Pseudo-coalescent Classes of Lie Algebras

Osamu Maruo (Received February 25, 1972)

Introduction

In the study of infinite-dimensional Lie algebras the concepts of subideals and coalescency seem to play a central role. A subalgebra of a Lie algebra L is called a subideal of L it is a member of a finite series of subalgebras ending with L such that each member is an ideal of the following. A class \mathfrak{X} of Lie algebras is called coalescent [4] if in any Lie algebra the join of any pair of subideals belonging to \mathfrak{X} is always a subideal belonging to \mathfrak{X} . B. Hartley has shown in [1] that the class of finite-dimensional nilpotent Lie algebras and the class of finite-dimensional Lie algebras over a field of characteristic 0 are coalescent. Furthermore, S. Tôgô has shown in [5] that other eleven classes of Lie algebras, e.g., the class of finite-dimensional solvable Lie algebras over a field of characteristic 0, are coalescent.

We shall introduce the new concepts, weak ideals and pseudo-coalescency. We call a subalgebra H of a Lie algebra L to be a weak ideal of L if $L(\operatorname{ad} H)^n \subseteq H$ for some n > 0. Then any subideal of L is a weak ideal but not conversely. We call a class \mathfrak{X} of Lie algebras to be pseudo-coalescent if in any Lie algebra the join of any pair of subideal and weak ideal belonging to \mathfrak{X} is always a weak ideal belonging to \mathfrak{X} . We may ask whether the results for subideals and coalescency hold analogously for weak ideals and pseudo-coalescency. The purpose of this paper is to investigate weak ideals and pseudo-coalescency.

Some properties of weak ideals are given in Section 2. For a weak ideal H of L, $H^{(\omega)} = \bigcap_{i=0}^{\infty} H^{(i)}$ and $H^{\omega} = \bigcap_{i=1}^{\infty} H^i$ are both characteristic ideals of L (Theorem 2.2), which generalizes the results of E. Schenkman. If H and K are weak ideals of L such that K idealizes H, then H+K is also a weak ideal of L. In Section 3 we shall prove the pseudo-coalescency of the class of finite-dimensional nilpotent Lie algebras over a field of characteristic 0 (Theorem 3.5). In Section 4 we show the three results on pseudo-coalescency in [5]. We prove the pseudo-coalescency of all the classes of Lie algebras stated in [1, Theorems 2 and 5] and [5, Theorem 4.4] (Theorem 4.4). In Section 5 we show by example that a weak ideal is not necessarily a subideal.

The author would like to thank Professor Shigeaki Tôgô for his helpful suggestions.

Osamu Maruo

1.

Throughout this paper we shall consider the Lie algebras over a field $\boldsymbol{\vartheta}$ which are not necessarily finite-dimensional and the characteristic of the basic field $\boldsymbol{\vartheta}$ will be arbitrary unless otherwise stated.

Let L be a Lie algebra over a field \mathcal{O} . We write $H \leq L$ if H is a subalgebra of L and $H \triangleleft L$ if H is an ideal of L. We denote by $\langle S_1, \dots, S_n \rangle$ the subalgebra generated by subsets S_1, \dots, S_n of L. We recall the definitions of subideals and coalescency.

DEFINITION 1.1. A subalgebra H of L is called an n-step subideal of L and written H n-si L if there is a finite series of subalgebras

$$H = H_0 \leq H_1 \leq \cdots \leq H_n = L$$

such that $H_i \triangleleft H_{i+1}$ $(0 \le i < n)$. *H* is called a subideal of *L* and written *H* si *L* if it is an n-step subideal of *L* for some *n*.

DEFINITION 1.2. A class \mathfrak{X} of Lie algebras over a field Φ is called coalescent if H, K si L and H, K $\epsilon \mathfrak{X}$ imply $\langle H, K \rangle$ si L, $\epsilon \mathfrak{X}$.

We shall now introduce the new notions corresponding to subideals and coalescency, that is, weak ideals and pseudo-coalescency.

DEFINITION 1.3. We call a subalgebra H of L an n-step weak ideal of Land write H n-wi L if $L(\operatorname{ad} H)^n \subseteq H$ with n > 0. We call H a weak ideal of Land write H wi L if it is an n-step weak ideal of L for some n.

