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§ 1. Introduction

Our main purpose in this paper is to construct unitary representations
of the most continuous principal series, using polarizations. As is stated in
§ 1 of [13], a polarization on a symplectic manifold was devised by Kostant
with the aim of constructing unitary representations for an arbitrary Lie
group. It is an extension of the nilpotent case given in Kirillov [βj, and has
enough effectiveness in solvable Lie groups of type I (Auslander-Kostant [2]).
For semisimple Lie groups, however, the situation is slightly different from
them. For example, it has been pointed out by many people that the discrete
series representations of a non-compact semisimple Lie group of the non-
Hermitian type can not be obtained by polarizations only, and some concepts,
like cohomology spaces, seem to be required. However, we can show that the
representations of the most continuous principal series can all be constructed
by using polarizations (Theorem 6.6). This is partly because a polarization
of any semisimple element in the Cartan subalgebra with maximal vector
part can be chosen related with a minimal parabolic subalgebra by translat-
ing the element by the addition of a certain nilpotent element, and partly
because the differential equations attached to the polarization can be replaced
by the Borel-Weil theorem of a compact reductive Lie group. In this paper,
we also make investigations in each simple Lie algebra, and prove that in case
of (A I-A III), $o(n, 1) or (£ΊV), every element has w-polarizations, while there
exists an element with no polarizations in Lie algebras of any other type
(Theorem 4.6). The proof is made by using a suitable TDS with high singula-
rity.

The author should like to express his hearty thanks to Professor H. Ozeki
for his kind advice and useful discussions.

§ 2. Real admissible polarizations

In this paper, except for § 5, we assume that G is a connected real semi-
simple Lie group with Lie algebra g*. (In § 3, g* is assumed to be simple.)
Let g be the complexification of g#, and B the Killing form of g. Notations
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are due to [IS],

LEMMA 2.1. Let p be a w-polarization (in the sense of Definition 7.1
of a nilpotent element e in g, and g ; the j-eigenspace of adQ(x) where x is a
mono-semisimple element corresponding to e. Then

1) άim(Ad(g)pΓ\§j)=άim(pr\§j) for every ge (Gc)\

2) d\m(σpr\Qj) = dim(pr\§j) if e e QR.

(Note that in this case x does not necessarily belong to QR.)

PROOF. 1) By Lemma 3.2 of [13], (Gc)e is the semi-direct product of
(Gc)e and (Gc)eΓ\(Gc)\ Since (Gc)e is connected, it stabilizes p, and so we need
only to prove the relation 1) for ge (Gc)eΓ\(Gc)x. The space gy is stable under
Ad(g)(g ^ (Gc)er\(GcY). So we have

Hence

= dim(p Γ\Qj).

2) Let (x, e, /) be an S-triple containing e as the nilpositive element.
Then (σx, e, σf) is also an S-triple. Owing to the Kostant's results stated
in §3 [13], we can find an element ge (Gc)e such that ύx = gx. We shall
show that 6Qj coincides with Ad(g)qj. Indeed, we have

= {Y; [Λ?,σ-1IΓ]=7σ-1Γ} (where Y=σX)

, Ad(g-1)YJ=jY}

= {Ad(g)Z; Ad(g)lx, Z2=jAd(g)Z}

(where Z = Ad(g~1)Y)

= {Ad(g)X;lx,XJ = j

Therefore
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dim (σp Γ\Q/)=dimσ(pr\σQj)

= dim (p r\ σgy)=dim (pΓλAd(g)Qj)

= dimΛd(g)(Ad(g-1)prΛQj)

= dim(Ad(g-1)pΓλQj)=dim(pΓλQJ)

since Ad(g~1)p=p (ge(Gc)e).

Q.E.D.

PROPOSITION 2.2. Let e be a nilpotent element in QR. Assume that the
characteristic of a mono-semisimple element x of e consists only of integers.
Then e has a real polarization.

PROOF. We set p= Σ q . Then p is a w-polarization of e (Proposition
y^o'

5.1 of C13]). Further by Lemma 2.1, we have

and

ap=p.

Thus p is a real polarization of e. Q.E.D.

PROPOSITION 2.3. Let p be a w-polarization of a nilpotent element e in QR.

Assume that e has not a w-polarization p' of e other than p such that dim(pΓ\Qj)
= dim(p'Γ\Qj) for every j. Then p is a real polarization of e.

PROOF, σp and Ad(g)p(ge (Gc)e) are w-polarizations of e satisfying

dim (σpίΛQj)=dim (t>Λgy),

and dim(Ad(g)pr\Qj)=dim(pr\Qj\

by Lemma 2.1. And so, by our assumption, σp and Ad(g)p must coincide
with p. Thus p is a real polarization of e. Q.E.D.

PROPOSITION 2.4. Let p be a w-polarization of an element X in QR. As-
sume that any w-polarization of X except for p is not conjugate to p under the
action of the automorphism group Aut(g) of g. Then p is a real polarization
of X.

PROOF. Let ΐ) be a Cartan subalgebra of g contained in p. Then £)/=σ^
is a Cartan subalgebra of σp. Let Δ (resp. Δr) the non-zero root system of g
with respect to ΐ) (resp. ty). For each ae Δ.σae Δr is defined by

(σa)(H)=a(σH) for every He ΐ)',
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and this correspondence becomes a bisection of Δ to A'. We define Hae\) and
Hi e V(a e Δ, a' a Δf) by

B(Ha, H)=a(H) for every He %

B(H'a, H')=aXH') for every H' e $',

and we set

and

where B denotes the Killing form of g. By Theorom 5.4 (Chap. Ill) of Helga-
son [7], there exists a Lie algebra automorphism φ of g, such that ψ—ΰoxs.
hR. Then we have

for every ae J, because, for Xe gα and .ίΓe Ϊ)R,

, XΊ = φ\jr*H9 XJ

~] = φ(a(σH)X)

= a(σH)φ(X)=a(σH)φ(X)

= (σa)(H)φ(X).

So we have φ(p)=<τ(p)9 i.e., σp is a w-polarization of X which is conjugate to p
under Aut(g). By our assumption, σp must coincide with p. It also follows
from our assumption, that p is Λd((Gc)e)-sta,b\e, so p is a real polarization of
X. Q.E.D.

§ 3. Polarizations and cuspidal parabolic subalgebras

Let QR = to + po be a Cartan decomposition of a real semisimple Lie al-
gebra QR, α+ a maximal abelian subspace of :p0, and αo = α_ + α+(α_Cϊo) be a
Cartan subalgebra of gΛ. Denote by g, i, p, α, αf. and αξ. the complexification of
g e, ϊo, t>o, do, α_ and α+ respectively. Fix a compatible order in the non-zero
root system Δ of (g, α) with respect to (α#=V — lα_ + α+, α+), and we set

+ =the set of all positive roots in J,

4+ = {a e J+; α does not vanish on α+},
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Σ ={<χζJ;a vanishes on α+},

Σ+=ΣίΛΔ+,

n = Σ g", no=nΛg*,

m =the centralizer of α+ in ϊ,

trto =mΓΛQR=ihe centralizer of α+ in ! 0,

bo =t

and

For every ae Δ, Hae aR is defined by

B(Ha, H)=a(H) for every He α,

where B denotes the Killing form of g. For simplicity, a root a e Δ is often
identified with Ha.

Let Π={au- , <Xι} be the fundamental root system, and {εi, ,ε/} the
basis of α dual to {αi, , at}.

THEOREM 3.1. There exists a nilpotent element in $R with a real polariza-
tion b.

PROOF. We set Φ = ΠΓ\Λ+, and write α~/9(α, β e Φ) if α|α+ = /9|α+. (In
other words, a^β implies that a=β or they are combined with an arrow in
the Satake diagram.) Let {aμ. 1 <J i <^ k} be the subset of Φ consisting of all
representatives of equivalence classes in Φ with respect to ~ . By a suitable
arrangement of au- , ah we assume that 0 / ~ = {αi, , ak} and that

Gcίi = (x>i for 1 ̂  i <ί p,

GdiΦai for p+1 ^ i ^ k .

