Polarizations of Certain Homogeneous Spaces and Most Continuous Principal Series

Minoru Wakimoto
(Received September 20, 1972)

§ 1. Introduction

Our main purpose in this paper is to construct unitary representations of the most continuous principal series, using polarizations. As is stated in $\S 1$ of [13], a polarization on a symplectic manifold was devised by Kostant with the aim of constructing unitary representations for an arbitrary Lie group. It is an extension of the nilpotent case given in Kirillov [8], and has enough effectiveness in solvable Lie groups of type I (Auslander-Kostant [2]). For semisimple Lie groups, however, the situation is slightly different from them. For example, it has been pointed out by many people that the discrete series representations of a non-compact semisimple Lie group of the nonHermitian type can not be obtained by polarizations only, and some concepts, like cohomology spaces, seem to be required. However, we can show that the representations of the most continuous principal series can all be constructed by using polarizations (Theorem 6.6). This is partly because a polarization of any semisimple element in the Cartan subalgebra with maximal vector part can be chosen related with a minimal parabolic subalgebra by translating the element by the addition of a certain nilpotent element, and partly because the differential equations attached to the polarization can be replaced by the Borel-Weil theorem of a compact reductive Lie group. In this paper, we also make investigations in each simple Lie algebra, and prove that in case of ($A \mathrm{I}-A \mathrm{III}$), $\mathfrak{g o}(n, 1)$ or ($E \mathrm{IV}$), every element has w-polarizations, while there exists an element with no polarizations in Lie algebras of any other type (Theorem 4.6). The proof is made by using a suitable TDS with high singularity.

The author should like to express his hearty thanks to Professor H. Ozeki for his kind advice and useful discussions.

§ 2. Real admissible polarizations

In this paper, except for $\S 5$, we assume that G is a connected real semisimple Lie group with Lie algebra g_{R}. (In $\S 3, \mathfrak{g}_{R}$ is assumed to be simple.) Let \mathfrak{g} be the complexification of \mathfrak{g}_{R}, and B the Killing form of \mathfrak{g}. Notations
are due to [13].
Lemma 2.1. Let \mathfrak{p} be a w-polarization (in the sense of Definition 7.1 [13]) of a nilpotent element e in g , and g_{j} the j-eigenspace of ad $\mathrm{g}_{\mathrm{g}}(x)$ where x is a mono-semisimple element corresponding to e. Then

1) $\operatorname{dim}\left(A d(g) \mathfrak{p} \cap \mathfrak{g}_{j}\right)=\operatorname{dim}\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right) \quad$ for every $g \epsilon\left(G^{c}\right)^{e}$,
2) $\operatorname{dim}\left(\sigma \mathfrak{p} \cap \mathfrak{g}_{j}\right)=\operatorname{dim}\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right) \quad$ if $e \in \mathfrak{g}_{R}$.
(Note that in this case x does not necessarily belong to g_{R}.)
Proof. 1) By Lemma 3.2 of [13], $\left(G^{c}\right)^{e}$ is the semi-direct product of $\left(G^{c}\right)_{e}$ and $\left(G^{c}\right)^{e} \cap\left(G^{c}\right)^{x}$. Since $\left(G^{c}\right)_{e}$ is connected, it stabilizes \mathfrak{p}, and so we need only to prove the relation 1) for $g \epsilon\left(G^{c}\right)^{e} \cap\left(G^{c}\right)^{x}$. The space \mathfrak{g}_{j} is stable under $\operatorname{Ad}(g)\left(g \in\left(G^{c}\right)^{e} \cap\left(G^{c}\right)^{x}\right)$. So we have

$$
\begin{aligned}
\operatorname{Ad}(g) \mathfrak{p} \cap \mathfrak{g}_{j} & =\operatorname{Ad}(g) \mathfrak{p} \cap \operatorname{Ad}(g) \mathfrak{g}_{j} \\
& =\operatorname{Ad}(g)\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{dim}\left(A d(g) \mathfrak{p} \cap \mathfrak{g}_{j}\right) & =\operatorname{dim} \operatorname{Ad}(g)\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right) \\
& =\operatorname{dim}\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right)
\end{aligned}
$$

2) Let (x, e, f) be an S-triple containing e as the nilpositive element. Then ($\sigma x, e, \sigma f$) is also an S-triple. Owing to the Kostant's results stated in $\S 3$ [13], we can find an element $g \epsilon\left(G^{c}\right)_{e}$ such that $\sigma x=g x$. We shall show that $\sigma \mathrm{g}_{j}$ coincides with $\operatorname{Ad}(g) \mathrm{g}_{j}$. Indeed, we have

$$
\begin{aligned}
\sigma \mathfrak{g}_{j} & =\{\sigma X ;[x, X]=j X\} \\
& =\left\{Y ;\left[x, \sigma^{-1} Y\right]=j \sigma^{-1} Y\right\} \quad(\text { where } Y=\sigma X) \\
& =\{Y ;[\sigma x, Y]=j Y\} \\
& =\{Y ;[A d(g) x, Y]=j Y\} \\
& =\left\{Y ; A d(g)\left[x, A d\left(g^{-1}\right) Y\right]=j Y\right\} \\
& =\{A d(g) Z ; A d(g)[x, Z]=j A d(g) Z\} \\
& =\{A d(g) X ;[x, X]=j X\} \\
& =A d(g) \mathfrak{g}_{j} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim}\left(\sigma \mathfrak{p} \cap \mathfrak{g}_{j}\right) & =\operatorname{dim} \sigma\left(\mathfrak{p} \cap \sigma \mathfrak{g}_{j}\right) \\
& =\operatorname{dim}\left(\mathfrak{p} \cap \sigma \mathfrak{g}_{j}\right)=\operatorname{dim}\left(\mathfrak{p} \cap A d(g) \mathfrak{g}_{j}\right) \\
& =\operatorname{dim} A d(g)\left(A d\left(g^{-1}\right) \mathfrak{p} \cap \mathfrak{g}_{j}\right) \\
& =\operatorname{dim}\left(A d\left(g^{-1}\right) \mathfrak{p} \cap \mathfrak{g}_{j}\right)=\operatorname{dim}\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right)
\end{aligned}
$$

since $\quad A d\left(g^{-1}\right) \mathfrak{p}=\mathfrak{p} \quad\left(g \in\left(G^{c}\right)_{e}\right)$.
Q.E.D.