Here $H \ 1$ -wi L is equivalent to each of $H \ 1$ -si L and $H \triangleleft L$. For $n \ge 2$, if $H \ n$ -si L, then $H \ n$ -wi L. But the converse does not hold in general, which we shall show by example in Section 5.

DEFINITION 1.4. A class \mathfrak{X} of Lie algebras over a field $\boldsymbol{\varphi}$ is called pseudocoalescent if H si L, K wi L and H, K $\epsilon \mathfrak{X}$ imply $\langle H, K \rangle$ wi L, $\epsilon \mathfrak{X}$.

We need the following classes of Lie algebras over ϕ .

 \mathfrak{F} : the class of finite-dimensional Lie algebras.

(8: the class of finitely generated Lie algebras.

 \mathfrak{A} : the class of abelian Lie algebras.

 \mathfrak{N} : the class of nilpotent Lie algebras.

 \mathfrak{S} : the class of solvable Lie algebras.

 $L \in \mathfrak{D}$ if and only if $H \leq L$ implies H si L.

 $L \in \mathfrak{F}$ if and only if H < L implies $H < I_L(H)$, where $I_L(H)$ is the idealizer of H in L.

206

In this section we shall show several results on weak ideals. As an easy consequence of Definition 1.3, we have

LEMMA 2.1. (1) If H wi L and $K \leq L$, then $H \cap K$ wi K.

(2) If H wi K and K wi L, then H wi L.

(3) If H wi L and $K \triangleleft L$, then H + K wi L.

(4) Let f be a homomorphism of L onto a Lie algebra \overline{L} . If H wi L, then f(H) wi \overline{L} . If \overline{H} wi \overline{L} , then $f^{-1}(\overline{H})$ wi L.

PROOF. (1), (2) and (4) are obvious. If H *n*-wi L and $K \triangleleft L$, then

$$L(\operatorname{ad}(H+K))^n \subseteq L(\operatorname{ad} H)^n + K \subseteq H+K$$
.

Hence H+K *n*-wi L and (3) is proved.

If H si L, then it is known [2, 3] that $H^{(\omega)} = \bigwedge_{i=0}^{\infty} H^{(i)}$ and $H^{\omega} = \bigwedge_{i=1}^{\infty} H^{i}$ are characteristic ideals of L. We generalize this in the following

THEOREM 2.2. If H wi L, then $H^{(\omega)}$ and H^{ω} are characteristic ideals of L.

PROOF. Let M be the semi-direct sum $L+\mathfrak{D}(L)$, where $\mathfrak{D}(L)$ is the derivation algebra of L. Assume that H *n*-*wi* L. Then, since $L \triangleleft M$, H (*n*+1)-*wi* M. By induction we see that $[M, H^k] \subseteq M(\operatorname{ad}_M H)^k$ for $k \ge 1$. Hence

$$[M, H^{(n)}] \subseteq [M, H^{n+1}] \subseteq M(\operatorname{ad}_M H)^{n+1} \subseteq H.$$

Therefore, by induction on k we have

$$[M, H^{(k+n)}] \subseteq H^{(k)}, \qquad k \ge 0.$$

It follows that $[M, H^{(\omega)}] \subseteq H^{(\omega)}$, that is, $H^{(\omega)} \triangleleft M$. Thus $H^{(\omega)}$ is a characteristic ideal of L. On the other hand, we can see by induction on k that

$$\lceil M, H^{k+n} \rceil \subseteq H^k, \quad k \ge 1.$$

Hence H° is characteristic in L. This completes the proof.

LEMMA 2.3. If H, K wi L and $[H, K] \subseteq H$, then H+K wi L.

PROOF. Let H n-wi L and K m-wi L for some n and m. If $m=1, K \triangleleft L$ and therefore H+K wi L by Lemma 2.1. So we may assume that m>1. Put l=n(m-1)+1. Then

$$L(\mathrm{ad}\,(H+K))^{l} = \sum L(\mathrm{ad}\,N_{1})\cdots(\mathrm{ad}\,N_{l})$$

where N_i is either H or K for i=1, 2, ..., l. We shall consider

Osamu Maruo

$$M = L(\operatorname{ad} N_1) \cdots (\operatorname{ad} N_l).$$

Let k be the number of N_i which equals H and consider the two cases $k \ge n$ and k < n.

The case $k \ge n$: First we show that

$$L(\operatorname{ad} K)^{i}(\operatorname{ad} H)^{j}(\operatorname{ad} K) \subseteq L(\operatorname{ad} H)^{j}(\operatorname{ad} K) \subseteq L(\operatorname{ad} H)^{j}$$
 for $j \ge 1$.

