi L and K<\ L, then H+ K wi L.
(4) Let f be a homomorphism of L onto a Lie algebra I. If H wi L, then

f(H) wi L. If H wi I, then f~\H) wi L.

PROOF. (1), (2) and (4) are obvious. If H n-wί L and K<] L, then

Hence H+K n-wi L and (3) is proved.

If Hsi L, then it is known [2, 3] that H(ω)=Γ\H{i) and Hω=f\Hi are
i=0 i=l

characteristic ideals of L. We generalize this in the following

THEOREM 2.2. // H wi L, then H(ω) and Hω are characteristic ideals of L.

PROOF. Let M be the semi-direct sum Z + S(Z), where ®(X) is the deri-
vation algebra of L. Assume that H n-wi L. Then, since L<\M, H (n + l)-wi
M. By induction we see that [_M, Hk~}<^M(&άMH)k for &>1. Hence

[M, # ( w ) ]

Therefore, by induction on k we have

k>0.

It follows that [_M, H(ω)J^H(ω\ that is, H(ω)<]M. Thus H(ω) is a characteris-
tic ideal of L. On the other hand, we can see by induction on k that

Hence Hω is characteristic in L. This completes the proof.

LEMMA 2.3. If H, K wi L and [77, K~]cH, then H+K wi L.

PROOF. Let H n-wi L and K m-wi L for some n and m. If m = l, K<\L
and therefore H+K wi L by Lemma 2.1. So we may assume that m>l.
Put l = n(m-l) + l. Then

where N{ is either Hor K for i = l, 2, .., I. We shall consider
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Λf=Z(adJVi)...(adiVi).

Let k be the number of N{ which equals H and consider the two cases k > n
and k<n.

The case k > n: First we show that

for ; > 1 .

The first inclusion is obvious and the second inclusion follows by induction
on /, since we have

Now owing to this formula we have

I c L(ad Hf^ #(ad Hf~n c H.

The case λ< τι: We then have either

M= L(ad 7Vχ) (ad iV,_w)(ad K)m or

Since K m-wi L, in the first case we have

and in the second case we have

Thus we conclude that L(β,d(H+K))ι<^H\jK<^H+K and H+KwiL,
completing the proof.

3.

In this section we shall show the pseudo-coalescency of 31 Γ\^ for a field
Φ of characteristic 0. This will be fundamental for showing the pseudo-
coalescency of other classes in Section 4.

We begin with

LEMMA 3.1. // H, K<L and [#, K~] cH, then

(H+K)n^H2 + (H+KXadK)n-\ n = l, 2, 3, ....

PROOF. We can prove this by induction on n. If n = l, the statement
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is obvious. Assume the case n — k — 1, k ]>2. Then

Hence we have the case n = k and the statement is proved.

LEMMA 3.2. (1) IfKwiL and Ke sJί, then adK is a nil set of deriva-
tions of L.

(2) // H< L,KwiL,Ke 5R and [ # , K~] c H, then (H+ K)/H2 e SSI.

PROOF. (1) Let K n-wi L and Km = (0). Then

(2) Assume that H<L, H(adK)n^K, Km = (0) and [_H, KJςzH. Then
by Lemma 3.1, we have

n+m c i72 + (5"+ js:)(ad ^ ) w + w - χ

Since H2<]H+K, it follows that ((H+K)/H2)n+m = (0) and therefore (H+K)/
H2 e % completing the proof.

LEMMA 3.3. // H<L, K wi L, H, K e%l and [H, KJ c H, then H+K em.

PROOF. By assumption H<\H+K and He<il. Furthermore Lemma 3.2
tells us that (H+K)/H2 e 5K. Therefore we conclude that H+KeW.

If D is a nil derivation of Z over a field of characteristic 0, then expD =
oo

Σ Dn/n\ is an automorphism of L. Let M be a subspace of L and 5 a subset
n = 0

of the derivation algebra of L. We shall denote by Ms the smallest sub-
space of L containing M and invariant under S.