We set

e = Σ e Λ .+ 2 (e^. + ̂ e^^)
z = l ι = / > + l

where e,, is a non-zero vector in g α (αe Δ) satisfying B(ea> e_α) = l and <Teα =
eσ Λ. We set

/> k

f= Σrie-.a.+ Σ (rie-a. + Sie-σa)
*=i i=p+i ι

and 5f e
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and

Then we have

and \jc, e] is given as

P

χ= Σ

follows:

k P

+ Σ σa
i=p+l
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k

rjOCj + Σ (fjaj -
J=P+I

rjaj+ Σ (rjuy
J=P+l

P k

j=l j=p+l

k k k

= Σ { Σ rj(ah <Xj)+ Σ sj(ah aaj)}ea.
z = l j l J P+l

k k

Σ {Σ
i=P+l j = l

j{σah σaj)}eσa.

k k k

= Σ { Σ rj(ahaj)+ Σ Sj(ah σaj)}ea.
i = l j = l j=P+l

k k
Σ {Σ

i ji

k

Σ s
j=P+ι

From the relation {^x9 e~\ — e (this is a necessary and sufficient condition in
order that x may be a mono-semisimple element corresponding to β), we have
a system of linear equations:

(1)

Now we set

Σ Tj (ah <Xj) + Σ sj(ah σaj) = 1 (l<,i<:k\
/=i j=p+i

Σ
J=P+l

i, ak) σak)

k, σap+1) ..-(ak,

ak) (ak, ap+1) k, ak)

The matrix A is a positive definite real matrix, since the Killing form B is
strictly positive definite on α#, and {au -, ak, 6<xu ,<J<xk} is linearly indepen-
dent. The equations (1) are written in the matrix form:
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The linear equation (2) (or (1)) has a unique solution, and ri, , rh sp+u .., sk

are determined as real numbers. Now we shall show that rf = 5,- (for p+l<,
ί<=k). Noting that

we have from (1)

c P k k

3 = 1 *' J J 3=P+1 ί ? ; ; 3=P+1 ^

P k k

Σ (G&h <Xj)rj + Σ fe> (Xj)rj + Σ (poίi) (Xj)sj = 1 (for jp + 1 ^ ί<^k)^
3=1 3=P+1 J=P+l

P k k

Σ (pCi, <Xj)rj + Σ (β>h Ga>j)rj + Σ fc, OLj)sj = 1 (for p + 1 ^ i ^ k).

Changing the second equations with the third, and the second terms with the
third, we have

P k k

Σ fe > <2/)r/+ Σ (pCi>(Xj)Sj+ Σ fc5 (Tαy)ry = l

/> ^ ^

y=i y=ί+i y=/»+i

Σ ((tea, cCj)rj+ Σ (God, aj)sj + Σ (ai,ctj)rj = l

k j=l J=P+1 j=p+l

Using the matrix A, these equations become as follow:

/ON/ JJCr 7- c c r r \ t(Λ Λ\

By the uniqueness of solutions of equations (2) and (2);

5 we have

5f = Γ#

Thus we have proved that the element
P k

Σ TT I V~1

* i *^- CL I / i
ί = l i=p+l

(where ri, ,r^ are solutions of equations (1)) satisfies \^x, e~] = e and x e
He, g], so x is a mono-semisimple element corresponding to e. Now we
expand the above x by the basis {βi, . , εi\ :

i
JΓ—Y r ε

where c, = α , (Λ;) e JR for 1<J *'<;/.
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We shall make an investigation into the characteristic (ci, , c/) of x.
We shall show that

1 0 (if (Xi is a purely-imaginary root)

1 (otherwise).

Indeed, if a{ is a purely-imaginary simple root (i.e., σα, = — α , ), we have

(ctj, cti) = 0 for 1 <iy <!/>

(because (αy, α, ) = (βah σai) = — (ah aϊj) and

(αy, α, ) + ((ίαy, α, ) = 0 for p + 1 <J/ <S A.

Thus we have

Ci=ai(x)

P k

= Σ n(ah <Xi) + Σ ry{(αy, aϊ) + (σaj, α, )}

= 0.

Next we consider the case when a{ e Φ. From x = Σ c, ε, , we have
ί = l

CΛ, ej= Σ Ciea + Σ (ciea +(x, βadeσa).
ί = l /=/»+l

Comparing the coefficients of ea in the both-hand sides of [_x, e~2 = e, we have

For each i = p+l9- 9 A, we can find /5X e 7Γ and r/ e α^ = HomΛ(αi?5 JR) such that

The root /?,- is either equal to αz or combined with αx by an arrow in Satake
diagram. Then, due to (x, <rα, ) = l and (A;, r/) = 0 (this is because x e σ+), we
have

By the definition of the equivalence relation " ~ " in Φ, Φ is exhausted by

{#! , . . . , α Λ , βp + l,-; βk}>

where the expression of this set permits repetition. Thus we have proved
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that

Ci = l if <Xi€Φ.

Since the characteristic of x consists only of integers, p= Σ9/ is a w-pola-
/2:0

rization of e by Proposition 5.1 of [13]]. Further p is a real polarization of e
by Proposition 2.2. It is easily seen from the characteristic of x (cz = 0 if α,
is purely-imaginary, and cx = l if a{ e 0), that

9o=α+

Σβ/= Σ gα=tt.

So we have p=b. Q.E.D.

From the proof of the above theorem, we have:

COROLLARY 3.2. The element in α+, whose characteristic is equal to 0 at
purely-imaginary roots and to 1 elsewhere, is a mono-semisimple element cor-
responding to a certain nilpotent element in QR.

Now we introduce the notion of a principal nilpotent element of a real
semisimple Lie algebra:

DEFINITION 3.1. A nilpotent element e in QR is called a principal nilpo-
tent element of QR if dimge<idimg* for any nilpotent element X in QR.

PROPOSITION 3.3 1) The nilpotent element in Theorem 3.1 is a principal
nilpotent element of QR.

2) Principal nilpotent elements are all conjugate to each other under the
action of Gc.

PROOF. 1) Choose x and e as in the proof of Theorem 3.1. Let er be a
nilpotent element in g#, and x a mono-semisimple element corresponding to
e\ The element x' may be assumed to be contained in the closure of the
positive Weyl chamber in α+ (Corollary 4.2 of [13]). Let gj be the /-eigen-
space of adQx'. Since xf e α+, we have

=a+m=ac+

So we have

2

As we have shown in the proof of Theorem 3.1, the characteristic (ci, , ct)
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of x has the property:

1 0 if α, is purely-imaginary,

1 otherwise,

and so

dim Qe=dim g0 = dim (ac

+ + m).

Hence dimg*<!dimge', so e is a principal nilpotent element of g#.

2) Let er be a principal nilpotent element of ĝ , and x' a mono-semisim-
ple element corresponding to e'. By Corollary 4.2 of E13II, x' may be assumed
to be contained in the closure of the positive Weyl chamber in α+. In order
to prove this proposition, it is enough to show that x = x'. We consider the
characteristic (cί, , c't) = (aι(x')9 • , ctι(χ')) of x'. From x' e α+, we have c{ = 0
for each purely-imaginary root αt . Now we shall prove that c£ = 1 for αz e
0 = Π— {purely-imaginary simple roots}. By Lemma 3.1 of [13], each cz is
equal to 0,-g- or 1. Suppose that c =0 or -g- for some α, 6 (Ẑ. If c{ = 0
for some αz e (2̂, we have

so we have

dimgβ/^dimgo >dim (α+m) = dimge.

This contradicts the fact that ef is principal nilpotent. If cί=-g- for some

α, 6 (̂ , we have

and 9i^gαS
2

so we have

dimge' = dimg^ + dimQ{ > dim Q'O
2

This also contradicts the principality of e'. Thus we have proved cz' = l for
<Xi e ^, and so we have x = xr. Therefore e' is Gc-conjugate to e.

Q.E.D.

Note: Any two principal nilpotent elements in QR are not necessarily

conjugate to one another under the action of G. For example, the set of all
principal nilpotent elements in §1(2, R) separates into two SL(29 jR)-orbits the

one through (^ Λ and the other through ί - Λ.
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From the proof of Proposition 3.3, we have:

COROLLARY 3.4. Let e be a nilpotent element in QR. Then e is a princi-
pal nilpotent element of QR if and only if dimg e=dim (a+m).

COROLLARY 3.5. QR contains a principal nilpotent element of g, if and
only if there exists no purely-imaginary root in J (i.e., Σ is empty).

PROOF. Let e be a principal nilpotent element of QR. Then, by Corolla-
ry 3.4,

dimg e=dim(α+ Σ Qa)

So the condition that e is a principal nilpotent element of g is equivalent to

dim(α+ Σ gΛ) = rank g=dim α,

which is equivalent to Σ=φ (the empty set). Q.E.D.

The following theorem is concerned with cuspidal parabolic subalgebras
and polarizations, and plays an important role in the construction of principal
series representations.

THEOREM 3.6. Let ί)0 be a θ-stable Cartan subalgebra, and notations are the
same as in § A of [1S~]. Let HQ = Hι + H2(H1 e ϊ)_ and H2 e ϊ)+) be an element in
fyo such that α(ϋΓo)=¥O for every a e Σp. Then there exists a nilpotent element
e in tto such that

q=^+ Σ <f + Σ or

is an admissible w-polarization of HQ + e.

PROOF. The centralizer (QR)H° of Ho in QR is a reductive Lie algebra wi th
the center

3o=( a{HQ)=oRHaJΓ\QR

and the semisimple part

lo=5ί + ( Σ Qa)r\QR,
a.ΐi'

where

t)'= Σ,CHa,
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and

As is shown in the proof of Proposition 4.5 of Q13j|, ty0 is a Cartan subalgebra
of Io with maximal vector part, and §L = fyor\to (resp. f)'+ = 1)oΓΛpo) is the toro-
idal (resp. vector) part of fy0. And a lexicographic linear order in the non-
zero root system R (which may be identified with {a\ί)f; ae Δr}) of (I, ί)')
compatible to (ί)o, ψ+) can be chosen so that the subset R+ of all positive roots
in R coincides with {a\ί)f; a e Δ'Γ\Δ+). By Theorem 3.1, we can find a princi-
pal nilpotent element e of Io with a real polarization (in ϊ)

Now we put X=H0 + e, and we shall prove that q is an admissible w-polariza-
tion of X.