The first inclusion is obvious and the second inclusion follows by induction on j, since we have

$$L(\operatorname{ad} H)^{j}(\operatorname{ad} K) \subseteq L(\operatorname{ad} H)^{j-1}(\operatorname{ad} [H, K]) + L(\operatorname{ad} H)^{j-1}(\operatorname{ad} K)(\operatorname{ad} H)$$
$$\subseteq L(\operatorname{ad} H)^{j} + L(\operatorname{ad} H)^{j-1}(\operatorname{ad} H)$$
$$= L(\operatorname{ad} H)^{j}.$$

Now owing to this formula we have

$$M \subseteq L(\operatorname{ad} H)^k \subseteq H(\operatorname{ad} H)^{k-n} \subseteq H$$
.

The case k < n: We then have either

 $M = L(\operatorname{ad} N_1) \cdots (\operatorname{ad} N_{l-m}) (\operatorname{ad} K)^m$ or

 $M = L(\operatorname{ad} N_1) \dots (\operatorname{ad} N_k) (\operatorname{ad} K)^m (\operatorname{ad} H) (\operatorname{ad} N_{k+m+2}) \dots (\operatorname{ad} N_l).$

Since K m-wi L, in the first case we have

$$M \subseteq L(\operatorname{ad} K)^m \subseteq K$$

and in the second case we have

$$M \subseteq K(\operatorname{ad} H)(\operatorname{ad} N_{k+m+2}) \cdots (\operatorname{ad} N_l) \subseteq H.$$

Thus we conclude that $L(\operatorname{ad}(H+K))^{I} \subseteq H \cup K \subseteq H+K$ and H+K wi L, completing the proof.

3.

In this section we shall show the pseudo-coalescency of $\mathfrak{N} \cap \mathfrak{F}$ for a field $\boldsymbol{\sigma}$ of characteristic 0. This will be fundamental for showing the pseudo-coalescency of other classes in Section 4.

We begin with

LEMMA 3.1. If $H, K \leq L$ and $[H, K] \subseteq H$, then

$$(H+K)^n \subseteq H^2 + (H+K)(\operatorname{ad} K)^{n-1}, \quad n=1, 2, 3, \dots$$

PROOF. We can prove this by induction on n. If n=1, the statement

208

is obvious. Assume the case $n=k-1, k\geq 2$. Then

$$(H+K)^{k} \subseteq [H^{2} + (H+K)(\mathrm{ad} \, K)^{k-2}, \ H+K]$$
$$\subseteq H^{2} + (H+K)(\mathrm{ad} \, K)^{k-1} + K(\mathrm{ad} \, K)^{k-2}(\mathrm{ad} \, H)$$
$$\subseteq H^{2} + (H+K)(\mathrm{ad} \, K)^{k-1} + H(\mathrm{ad} \, K)^{k-1}$$
$$= H^{2} + (H+K)(\mathrm{ad} \, K)^{k-1}.$$

Hence we have the case n = k and the statement is proved.

LEMMA 3.2. (1) If K wi L and $K \in \mathfrak{N}$, then ad K is a nil set of derivations of L.

(2) If $H \leq L$, K wi L, $K \in \mathfrak{N}$ and $[H, K] \subseteq H$, then $(H+K)/H^2 \in \mathfrak{N}$.

PROOF. (1) Let K n-wi L and $K^m = (0)$. Then

$$L(\operatorname{ad} K)^{n+m-1} \subseteq K(\operatorname{ad} K)^{m-1} = K^m = (0).$$

(2) Assume that $H \leq L$, $H(\operatorname{ad} K)^n \subseteq K$, $K^m = (0)$ and $[H, K] \subseteq H$. Then by Lemma 3.1, we have

$$(H+K)^{n+m} \subseteq H^2 + (H+K)(\mathrm{ad}\,K)^{n+m-1}$$

 $\subseteq H^2 + K(\mathrm{ad}\,K)^{m-1} + K^{n+m}$
 $= H^2.$

Since $H^2 \triangleleft H + K$, it follows that $((H+K)/H^2)^{n+m} = (0)$ and therefore $(H+K)/H^2 \epsilon \mathfrak{R}$, completing the proof.

