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§ 1. Introduction.

Let 5 be a locally compact Hausdorff space with the second countability
axiom and k(x, y) be a symmetric potential kernel of a recurrent Markov
process with S as its state space. Let C be a compact set in S, and denote a
linear operator on L2(C, m) by

(1, 1) Kf(x)=\ k(x, y)f{y)m{dy) ,
j c

where m is a positive Radon measure on 5. We consider the eigenvalue
problem for the equation λf=Kf under some assumptions given in Section 2.
For some region C, not all of the eigenvalues could be positive, so we are in-
terested in the questions: When and how many negative eigenvalues has
K ?

J. Troutman [8] has studied this problem for the logarithmic potential
kernel by analysing the kernel itself. To the same problem, M. Kac [6] has
also given an answer using the Brownian motion on the plane. Kac's result
due to probabilistic idea was then formulated by T. Bojdecki \jlΓ\ in analytic
terms. In this paper we also use Kac's method and show the following re-
sults : For a wider class of recurrent potential kernels, there exists at most
one negative eigenvalue, which is simple if it exists; this is the case if and
only if the (semi-classical) equilibrium constant Ro for the region C is nega-
tive.

§ 2. Assumptions and results.

Let {xt, Px, x e S} denote a Markov process with state space (5, B)
where B is the topological Borel field in 5. We suppose that the Markov
process {xt} satisfies the following assumptions:

ASSUMPTION 1. The Markov process {xt} has a transition density func-
tion pt(χ, y) with respect to a positive Radon measure m( ) . The function
pt(x, y) is B x B-measurable, non-negative and symmetric, that is,

pt(x, y)=Pt(y, *)^0, (ί>0, χ,yeS).

(1) The most part of this work was done during the author's stay at Hiroshima University, 1970-71.
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From now on we denote by ra(x9 y) the resolvent function, i.e., the
Laplace transform of pt(χ, y) and fix an arbitrary compact set C in S with
positive mass m(C)>0.

ASSUMPTION 2. There exist two functions φ(ά) and k(x9 y) satisfying
the following conditions:

(A2, 1) \imφ(a)= + oo.

(A2, 2) The function k(x, y) from Cx C to (-oo, +oo^ 2 ) is symmetric, con-
tinuous on Cx C and finite on Cx C—Δ where Δ= {{x9 x) \ x e C}.

(A2, 3) lim sup \ra(x9 y)-φ(a)-k(x, y)\=09
« 4 0 {χ,y)eC *.C-Δ'

where Δf = {(#, x) \ k(x, x) = + oo}.

ASSUMPTION 3. The operator K given by (1, 1) is a compact one from
L2(C, m) to L2(C, m).

Under these assumptions the functions φ(x) and k(x9 y) are uniquely
determined up to additive constants; k(x9 y) is called the recurrent potential
kernel. We introduce useful functions which are defined in [6Ί as follows:

Γf°° f* Ί (

(2, 1) g(x,u) = \imaφ(a)Ex\ \ exp(-at—u\ Xc(χτ)dv)dt \9
α j o I '0 JO J

(2, 2) g(x) = limg(x, u)

whose convergences will be verified in Lemma 3 and in Section 4 respec-
tively.

THEOREM 1. The operator K can have at most one negative eigenvalue.
If λ is the negative eigenvalue, then the associated eigenfunction is a constant
multiple of g(x, —A"1).

As usual we shall denote the mutual energy of two Radon measures β
and v by

(2, 3)
CxC

if it is well-defined. We denote by I(β) the energy /(//, ju) of β. Let us set

ί M= {β I positive Radon measure on C, | I(β) \ < °o?

(2, 4)

(2) (-oo, +oo]
(3) Ex denotes the integral with respect to Px, and χc the indicator function of C.
(4) MQ is not empty since meMQ.
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and define

(2, 5) R = inf J(/0, Ro = inf
M M

R and Ro are called the equilibrium constant (or Robin constant) and the
semi-classical equilibrium constant respectively (see[l]).