Proposition 2.2. Let e be a nilpotent element in \mathfrak{g}_{R}. Assume that the characteristic of a mono-semisimple element x of e consists only of integers. Then e has a real polarization.

Proof. We set $\mathfrak{p}=\sum_{j \geq 0} \mathfrak{g}_{j}$. Then \mathfrak{p} is a w-polarization of e (Proposition 5.1 of [13]). Further by Lemma 2.1, we have

$$
\operatorname{Ad}\left(\left(G^{c}\right)^{e}\right) \mathfrak{p}=\mathfrak{p}
$$

and

$$
\sigma \mathfrak{p}=\mathfrak{p}
$$

Thus \mathfrak{p} is a real polarization of e.
Q.E.D.

Proposition 2.3. Let \mathfrak{p} be a w-polarization of a nilpotent element ein \mathfrak{g}_{R}. Assume that e has not a w-polarization \mathfrak{p}^{\prime} of e other than \mathfrak{p} such that $\operatorname{dim}\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right)$ $=\operatorname{dim}\left(\mathfrak{p}^{\prime} \cap \mathfrak{g}_{j}\right)$ for every j. Then \mathfrak{p} is a real polarization of e.

Proof. $\sigma \mathfrak{p}$ and $A d(g) \mathfrak{p}\left(g \epsilon\left(G^{c}\right)^{e}\right)$ are w-polarizations of e satisfying
and

$$
\operatorname{dim}\left(\sigma \mathfrak{p} \cap \mathfrak{g}_{j}\right)=\operatorname{dim}\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right),
$$

$$
\operatorname{dim}\left(A d(g) \mathfrak{p} \cap \mathfrak{g}_{j}\right)=\operatorname{dim}\left(\mathfrak{p} \cap \mathfrak{g}_{j}\right)
$$

by Lemma 2.1. And so, by our assumption, $\sigma \mathfrak{p}$ and $A d(g) p$ must coincide with \mathfrak{p}. Thus \mathfrak{p} is a real polarization of e.

Proposition 2.4. Let \mathfrak{p} be a w-polarization of an element X in g_{R}. Assume that any w-polarization of X except for \mathfrak{p} is not conjugate to \mathfrak{p} under the action of the automorphism group Aut(g) of \mathfrak{g}. Then \mathfrak{p} is a real polarization of X.

Proof. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} contained in \mathfrak{p}. Then $\mathfrak{h}^{\prime}=\sigma \mathfrak{h}$ is a Cartan subalgebra of $\sigma \mathfrak{p}$. Let Δ (resp. Δ^{\prime}) the non-zero root system of g with respect to \mathfrak{h} (resp. \mathfrak{h}^{\prime}). For each $\alpha \in \Delta, \sigma \alpha \in \Delta^{\prime}$ is defined by

$$
(\sigma \alpha)(H)=\overline{\alpha(\sigma H)} \quad \text { for every } H \epsilon \mathfrak{G}^{\prime}
$$

and this correspondence becomes a bijection of Δ to Δ^{\prime}. We define $H_{\alpha} \in \mathfrak{h}$ and $H_{\alpha}^{\prime} \in \mathfrak{h}^{\prime}\left(\alpha \in \Delta, \alpha^{\prime} \in \Delta^{\prime}\right)$ by

$$
\begin{array}{ll}
B\left(H_{\alpha}, H\right)=\alpha(H) & \text { for every } H \epsilon \mathfrak{h} \\
B\left(H_{\alpha}^{\prime}, H^{\prime}\right)=\alpha^{\prime}\left(H^{\prime}\right) & \text { for every } H^{\prime} \epsilon \mathfrak{h}^{\prime}
\end{array}
$$

and we set

$$
\mathfrak{G}_{R}=\sum_{\alpha \in \Delta} \boldsymbol{R} H_{\alpha},
$$

and

$$
\mathfrak{G}_{R}^{\prime}=\sum_{\alpha^{\prime} \in \Delta^{\prime}} \boldsymbol{R} H_{\alpha}^{\prime}
$$

where B denotes the Killing form of g . By Theorom 5.4 (Chap. III) of Helgason [7], there exists a Lie algebra automorphism φ of g , such that $\varphi=\sigma$ on \mathfrak{G}_{R}. Then we have

$$
\varphi\left(\mathrm{g}^{\alpha}\right)=\sigma\left(\mathrm{g}^{\alpha}\right)=\mathrm{g}^{\sigma \alpha}
$$

for every $\alpha \epsilon \Delta$, because, for $X \epsilon \mathfrak{g}^{\alpha}$ and $H \in \mathfrak{h}_{R}$,

$$
\begin{aligned}
{[H, \varphi X] } & =\varphi\left[\varphi^{-1} H, X\right]=\varphi\left[\sigma^{-1} H, X\right] \\
& =\varphi[\sigma H, X]=\varphi(\alpha(\sigma H) X) \\
& =\alpha(\sigma H) \varphi(X)=\overline{\alpha(\sigma H)} \varphi(X) \\
& =(\sigma \alpha)(H) \varphi(X) .
\end{aligned}
$$

So we have $\varphi(\mathfrak{p})=\sigma(\mathfrak{p})$, i.e., $\sigma \mathfrak{p}$ is a w-polarization of X which is conjugate to \mathfrak{p} under Aut (\mathfrak{g}). By our assumption, $\sigma \mathfrak{p}$ must coincide with \mathfrak{p}. It also follows from our assumption, that \mathfrak{p} is $\operatorname{Ad}\left(\left(G^{c}\right)^{e}\right)$-stable, so \mathfrak{p} is a real polarization of X.
Q.E.D.