LEMMA 3.3. If $H \leq L$, K wi L, H, $K \in \mathfrak{N}$ and $[H, K] \subseteq H$, then $H + K \in \mathfrak{N}$.

PROOF. By assumption $H \triangleleft H + K$ and $H \in \mathfrak{N}$. Furthermore Lemma 3.2 tells us that $(H+K)/H^2 \in \mathfrak{N}$. Therefore we conclude that $H+K \in \mathfrak{N}$.

If D is a nil derivation of L over a field of characteristic 0, then $\exp D = \sum_{n=0}^{\infty} D^n/n!$ is an automorphism of L. Let M be a subspace of L and S a subset of the derivation algebra of L. We shall denote by M^S the smallest subspace of L containing M and invariant under S.

LEMMA 3.4. Let Φ be of characteristic 0. If M is a finite-dimensional subspace of L and S is a finite-dimensional nil subspace of the derivation algebra of L, then there exist automorphisms $\alpha_1, \alpha_2, ..., \alpha_n$ which are products of finite number of elements $\exp D(D \in S)$, such that

$$M^{S} = \sum_{i=1}^{n} M^{\alpha_{i}}$$

For the proof, see B. Hartley [1, Corollary to Theorem 3]. We can now show the following

THEOREM 3.5. Let ϕ be of characteristic 0. Then $\mathfrak{N} \cap \mathfrak{F}$ is pseudocoalescent.

PROOF. Assume that H *n*-si L, K wi L and H, $K \in \mathfrak{N} \cap \mathfrak{F}$ for an arbitrary Lie algebra L. We must show that $J = \langle H, K \rangle$ wi L, $\epsilon \mathfrak{N} \cap \mathfrak{F}$. If n = 1, then $H \triangleleft L$ and therefore H + K wi L, $\epsilon \mathfrak{N} \cap \mathfrak{F}$ by Lemmas 2.3 and 3.3. So we may assume that n > 1. Since ad K is a finite-dimensional nil subspace of $\mathfrak{D}(L)$ by Lemma 3.2, it follows from Lemma 3.4 that

$$<\!H^{adK}\!> = <\!H^{\alpha_1}, ..., H^{\alpha_k}\!>,$$

where α_i is a product of finite number of elements $\exp(\operatorname{ad} x)(x \in K)$. Evidently H^{α_i} si L and $H^{\alpha_i} \in \mathfrak{N} \cap \mathfrak{F}$ for each *i*. Hence by the coalescency of $\mathfrak{N} \cap \mathfrak{F}$ ([1, Theorem 2]) we have

$$<\!\!H^{\operatorname{ad} K}\!> si L, \ \epsilon \ \mathfrak{N} \cap \mathfrak{F}.$$

Now $J=K+\langle H^{adK}\rangle$ and $[\langle H^{adK}\rangle, K]\subseteq \langle H^{adK}\rangle$. Hence we can use Lemmas 2.3 and 3.3 to see that J wi L, $\epsilon \mathfrak{R} \cap \mathfrak{F}$.

Thus the theorem is proved.

COROLLARY 3.6. Let $\boldsymbol{\Phi}$ be of characteristic 0. Then $\mathfrak{N} \cap \mathfrak{F}$, $\mathfrak{N} \cap \mathfrak{G}$, $\mathfrak{D} \cap \mathfrak{F}$, $\mathfrak{D} \cap \mathfrak{G}$, $\mathfrak{T} \cap \mathfrak{F}$ and $\mathfrak{T} \cap \mathfrak{G}$ are all equal. Therefore these classes are pseudo-coalescent.

PROOF. By Lemma 1 in [1] any subalgebra of a nilpotent Lie algebra is its subideal, which shows that $\mathfrak{N} \subseteq \mathfrak{D}$. Obviously $\mathfrak{D} \subseteq \mathfrak{J}$. Therefore we have $\mathfrak{N} \cap \mathfrak{F} \subseteq \mathfrak{D} \cap \mathfrak{F} \subseteq \mathfrak{J} \cap \mathfrak{F}$ and $\mathfrak{N} \cap \mathfrak{G} \subseteq \mathfrak{D} \cap \mathfrak{G} \subseteq \mathfrak{J} \cap \mathfrak{G}$. Since $\mathfrak{N} \cap \mathfrak{G} \subseteq \mathfrak{F}$ by Lemma 1 in [1], we have $\mathfrak{N} \cap \mathfrak{F} = \mathfrak{N} \cap \mathfrak{G}$. It is known [1, Corollary to Theorem 4] that \mathfrak{J} is a class of locally nilpotent Lie algebras. Therefore $\mathfrak{J} \cap \mathfrak{G} \subseteq \mathfrak{N} \cap \mathfrak{G}$, whence $\mathfrak{J} \cap \mathfrak{G} = \mathfrak{N} \cap \mathfrak{G}$. This completes the proof.