THEOREM 2. The negative eigenvalue λ happens if and only if Ro is
negative, in which case Λo^λ"1 | |g( , — A"1)!!2.^

The inequality R<,Ro follows from their definitions. When M=M0,
the function g(x) is zero on C except for a set of the transfinite diameter
zero(6). According to [2] we call the point x s-regular if Px(τ0>0) = 0,
where r0 is the first penetration time through C:

if

if { } = 0.

THEOREM 3. It holds that g(x) — 0 at any s-regular point x in C. If the
set of s-irregular(7) points in C is of transfinite diameter zero, then R = R0.

In these theorems we find the answer to our questions: The recurrent
potential kernel considered on a (5-regular) set which is large enough has
only one negative eigenvalue. We now examine typical examples which
satisfy the Assumptions.

EXAMPLE 1. Let {xt} be a one-dimensional symmetric stable process
with index λ(l^λ^2). For the case of KΛ<ί2, its resolvent function is
expressed as

The following functions

satisfy (A2, 1) and (A2, 2). (A2, 3) can be shown by using another expres-
sion

(5) I 1 denotes the norm of L2(C, m).
(6) "transfinite diameter zero" means "//-measure zero" for any μeM.
(7) "s-irregular" means not "5-regular".
(8) See [9].
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and the fact that b tends to zero uniformly in x and y in any compact set as
a \ 0. For the case of λ = l, the resolvent function is the limit

a + ζ

and so the functions in Assumption 2 are given by

k(x, y) = log-
π \χ-y\

In fact (A2, 1) and (A2, 2) are satisfied. (A2, 3) is verified as follows:

ra(x, y)-φ{a)-k{x, y)

_ 1 r/f*cos£-l f* dξ \ Π/Γ1 cos£-l ί1 dξ\

2δ f

cosf

where b~a\x — y\. As a 10, b decreases to 0 uniformly in x and y in any
compact set, and the above converges to 0. The Assumption 3 for both the
cases is a part of the fact that

c(x, y)\2m(dx)m(dy)<Cc>o .

If λφl or if λ = l and C=£-r, r] (r>2-1e3/2), then the constant R0<0.
Therefore by Theorem 2 the operator K in these cases has only one negative
eigenvalue.

EXAMPLE 2. (C1H, ĈH? PC). In the case that {Λ;̂ } is a two-dimensional
Brownian motion, the Assumptions have been ascertained in [6]. Let Cr be
a disc with radius r. Then the smallest eigenvalue of the operator K on
L2(Cr) is negative if and only if r is larger than 1.

EXAMPLE 3. Let {xt} be a one-dimensional symmetric birth and death
process whose jumping time has an exponential distribution with the expec-
tation c"1 ([4J). In this case, we have
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The Assumptions for {xt} are verified, and the operator K on £2(C) has one
negative eigenvalue for any finite set C(φφ).

EXAMPLE 4. Let {xt} be a Brownian motion with reflecting barriers on
[0, 1], that is,

ra(x, γ)= 4, 4 " { e + e + ( e l ) Σ e } .

We can prove by a method similar to the one in the case of λ = l in Example

l t h a t

satisfy the Assumptions. The negativity of k(x, y) implies that the opera-
tor K has one negative eigenvalue.

§ 3. The proof of Theorem 1.

We begin with some properties of the potential kernel.

LEMMA 1. (1) m(J;

x) = 0 where Δ'x={ye C\k(x, j ) = oo}.

(2) lim sup \ \ra(x, y)-<p(a)-k(x, y)\m(dy) = 0.
α o xec JC

(3) The function \ | k(x,y) \ τn(dy) is bounded in x on C.
j c

PROOF. (1) is clear from Assumption 3, and (2) follows from (1) and
(A2, 3). To prove (3), we notice that for each fixed x in C

ra(x, y)-φ(a)-k(x, y)\ +φ(a) + ra(x, y)

for a. a. y in C, and hence

<S^ \ra(x, y)-φ{a)-k{x, y)\

The integral on the right-hand side is bounded in x on C for a fixed a>0.
Thus we obtain (3).