0) q is a subalgebra of g since the linear order in Δ is compatible.
1) By definition of q, we have

dim g—dim ( I + j ) = 2 (dim q—dim qr — dim 3).

Since qx is a polarization of e in ϊ, we have

dimϊ—dimq /=dimq / —dimZt(e).

And, as is proved in the above,

So we have

dimq — dimg*=dimg—dimq.

ii) By definition of q, we have

, q ] = Σ CHa+ Σ g*+ Σ g*.

On the other hand, XeCHQ+ Σ Qa.

Thus we have B(X, [q, q]) = {0}.
iv) Since Σ Qa is σ-stable and σa= — a for a e 21, we have

« 6 |

= ή + Σ 9 α + Σ 9 α ,

which is a subalgebra of g because the linear order in Δ is compatible to

Thus the statement of Theorem 3.6 is proved. Q.E.D.
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Note: In the above Theorem 3.6, (q + (Jq)Γ\QR is a cuspidal parabolic
subalgebra of QR corresponding to ήo

Note: As to the assumption in Theorem 3.6, we remark here that any
(non-zero) semisimple element H in QR is G-conjugate to an element H' in
some 0-stable Cartan subalgebra ήo, and which can be chosen so that
for every a e Σp (Lemma 4.4 of

§4. A discussion in simple cases

Let QR be a non-compact real simple Lie algebra, and gJκ=fo+t>o its Car-
tan decomposition. Choose a Cartan subalgebra αo = α_ + α+(α_Cΐo5 a+CPo)
with maximal vector part, and we set I=dim σ o(=rank (g)) and r=dimα+( =
rank of the symmetric space G/K). Denote by g, ϊ, p, α, α5 and α$ the com-
plexification of g#, ϊ0, £o5 ct0? α_ and α+, respectively. Let Δ be the non-zero
root system of g with respect to σ. A lexicographic order in α# = V — lα_ + α+
compatible to α+ induces a linear order in J, and we denote by Δ+ the set of
all positive roots. Let Π={aiy >, a{\ be the system of simple roots arranged
according to the Dynkin diagram, and {εi, , ε/} the basis of aR dual to {αi,
• , ai}. A root α e J will be called a purely-imaginary root if a\a+ = 0, a real

i

root if α |α_ = 0, and a mixed root otherwise. A positive root a= Σ aiCCi is

expressed simply by (αi, ••, α/). (In case of type (D) or (2?), a is expressed

also by («i «/-3α/-2α/_Λ Q r ίa^a^. cnΛ^ γ Q τ a e J e s e t

Qa = {Xe g; ad(H)X=a(H)X for every # e α}.

We choose eΛ 6 gα(α e A) such that

5(e α , e_α) = l and (Tβα = eσα:,

where 5 denotes the Killing form of g. And we set

It is well-known that Ha e aR and B(Ha, H)=a(H) for every He ί). We set

LEMMA 4.1. In case of QR=§O(TI, 1),
1) every (non-zero) nilpotent element in QR is a principal nilpotent ele-

ment of QR, and
2) every nilpotent element in QR has a real polarization.

PROOF. 1) A (non-zero) nilpotent element in QR is embedded into an
S-triple in g# as the nilpositive element, which is G-conjugate to a standard
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S-triple (*, e, / ) (Lemma 3.3. [13] and Corollary 4.2 [13]). The character-
istic of x(x e α+) is zero at purely-imaginary roots. The Satake diagram of
QR is as follows:

O •=*• (if n=2l)

O (if n=
1

So the characteristic of x is

i) (l,0,.. , 0) ( * = β l ) , or

ϋ) (-|-,O,...,

The case ii) does not occur since ii) is inconsistent with gi=V{0}. So the only
possible case is i), which is the characteristic corresponding to a principal
nilpotent element of QR.

The statement 2) follows from 1), Theorem 3.1 and Proposition 3.3.
Q.E.D.

LEMMA 4.2. Every nilpotent element in the simple Lie algebra of type
(EIV) has a real w-polarization.

PROOF. The Satake diagram of (E IV) is

OL\ a2 a3 aA a5

-O

From the table of Dynkin ([5] p. 178), the characteristic of a standard S-
triple (x, e, / ) is

1 0 0 0
0 C ° o

or

In case i), e is a principal nilpotent element of QR, and has a real polariza-
tion (Theorem 3.1 and Proposition 3.3). So we shall consider the case ii).
We set
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rι = Σ Qa, v2= Σ a".
« < * > = - ! • « < * > = - |

Then one can see from an easy calculation of roots that

dimF'^-^-dimg l9
* 2

V1 is an abelian subalgebra of g, and

V1 is stable under the adjoint action of g0

for i = l, 2. Therefore

is a ^-polarization of e (Proposition 5.2 of CIS]). Moreover, since Vi(i = l9 2)
is σ-stable, p{ is a real w-polarization. Q.E.D.

LEMMA 4.3. Let QR be a real simple Lie algebra not of type (A), and β the
highest root. Then eμ has not a w-polarization in the sense of Definition 7.1.
of C13]. (Note that eμ is not necessarily in g#.)

PROOF. Consider an S-triple

( # , e , / ) = \τ~τίT2""/*> β / ί ? \ju\ 2 6 ~ μ ' ) '

We can see from the root table of each case that there exists uniquely the
simple root <Xi such that β—aieΔ (so x is a scalar multiple of e, ), and that
the coefficient of μ at cίi is equal to 2 (i.e., ju(εi) = 2). From [_x9 e~] = e, we

have ju(x) = l, so we have x = -^Si. Thus the characteristic of x is

We set

For α e Jo, let β—pa, β—(p—ΐ)a, , β + qa(p, q^>0) be an α-series con-
taining μ. Then

And either p or g is equal to zero, since μ is the highest root. (If a e Δ+,
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then <7 = 0; and if — ae J+, then JP=O.) SO we have/?=<jr = O, and [e, gαH = {0}
for a e Jo. Thus we have

βoΛβ = ΣCHa.+ Σ g β .

Assume that e has a w-polarization p. By Proposition 5.3 of C13] (x e p)
and the above, we have g 0 O , so we have 2 QjCP Since g_i=C/ and gy =

{0} (j^—~~2~\ w e h a v e

2 * 2

by the condition ii) of polarizations. But this cannot happen because, as one
can see from an easy calculation of roots, g_i is an irreducible g0-module.

2

Therefore e has no ^-polarizations. Q.E.D.

PROPOSITION 4.4. In case that QR is a non-compact real form of type (B),
(D) or (EX except for 8o(τ&, 1) and (E IV), there exists a nilpotent element with
no w-polarizations.

PROOF. It suffices to show that in each case the highest root μ is a real
root.

1) The Satake diagram of type (B) (except for 3o(2Z, 1)) is as follows:

OC\ Oίr CCγ + 1 &1-1 Oil

o o— —•••••
The highest root # = (12...2) is real since it is orthogonal to purely-imaginary
simple roots.

2) The Satake diagram of type (J3/)(Z ̂ >4) (except for So(2Z + l, 1)) is as
follows:

ax a2 ar

O O O (2 ̂  r <: I - 2)

Oil

-O O O
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-o— —o —o—
o

-O- -o -O

O

In each case, the highest root A = ( * * ±\ j s orthogonal to purely-

imaginary roots and simple roots with an arrow, and so μ is real.
3) The Satake diagram of type (E) (except for (EIV)) is as follows:

(El)

(E III) O ••

(E V)
a2

O

o
Oil

o—•-

•— — —o-

O
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(£VIΠ)
a2

O O

O

(E1X)

T -o

The highest root μ is

1 2 3 2 1
2

2 3 4 3 2

)

( 2 3 2 3 2 1 )

(
2 4 6 5 4 3 2

)

if QR is of type (E6\

if g* is of type (2?7),

if QR is of type

We have (A, ad = 0 for ^ 6 if QR is (E6), for i^=l if QR is (E7\ for i=^=7 if QR

is (E's), and so in each case, β is orthogonal to purely-imaginary roots and
simple roots with arrows. Thus β is a real root. Q.E.D.

LEMMA 4.5. In a non-compact real form of type (C), there exists a nίlpo-
tent element with no w-polarizations.

PROOF. The Satake diagram of (C/) is

Oil a3
aι-2 Oil

=O

•O-

-o- =o
The root βr = (l 2 2 ... 2 1) is real since (/*',ai) = 0 for ί
S-triple (in QR)

1 rr 1

We consider an

L V J
>\/i'\2 " ' μ ' \βf\2

Since (//, α, ) = 0 (so Λ; is a scalar multiple of ε2) and [Λ;, ej = e (i.e., A'(Λ;

and the coefficient of β' at α2 is equal to 2 (i.e., //(ε2) = 2), we have # = -

So the characteristic of x is

θ,Jp 0,.. , o). We set
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J i = { α e i ; α ( * ) = l}

=•{(1 2 2 . - 2 1), (2 2 2 . - 2 1), (0 2 2 . - 2 1)},

A = \a e Δ a{x) = -i-, α(βl) = l},

Ji = iα e J; O (Λ ) =4-} = Av A,

JOe = {u e J ; «(Λ;)=0, α(ei) = 0},

J; a(^) = 0} = JO,W{±(1 0 ... 0)},

Then we have

fly={0} (if I/I^-|")'

gy=Σflβ (if |;Ί=4-,l),

g i ^
2

where

i

2

By a simple calculation of roots, we see

V{ is I-irreducible3
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[_V\ Γ 2 ] = g-<02~21>.