4.

Let \mathfrak{X} be any class of Lie algebras. Following the notations in [5] we denote by $\mathfrak{X}_{(\omega)}$ the class of Lie algebras L such that $L/L^{(\omega)} \in \mathfrak{X}$ and by \mathfrak{X}_{ω} the class of Lie algebras L such that $L/L^{\omega} \in \mathfrak{X}$. Consider the operations getting from \mathfrak{X} another classes $\mathfrak{X}, \mathfrak{S} \cap \mathfrak{X}, \mathfrak{H} \cap \mathfrak{X}, \mathfrak{H} \cap \mathfrak{X}, \mathfrak{X}_{(\omega)}$ and \mathfrak{X}_{ω} . Then S. Tôgô has shown in [5] that the application of the above operations to \mathfrak{F} and $\mathfrak{N}_{\omega} \cap \mathfrak{S}$ produces the classes $\mathfrak{F}, \mathfrak{S} \cap \mathfrak{F}, \mathfrak{N} \cap \mathfrak{F}, \mathfrak{F}_{(\omega)}, \mathfrak{F}_{\omega}, (\mathfrak{N} \cap \mathfrak{F})_{(\omega)}, \mathfrak{S} \cap \mathfrak{F}_{\omega}, (\mathfrak{S} \cap \mathfrak{F}_{\omega})_{(\omega)}, \mathfrak{N}_{(\omega)} \cap \mathfrak{F}, \mathfrak{N}_{\omega} \cap \mathfrak{S}, \mathfrak{S} \cap \mathfrak{N}_{\omega} \cap \mathfrak{S}, (\mathfrak{N}_{\omega} \cap \mathfrak{S})_{(\omega)}$ and $(\mathfrak{S} \cap \mathfrak{N}_{\omega} \cap \mathfrak{S})_{(\omega)}$. We shall show at the end of this section that these classes are pseudo-coalescent.

S. Tôgô $\lceil 5 \rceil$ has shown three general theorems on coalescency. We here

210

show similar results on pseudo-coalescency. We say that a class \mathfrak{X} of Lie algebras has the property (P) if $L \in \mathfrak{X}$ and $N \triangleleft L$ imply $L/N \in \mathfrak{X}$.

THEOREM 4.1. Let \mathfrak{X} be a class of Lie algebras over a field \mathfrak{O} having the property (P). If \mathfrak{X} is pseudo-coalescent, then so are $\mathfrak{X}_{(\omega)}$ and \mathfrak{X}_{ω} .

PROOF. Assume that $H \ si \ L, \ K \ wi \ L \ and \ H, \ K \in \mathfrak{X}_{(\omega)}$. Put $J = \langle H, \ K \rangle$. By Theorem 2.2, $H^{(\omega)} \triangleleft L$ and $K^{(\omega)} \triangleleft L$. Hence $I = H^{(\omega)} + K^{(\omega)} \triangleleft L$. By Lemma 2.1 we have $(H+I)/I \ si \ L/I$ and $(K+I)/I \ wi \ L/I$. Since $H/H^{(\omega)} \in \mathfrak{X}$ and \mathfrak{X} has the property (P),

$$(H+I)/I \simeq H/(I \cap H) \simeq (H/H^{(\omega)})/((I \cap H)/H^{(\omega)}) \in \mathfrak{X}$$

Similarly $(K+I)/I \in \mathfrak{X}$. Since \mathfrak{X} is pseudo-coalescent, J/I wi L/I, $\epsilon \mathfrak{X}$. It follows from Lemma 2.1 that J wi L. Since $I \leq J^{(\omega)}$, $J/J^{(\omega)} \simeq (J/I)/(J^{(\omega)}/I)$. But $J/I \epsilon \mathfrak{X}$ and \mathfrak{X} has the property (P). Therefore $J/J^{(\omega)} \epsilon \mathfrak{X}$, that is, $J \epsilon \mathfrak{X}_{(\omega)}$. Thus $\mathfrak{X}_{(\omega)}$ is pseudo-coalescent.