The following notations will be used in our later discussions. Let Tt be
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a sojourn time on C up to t:

(3,1)

and set

(3,2) GS(*, ^ ) = £ J ( exp(-αtf-MΓ,)ΛU(tf *)<**] for u,a>0, AeB.

Then

(3, 3) ί β ( , y
•/ .A

Further, the so-called Kac's formula holds: For u, a>Q and A e B

(3, 4) ( r e(«, y)m(dy)-G"a(x, A)= u \ GS(Λ,

= u \ ra(x, y)Gu

a(y, A)m(dγ).
j c

(For the proof see K. Ito [5], page 2, 17, 2, Theorem 2.) Especially, in the
case of A = S,

(3, 5) l -αGS(*, S) = uG£(*, C) = n ( rα(^, j)α:GS(j, 5)τ7z(Jj).
j c

The following Lemma 2 is immediately obtained from (3, 2) and (3, 5).

LEMMA 2. If A in B is contained in C,

(3, 6)

LEMMA 3. (1) There exists a constant d such that

(3, 7) 0<:aφ(a)Gu

a(x, S)<Ld (x 6 C and a>0).

(2) The function g(x, u) of (2, 1) is well-defined and bounded in x for
each fixed u>0.

PROOF. The equality (3, 4) is rewritten in the form:

(3, 8) Gl(x, C)=( ra(x, y)m(dy)-u\ GS(*, dy)\ ra{y, z)m(dz)
J C J C J C

= \ {ra(x, y)-φ(a)-k(x, y)}m(dy)+ \ k(x, y)m(dy)
j c j c

-u\ Gua(x, dy)\ {ra(y, z)-φ(a)-k(y, z)}m(dz)
J C J C
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- u\ G%(x, dy)\ k(y, z)m(dz) + φ(a)(l-uGu

a(x, C))m(C).
j c J c

As a I 0, the left-hand side converges to G%(x, C). By Lemma 1 and (3, 6)
the first and the third terms in the above converge to zero, and the fourth
term also converges. Therefore the convergence of the last term also does.
Since aφ{a)Gu

a{x, S) = φ(a)(l-uGu

a(x, C)) by (3, 5), we have

(3, 9) g(x, u) = limaφ(a)Gua(χ, 5) = lim φ(ά)(l — uGi(x, C)).

Furthermore for sufficiently small a>0 and ε>0

\φ(a)(l-uG"a(x, C))\ ^m(C)-ιiGl(x, C) + 2ε + 2sup[ \k(x, y)\m{dy)}.

Lemma 1 and (3, 6) provide the boundedness of the right-hand side, which
proves (1).

LEMMA 4. The limit

(3, 10) Λ(iO = lim φ(a){l-u[ aφ{ά)Gu

a{x, S)m(dx)}[
C

exists and satisfies

(3, 11) g(x, u) = R(u) — u\ k(x9 y)g(γ, u)m(dy) .
j c

Further, we have

(3,12) \ g(x,u)m(dx) = u-1
 (B>0).

PROOF. From (3, 5), (3, 3) and Lemma 1, we get the following

<xGu

a(x, S) = l-u\ aφ{a)Gua{y, S)m(dy)-u\ k(x, y)aGu

a(y, S)m(dy)
J C J C

-u ^c{ra(x, y)-φ(a)-k{x, y)}aG"a{y, S)m(dy) .