Now we assume that e has a ^-polarization p. We have I+fli + fli O , by
2

Proposition 2.1 and Proposition 5.3 of
First we shall prove that ί>Λg_i={0}. If p Γ\ g_i =̂= {0}, p includes V1 or

2 2

F 2 . Suppose that *O F 1 . Then

Since e e ft we have

So we have

Hence

i Cfc and g_i = [g_i, g i
2 2 2

Thus we have t)=g, which contradicts the condition ii) of polarizations. The
supposition pZ)V2 leads us to the same contradiction. Thus we have proved
that

_
2Next we shall prove that £ng_i = {0}. If png_i =V {0}, P includes g-<22-21)

or g-(°22 2 1). (/ e p does not occur because / e p, with g e θ , implies t>=g.)
Suppose that t>Dg- (22-21). Since g(110-0) Cgi Cfc we have

2
g

2

which contradicts the fact that pr\Q_i = {0}. If we suppose that }Og~(022-21),

we have

since g~(010"*0) Cgi O This is also inconsistent with pΓ\Q_i =
2 2

So we have p C Σ fly. Hence

dim p <; dim Σ fly=-^-(dim g + dim g0)

- ^ ( d i m g+dim g0 + dim gi)
A 2
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This is contradictory to the condition ii) of polarizations. So e has not a
w-polarization. Q. E. D.

Summing up Corollaries 6.2-6.3 ([13]), Examples 6.3-6.4 ([13]) and the
above lemmata and propositions, we have:

THEOREM 4.6. 1) In case that g# is a real simple Lie algebra of type {A I)
{A lΐ)(E IV) or §o(n, 1), every nilpotent element in QR has a real w-polarization.

2) In case that qR is a real simple Lie algebra of type (A) (E IV) or 3o(rc,
1), every element in QR has a w-polarization.

3) If QR is a non-compact real simple Lie algebra of other type, there ex-
ists a nilpotent element in $R with no w-polarizations.

The following is an immediate consequence of Proposition 2.6 [13] and
the above theorem:

COROLLARY 4.7. 1) In case that QR is a real semisimple Lie algebra con-
sisting only of simple ideals of type (A I) (A II) (EIV) or §o(n, 1), every nilpo-
tent element in QR has a real w-polarization.

2) In case that qR is a real semisimple Lie algebra constisting only of
simple ideals of type (A)(EΐV) or $o(n, 1), every element in QR has a w-polariza-
tion.

3) // QR is a non-compact real semisimple Lie algebra of other type, there
exists a nilpotent element in QR with no w-polarizations.

§ 5. Orbits and unitary representations

5.1. In this section we shall give a sketch of the Kostant's method (Kos-
tant [11], [12] and Kirillov [9]) from the viewpoint of induced representa-
tions.

Let QR be a Lie algebra of a connected Lie group G, and g its complexifica-
tion. The group G acts on the dual space g^=Homi?(gie, R) as the contragre-
dient representation of (Ad, QR). Namely, for every g e G and λ e Q%, gλ is
defined by

(gλ)(X) = λ(Ad(g-
1)X) for every Xe QR.

The G-orbit O = G/GX in ĝ  through λ admits the canonical G-invariant sym-
plectic structure ω defined as follows (a non-degenerate closed 2-form on an
even dimensional C°°-differentiable manifold is called a symplectic structure):

ωp(σ(X)p,σ(Y)p)=-P([_X, YJ)

for every X, Y e g and p e 0, where σ(X) (X e QR) denotes the vector field on O
generated by the 1-parameter subgroup {expίX}_oo<ί<oo of G, i.e.,



504 Minoru WAKIMOTO

σ(X)pf= (σ(X)f)(p) = [-A/(exp- tX-p)

(for / e C°°(O) and /? e 0), and σ(X)(X e g) is its canonical extension. It is
proved in [[12] that ω is well-defined as above and that ω is a G-invariant
symplectic form on O.

Let p be an admissible polarization of Λ, and define a linear mapping
%£ of p to C by

xl(X)=2πJ-ϊλ(X) for every l e p .

Then by the condition i) of a polarization, x\ is a Lie algebra homomorphism.
We set

b=ρr\σρ, bo

and denote by Z>0 (resp. Eo) the analytic subgroup of G generated by b0 (resp.
e0). We assume that Do and Eo are closed subgroups of G. Let D (resp. E)
be the subgroup of G generated by DQ (resp. Eo) and Gλ. By the condition iiΓ
of a polarization,

E = GxE0={xγ; x e Gλ y€E0},

and Do (resp. £Ό) is a normal subgroup of D (resp. JF).

REMARK 5.1. When G is semisimple, the above definition of D and E
seems to need some modifications, as will be pointed out in 5.6.

5.2. The symplectic form ω on 0 determines the de Rham cohomology
class [V].

LEMMA 5.2.1 (Kostant [12].) When G is simply connected, the following
conditions are equivalent:

1) There exists a character %λ of Gλ, whose differential coincides with %%

onβR
2) [βΓ\ is integral.
Let Go be the connected component of Gx containing the unit. Then we

have

LEMMA 5.2.2. 1) The manifold D/Gx is (canonically) diffeomorphic to
DQ/(Dor\Gx).

2) // D/Gx is simply connected, then
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ii) There exists a canonical 1-1 correspondence between the set of the
connected components of D and that of Gx.

PROOF. 1) Define a mapping φ: Do/(Dor\Gx) ->D/Gx by

gQλ f o r e v e r y g e A>,

where ^denotes the element in D0/(D0ΓλGx) corresponding to g. This map-
ping φ is injective, since gGx = gfGx implies that g~λ g' e DOΓ\GX, for g, g' e
Do. Each element g in D can be decomposed as g= gh (g' e Do, h e Gx).
Then

Hence φ is surjective
2) i) It suffices to show that Do r\ Gx is connected. There exists the

following homotopy exact sequence of the fibre space (Dθ9 p, DQ/DQΓ\GX):

πι(Do/Dor\Gx,p(e))->πo(Dor\Gx, e)->πo(Do, e)

where p denotes the canonical projection of Do onto D0/D0Γ\Gx

y and e the unit
of Do. Here, we have

by 1) and the assumption on D/Gx, and

7Γo(A), β ) = { 0 }

since Do is connected. Hence

and so DOΓ\GX is connected.
ii) Let x=hy and x'=h'yf be elements in D (y, y' € Do, h, h! e Gx). Since

x-1x/ = y-1h~1h/y\ the relation χ-λxr e DQ is equivalent to hrλh! e Do, which is
also equivalent to h~1h'eGx

) because Gx,=Dor\Gx. So we can assign the
connected component of Gx containing h to the connected component of D
containing x, and this assignment gives a 1-1 correspondence between the
set of connected components of D and that of Gx. Q.E.D.

We set

Rx= ( x; i) % is a character of G\ Λ
\ ii) the derivative of x coincides >
I with x* on QR. i,

and
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R^= ( x; % is a character of D Λ
\ with the infinitesimal representation >

Then, by the restriction on Gλ, RQ is naturally included in Rx; i.e., h

LEMMA 5.2.3. When D/Gx is simply connected, the natural inclusion of
i?o to Rx is a bisection.

PROOF. It suffices to show that a character x of Gλ whose infinitesimal
representation coincides with x\ on g# is extendible to a unitary character of
D.

Let Do be the universal covering group of Do, and Z the subgroup of the
center of Do such that DQ/Z^DQ, and p the canonical homomorphism of Do

onto Do. The analytic subgroup H of 5 0 generated by ĝ  coincides with
p~1(Gx

)), so fl" is closed, and we have

H/(Hr\Z)^Gx

Q (isomorphic as Lie groups).

The mapping^ of Do/Hto D0/Gx

0 is well-defined by

where g = gH denotes the element in Do/H corresponding to g e Do. It is
easily seen that p is surjective and locally diffeomorphic, so p is a covering
mapping of Do/H onto D0/Gl. By Lemma 5.2.2. the manifold Do/G% is simply
connected, so we have Do/H^ DQ/G\. Hence

ZQH

and

(The proof of ZCH is as follows: each element z e Z satisfies p(z) = e, so we
have ρ(z) = eGλ

l, which implies z e H, since DO/H^DO/GQ.)

Since D is simply connected, the Lie algebra homomorphism x% can be
lifted uniquely to the character χ of Do. The representation of Do does not
necessarily, in general, induce the representation of GX

O = H/Z. In our case,
however, we discuss under the assumption that there exists a character x of
Go with the infinitesimal representation x\ \Q\ (i.e., Rx is not empty). There-
fore 2 induces the character x of G<>, so we have 2(Z) = {1}. Thus χ induces
a character x1 of Do, since D0^D0/Z. In particular, we have

Xι = x on GQ.