The pseudo-coalescency of \mathfrak{X}_{ω} is similarly proved.

THEOREM 4.2. Let \mathfrak{X} be a class of Lie algebras over a field $\boldsymbol{\Phi}$ contained in \mathfrak{N}_{ω} and having the property (P). If \mathfrak{X} and $\mathfrak{N} \cap \mathfrak{X}$ are pseudo-coalescent, then so is $\mathfrak{S} \cap \mathfrak{X}$.

PROOF. Let H si L, K wi L and H, $K \in \mathfrak{S} \cap \mathfrak{X}$. Since \mathfrak{X} is pseudo-coalescent, $J = \langle H, K \rangle$ wi L, $\epsilon \mathfrak{X}$. To see the pseudo-coalescency of $\mathfrak{S} \cap \mathfrak{X}$, it suffices to show that $J \epsilon \mathfrak{S}$. By Theorem 2.2 $I = H^{\omega} + K^{\omega} \triangleleft L$. It follows that (H+I)/I si L/I and (K+I)/I wi L/I. We have

$$(H+I)/I \simeq H/(I \cap H) \simeq (H/H^{\omega})/((I \cap H)/H^{\omega}).$$

Since $\mathfrak{X} \subseteq \mathfrak{N}_{\omega}$, $H \in \mathfrak{N}_{\omega}$ and therefore $H/H^{\omega} \in \mathfrak{N}$. Hence $(H+I)/I \in \mathfrak{N}$. Since \mathfrak{X} has the property (P), it follows that $(H+I)/I \in \mathfrak{X}$. Similarly, $(K+I)/I \in \mathfrak{N} \cap \mathfrak{X}$. Since $\mathfrak{N} \cap \mathfrak{X}$ is pseudo-coalescent, $J/I \in \mathfrak{N} \cap \mathfrak{X}$. But $I \in \mathfrak{S}$. Hence $J \in \mathfrak{S}$. This completes the proof.

THEOREM 4.3. Let \mathfrak{X} be a class of Lie algebras over a field Φ having the property (P). If \mathfrak{X} and $\mathfrak{N} \cap \mathfrak{X}$ are pseudo-coalescent, then so is $\mathfrak{N}_{(\omega)} \cap \mathfrak{X}$.

PROOF. Let $H \ si \ L$, $K \ wi \ L$ and H, $K \in \mathfrak{N}_{(\omega)} \cap \mathfrak{X}$. Then $J = \langle H, K \rangle \ wi \ L$, $\epsilon \mathfrak{X}$ since \mathfrak{X} is pseudo-coalescent. It suffices to show that $J \epsilon \mathfrak{N}_{(\omega)}$. Since $I = H^{(\omega)} + K^{(\omega)} \triangleleft L$, we have $(H+I)/I \ si \ L/I$ and $(K+I)/I \ wi \ L/I$. Since $H, K \epsilon \mathfrak{N}_{(\omega)} \cap \mathfrak{X}$ and \mathfrak{X} has the property (P), it follows that (H+I)/I, (K+I)/I $\epsilon \mathfrak{N} \cap \mathfrak{X}$. Since $\mathfrak{N} \cap \mathfrak{X}$ is pseudo-coalescent, $J/I \epsilon \mathfrak{N} \cap \mathfrak{X}$. But then $J^{(n)} \leq I \leq J^{(\omega)}$ for some n and therefore $I = J^{(\omega)}$. It follows that $J \epsilon \mathfrak{N}_{(\omega)}$, completing the proof.

By making use of these three theorems, we shall show the following

theorem which is the analogue of Theorem 4.4 in [5] for the pseudo-coalescency case.

THEOREM 4.4. If ϕ is of characteristic 0, then the classes

are all pseudo-coalescent.

If ϕ is of arbitrary characteristic, any classes containing \mathfrak{A} , e.g., \mathfrak{R} , \mathfrak{S} , \mathfrak{D} and \mathfrak{J} , are not pseudo-coalescent.