§ 3. Polarizations and cuspidal parabolic subalgebras

Let $\mathfrak{g}_{R}=\mathfrak{f}_{0}+\mathfrak{p}_{0}$ be a Cartan decomposition of a real semisimple Lie algebra $\mathfrak{g}_{R}, \mathfrak{a}_{+}$a maximal abelian subspace of \mathfrak{p}_{0}, and $\mathfrak{a}_{0}=\mathfrak{a}_{-}+\mathfrak{a}_{+}\left(\mathfrak{a}_{-} \subset \mathfrak{f}_{0}\right)$ be a Cartan subalgebra of \mathfrak{g}_{R}. Denote by $\mathfrak{g}, \mathfrak{f}, \mathfrak{p}, a, a_{-}^{c}$ and \mathfrak{a}_{+}^{c} the complexification of $\mathfrak{g}_{R}, \mathfrak{f}_{0}, \mathfrak{p}_{0}, \mathfrak{a}_{0}, a_{-}$and a_{+}respectively. Fix a compatible order in the non-zero root system Δ of ($\mathfrak{g}, \mathfrak{a}$) with respect to ($\mathfrak{a}_{R}=\sqrt{-1} a_{-}+a_{+}, \mathfrak{a}_{+}$), and we set

$$
\begin{aligned}
& \Delta_{+}=\text {the set of all positive roots in } \Delta \\
& \Lambda_{+}=\left\{\alpha \in \Delta_{+} ; \alpha \text { does not vanish on } a_{+}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma=\left\{\alpha \in \Delta ; \alpha \text { vanishes on } \mathfrak{a}_{+}\right\}, \\
& \Sigma_{+}=\Sigma \cap \Delta_{+}, \\
& \mathfrak{n}=\sum_{\alpha \in \Lambda_{+}} \mathfrak{g}^{\alpha}, \mathfrak{n}_{0}=\mathfrak{n} \cap \mathfrak{g}_{R}, \\
& \mathfrak{m}=\text { the centralizer of } \mathfrak{a}_{+} \text {in } \mathfrak{f}, \\
& \mathfrak{m}_{0}=\mathfrak{m} \cap \mathfrak{g}_{R}=\text { the centralizer of } \mathfrak{a}_{+} \text {in } \mathfrak{f}_{0}, \\
& \mathfrak{b}_{0}=\mathfrak{m}_{0}+\mathfrak{a}_{+}+\mathfrak{n}_{0},
\end{aligned}
$$

and

$$
\mathfrak{b}=\mathfrak{b}_{0}^{c}=\mathfrak{m}+\mathfrak{a}_{+}^{c}+\mathfrak{n}
$$

For every $\alpha \in \Delta, H_{\alpha} \in \mathfrak{a}_{R}$ is defined by

$$
B\left(H_{\alpha}, H\right)=\alpha(H) \quad \text { for every } H \in a
$$

where B denotes the Killing form of g. For simplicity, a root $\alpha \in \Delta$ is often identified with H_{α}.

Let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be the fundamental root system, and $\left\{\varepsilon_{1}, \ldots, \varepsilon_{l}\right\}$ the basis of \mathfrak{a} dual to $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$.

Theorem 3.1. There exists a nilpotent element in g_{R} with a real polarization \mathfrak{b}.

Proof. We set $\Phi=\Pi \cap \Lambda_{+}$, and write $\alpha \sim \beta(\alpha, \beta \in \Phi)$ if $\alpha\left|a_{+}=\beta\right| a_{+} . \quad$ (In other words, $\alpha \sim \beta$ implies that $\alpha=\beta$ or they are combined with an arrow in the Satake diagram.) Let $\left\{\alpha_{\mu_{i}} ; 1 \leqq i \leqq k\right\}$ be the subset of Φ consisting of all representatives of equivalence classes in Φ with respect to \sim. By a suitable arrangement of $\alpha_{1}, \cdots, \alpha_{l}$, we assume that $\Phi / \sim=\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$ and that

$$
\begin{aligned}
\sigma \alpha_{i}=\alpha_{i} & \text { for } 1 \leqq i \leqq p \\
\sigma \alpha_{i} \neq \alpha_{i} & \text { for } p+1 \leqq i \leqq k
\end{aligned}
$$

We set

$$
e=\sum_{i=1}^{p} e_{\alpha_{i}}+\sum_{i=p+1}^{k}\left(e_{\alpha_{i}}+\sigma e_{\alpha_{i}}\right)
$$

where e_{α} is a non-zero vector in $\mathrm{g}^{\alpha}(\alpha \in \Delta)$ satisfying $B\left(e_{\alpha}, e_{-\alpha}\right)=1$ and $\sigma e_{\alpha}=$ $\boldsymbol{e}_{\sigma \alpha}$. We set

$$
\begin{gathered}
f^{\prime}=\sum_{i=1}^{p} r_{i} e_{-\alpha_{i}}+\sum_{i=p+1}^{k}\left(r_{i} e_{-\alpha_{i}}+s_{i} e_{-\sigma \alpha_{i}}\right) \\
\left(r_{i} \in \boldsymbol{C}(1 \leqq i \leqq k) \text { and } s_{i} \in \boldsymbol{C}(p+1 \leqq i \leqq k)\right)
\end{gathered}
$$