Multiplying both sides by φ(a), we see

aφ{ct)G"a(x, S) = φ{a){l-u\icaφ(a)Gu

a(y, S)m(dy)}

(«, y)aφ(a)Gu

a(y, S)m(dy)

-u]C{Γ«(Λ;, y)-φ(a)-k(x, y)}aφ(a)G"a(y, S)m(dy).
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Since each term except for the first one on the right-hand side converges as
a I 0 by Lemmas 1 and 3, the rest also converges. Hence we see that R(u) is
well-defined and we have (3, 11) by (3, 9). Further we have

l-u^caφ(a)G"a(y, S)m(dy)}=0

by (A2, 1). Hence by Lebesgue's convergence theorem, \ g(x, u)m(dx) =

u'1 (u>0). Thus the proof of Lemma 4 is completed.
There exists a complete orthonormal system {/,} in L2(C, m) associated

with the eigenvalues {λj} (we admit λj to be zero, if necessary) of the com-
pact operator K. By making use of {/,} and {λj} the constant R(u) can be
expanded.

LEMMA 5. For u(>0) such that u~1 + λjφ0 for all /,

(3, 13) Riuy1^ Σ (/y, mu-i + λj)-1.
y=i

// λj<0, then (fh l) = 0 or JR(-Aj1) = O.

PROOF. By (3, 11) we get (l + uλ})(fj, g) = R(uXfj,ΐ), where (., •) de-
notes the inner product in L2(C, m). This implies the latter half of Lemma
5. Now we assume that u~1 + λjφ0 (for ally). Since

(/,-, g)(fj, 1) = Λ(α)(l + uλj)-\fh I)2 (; = 1, 2, ...),

we obtain by ParsevaΓs relation

Combining this with (3,12), we have (3, 13).
We are now in the position to establish a kind of the so-called energy

principle which is a generalized one in the logarithmic potential theory.

LEMMA 6. I(β)^>0 for each Radon measure Ju = ju1 — ju2(βi £ M) on C
with the finite mutual energy \ I{β^ βj) \ < °°(i, / = 1> 2).

PROOF. If k(x, #) = oo5 then μ({x}) = 0 follows from the finiteness of
I I(ju) I. Hence we have, as in proving Lemma 1,

ra(x, y)β{dx)β{dy).

Using the semi-group property and (Au 1) of pt we obtain our result as fol-
lows:

I(ju) =lim\ \ \ e~atpt(x, y)dtβ(dx)β(dy)
cc I o JCJCjQ
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2(χ> *W(*, y)m(κdz)μ(dx)μ{dy)

ptl2(x, z)ju(dx)\ m(d
C1 )

{
S UC

COROLLARY. / / / in L2(C, m) is a non-zero eigenfunction of K, and if
(/, 1) = 0, then the eigenvalue λ corresponding to f is non-negative.

PROOF. Let v(dx)=f(x)m(dx) and v±(dχ)=f±(x)m(dx), where f±(χ) =
max. (±f(x\ 0). Then the each mutual energy is finite. In fact,

It follows from v(C) = 0 and Lemma 6 that

Thus λ J> 0 is proved.

PROOF OF THEOREM 1. Let λj be a negative eigenvalue, /} its associated
eigenf unction (=^=0). By the Corollary we have (/}, 1)^0. Hence Ri — λj1)
= 0 holds by Lemma 5. Now we suppose that there exist at least two nega-
tive eigenvalues /U</ί2<0 such that R(-λj1) = 0 (y = l, 2). Then (3, 11) and
(3, 12) imply that g(x, — λj1) is a non-zero eigenfunction associated with
λj(j = l, 2). Since —^Γx< —^ϊS w e have g(x, — λΐλ)^g(x, — λ^^O from
(2, 1). But this contradicts the orthogonality between g(χ, —λj1) (/ = 1, 2).
Thus K has at most one negative eigenvalue. Finally, we suppose that there
would be two non-zero eigenf unctions fλ and/2((/i, /2) = 0) corresponding to
a negative eigenvalue λι. We can find real numbers a and b (a2 + b2φθ)
such that (α/i + ό/2, l) = 0. Hence afι + bf2 belongs to a non-negative eigen-
value by the Corollary. This is contradictory to Λi<0.