PROOF. Let H si L, K wi L, H, $K \in \mathfrak{F}$ (resp. $\mathfrak{N}_{\omega} \cap \mathfrak{S}$) and $J = \langle H, K \rangle$. By Theorem 2.2 we have $H^{\omega} = H^{p} \triangleleft L$ and $K^{\omega} = K^{q} \triangleleft L$ for some p and q. Therefore $I = H^{\omega} + K^{\omega} \triangleleft L$. We have (H+I)/I si L/I, (K+I)/I wi L/I and (H+I)/I, $(K+I)/I \in \mathfrak{N} \cap \mathfrak{F}$. Hence by Theorem 3.5, J/I wi L/I, $\epsilon \mathfrak{N} \cap \mathfrak{F}$. Therefore J wi L. Since $I \in \mathfrak{F}$, we have $J \in \mathfrak{F}$ (resp. Since $J/I \in \mathfrak{N}, J^{m} \leq I \leq J^{\omega}$ for some m and therefore $I = J^{\omega}$. Hence $J \in \mathfrak{N}_{\omega}$, whence $J \in \mathfrak{N}_{\omega} \cap \mathfrak{S}$.). Thus \mathfrak{F} (resp. $\mathfrak{N}_{\omega} \cap \mathfrak{S}$) is pseudo-coalescent.

 \mathfrak{F} and $\mathfrak{N} \cap \mathfrak{F}$ have obviously the property (P) and are pseudo-coalescent by Theorem 3.5 and the first part of the proof. Hence by Theorem 4.1 $\mathfrak{F}_{(\omega)}$, \mathfrak{F}_{ω} and $(\mathfrak{N} \cap \mathfrak{F})_{(\omega)}$ are pseudo-coalescent, and by Theorem 4.3 $\mathfrak{N}_{(\omega)} \cap \mathfrak{F}$ is pseudocoalescent. $\mathfrak{F} \subseteq \mathfrak{N}_{\omega}$ and \mathfrak{F} has the property (P). Hence by Theorem 4.2, $\mathfrak{F} \cap \mathfrak{F}$ is pseudo-coalescent.

Now we see that \mathfrak{F}_{ω} (resp. $\mathfrak{N}_{\omega} \cap \mathfrak{S}$) has the property (P). In fact, let $L \in \mathfrak{F}_{\omega}$ (resp. $\mathfrak{N}_{\omega} \cap \mathfrak{S}$) and $N \triangleleft L$. Then $(L/N)^{\omega} \triangleleft L/N$ by Theorem 2.2. Therefore $(L/N)^{\omega} = M/N$ with $M \triangleleft L$. Since $L/L^{\omega} \in \mathfrak{F}$ (resp. \mathfrak{N}),

$$(L/N)/(L/N)^{\omega} \simeq L/M \simeq (L/L^{\omega})/(M/L^{\omega}) \in \mathfrak{F} ext{ (resp. } \mathfrak{N}),$$

that is, $L/N \in \mathfrak{F}_{\omega}$ (resp. \mathfrak{N}_{ω}). It follows that \mathfrak{F}_{ω} (sesp. $\mathfrak{N}_{\omega} \cap \mathfrak{S}$) has the property (P), as desired.

Observing the facts that $\mathfrak{F}_{\omega} \subseteq \mathfrak{N}_{\omega}$ and $\mathfrak{N} \cap \mathfrak{F}_{\omega} = \mathfrak{N} \cap \mathfrak{F}$, it now follows from Theorem 4.2 that $\mathfrak{S} \cap \mathfrak{F}_{\omega}$ is pseudo-coalecent. It is immediate that $\mathfrak{S} \cap \mathfrak{F}_{\omega}$ has the property (P). Therefore by Theorem 4.1 $(\mathfrak{S} \cap \mathfrak{F}_{\omega})_{(\omega)}$ is pseudo-coalescent. $\mathfrak{N}_{\omega} \cap \mathfrak{S}$ is pseudo-coalescent and has the property (P). Hence by Theorem 4.1, $(\mathfrak{N}_{\omega} \cap \mathfrak{S})_{(\omega)}$ is pseudo-coalescent. Since $\mathfrak{N}_{\omega} \cap \mathfrak{S}$ and $\mathfrak{N} \cap (\mathfrak{N}_{\omega} \cap \mathfrak{S})$ $= \mathfrak{N} \cap \mathfrak{F}$ are pseudo-coalescent, so is $\mathfrak{S} \cap \mathfrak{N}_{\omega} \cap \mathfrak{S}$ by Theorem 4.2. It follows from Theorem 4.2 that $(\mathfrak{S} \cap \mathfrak{N}_{\omega} \cap \mathfrak{S})_{(\omega)}$ is pseudo-coalescent.