and

$$
x=\left[e, f^{\prime}\right]
$$

Then we have

$$
x=\sum_{j=1}^{p} r_{j} \alpha_{j}+\sum_{j=p+1}^{k}\left(r_{j} \alpha_{j}+s_{j} \sigma \alpha_{j}\right),
$$

and $[x, e]$ is given as follows:

$$
\begin{aligned}
{[x, e]=} & \sum_{i=1}^{k} \alpha_{i}\left(\sum_{j=1}^{p} r_{j} \alpha_{j}+\sum_{j=p+1}^{k}\left(r_{j} \alpha_{j}+s_{j} \sigma \alpha_{j}\right)\right) e_{\alpha_{i}} \\
& +\sum_{i=p+1}^{k} \sigma \alpha_{i}\left(\sum_{j=1}^{p} r_{j} \alpha_{j}+\sum_{j=p+1}^{k}\left(r_{j} \alpha_{j}+s_{j} \sigma \alpha_{j}\right)\right) e_{\sigma \alpha_{i}} \\
= & \sum_{i=1}^{k}\left\{\sum_{j=1}^{k} r_{j}\left(\alpha_{i}, \alpha_{j}\right)+\sum_{j=p+1}^{k} s_{j}\left(\alpha_{i}, \sigma \alpha_{j}\right)\right\} e_{\alpha_{i}} \\
& +\sum_{i=p+1}^{k}\left\{\sum_{j=1}^{k} r_{j}\left(\sigma \alpha_{i}, \alpha_{j}\right)+\sum_{j=p+1}^{k} s_{j}\left(\sigma \alpha_{i}, \sigma \alpha_{j}\right)\right\} e_{\sigma \alpha_{i}} \\
= & \sum_{i=1}^{k}\left\{\sum_{j=1}^{k} r_{j}\left(\alpha_{i}, \alpha_{j}\right)+\sum_{j=p+1}^{k} s_{j}\left(\alpha_{i}, \sigma \alpha_{j}\right)\right\} e_{\alpha_{i}} \\
& +\sum_{i=p+1}^{k}\left\{\sum_{j=1}^{k} r_{j}\left(\sigma \alpha_{i}, \alpha_{j}\right)+\sum_{j=p+1}^{k} s_{j}\left(\alpha_{i}, \alpha_{j}\right)\right\} e_{\sigma \alpha_{i}} .
\end{aligned}
$$

From the relation $[x, e]=e$ (this is a necessary and sufficient condition in order that x may be a mono-semisimple element corresponding to e), we have a system of linear equations:
(1)

$$
\begin{cases}\sum_{j=1}^{k} r_{j}\left(\alpha_{i}, \alpha_{j}\right)+\sum_{j=p+1}^{k} s_{j}\left(\alpha_{i}, \sigma \alpha_{j}\right)=1 & (1 \leqq i \leqq k) \\ \sum_{j=1}^{k} r_{j}\left(\sigma \alpha_{i}, \alpha_{j}\right)+\sum_{j=p+1}^{k} s_{j}\left(\alpha_{i}, \alpha_{j}\right)=1 & (p+1 \leqq i \leqq k)\end{cases}
$$

Now we set

$$
A=\left[\begin{array}{ccccc}
\left(\alpha_{1}, \alpha_{1}\right) & \cdots\left(\alpha_{1}, \alpha_{k}\right) & \cdots\left(\alpha_{1}, \sigma \alpha_{p+1}\right) & \cdots\left(\alpha_{1}, \sigma \alpha_{k}\right) \\
\vdots & & \vdots & & \vdots \\
\left(\alpha_{k}, \alpha_{1}\right) & \cdots\left(\alpha_{k}, \alpha_{k}\right) & \cdots\left(\alpha_{k}, \sigma \alpha_{p+1}\right) & \cdots\left(\alpha_{k}, \sigma \alpha_{k}\right) \\
\left(\sigma \alpha_{p+1}, \alpha_{1}\right) & \cdots\left(\sigma \alpha_{p+1}, \alpha_{k}\right) & \cdots\left(\alpha_{p+1}, \alpha_{p+1}\right) & \cdots\left(\alpha_{p+1}, \alpha_{k}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\left(\sigma \alpha_{k}, \alpha_{1}\right) & \cdots\left(\sigma \alpha_{k}, \alpha_{k}\right) & \cdots\left(\alpha_{k}, \alpha_{p+1}\right) & \cdots\left(\alpha_{k}, \alpha_{k}\right)
\end{array}\right]
$$

The matrix A is a positive definite real matrix, since the Killing form B is strictly positive definite on \mathfrak{a}_{R}, and $\left\{\alpha_{1}, \cdots, \alpha_{k}, \sigma \alpha_{1}, \cdots, \sigma \alpha_{k}\right\}$ is linearly independent. The equations (1) are written in the matrix form:

$$
\begin{equation*}
A \cdot{ }^{t}\left(r_{1}, \cdots, r_{k}, s_{p+1}, \cdots, s_{k}\right)={ }^{t}(1, \cdots, 1) \tag{2}
\end{equation*}
$$

The linear equation (2) (or (1)) has a unique solution, and $r_{1}, \ldots, r_{k}, s_{p+1}, \ldots, s_{k}$ are determined as real numbers. Now we shall show that $r_{i}=s_{i}$ (for $p+1 \leqq$ $i \leqq k$). Noting that

$$
\left(\alpha_{i}, \alpha_{j}\right)=\left(\sigma \alpha_{i}, \sigma \alpha_{j}\right)=\left(\alpha_{i}, \sigma \alpha_{j}\right) \quad \text { for } 1 \leqq i \leqq p \text { and } 1 \leqq j \leqq k
$$

we have from (1)

$$
\begin{cases}\sum_{j=1}^{p}\left(\alpha_{i}, \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \sigma \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \alpha_{j}\right) s_{j}=1 & (\text { for } 1 \leqq i \leqq p) \\ \sum_{j=1}^{p}\left(\sigma \alpha_{i}, \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\sigma \alpha_{i}, \alpha_{j}\right) s_{j}=1 & (\text { for } p+1 \leqq i \leqq k) \\ \sum_{j=1}^{p}\left(\alpha_{i}, \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \sigma \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \alpha_{j}\right) s_{j}=1 & (\text { for } p+1 \leqq i \leqq k)\end{cases}
$$