LEMMA 3.4. Let Φ be of characteristic 0. If M is a finite-dimensional
subspace of L and S is a finite-dimensional nil subspace of the derivation
algebra of L, then there exist automorphisms au a2, ••-,#» which are products
of finite number of elements expD(D e 5), such that

Σ
ί = l
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For the proof, see B. Hartley [1, Corollary to Theorem 3]. We can now
show the following

THEOREM 3.5. Let Φ be of characteristic 0. Then 9ΐng is pseudo-
coalescent.

PROOF. Assume that H n-si L, K wi L and H, Ke sJing for an arbitrary
Lie algebra L. We must show that J—<H,K> wi L, e 5Jϊn^. If n = l,
then #<] L and therefore H+K wi L, e 5ftn^ by Lemmas 2.3 and 3.3. So we
may assume that n>l. Since adi£ is a finite-dimensional nil subspace of

by Lemma 3.2, it follows from Lemma 3.4 that

where a{ is a product of finite number of elements exp(adx)(x c K). Evi-
dently HΛi si L and Haί c ΨcΓλ^ for each i. Hence by the coalescency of
yiΓ\% ([1, Theorem 2]) we have

<H*dκ> siL, ef5Jίng.

Now J=K+<H*dκ> and [ < # a d i Γ > , £]cz <H*άκ>. Hence we can use
Lemmas 2.3 and 3.3 to see that J wi L, e

Thus the theorem is proved.

COROLLARY 3.6. Let Φ be of characteristic 0. Then
®Γ\@, $^f? cind ̂ sίλ® are all equal. Therefore these classes are pseudo-
coalescent.

PROOF. By Lemma 1 in [V] any subalgebra of a nilpotent Lie algebra
is its subideal, which shows that 9?c®. Obviously ®Q$. Therefore we
have 9fίngc®ngc$Λf$ and 9?n@<=2)n©c$n@. Since 5ftΛ©cg by
Lemma 1 in [1], we have 9ίn^=3iΛ@. It is known Ql, Corollary to
Theorem 4] that ^ is a class of locally nilpotent Lie algebras. Therefore
$n©e3fin©? whence $Λ©=9^Λ®. This completes the proof.

4.

Let X be any class of Lie algebras. Following the notations in [5] we
denote by 3c(ω) the class of Lie algebras L such that L/L(ω) e 36 and by χω the
class of Lie algebras L such that L/Lω e X. Consider the operations getting
from X another classes X, ΘnX, $ftnX? $nX, X(ω) and Xω. Then S. Togo has
shown in [5] that the application of the above operations to % and
produces the classes & ©ng, 9?ng, g(β), &,, (5Rng)(ω), @Λgω5

^(ω)Πg5

 sJ^n©, ©n^ωΛ© 3 (
sJϊωn©)(ω) and (@n9ΐωn@)(ω). We shall show at

the end of this section that these classes are pseudo-coalescent.
S. Togo [5] has shown three general theorems on coalescency. We here
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show similar results on pseudo-coalescency. We say that a class X of
Lie algebras has the property (P) if L e X and N<\ L imply L/Ne X.

THEOREM 4.1. Let H be a class of Lie algebras over a field Φ having the
property (P). // X is pseudo-coalescent, then so are X(ω) and Xω.

PROOF. Assume that H si L, K wi L and H, X"e X(ω). Put / = <H, K>.
By Theorem 2.2, # ( ω )<] L and K(ω)<3 L. Hence I=H(ω) + K(ω)<\ L. By Lemma
2.1 we have (H+ I)/1 si L/I and (K+ I)/1 wi L/L Since H/H^ e X and
36 has the property (P),

(H+ I)/I~H/(I(ΛH)~(H/HM)/((IΓ\H)/HM) e X .