§ 4. The proof of Theorem 2.

We denote by λγ the unique negative eigenvalue of K if it exists, or the
largest eigenvalue if not. The other eigenvalues of K are arranged in the
order of their values: λ2 >̂ Λ3 ̂ > . By (3, 13) there exists lim R(u), which is

denoted by R(o°). R(oo) = 0 if there exists a function / such that Kf=0 and
(/, 1)^0 or if Σ λjι(fj, l) 2 = °o. Otherwise, Λ(oo) satisfies the equality:

In addition, by (2, 1) g(x, u) is monotonically decreasing as u tends to in-
finity. We can define g(x) = lim g(χ, u). Then we have
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LEMMA 7. (1) g(x) = 0 a.e. with respect to m on C.
(2) The constant R(oo) is equal to

PROOF. We have noticed in Lemma 4 that \ g(x, u)m{dx) = u~ι, and

g(χ, u) decreases to g(x) as l ί foo, Thus we have (1). Put μu(dχ) =
ug(x, u)m(dx). Then by (3, 11),

R(u)=[ k(x, y)βu(dy) + g(x,u)^[ k(x, y)βu(dy).
J C J C

Integrating both sides in x with βu, we have R(u)^>I(βu). Hence a =
lim I(juu)<;R(oo). On the other hand, since the measure μu is absolutely
lit*

continuous with respect to m, βu belongs to Mo by (1) of Lemma 7. Hence
a^>R0. We choose un->oo such that I(βr

n) tends to a as rc-»oo5 where β'n=-
βUn. Then, it follows from the monotonicity of g(x, u) in u that, for each
v 6 Mo,

0 = \ g(x)ι>(dχ) = \im\ g(x,un)v(dx)

( ( Γ )
= lim\ \R(un)-\ k(x, y)ung(y,un)m(dy)\v(dx)

«->«> JC I JC )

= R(po)-\imI(jι',nv).
n->°°

Applying Lemma 6 to I(βr

n-v), we have 2I(ju'n9 v)<,I(β'n) +I(v). Letting n
tend to oo, we have 2i?(oo)^α + 7(v) for any v e Mo. Hence 2R(oo)<:a + R0.
Using this inequality together with the relations R0^a and a^R(oo) re-
peatedly, it follows that R(oo)=a = R0.

PROOF OF THEOREM 2. At first suppose that λι is negative. By Theorem
1 g(x, —λϊ1) is the eigenfunction corresponding to Ai. The measure

is a positive Radon measure in Mo. Hence

From (3,12) it follows that Ro^λ^Wgi , -λ^W2, which implies R0<0.
Conversely, suppose R0<0 We have by Lemma 7 Λ(oo)<0, and then we
have from (4, 1) that there is at least one negative eigenvalue. Thus we
complete the proof.
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§ 5. The proof of Theorem 3.

We devide the proof of Theorem 3 into three lemmas.

LEMMA 8. The following conditions for x are equivalent:

(5.1) P,(r0>0) = 0,

(5.2) lim Gl(x, S) = 0 (for some α>0),
«t °°

(5, 3) lim uGu

a(x, C) = l (for some α>0).

PROOF. Since if r0<°o, the sojourn time Tt>0 for ί>r 0 , we have

(5,4)

\

Hence (5,1) holds if and only if (5, 2) holds. By (3, 5) we obtain that (5, 2)
and (5, 3) are equivalent. Thus we have finished the proof.

REMARK. The property (5, 2) or (5, 3) for some α>0 implies by the
monotonicity of Gu

a in a that it holds for any sufficiently small α>0.

LEMMA 9. Let fbe a bounded measurable function on C. Then we have
for any point x where Px(v0>0) = 0,

(5, 5) lίmlim [ uGu

a(x, dγ)f(γ) = limϊϊm[ uGu

a(x, dy)f(y).
JC

PROOF. By Lemma 8, we have lim uGu

a(χ, C) = l. From (A2, 1) and (3,

9) it follows that lim uGu

a(x, C) = l. Hence (5, 5) is valid for /^constant.