Changing the second equations with the third, and the second terms with the third, we have
(1)'

$$
\begin{cases}\sum_{j=1}^{p}\left(\alpha_{i}, \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \alpha_{j}\right) s_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \sigma \alpha_{j}\right) r_{j}=1 & (1 \leqq i \leqq p) \\ \sum_{j=1}^{p}\left(\alpha_{i}, \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \alpha_{j}\right) s_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \sigma \alpha_{j}\right) r_{j}=1 & (p+1 \leqq i \leqq k) \\ \sum_{j=1}^{p}\left(\sigma \alpha_{i}, \alpha_{j}\right) r_{j}+\sum_{j=p+1}^{k}\left(\sigma \alpha_{i}, \alpha_{j}\right) s_{j}+\sum_{j=p+1}^{k}\left(\alpha_{i}, \alpha_{j}\right) r_{j}=1 & (p+1 \leqq i \leqq k)\end{cases}
$$

Using the matrix A, these equations become as follow :

$$
\begin{equation*}
A \cdot^{t}\left(r_{1}, \cdots, r_{p}, s_{p+1}, \cdots, s_{k}, r_{p+1}, \cdots, r_{k}\right)=^{t}(1, \cdots, 1) \tag{2}
\end{equation*}
$$

By the uniqueness of solutions of equations (2) and (2)', we have

$$
s_{i}=r_{i} \quad(\text { for } p+1 \leqq i \leqq k)
$$

Thus we have proved that the element

$$
x=\sum_{i=1}^{p} r_{i} H_{\alpha_{i}}+\sum_{i=p+1}^{k} r_{i}\left(H_{\alpha_{i}}+\sigma H_{\alpha_{i}}\right) \in \mathfrak{a}_{R}
$$

(where r_{1}, \cdots, r_{k} are solutions of equations (1)) satisfies $[x, e]=e$ and $x \epsilon$ $[e, g]$, so x is a mono-semisimple element corresponding to e. Now we expand the above x by the basis $\left\{\varepsilon_{1}, \cdots, \varepsilon_{l}\right\}$:

$$
x=\sum_{i=1}^{i} c_{i} \varepsilon_{i},
$$

where $c_{i}=\alpha_{i}(x) \in \boldsymbol{R}$ for $1 \leqq i \leqq l$.

We shall make an investigation into the characteristic (c_{1}, \ldots, c_{l}) of x. We shall show that

$$
c_{i}=\left\{\begin{array}{l}
0 \text { (if } \alpha_{i} \text { is a purely-imaginary root) } \\
1 \text { (otherwise) }
\end{array}\right.
$$

Indeed, if α_{i} is a purely-imaginary simple root (i.e., $\sigma \alpha_{i}=-\alpha_{i}$), we have

$$
\left(\alpha_{j}, \alpha_{i}\right)=0 \quad \text { for } 1 \leqq j \leqq p
$$

(because $\left.\left(\alpha_{j}, \alpha_{i}\right)=\left(\sigma \alpha_{j}, \sigma \alpha_{i}\right)=-\left(\alpha_{j}, \alpha_{i}\right)\right)$ and

$$
\left(\alpha_{j}, \alpha_{i}\right)+\left(\sigma \alpha_{j}, \alpha_{i}\right)=0 \quad \text { for } p+1 \leqq j \leqq k
$$

Thus we have

$$
\begin{aligned}
c_{i} & =\alpha_{i}(x) \\
& =\sum_{j=1}^{p} r_{j}\left(\alpha_{j}, \alpha_{i}\right)+\sum_{j=p+1}^{k} r_{j}\left\{\left(\alpha_{j}, \alpha_{i}\right)+\left(\sigma \alpha_{j}, \alpha_{i}\right)\right\} \\
& =0
\end{aligned}
$$

Next we consider the case when $\alpha_{i} \in \mathscr{\square}$. From $x=\sum_{i=1}^{l} c_{i} \varepsilon_{i}$, we have

$$
[x, e]=\sum_{i=1}^{p} c_{i} e_{\alpha_{i}}+\sum_{i=p+1}^{k}\left(c_{i} e_{\alpha_{i}}+\left(x, \sigma \alpha_{i}\right) e_{\sigma \alpha_{i}}\right) .
$$

Comparing the coefficients of e_{α} in the both-hand sides of $[x, e]=e$, we have

$$
\begin{cases}c_{i}=1 & (1 \leqq i \leqq k) \\ \left(x, \sigma \alpha_{i}\right)=1 & (p+1 \leqq i \leqq k)\end{cases}
$$

For each $i=p+1, \cdots, k$, we can find $\beta_{i} \in \Pi$ and $\gamma_{i} \in \mathfrak{a}_{R}^{*}=\operatorname{Hom}_{\boldsymbol{R}}\left(\mathfrak{a}_{R}, \boldsymbol{R}\right)$ such that

$$
\left\{\begin{array}{l}
\gamma_{i} \mid a_{+}=0 \\
\sigma \alpha_{i}=\beta_{i}+\gamma_{i}
\end{array}\right.
$$