Each element h in Gλ induces an automorphism Ih of Do by

Ih(g)=hgh~1 for every ge Do.
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We set xί = xιolh. The infinitesimal representation (χQ* of Xι is given by

and we have

=2τrV^Tλ(Ad(h)X)

for every Xe b0. So we have (%ί)* = (*i)*> and %ί = *i. Thus we have proved
that

for every g e Do and A e Gλ.
Let x = γh = y'h! be two expressions of an element x in D, where y, yf e

Do and h, h! e Gx. Since y-1y/=hh/~1 e Dor\ GX=GX

Q and Xι = x on GQ, we have

So we can define a mapping χ0 of D to C* by

where y e 2)0 and h e Gλ.
By the definition of %0, in order to prove that x0 e R^, it is enough to show

that Xo is a group homomorphism. For x = yh, x'=y'ti e D(y, y' e DQ and
h, h! e Gλ), we have

So we have

%O(ΛΛ?O = %i( J hyrh~ι)x{hhr)

= Xi(y)Xι(hy'h-1)x(h)x(h')

And
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Thus we have x0 e i?o> a n d the restriction of x0 on Gx coincides with x.
Q.E.D.

Hereafter we assume that %* can be lifted to a unitary character xλ of
D.

5.3. In this section, we introduce G-quasi-invariant measures on G/D
and G/E.

LEMMA 5.3.1. b = { I e c ; λ(£e, X]) = {0}}.

PROOF. From the conditions of polarizations and the non-singularity of
the symplectic structure ω on 0, we have

We set

Since z=p+aρ and σλ = λ, we have

{0}}{X e e;

=pίΛ{σX; Xe e and λ(£p, XJ) =

=pr\σρ=b. Q.E.D.

LEMMA 5.3.2. det AdD(x)=det AdE(χ) for every % e D.

PROOF. The statement of this lemma is shown using the theory of sym-
plectic structures. We set λo = φ(λ), where φ is the canonical projection of
Q% onto the dual space eJ=HomΛ(e0) R) of e0. The ΐ-orbit Ω in ê  through ^0

admits a canonical 2?-invariant symplectic structure ω0 (ω0 is defined in the
same way as in 5.1). Let Eλ° denote the isotropy subgroup of E with respect
to λ0 and eo° its Lie algebra, i.e.,

=b 0,

by Lemma 5.3.1. Then D and Eλ° are Lie subgroups of G with the same Lie
algebra b0. Since Do is the connected component of D containing the unit,
DQCE\ We have GλCE\ since Gλ is the stabilizer of λ in G and Gλ is
included in E.
So we have
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Now the orbit Ω=E/Eλ° has the 5-invariant volume element induced
from the symplectic structure α>0, and this volume element is realized as a
differential form. So by Proposition 1.6 Chap. X of Helgason [7J, we have

det AdE*0(χ) = det AdE(χ) for every x e Ex°.

Since £λ° and D are Lie subgroups of E with the same Lie algebra b0, we have

det AdE\(χ) = det AdD(x) for every x e D.

So we have

det AdD{x)=det AdE{χ) for every x e D.

Q.E.D.

Let βG (resp. βD or JUE) denote a left-invariant measure, and ΔG (resp. ΔD

or ΔE) the modular function on G (resp. D or E); i.e.,

dJuG(yx) = ΔG(χ-1)djUG(y), etc..

ββy βυ and βE are determined uniquely up to constant factors. Modular
functions are given explicitly by

ΔG(X)=det AdG(x) for every x e G,

ΔD(x)=det AdD(x) for every x e D,

ΔE(χ)=det AdE(χ) for every x e E.

This is due to Corollary 1.3 Chap. X of Helgason [7J. It is known from the
invariant measure theory that there exists a C°°-function p on G satisfying

1) θ(g) > 0 for every g e <5,

2) p(gh)=-j^p(g)ίoτ geGandhtE,

and that there exists such G-quasi-invariant measures VB and VE on G/D and
G/E that

f(g)P(g)dβG(g) = \ dvD(gD)\ f(gh)dβD(h)
JGjD JD

= \ dpE(gE)\ f(gh)dβE(h)
JGIE JE

for every continuous function f on G with compact support, where gD (resp.
gE) denotes the element in G/D (resp. G/E) corresponding to gtG.
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We denote by CC(G) (resp. CC(G/D) or CC(G/E)) the space of all continuous
functions on G (resp. G/D or G/E) with compact support. We shall often use
the following lemma:

LEMMA 5.3.3. (Helgason [7] Lemma 1.8 Chap. X). Let G be a Lie group
and H a closed subgroup. Let dh be a left invariant measure > 0 on H and
put

f(gH) = \ f(gh)dhJeCc(G).
H

Then the mapping f-+f is a linear mapping of CC(G) onto CC(G/H).
For each element g e G, we define a C°°-ίunction ξg on G by

LEMMA 5.3.4. The function ξg has the following property:

ίg(χh) — ξg(χ) for every x e G and h e E.

PROOF. This is shown by an easy calculation:

g P(xh) JE(h) Λf Λ P(x) gK

AG{h) P W

Q.E.D.

So we can define a C°°-function f£(resp. ξE

g) on G/D (resp. G/E) by

ξD

g(xD) = ίg(x) for every xD e G/D,

ξE

g(χE) = ζg(x) for every xE e G/E.

For g e G, let r(g)»D denote the quasi-invariant measure on G/D defined by

where 5 is a v-measurable subset of G/D and g~1S={g~1x; x e S}. With
the usual notation, γ(g)vD is expressed by

where geG and x eG/D. The left-translation γ(g)vE of the measure vE is
also defined in the same way as above.

LEMMA 5.3.5. For every geG,we have
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and

PROOF. By Lemma 5.3.3, for each / e CC(G/D), we can find f eCc (G)
such that

f(yD) = ̂ Df(yh)d/iD(h) for y € G.

We set x = yD c G/D, then

= \ dvD(x)\
JGID J

= \ Kg~Xu)ζ){μ)dβG{u)
J G

= \ f(u)p(gu)djuG(u)
J G

G\Ό

Thus we have dvD(gx) = ξΌ

g(χ)dvD(x). The discussion as to VE is the same as
above. Q.E.D.

Let pD (resp. pE) be the canonical projection of G onto G/D (resp. G/E),
and PDE that of G/D onto G/E. The following lemma is an easy consequence
of the definition of ξg and Lemma 5.3.4.

LEMMA 5.3.6. For every g, gf e Gy we have

1) igg'(χ) = Sg(g'x)ξg'W for every x e G,

ξΌ

gΛ^ = ̂ Wx^DΛχ) for every x er G/D,

iE

gg<χ) = ίE

g(g'χ)ίE

g<χ) for every x e G/E.

2) ξg {resp. ξΌg) is constant on each fibre of pE (resp. pDE)



512 Minoru WAKIMOTO

5.4. Let Lλ denote the Hermitian G-homogeneous line bundle over G/D
associated to the unitary character %λ of D, and we set

Γ(LX)=the space of all C°°-sections of Lx,
Γ2(LX)=the pre-Hilbert space of all square-integrable C°°-sections of

C°°(G)X = the space of all C°°-ίunctions / on G such that f(gh) = x\h~1)
f(g) for every geG and he D.

Notations: 1) For x e G/D, | U (or simply | |) denotes the Hermitian
norm on the fibre over x of the line bundle £ λ.

2) For seΓ(Z λ ), | |s | |(0^| |s | |<ίoo) denotes the square-integral-norm of
5:

The group G acts on Γ(Lλ) by

χ) = g(s(g-1x)) for s e Γ(LX\ geGandxe G/D,

and acts on C°°(G)X by left-translations, and Γ2(Lλ) is a G-invariant subspace
of Γ ( i λ ) . There exists the canonical G-isomorphism between Γ(Lλ) and

λ, which we shall denote by

Γ(Lλ) > C-(G)λ Γ(Lλ) <
vw vu and ^ ^
5 ^ φs sφ < φ .

Each element X in QR acts on C°°(G) as a left-invariant vector field X:

o for every / e C°°(G) and ^ e G,

and, by the canonical extension, X is defined for every X e g. We set

for every

and for every geG and 5 eφ(, we define a section πί(g)s by

« ( « » W = V^ΓU) (β»)(α;) for Λ e G/D.

Then we have

LEMMA 5.4.1. 1) £>{ is π[(G)-stαble.

2) ffίteίfO = <(g)*ί(g') for every g, gf e G.

3) πί(g) is norm-preserving.

PROOF. 3) For s eξ>{ and geG, we have
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G\D

= \
J G ID

\g(s(x))\2ξD

g->(gx)dvD(gx)
\D

= \
J

G\D

\s(x)\
G\D

\s{x)\2ξD

e{x)dvD{x)
GID

\s{x)\2dvD(x) = \\s\\\
GID

where we have used Lemma 5.3.5 and Lemma 5.3.6. So π{(g) is norm-pre-
serving.

1) Fix g e G and 5 e £>£. Since n^(g) is norm-preserving, πί(g)s belongs
to Γ2(Lλ). So we need only to show that

Xψπ'λ{g )s =2π>ΓΛλ(X)φπ>ιωs for every X ep.

Now it is easily seen that

Since ξg is constant on each fibre of pE (Lemma 5.3.6), we have Xξg = 0 for
every X e p, and by the left-invariantness of X,

s) for every Xeg.