Next, suppose that 0 ^ / ^ l . Since Gu

a increases as a j 0, we have

ίίϊnlim [ uGu

a(x, dγ)f(y)2>limϊirnί uGu

a(x, dγ)f(γ\
u\°° «40 JC a:|0 u\°°JC

and

lίmlim ( uGu

a(x, rfj)(l-/)(j)^limϊίmί uG%(x,
«T°° α o ^ C ^ ctlo u\°°JC

Noting that lim uGu

a(x, C) = \\muGu

a(χ, C) = l, we can rewrite the above in
t al0
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the form:

lim lim \ uGu

a{x^ dy)/(y)<^lim lim\ uG1

a(x, dy)f(y).
u^oo ctlQjC ^ 4 0 u \ °° J C

Thus we have (5, 5) for 0<Ξ/<[l, and hence for a bounded measurable func-
tion /, since such a function is expressed as a f+b where 0<J/<^l and
a Ξ> 0, b are constants.

LEMMA 10. It holds that g(x) — 0 at a point x where Px(r0>0) = 0.

PROOF. We have seen in the proof of Lemma 3 that

(5, 6) F0(a, u) = F1(a, u) + F2(a, u) + F3(a, u\

where

F0(a, u) = G%(x, C)- \cira(x, y)-φ(ά)-k(x, y)}m(dy)- \^k{x, y)m(dy\

Fι(a,u)=-\ uGu

a{x, dy)\ {rα(y, z)-φ(ά)-k(y, z)}m(dz\
J C J C

F2(a, u)= — \ uGϊ(x, dy)\ k(y, z)m(dz),
J C J C

%(x, S)τn(C).

Since lim lim F0(a, u) = \im lim F0(a, u), we obtain that
a 10 « t ° ° «T°° « I O

lim lim Fλ + lim lim F2 + lim lim F3

Ξ> lim lim Fi + lim lim F2 + lim lim F3.

The above two limits of Fx are 0 by Lemma 1, and lim lim F2 exists, since

the limits of the other terms at (5, 6) exist. So by Lemma 9 lim lim F2 =
M t

lim lim F2 — lim lim F2, and hence lim lim F3 ̂  lirn lim F3. Therefore by

Lemma 8 we have

O^lim lim F 3 = ̂ WTTICC) ^ 0 ,

which completes the proof.

PROOF OF THEOREM 3. Using Lemma 10 and the definitions of R and i?0,
we can easily establish the proof.



On the Eigenvalues of Recurrent Potential Kernels 31

References

[ 1 ] T. Bojdecki, Analytic approach to semi-classical logarithmic potential theory, Studia Math., 35
(1970), 181-197.

[ 2 ] Z. Ciesielski, Semi-classical potential theory, Pro. of Symp. on Markov processes and potential
theory, (1967), 33-59, Wiley, New York.

[ 3 ] Z. Giesielski and M. Kac, Some analytic aspects of probabilistic potential theory, Zastosowania
Matematyki, 10 (1969), 75-83.

[ 4 ] W. Feller, Introduction to probability theory and its application, 2 (1966), Wiley, New York.
[ 5 ] K. Ito, Stochastic processes, Lecture note, 16 (1968/69), Aarhus.
[ 6 ] M. Kac, On some probabilistic aspects of classical analysis, Amer. Math, month., No. 6, 77 (1970),

586-597.
[ 7 ] M. Kac, Aspects probabilistes de la theorie du potentiel, Seminaire de math, superieures, 32 (1968),

Univ. Montreal.
[ 8 ] J. Troutman, The logarithmic potential operator, 111. Jour., 11 (1967), 365-374.
[ 9 ] S. Watanabe, Stable processes, Seminar on prob., 13 (1962), (Japanese).

Kobe University of Commerce