The root β_{i} is either equal to α_{i} or combined with α_{i} by an arrow in Satake diagram. Then, due to $\left(x, \sigma \alpha_{i}\right)=1$ and $\left(x, \gamma_{i}\right)=0$ (this is because $x \in \mathfrak{a}_{+}$), we have

$$
\beta_{i}(x)=1 \quad(p+1 \leqq i \leqq k)
$$

By the definition of the equivalence relation " \sim " in Φ, Φ is exhausted by

$$
\left\{\alpha_{1}, \cdots, \alpha_{k}, \beta_{p+1}, \cdots, \beta_{k}\right\}
$$

where the expression of this set permits repetition. Thus we have proved
that

$$
c_{i}=1 \quad \text { if } \alpha_{i} \in \Phi
$$

Since the characteristic of x consists only of integers, $\mathfrak{p}=\sum_{j \geq 0} \mathfrak{g}_{j}$ is a w-polarization of e by Proposition 5.1 of [13]. Further \mathfrak{p} is a real polarization of e by Proposition 2.2. It is easily seen from the characteristic of x ($c_{i}=0$ if α_{i} is purely-imaginary, and $c_{i}=1$ if $\alpha_{i} \in \Phi$), that

$$
\begin{gathered}
\mathfrak{g}_{0}=\mathfrak{a}+\sum_{\alpha \in \Sigma} \mathrm{g}^{\alpha}=\mathfrak{a}_{+}^{c}+\mathfrak{m}, \\
\sum_{j>0} \mathfrak{g}_{j}=\sum_{\alpha \in \Lambda_{+}} \mathrm{g}^{\alpha}=\mathfrak{n}
\end{gathered}
$$

So we have $\mathfrak{p}=\mathfrak{b}$.
Q.E.D.

From the proof of the above theorem, we have:
Corollary 3.2. The element in \mathfrak{a}_{+}, whose characteristic is equal to 0 at purely-imaginary roots and to 1 elsewhere, is a mono-semisimple element corresponding to a certain nilpotent element in g_{R}.

Now we introduce the notion of a principal nilpotent element of a real semisimple Lie algebra:

Definition 3.1. A nilpotent element e in \mathfrak{g}_{R} is called a principal nilpotent element of \mathfrak{g}_{R} if $\operatorname{dimg}^{e} \leqq \operatorname{dimg}{ }^{X}$ for any nilpotent element X in \mathfrak{g}_{R}.

Proposition 3.3 1) The nilpotent element in Theorem 3.1 is a principal nilpotent element of g_{R}.
2) Principal nilpotent elements are all conjugate to each other under the action of G^{c}.

Proof. 1) Choose x and e as in the proof of Theorem 3.1. Let e^{\prime} be a nilpotent element in g_{R}, and x^{\prime} a mono-semisimple element corresponding to e^{\prime}. The element x^{\prime} may be assumed to be contained in the closure of the positive Weyl chamber in a_{+}(Corollary 4.2 of [13]). Let g_{j}^{\prime} be the j-eigenspace of $a d_{\mathfrak{g}} x^{\prime}$. Since $x^{\prime} \in \mathfrak{a}_{+}$, we have

$$
\begin{aligned}
\mathfrak{g}_{0}^{\prime} & =\mathfrak{a}+\sum_{\alpha\left(x^{\prime}\right)=0} \mathfrak{g}^{\alpha} \supset \mathfrak{a}+\sum_{\substack{\alpha \in d \\
\alpha \in a_{+}=0}} \mathfrak{g}^{\alpha} \\
& =\mathfrak{a}+\mathfrak{m}=\mathfrak{a}_{+}^{c}+\mathfrak{m} .
\end{aligned}
$$

So we have

$$
\operatorname{dim}^{e^{e^{\prime}}}=\operatorname{dim} \mathfrak{g}_{0}^{\prime}+\operatorname{dim}_{\mathfrak{g}_{2}^{\prime}}^{\prime} \geqq \operatorname{dim}\left(\mathfrak{a}_{+}^{c}+\mathfrak{m}\right)
$$

As we have shown in the proof of Theorem 3.1, the characteristic (c_{1}, \ldots, c_{l})
of x has the property :

$$
c_{i}= \begin{cases}0 & \text { if } \alpha_{i} \text { is purely-imaginary } \\ 1 & \text { otherwise }\end{cases}
$$

and so

$$
\operatorname{dimg}^{e}=\operatorname{dim}_{0}=\operatorname{dim}\left(\mathfrak{a}_{+}^{c}+\mathfrak{m}\right)
$$

Hence $\operatorname{dimg}{ }^{e} \leqq \operatorname{dimg} g^{e^{\prime}}$, so e is a principal nilpotent element of g_{R}.
2) Let e^{\prime} be a principal nilpotent element of \mathfrak{g}_{R}, and x^{\prime} a mono-semisimple element corresponding to e^{\prime}. By Corollary 4.2 of [13], x^{\prime} may be assumed to be contained in the closure of the positive Weyl chamber in a_{+}. In order to prove this proposition, it is enough to show that $x=x^{\prime}$. We consider the characteristic $\left(c_{1}^{\prime}, \cdots, c_{l}^{\prime}\right)=\left(\alpha_{1}\left(x^{\prime}\right), \cdots, \alpha_{l}\left(x^{\prime}\right)\right)$ of x^{\prime}. From $x^{\prime} \in \mathfrak{a}_{+}$, we have $c_{i}^{\prime}=0$ for each purely-imaginary root α_{i}. Now we shall prove that $c_{i}^{\prime}=1$ for $\alpha_{i} \epsilon$ $\Phi=\Pi$ - \{purely-imaginary simple roots\}. By Lemma 3.1 of [13], cach c_{i}^{\prime} is equal to $0, \frac{1}{2}$ or 1 . Suppose that $c_{i}^{\prime}=0$ or $\frac{1}{2}$ for some $\alpha_{i} \in \Phi$. If $c_{i}^{\prime}=0$ for some $\alpha_{i} \in \Phi$, we have

$$
\mathfrak{g}_{0}^{\prime} \supset \mathfrak{a}+\mathfrak{m}+\mathfrak{g}^{\alpha_{i}}+\mathfrak{g}^{-\alpha_{i}},
$$

so we have

$$
\operatorname{dim} \mathfrak{g}^{e^{\prime}} \geqq \operatorname{dim}_{0}^{\prime}>\operatorname{dim}(\mathfrak{a}+\mathfrak{m})=\operatorname{dim}^{e}
$$