It has been shown by I. Stewart [4, Theorem 12.1] that there exists a Lie algebra L over any field \mathcal{O} such that 1) L is the semi-direct sum V+J, $V \triangleleft L$, $V \cap J = (0)$; 2) $V \in \mathfrak{A}$, $J = \langle H, K \rangle$ where H, K are abelian subalgebras of L, H is infinite-dimensional and K is 1-dimensional; 3) H, K si L and

 $J=I_L(J)$. Then H si L, K wi L and H, $K \in \mathfrak{A}$. Suppose that J wi L. Then $L(\operatorname{ad} J)^n \subseteq J$ for some n. It follows that $L(\operatorname{ad} J)^{n-1} \subseteq I_L(J) = J$ by 3). Continuing this procedure, we have $L \subseteq I_L(J) = J$, which is a contradiction. Hence J is not a weak ideal of L. Thus this example shows that any class containing \mathfrak{A} is not pseudo-coalescent.

Thus the theorem is completely proved.

We remark that if \mathcal{O} is of characteristic p, then any classes containing $\mathfrak{A} \cap \mathfrak{F}$, e.g., all the classes in Theorem 4.4, are not pseudo-coalescent. In fact, let A be a p-dimensional abelian Lie algebra over a field \mathcal{O} of characteristic p with a basis e_0, e_1, \dots, e_{p-1} . We consider linear transformations of A:

$$\begin{aligned} x: e_i &\longrightarrow e_{i+1}, e_{p-1} \longrightarrow 0 & (i=0, 1, ..., p-2) \\ y: e_0 &\longrightarrow 0, \quad e_i &\longrightarrow ie_{i-1} & (i=1, 2, ..., p-1) \\ z: e_i &\longrightarrow e_i & (i=0, 1, ..., p-1). \end{aligned}$$

Then Q = (x, y, z) is a nilpotent Lie algebra over \emptyset . Let L be the semi-direct sum A+Q (see B. Hartley [1]). Since

$$(x) \triangleleft (e_{p-1}, x) \triangleleft (e_{p-2}, e_{p-1}, x) \triangleleft \cdots \triangleleft A + (x) \triangleleft A + (x, z) \triangleleft L,$$

H=(x) si L. Since $L(\operatorname{ad} y)^{p+2}=(0)$, K=(y) wi L. However, their join $\langle H, K \rangle = Q$, which contains z, is its own idealizer in L. Therefore $\langle H, K \rangle$ is not a weak ideal of L. Thus any class containing $\mathfrak{A} \cap \mathfrak{F}$ is not pseudo-coalescent.

5.

In Section 1, we noted that a weak ideal is not necessarily a subideal. We show it by example. Let L be a 3-dimensional simple Lie algebra over a field of characteristic $\neq 2$, with a basis x, y, z such that

$$[x, z] = 2x, [y, z] = -2y, [x, y] = z.$$

Let H=(x). Then it is immediate that H 2-wi L. But H is not a subideal of L, since L has no non-zero proper ideals.

Another kind of coalescency of a class \mathfrak{X} of Lie algebras might be defined by the condition that in any Lie algebra the join of a pair of weak ideals belonging to \mathfrak{X} is always a weak ideal belonging to \mathfrak{X} . However, this is not interesting for us. Because the join of two 1-dimensional weak ideals may be even simple which is shown as follows. Let L be the Lie algebra stated above. Then H=(x) and K=(y) are both abelian weak ideals of L. Since $\langle H, K \rangle = L, \langle H, K \rangle$ wi L and $\langle H, K \rangle$ is simple.

Osamu Maruo

References

- B. Hartley, Locally nilpotent ideals of a Lie algebra, Proc. Camb. Phil. Soc., 63 (1967), 257-272.
- [2] E. Schenkman, A theory of subinvariant Lie algebras, Amer. J. Math., 73 (1951), 453-474.
- [3] E. Schenkman, Infinite Lie algebras, Duke Math. J., 19 (1952), 529-535.
- [4] I. Stewart, Lie Algebras, Lecture Notes in Mathematics 127, Springer, Berlin · Heidelberg · New York, 1970.
- [5] S. Tôgô, Radicals of infinite dimensional Lie algebras, this journal.

Department of Mathematics, Faculty of Science, Hiroshima University