Therefore, for each X e p, we have

Thus we have proved that π{£g)s e φ( for every ge G and 5 6 ξ>£.
2) The statement 1) of Lemma 5.3.6 implies that f^ = (g / " 1 O ' ^ / S o

we have,

g>-ig-i- gig's)= Jeg>-ig-i
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for every s e ξ>£. Q.E.D.

Let (7Γλ, ξ>λ) be the completion of (7r{, φ() with respect to the norm
|| ||. Then, by the above lemma, we have:

THEOREM 5.4.2. (7Γλ, ξ>λ) is a unitary representation of G.

5.5. We shall give here an example when G is a non-compact simple Lie
group.

Example 5.5. G=SZ,(3, R)
We set

(QR=gl(3, R)).

N=

r, 5 are non-zero
real numbers

0 0 \

±1 0

0 ± 1

u, v, w € R

the number of
"minus"-signs
is even

0 0 1/

Then G=KA+N is an Iwasawa decomposition of G, and A is a Cartan sub-
group of G with maximal vector part. The centralizer M of A+ in K coinci-
des with A-, and

Γ
0

\o

u

s

0

w

V

(rs)-

\

1 /

eG
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is a minimal parabolic subgroup of G. We set

/0 1 0

e= 0 0 1

\0 0 0

Since e is a principal nilpotent element of g, e has a unipue ^-polarization p,
and it is at the same time a real polarization (Corollary 5.6 of £13]). p is
given by

\

Ό #22 #23

\ 0 0 #33 / *

and subgroups Do and Eo in 5.1 are given by

'/ r u w

0 s v
u, v, w 6 R

Γ,5>0

\ 0 0 (rs)-

= A+N.

The subgroup Ge is obtained by a simple calculation:

b, c e R

71

0

. o

ό

1

0

c\

ό

1/

So G* is connected, and we have

Then the unitary representation of G constructed on the G-orbit through e is
equivalent to ind (1^ #), where 1^ N denotes the trivial character of A+N.

A+NΪG + +

This representation is reducible, and the direct sum of 4-numbers of irreduci-
ble components:

ind (
A+NtG

Σ i
i=0ANϊG

where e, ( 0 ^ £ ^ 3 ) is a unitary character of AN defined by
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and

ε, (#) = sgn(xn) (i = 1, 2, 3),

where

/
#11 #12 #13

0 #22 #23 6 AN,

I 0 0 # 3 3 I

and sgn(u) designates the sign of a non-zero real number u.

5.6. In order to avoid the inconvenience as in Example 5.5, we make a
modification on the definition of D and E, when G is a connected semisimple
Lie group. Since a polarization p is a parabolic subalgebra of g (Theorem 2.2
of [13]), PΓ\QR contains a Cartan subalgebra f)0 of g#. The Cartan subgroup
H of G corresponding to ξ)0 is, by definition, the centralizer of ί)0 in G, and let
Do and Eo be the same as in 5.1. We set D = AD0 and E=AE0. Since 4̂ sta-
bilizes bo and e0, D and E are subgroups of G. The argument in 5.3-5.4 is
still valid for such D and E.

5.7. We shall give another expression of the G-quasi-invariant measure

VD (or vE) in 5.3.

DEFINITION 5.7. 1) A linear mapping v of CC(G/D) to C with the fol-
lowing property is called a Radon measure on G/D: for each compact subset
K of G/D, there exists such a non-negative constant Mκ that

K/) I ^ M * sup 1/001
eG/£>

for all / 6 CC(G/D) whose support is contained in K.
2) A linear mapping v of CC(G/D) to R which satisfies v(f) 2> 0 for every

/ I > 0 is called a positive Radon measure on G/D. (It is a well-known fact
that a positive Radon measure is a Radon measure.)

Each element φ in C°°(G)X defines a linear mapping v'φ of CC(G) to C by

= ( \Φ(g)\2f(g)p(g)djuG(g)
J G

for feCc(G).

LEMMA 5.7.1. Let φ e C°°(G)λ be fixed, then

for every f e CC(G), where / - > / is a linear mapping in Lemma 5.3.3.
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PROOF. We have

"*(/) = Jβ I <Kg) 12f(g)P(g)dβG(g)

= \ dVD(g)\ \ψ(gh)\2f(gh)djuD(h)
JG\Ό JD

\sφ(x)\2f(x)dVD(x\\
G\Ό

since

(g=gDeG/D).

Q.E.D.

By the above lemma, v£(/) does not depend on the choice of a represen-
tative / of /, but depends only on φ and /. So a linear mapping vφ of CC(G/D)
to C is well-defined by

and vφ is a positive Radon measure on G/D. Let ||0||2(O<;||0||2<!°o) be the
total volume of G/D with respect to this measure vψ:

We set

For 0 and ψf e CJ(G)λ, the Radon measure v^>¥) on G/Z) is defined by using

Ψ(g)Ψ'(g), and we set

The space C^iGY becomes a pre-Hilbert space with this Hermitian inner pro-
duct, and at the same time it is a G-submodule of C°°(G)X. We set

§ί = iφ 6 C?(G)λ; X0-2W z : ϊ^(Z)0 for every Xep},

and for every g ε G and 0 e ©(, we define a C°°-function πf£g)ψ on G by

LEMMA 5.7.2. 1) φ£ is πί(G)-stable.

2) πί(gg') = πί(g)πί(g') for every g, g' e G.

3) #£(#) ̂  norm-preserving.
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The proof of this lemma is the same as that of Lemma 5.4.1. And the com-

pletion (7Γλ5 ξ)λ) of (#£, § 0 with respect to the norm || || is a unitary repre-

sentation of G.

LEMMA 5.7.3. The mapping s->φs is an isometry Γ2(LX) onto
PROOF. It suffices to show that | |0 s | | = |WI for every s e Γ(LX). Let Ku

K2, - be a sequence of compact sets in G/D such that

Kn C Kn+ι for every n e IV,

and

G/D = \jKn,
n = l

where N is the set of all positive integers. Let$?w e CC(G) (n e N) be a func-
tion such that

i) φn = l on Kn and φn ;> 0 on G/D,

ii) Φn^Φn+i for every rc e IV.

Then we have, by Lemma 5.7.1,

»Φ,(Φn)=\ \Ψs(g)\2<Pn(g)p(g)djUG(g)
J G

\s(x)\2φn(x)dvD(x),
G\Ώ

therefore

||0,||2=volI>ff(G//))=limvΦi(^)

\s(x)\2φn(x)dvD(x).
D

Then, by the Lebesgue's integral theorem for a sequence of monotonously in-
creasing non-negative integrable functions, we have

lim I s(x) 12φn(x)dvD(x)
GID n-+°°

\s(x)\2d»D(x) = \
GID

Q.E.D.

This lemma, combined with the fact that ψ7r'λ(g)S = "J?g-
i gΨs=πί(g)Ψs,

leads us to
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THEOREM 5.7.4. (πλ, ξ>λ) is a unitary representation of G equivalent to
, £>λ)5 #wcϊ s—>φs induces an isometric intertwining operator between them.

§ 6. Polarizations and most continuous principal series

In this section, we construct representations of most continuous principal
series using orbits and polarizations. First of all, we shall state the Borel-
Weil theorem for a (non-connected in general) reductive compact Lie group.

6.1. Let G be a connected semisimple compact Lie group with Lie al-
gebra g0. Let f)o be a Cartan subalgebra of g0 and A the non-zero root system
of g with respect to \ and Δ+ the set of all positive roots with respect to an
arbitrarily fixed lexicographic linear order in A. For α e J , we set

gΛ = {Xeg; ad(H)X=a(H)X for every #eί)}

Let (<ry, Vv) be a finite-dimensional irreducible representation of G with
highest weight v, and we set

A' = {ae A; < α , v > = 0 } ,

where < , > denotes the inner product in ί)*=Homc(ί), C) induced from the
Killing form of g. Let L be a subgroup of G generated by I0=ϊ)o + ( Σ Qa)^

g0, and εv the unitary character of L defined by v. We set

( feC~(G);f(gl)=eXl-1)f(g) f o r e v e r y geG and I e L , }

{ Xf=0 for every Xεg+ J

where X(X e g0) denotes the left-invariant vector field on G defined by

for every / € C°°(G) and ge G, and X(X e g) is its canonical extension and g+ =
Σ Qα> The group G acts on £>v by the left-translation:

αej

for every / e .φy and g, x e G. Then the well-known Borel-Weil theorem is
stated in the following form:

LEMMA 6.1. (π„, ξ>v) is α finite-dimensional irreducible representation of
G equivalent to (σy, Vv).

6.2. Let G be a connected reductive compact Lie group and g0 its Lie
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algebra. Then g0 admits the direct sum decomposition (as Lie algebras):

where g0 (resp. gj) is the center (resp. the semisimple part) of g0 (i.e., 9o = C9o5

go]). Let Z (resp. Gs) be the analytic subgroup of G generated by jo (resp. gg),
then we have

since G is connected. Let fy0 be a Cartan subalgebra of gg, Δ the non-zero root
system of (g% ί)s)> and Δ+ and gα be the same as in 6.1. For a finite-dimensio-
nal irreducible representation (<r, V) of G, σ(z) (z e Z) is a scalar operator on
Fand the restriction (σ|G% F) of (σ, F) to Gs is an irreducible representa-
tion of Gs. So the representation (<r, Γ) of G is characterized by the character
β oί Z and the highest weight v of Gs with respect to 4̂+. (If necessary, we
write (σμv9 Vμv) instead of (σ, V).) We set

Δr={aa Δ

and

where < , > denotes the inner product in (£)s)* = Homc(ΐ)% c) induced from
the Killing form of gs. Let L be the analytic subgroup of G generated by Io,
and ε the character of L defined by μ and v. We set

( feC~(G);f(gl)=e(l-1)f(g) for every ^ G a n d / e L , ]

[ Xf=0 for every Xeg+ J

and denote by π the left-translation of G on ξ>. Then

LEMMA 6.2. (π, ξ>) is α finite-dimensional irreducible representation of G
equivalent to (tf, V).