This contradicts the fact that e^{\prime} is principal nilpotent. If $c_{i}^{\prime}=\frac{1}{2}$ for some $\alpha_{i} \in \Phi$, we have

$$
\mathfrak{g}_{0}^{\prime} \supset \mathfrak{a}+m \quad \text { and } \quad \mathfrak{g}_{\frac{1}{2}}^{\prime} \supset \mathfrak{g}^{\alpha_{i}},
$$

so we have

$$
\begin{aligned}
\operatorname{dim}^{e^{\prime}} & =\operatorname{dim}_{0}^{\prime}+\operatorname{dim}_{g_{\frac{1}{2}}^{\prime}}>\operatorname{dim}_{0}^{\prime} \\
& \geqq \operatorname{dim}(\mathfrak{a}+\mathfrak{m}) .
\end{aligned}
$$

This also contradicts the principality of e^{\prime}. Thus we have proved $c_{i}^{\prime}=1$ for $\alpha_{i} \in \Phi$, and so we have $x=x^{\prime}$. Therefore e^{\prime} is G^{C}-conjugate to e.
Q.E.D.

Note: Any two principal nilpotent elements in \mathfrak{g}_{R} are not necessarily conjugate to one another under the action of G. For example, the set of all principal nilpotent elements in $\mathfrak{b l}(2, \boldsymbol{R})$ separates into two $S L(2, \boldsymbol{R})$-orbits; the one through $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and the other through $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.

From the proof of Proposition 3.3, we have:
Corollary 3.4. Let e be a nilpotent element in g_{R}. Then e is a principal nilpotent element of \mathfrak{g}_{R} if and only if $\operatorname{dimg}^{e}=\operatorname{dim}(\mathfrak{a}+\mathfrak{m})$.

Corollary 3.5. \mathfrak{g}_{R} contains a principal nilpotent element of \mathfrak{g}, if and only if there exists no purely-imaginary root in Δ (i.e., Σ is empty).

Proof. Let e be a principal nilpotent element of \mathfrak{g}_{R}. Then, by Corollary 3.4,

$$
\operatorname{dim} \mathrm{g}^{e}=\operatorname{dim}\left(\mathfrak{a}+\sum_{\alpha \in \Sigma} \mathrm{g}^{\alpha}\right)
$$

So the condition that e is a principal nilpotent element of g is equivalent to

$$
\operatorname{dim}\left(\mathfrak{a}+\sum_{\alpha \in \Sigma} \mathfrak{g}^{\alpha}\right)=\operatorname{rank} \mathfrak{g}=\operatorname{dim} \mathfrak{a}
$$

which is equivalent to $\Sigma=\phi$ (the empty set).
Q.E.D.

The following theorem is concerned with cuspidal parabolic subalgebras and polarizations, and plays an important role in the construction of principal series representations.

Theorem 3.6. Let \mathfrak{H}_{0} be a θ-stable Cartan subalgebra, and notations are the same as in §4 of [13]. Let $H_{0}=H_{1}+H_{2}\left(H_{1} \in \mathfrak{h}_{-}\right.$and $\left.H_{2} \in \mathfrak{h}_{+}\right)$be an element in \mathfrak{H}_{0} such that $\alpha\left(H_{0}\right) \neq 0$ for every $\alpha \in \Sigma_{\mathfrak{p}}$. Then there exists a nilpotent element e in \mathfrak{n}_{0} such that

$$
\mathfrak{q}=\mathfrak{h}+\sum_{\alpha \in A_{+}} \mathfrak{g}^{\alpha}+\sum_{\alpha\left(\nu \mathcal{\nu}-1 H_{1}\right) \geq 0} \mathfrak{g}^{\alpha}
$$

is an admissible w-polarization of $H_{0}+e$.
Proof. The centralizer $\left(\mathfrak{g}_{R}\right)^{H_{0}}$ of H_{0} in \mathfrak{g}_{R} is a reductive Lie algebra with the center

$$
\mathfrak{z}_{0}=\left(\sum_{\substack{\alpha\left(H_{0}\right)=0 \\ \alpha \in \Delta}} \boldsymbol{R} H_{\alpha}\right) \cap \mathfrak{g}_{R}
$$

and the semisimple part

$$
\mathfrak{l}_{0}=\mathfrak{h}_{0}^{\prime}+\left(\sum_{\alpha \in \Lambda_{A}} \mathfrak{g}^{\alpha}\right) \cap \mathfrak{g}_{R}
$$

where

$$
\begin{aligned}
& \Delta^{\prime}=\left\{\alpha \in \Delta ; \alpha\left(H_{0}\right)=0\right\} \subset \Sigma_{\mathfrak{t}} \cup \Lambda, \\
& \mathfrak{h}^{\prime}=\sum_{\alpha \in \Delta^{\prime}} \boldsymbol{C} H_{\alpha},
\end{aligned}
$$