Similarly (K+I)/IeTί. Since X is pseudo-coalescent, J/IwiL/I, e l It
follows from Lemma 2.1 that J wi L. Since I<J(ω\ J/J(ω)~(J/I)/(J(ω)/I)
But J/Ie 3t and 3c has the property (P). Therefore /// ( ω ) e ϊ , that is, Je ϊ ( ω ) .
Thus ϊ ( ω ) is pseudo-coalescent.

The pseudo-coalescency of 3cω is similarly proved.

THEOREM 4.2. Let ϋbe a class of Lie algebras over a field Φ contained in
sJίω and having the property (P). // H and 5JΪΛΪ are pseudo-coalescent, then so
is (?nϊ.

PROOF. Let H si L, K wi L and H, Ke @ n ϊ . Since X is pseudo-coales-
cent, J=<H, K> wi L, e 36. To see the pseudo-coalescency of @nϊ , it
suffices to show that Je @. By Theorem 2.2 I=Hω + Kω<\ L. It follows that
( # + / ) / / si Z,/7 and (K+1)/1 wi L/L We have

(H+ I)/1- H/(IΓ\H) - (H/Hω)/((IΓ\H)/Hω).

Since 3cc5Rω3 # e yiω and therefore fl/.ff01 e 5Jί. Hence (fl"+ 7)//e 5TC. Since ϊ
has the property (P), it follows that (H+I)/Ieϋ. Similarly, (K+I)/Ie
9^n3£. Since 2?nX is pseudo-coalescent, J/l€%lΓ\X. But 7e©. Hence
/ e @. This completes the proof.

THEOREM 4.3. Let 36 be a class of Lie algebras over a field Φ having the
property (P). If X and ̂ Λ ϊ are pseudo-coalescent, then so is 5R

PROOF. Let Hsi L, K wi L and H, Ke ^(ω)Λ36. Then / = <H, K> wi L,
e 36 since X is pseudo-coalescent. It suffices to show that / e 5R(ω). Since
I=H(ω) + K^<]L, we have (#+ /)/"/si L/I and (K+I)/IwiL/L Since
#, l e Ή(ω)n36 and X has the property (P), it follows that (H+I)/I, (K+I)/I
6 9ΪΛX. Since 9ίnX is pseudo-coalescent, J/IeWrML. But then I(n)^I<

jr(ω) for s o m e Λ a n ( j therefore I=J(ω\ It follows that / 6 9ί(ω), completing
the proof.

By making use of these three theorems, we shall show the following
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theorem which is the analogue of Theorem 4.4 in [5] for the pseudo-coales-
cency case.

THEOREM 4.4. // Φ is of characteristic 0, then the classes

g, © n g , 9?ng, g(ω)5 gω,

ω, (@ngω) ( ω ), Ή ( ω )

are aίί pseudo-coalescent.
If Φ is of arbitrary characteristic, any classes containing §1, e.g., % ©,

ami $, are πo£ pseudo-coalescent.

PROOF. Let H si L, K wi L, H, Ke% (resp. 9ΐωΠ@) and / = <ff,
By Theorem 2.2 we have Hω = Hp<\L and Kω = Kq<\L for some p and g.
Therefore I=Hω + Kω<]L. We have (H+I)/I si L/I, (K+1)/1 wi L/I and
(H+I)/I, (K+I)/Ie%lr\% Hence by Theorem 3.5, J/IwiL/I, e$lr\%.
Therefore /wi L. Since /e g, we have / e g (resp. Since /// e Ή, Jm<I<Jω

for some ra and therefore / = / ω . Hence Je3lω, whence / e ϊ i ω n ® . ) . Thus
g (resp. 5W.ωΛ®) is pseudo-coalescent.

g and ϊ ί π g have obviously the property (P) and are pseudo-coalescent
by Theorem 3.5 and the first part of the proof. Hence by Theorem 4.1 g(ω),
gω and 0JtΓ\g)(ω) are pseudo-coalescent, and by Theorem 4.3 9ίϊ(ω)Πg is pseudo-
ccalescent. g^? ί ω and g has the property (P). Hence by Theorem 4.2,
(g:Πg is pseudo-coalescent.