PROOF The subgroup Ls = LίΛGs is the analytic subgroup of Gs genera-
ted by

We put

ev=e\L%

and
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( ftC~{Gsy,f(gl) = eXl-')f(g) for geGs and I e L% ]

{ Xf=0 for every X e g+ )

and let πv denote the representation of Gs on £>„ defined by the left-transla-
tion. By Lemma 6.1, (πv, £>„) is the irreducible representation of Gs equi-
valent to (<τ|G% V). Define a linear mapping φ of ξ> to ξ>u by

<P(f)=f\Gs for/6φ.

Then ψ is an injective Gs-homomorphism, and the image of φ is a non-zero
G5-submodule of §„, which must coincide with ξ>v by the GMrreducibility of
φv. Then φ is a (^-isomorphism of £> onto φμ. Therefore £> is GMrreducible
(equivalent to (β\G\ F)), and so G-irreducible and equivalent to (<r, Γ), since
π(z) (z e Z) is a scalar operator on φ which is equal to β(z).

Q.E.D.

6.3. Let G be a (non-connected) reductive compact Lie group, and
9o=3o + 9o its Lie algebra. ($o(resp. g§) is the center (resp. the semisimple part)
of go ) Let ψ0 be a Cartan subalgebra of g§, and we define J, Δ+ and gα in the
same way as in 6.2. Let Hbe the centralizer of ^o^So + ̂ o ίn G (i.e., ϋfis the
Cartan subgroup of G corresponding to Ij0). We assume that H is an abelian
subgroup of G and that G = HG0, where Go is the connected component of G
containing the unit. For a finite-dimensional irreducible representation
(σ, V) of G, we define a subspace F+ (the subspace of highest weight vectors)
of Γby

V+ = {v e Γ; σ*(X> = 0 for every Xeg+}.

Then F+ is an #-submodule of V.
Note: V+ is 1-dimensional and (σ|G0, V) is an irreducible representation

of Go. In fact, we put k=ά\mV+. Then Γ+ can be decomposed directly as

where V1i(l<.i<,k) is a 1-dimensional ZΓ-submodule. We set

U(g_)=the universal enveloping algebra

overg_= Σ Q~a,

and

Then Vi(l^ί^k) is an irreducible G-submodule, and V=ΣV{ (direct sum
i = l

as G-modules). So we have k = 1 by the irreducibility of V.
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Using (<r I Gθ5 V\ we define Δr as in 6.2, and we set

lo=5o + Σ,g",

Z 0=the analytic subgroup of G generated by Io,

L=HL0.

And let ε be the character of H defined by

σ(h)v = ε(h)v for h e H and v e V+.

We set

\ feC~(G);f(gl)=e(l-ί)f(g) for ge G and I e L, )

( Xf = 0 for every Xeg+ J

and let π denote the representation of G o n § defined by left-translations.

LEMMA 6.3. (π, φ) is a finite-dimensional irreducible representation of G
equivalent to (σ, V).

PROOF We set

eo=ε\LOy

ί f 6 C~(Go);f(gl)=eo(l-1)f(g) for geG0 and Z e L0) ]

I Xf=0 for every Xe g+ J

and let π0 denote the left-translation of Go on ξ)0. Then, by Lemma 6.2, (7r0,
φo) is the irreducible representation of Go equivalent to ((T|G0, ϊO Define a
linear mapping φ of φ to ξ)0 by

Then, by the assumption that G=G0H, φ is an injective G0-homomorphism.
So the image of φ is a non-zero G0-submodule of ξ)0, which must coincide with
ξ>o by the irreducibility of ξv Thus φ is a bijective Go-isomorphism. There-
fore ξ) is Go-irreducible (equivalent to (σ \ Go, V)) and so G-irreducible.

Denote by Γ+(resp. φ+) the space of all highest weight vectors in V (resp.
£>), regarding them as the representation spaces of Go. In order to prove the
G-equivalence of σ and π, it suffices to show that the action of H on £>+ is
equivalent with that on V+: i.e., π(a)f=ε(a)f for every a e H and / e ξ>+.
Now we consider a linear mapping T of φ onto C defined by Tf=f(e) (fe
φ). If we regard the space C as an ϋf-module by ac=ε(a)c for α e iJ and
ceC, then T is an ϋΓ-intertwining operator since
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= e(α)(Γ/)

for a e H and / e £>. Let W be the sum of all #-submodules of ξ> which are
isomorphic to ε. Then W is non-trivial and must coincide with φ+ because
φ+ is the only subspace of φ whose ϋΓo-module structure is isomorphic to
ε|#o. Thus we have proved that ©+ is the //-submodule equivalent to ε.

Q.E.D.

6.4. Henceforward we fix a connected semisimple Lie group G with Lie
algebra g0. Let θ be a Cartan involution of g0, and QO = U + PO be the Cartan
decomposition of g0 associated to 0, where ϊ0 is a maximal compactly imbed-
ded subalgebra of g0. Let αo=α_ + α+(α_ Cϊo, α+ Oo) be a 0-stable Cartan sub-
algebra of g0 with maximal vector part. We set g=go> cι=a% and cti? = V — lα_
+ α+. The non-zero root system A of g with respect to α admits a direct sum
decomposition Δ = Σ \j Λ, where

A lexicographic order in CLR compatible to α+ induces a linear order in Δ and
determines positive subsystems J+ 5 2*+ and A+. We set

tto = ( Σ

τ π + - Σ gΛ,

ikf=Zjβ:(α+)=the centralizer of α+ in K5

^4=the Cartan subgroup of G corresponding to α0,

A+ = Ar\ exp ̂ o=

=the analytic subgroup of G generated by α+,

iV=the analytic subgroup of G generated by π0.

Then we have an Iwasawa decomposition G=KA+N, and B=MA+N is a mini-
mal parabolic subgroup of G, and A_ is a Cartan subgroup of the (non-connec-
ted in general) reductive compact Lie group M. Let Mo (resp. (AJ)0 or ^40)
be the connected component of M (resp. A- or J ) containing the identity ele-
ment, then M = A_M0. Hereafter we assume that A is abelian. This condi-
tion is always satisfied if G admits the complexification.
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6.5. Let (σ, V) be a finite-dimensional irreducible unitary representation
of M, and λ the unitary character oί A+. Then the irreducible unitary
representation (σ, λ) of B is well-defined by

(σ, Λ)(man)=σ(7ra)Λ(α) for m e Λf, α e 4̂+ and rc e iV.

We define the unitary character ε of A_ as in 6.3. Then ε and λ determine
elements Hi e α_ and H2 6 α+ by

, H> for every H e α_,

, H> for every H e α+,

where < , > denotes the inner product in α0 defined by the Killing form B.
We set

Then by Theorem 3.6, there exists a nilpotent element e in π0 such that

and

q=α+ Σ gα+ Σ gΛ is an admissible polarization of X=H0 + e.
αej, at Σ

We set

Z 0=the analytic subgroup of G with Lie algebra Io?

and

Then ε can be extended uniquely to the character of Z, which is also denoted
by ε. In this case, we have

E0 = M0Λ+N.

As we have noted in 5.6, we define subgroups D and E of G by



Polarizations of Certain Homogeneous Spaces and Most Continuous Principal Series 525

and

By Lemma 5.3.2, there exists a 5-invariant volume element vBjD on B/D,
which can be normalized by

for every / e Ce(B). Since B/D (^M/L) is compact, we can normalize juD

so that the total volume of B/D with respect to pBjD may be equal to 1. The
following lemma is useful for calculation of measures:

LEMMA 6.5.1 (Helgason [7] Lemma 1.10 (Chap X)). Let U be a Lie
group with Lie algebra u. Suppose u is a direct sum u=m + ΐ) where m and I)
are subalgebras of u. Let M and H denote the analytic subgroups of U with
Lie algebras m and ϊ), respectively. Suppose the mapping a: (m, h) -> mh is
a 1-1 mapping of M x H onto £/. Then the positive left invariant measures
dh, dm, du can be normalized in such a way that

f(u)du = [ f(mh) f i i ^ l dmdh
uJ ' JMXH det AduQi)

forall/eC,(t/).
As a simple application of this lemma, we have

LEMMA 6.5.2. The left invariant measures dm, dly da, dn on M, L, A+, N
can be normalized by

\ f(b)dβB(b) = \ f (man) dmdadn
JB jMyA+xN

for every f e CC(B), and

\ f(x)dβr)(x) — \ f{laή)dldadn
JD J LXA+XN

for every f e CC(D).