Now we see that gω (resp. 3lωr\®) has the property (P). In fact, let
L c gω (resp. 9lωΓ\Qt?) and N<\ L. Then (L/N)ω<] L/N by Theorem 2.2. There-
fore (L/N)ω = M/N with M<] L. Since L/Lω e g (resp. 5R),

(L/N)/(L/NY~L/M~(L/L°)/(M/L°) e g (resp. 5R),

that is, L/Ne% (resp. 5RJ. It follows that gω (sesp. 9ΐωΠ@) has the pro-
perty (P), as desired.

Observing the facts that gω^3iω and ϊllr\%ω = 3lr\%9 it now follows from
Theorem 4.2 that Θ π g ω is pseudo-coalecent. It is immediate that @Agω

has the property (P). Therefore by Theorem 4.1 (@ngω) ( ω ) is pseudo-coales-
cent. yiωΓΛ® is pseudo-coalescent and has the property (P). Hence by
Theorem 4.1, ($ftωn®)(ω) is pseudo-coalescent. Since 9ΐωΛ® and 9ΐn0ftωΛ@)
= 9ΐΠg are pseudo-coalescent, so is @π9ΐωΛ® by Theorem 4.2. It follows
from Theorem 4.2 that (?Λ3}ωn@)(ω) is pseudo-coalescent.

It has been shown by I. Stewart [4, Theorem 12.1] that there exists a
Lie algebra L over any field Φ such that 1) L is the semi-direct sum V+J,
V<\ L, VΓ\J= (0) 2) V 6 SI, / = < #, K> where #, i£ are abelian subalgebras
of -L, H is infinite-dimensional and i£ is 1-dimensional 3) H, K si L and
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/ = IL(J). Then H si L, K wi L and H,Ke 21. Suppose that / wi L. Then
L(adJ)nc:J for some n. It follows that L(ad/) l | - 1 c/ z (/) = /by 3). Con-
tinuing this procedure, we have I c / L ( / ) = / , which is a contradiction.
Hence / is not a weak ideal of L. Thus this example shows that any class
containing 21 is not pseudo-coalescent.

Thus the theorem is completely proved.
We remark that if Φ is of characteristic />, then any classes containing

2lΛg, e.g., all the classes in Theorem 4.4, are not pseudo-coalescent. In fact,
let A be a ^-dimensional abelian Lie algebra over a field Φ of characteristic
p with a basis e0, eu , ep-i. We consider linear transformations of A:

x: ei > e t +i, ep_ι > 0 (i = 0, 1, •••, JP — 2 )

y : e0 > 0, a > iei_1 (ί = l, 2, •• , p-ΐ)

z:et >a (ί = 0,l, ...,j9 —1).

Then Q = (χ9 y9 z) is a nilpotent Lie algebra over Φ. Let L be the semi-direct
sum A + Q (see B. Hartley HI]]). Since

H=(x) si L. Since L(βdy)p+2 = (O)9 £ = ( y ) m Z. However, their join <i7,
K>=Q, which contains *, is its own idealizer in L. Therefore <H, K> is
not a weak ideal of L. Thus any class containing 21 Pig is not pseudo-
coalescent.

5.

In Section 1, we noted that a weak ideal is not necessarily a subideal.
We show it by example. Let L be a 3-dimensional simple Lie algebra over
a field of characteristic Φ29 with a basis x9 y9 z such that

Let H=(x). Then it is immediate that H 2-wi L. But H is not a subideal
of L, since L has no non-zero proper ideals.

Another kind of coalescency of a class X of Lie algebras might be de-
fined by the condition that in any Lie algebra the join of a pair of weak
ideals belonging to X is always a weak ideal belonging to 3c. However, this
is not interesting for us. Because the join of two 1-dimensional weak ideals
may be even simple which is shown as follows. Let L be the Lie algebra
stated above. Then H=(x) and K=(y) are both abelian weak ideals of L.
Since < # , K> =L9 <H9 K> wi L and <H, K> is simple.
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