PROOF. Fix positive left-invariant measures da and dn arbitrarily.
Since

det AdN(n) = det Ad A+N(n) = 1

for every n e TV, the positive left invariant measure d(an) on A+N can be nor-
malized by d(an) = dadn. We set

1
2 aί

Po = - o - Σ OL 6 α$ = Hom i ?(α+, It) .
* +
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Since

det ACIA+N (an) = det Adβ(an)

for every a e A+ and n e N, the positive left invariant measures dm, dl on
M, L can be normalized as

d(man) = dm d(an),

and

d(lan) = dl d(an).

Thus we have proved

dyman) = dmdadn,

and

d\LcLTi) = dldadn.

Q.E.D.

Let %/£ be the M-invariant volume element on Af/Z such that

\ f(7n)dm = \ dvMiL(jnL)\ f(ml)dl
JM JM\L JL

for every / e Ce(M). Then we have

LEMMA 6.5.3 VM\L = VB\D, under the canonical diffeomorphism M/Lζ^B/D.

PROOF. For / 6 CC(B\ we have

\ f(b)dβB(b) — \ f(man) dm dadn
JB JMxA+xN

= \ dvMiL(™>L)\ f(mlan)dldadn
JMIL JLxA+xN

= \ ^M/z (mL)\f(mx)d/xD(x).

Comparing with the definition of vβ/Z>, we have

Thus we have proved that VMIL = »BID- Q.E.D.

6.6. The unitary representation (πσX, ξ>σλ) constructed in 5.7 is the com-

pletion of (nix, φ ί λ ) :
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for x € G, I € L, a 6 Λ+ and n e N9

2) Xf=0 for Xe

3)

Σ 9«,

We set

ίχ = f/; 0) / is a Γ-valued C°°-function on G,

1) f(xb) = (σ^ x) (b-ι)f(x) for Λ

2) | | / | | B < ° O

^ ί ^ gf ίor geG and/6 WU,

and

where | | / | | B is the norm of / defined in the same way as in 5.7, and gf denotes
the left translation of / by g. The completion (^λ, JFσX) of 0?£λ, W*x) is
called a representation of most continuous principal series, and sometimes
denoted by ind(<r, λ).

B\G

By Lemma 6.3, the representation (σ, V) of Af is equivalent to (σ\
where

ί / e C~(M);f(ml) = ε(l-1)f(m) ίor m e M and Z e i , 1

0 for every X ε Σ 9α J5

and (T7 is left-translation of M on F . We introduce a Hermitian inner pro-
duct ( J i n Γ a s follows: for /, f e V'y the CT-t unction φ on M/L is well-de-
fined by φ(xL) = f(x)f'(x) (x 6 M) since ε and λ are unitary, and so we put

(/,/')=5,
By the M-invariantness of VM/I, Ĉ 7, F) is a unitary representation of M with
respect to this Hermitian inner product. Let S be an isometric intertwining

operator of V onto V. And we define a linear mapping T of Wr

σ\ to ξ>£λ by

for / 6 JFίλ. and x e G, where β denotes the unit of G.

THEOREM 6.6. V is an isometry of W'σ\ onto φ£λ5 which commutes with
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G-actions. So V can be extended to an isometric intertwining operator of 0?σλ,

Wσ\) onto (πσX £u), cmd the representation (πσλ, ξ>σλ) is a unitary representa-

tion of G of the most continuous principal series.

We shall give a proof of this theorem step-wisely.

6.7. We set φ(x) = [S(/O))] (e) for / e WU and x e G.

LEMMA 6.7.1. 1) φ(xm) = [S(f(x))~] (m) for x 6 G and m € M.

PROOF. Since 5 is an intertwining operator, we have

GO

) . Q.E.D.

LEMMA 6.7.2. 1) Xφ = 0 / o r l e m + .

2) φ(xlan) = ε(l~1)λ(a~1)φ(x) for x € G, I € L, a 6 A+ and n 6 N.

PROOF. 1) For / e W'σ\, we define a C°°-function fx on M by fx(m) =
[S(/O))] (m). Then, by Lemma 6.7.1, we have

for every xeG and l e n t . So we have

Xφ = 0 f o r l e m +

since fx 6 V.
2) Since / e W'σX, and S(f(x)) e V, we have

(e)

Q.E.D.

LEMMA 6.7.3. | | r / | | = | | / | | for ft WU.

PROOF. We denote by || | | 5, || ||D, || \\v and || \\v the norm of WσX,

§ σ λ , F and V respectively. Let Ku K2,- be a sequence of compact sets in
G/B such that
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Kn C Kn+1 for every n e N9

and

G/B=\JKn,

and let φn e CC(G/B) (n e N) be a function such that

i) φn = l on Kn and φn ^ 0 on

ii) 0« ^ 0«+i for every n e N.

We set

(n t N)

where pDB is the canonical fibration defined in 5.3. There exists a sequence
<pu <p2, >- in CC(G) such t h a t

iii) »̂ = 0ί,

where ^ Λ ( Λ ; Z ) ) = \ <pn(xh)dβD(h).
JD

We set

Then φneCc(G/D), and we have

dvBιD(bD)[ φn(xbh)dβD(h)
JDBID

= [ φ'n(xbD)dvBιΌ(bD).
JBID

Since ψ'n(xbD) = ψn(xE) and VBID(B/D) = 1, we have φn = Φn-
Now, for any / e Wίχ9 we shall calculate | | / | | * and || Tf\\D:

\\f(χ)\\2v<Pn(χ)p(χ)dβG(x)

= lim( dvB(xB)\ \f(xb)\2φn(xb)dβB{b)
n-*ooJG JB
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dvB(xB)\ \f(x)\2φn(xb)dβB(b)
B JB

=lim( \f(xB)\2φn(xB)dvB{xB)
n^>°°JGlB

by the Lebesgue's integral theorem for a sequence of monotonously increasing
non-negative integrable functions.

\ I(Γ'/)(*)12<pn(x)p(x)djuG(x)
n-+°°JG

=lim( dvB(xB)[ \(T'f)(xb)\2

Ψn(xb)dμB(b)
n->°°JGlB JB

= lim\ dVβ{xB)\ \(T'f)(xman)\2<pn(xman)dmdadn
n-+°°JGlB JMxA+xN

= limf dvB(xB)[ dvMιL(mL)[ \(Tff)(xπιlan)\2

n^ooJGlB JMIL JLxA+xN

X φn(xmlaή)dldadn.

For each x e G, we put /* = S(f(x)) e V. Then

= \λ(a-1)e(l-1)(T'f)(xm)\

by Lemma 6.7.1. So we have

|f,= limί dvB(xB)[ dvMιL (πιL)[ \fx(m) 12φn(xmlan)dldadn
n-*ooJGlB JMjL J LxA+xN

= lim\ dvβ(Λ?)\
n-^oojGlB JMIL

= limί rfvfi(«J?)( |/,(III) 12φn(xD)dvMιL(πιL\
n^ooJGlB JMIL

since φn = Φn°PDE is constant on each fibre of P^B- By the definition of
in 6.6,

( r \ M ) \ M i L ( )

J MIL

and, since S is unitary,

\\f*\\v'=\\f(x)\\v = \\f(xB)\\v.
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So we have

|| T'f \\l=lim[ \\fx\\2

v>φn(xB)dvB(χB)

= \ WfA\l>dvB(xB)

J GIB

JGIB

= [ \\f(y)\\W»B(y),
J GIB

where we used the Lebesgue's theorem. Thus we have proved that || Vf\\v =
II/IU. Q.E.D.

LEMMA 6.7.4. πf

σX(g) Trf= Tr-η'σX(g)f for every f e W'σX and geG.

PROOF. This is shown by an easy calculaton:

)) M=LS ((vUg)f)MΏ (e)

for all xeG. Q.E.D.

6.8. We shall prove the bijectiveness of Tf. For <p € ξ>!r\ and x e G, we
define φx e V by

and we set f(x) = S~λφx ( e V).

LEMMA 6.8.1. φxman=^{rn-1)λ{a~ι)φx

for every x e G, m e M, a e A+ and n e N.

PROOF. For m' e M, we have

(Pxman(jnr) = φ{xmanmr)

= φ(xmm/ a mf~lnm')

= λ{a~ι)φ{xπιτnf)

= λ(a~1)φx(τnπι/)

= λ(a-1Xσ/(m-1)<px)(m'). Q.E.D.
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LEMMA 6.8.2. / e W'
vX
.

PROOF. For x e G, m e Λf, a e A
+
 and n e N, we have

=σ(m-1)λ(μ-1)f(x).

Q.E.D.

Thus φ->f determines a linear mapping U of ξ>£λ to ίΓίλ: (Uφ)(x) = S~1φx,
for φ e $ίχ and ^eG.

LEMMA 6.8.3. 1) UT' is the identity of Wσ\,

2) T'U is the identity of φίλ.

(And so T is a linear isomorphism of Wr

σ\ onto φίλ.)

PROOF. 1) For / e Wf

σ\ and x e G, we have

since

( T'fUm) = ( Γ ^ C A HI) = LS(f(xm))3 (β)

for every m e M. So we have

2) For <p e |>ίλ and x e G, we have

Q.E.D.

Theorem 6.6 follows from Lemma 6.7.3, Lemma 6.7.4 and Lemma 6.8.3
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