and

$$
\mathfrak{h}_{0}^{\prime}=\mathfrak{h}^{\prime} \cap \mathfrak{g}_{R} .
$$

As is shown in the proof of Proposition 4.5 of [13], $\mathfrak{b}_{0}^{\prime}$ is a Cartan subalgebra of \mathfrak{l}_{0} with maximal vector part, and $\mathfrak{h}_{-}^{\prime}=\mathfrak{h}_{0}^{\prime} \cap \mathfrak{f}_{0}^{\prime}$ (resp. $\mathfrak{h}_{+}^{\prime}=\mathfrak{h}_{0}^{\prime} \cap \mathfrak{p}_{0}$) is the toroidal (resp. vector) part of $\mathfrak{H}_{0}^{\prime}$. And a lexicographic linear order in the nonzero root system R (which may be identified with $\left\{\alpha \mid \mathfrak{h}^{\prime} ; \alpha \in \Delta^{\prime}\right\}$) of ($\mathfrak{l}, \mathfrak{h}^{\prime}$) compatible to $\left(\mathfrak{G}_{0}^{\prime}, \mathfrak{G}_{+}^{\prime}\right)$ can be chosen so that the subset R_{+}of all positive roots in R coincides with $\left\{\alpha \mid \mathfrak{h}^{\prime} ; \alpha \in \Delta^{\prime} \cap \Delta_{+}\right\}$. By Theorem 3.1, we can find a principal nilpotent element e of \mathfrak{l}_{0} with a real polarization (in \mathfrak{l})

$$
\mathfrak{q}^{\prime}=\mathfrak{h}^{\prime}+\underset{\substack{\alpha \in \dot{A}^{\prime} \\ \alpha \mid \mathfrak{h}_{+}^{\prime}}}{ } \mathfrak{g}^{\alpha}+\underset{\substack{\alpha \in \mathcal{A}^{\prime}+\\ \alpha \mid \mathfrak{h}_{+}^{\prime} \neq 0}}{ } \mathfrak{g}^{\alpha} .
$$

Now we put $X=H_{0}+e$, and we shall prove that \mathfrak{q} is an admissible w-polarization of X.
0) \mathfrak{q} is a subalgebra of g since the linear order in Δ is compatible.
i) By definition of \mathfrak{q}, we have

$$
\operatorname{dim} \mathfrak{g}-\operatorname{dim}(\mathfrak{l}+\mathfrak{z})=2\left(\operatorname{dim} q-\operatorname{dim} \mathfrak{q}^{\prime}-\operatorname{dim} \mathfrak{z}\right) .
$$

Since \mathfrak{q}^{\prime} is a polarization of e in \mathfrak{l}, we have

$$
\operatorname{dim} \mathfrak{l}-\operatorname{dim} \mathfrak{q}^{\prime}=\operatorname{dim} \mathfrak{q}^{\prime}-\operatorname{dim} Z_{\mathfrak{l}}(e) .
$$

And, as is proved in the above,

$$
\operatorname{dim}^{X}=\operatorname{dim}_{\mathrm{z}}+\operatorname{dim} Z_{\mathrm{l}}(e) .
$$

So we have

$$
\operatorname{dim} \mathfrak{q}-\operatorname{dim} \mathfrak{g}^{X}=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{q} .
$$

ii) By definition of \mathfrak{q}, we have

$$
[\mathfrak{q}, \mathfrak{q}]=\sum_{\substack{\alpha \in \mathcal{J} \\ \alpha\left(H_{0}\right)=0}} \boldsymbol{C} H_{\alpha}+\sum_{\alpha \in \Lambda_{+}} \mathrm{g}^{\alpha}+\sum_{\substack{\alpha \in \mathcal{} \\ \alpha\left(\nu-1 H_{1}\right) \geq 0}} \mathrm{~g}^{\alpha} .
$$

On the other hand, $X \in \boldsymbol{C} H_{0}+\sum_{\alpha \in \Lambda_{+}} g^{\alpha}$.
Thus we have $B(X,[q, q])=\{0\}$.
iv) Since $\sum_{\alpha \in \Lambda_{+}} \mathrm{g}^{\alpha}$ is σ-stable and $\sigma \alpha=-\alpha$ for $\alpha \in \Sigma$, we have

$$
\mathfrak{q}+\sigma \mathfrak{q}=\mathfrak{h}+\sum_{\alpha \in \Lambda_{+}} \mathfrak{g}^{\alpha}+\sum_{\alpha \in \Sigma} \mathfrak{g}^{\alpha},
$$

which is a subalgebra of g because the linear order in Δ is compatible to $\left(\mathfrak{h}_{R}, \mathfrak{h}_{+}\right)$.

Thus the statement of Theorem 3.6 is proved.
Q.E.D.

Note: In the above Theorem 3.6, $(\mathfrak{q}+\sigma \mathfrak{q}) \cap \mathfrak{g}_{R}$ is a cuspidal parabolic subalgebra of \mathfrak{g}_{R} corresponding to \mathfrak{H}_{0}.

Note: As to the assumption in Theorem 3.6, we remark here that any (non-zero) semisimple element H in g_{R} is G-conjugate to an element H^{\prime} in some θ-stable Cartan subalgebra \mathfrak{G}_{0}, and which can be chosen so that $\alpha\left(H^{\prime}\right) \neq 0$ for every $\alpha \in \Sigma_{\mathfrak{p}}$ (Lemma 4.4 of [13]).

§4. A discussion in simple cases

Let g_{R} be a non-compact real simple Lie algebra, and $g_{R}=f_{0}+\mathfrak{p}_{0}$ its Cartan decomposition. Choose a Cartan subalgebra $a_{0}=\mathfrak{a}_{-}+a_{+}\left(\mathfrak{a}_{-} \subset \mathfrak{f}_{0}, a_{+} \subset \mathfrak{p}_{0}\right)$ with maximal vector part, and we set $l=\operatorname{dim} a_{0}(=\operatorname{rank}(\mathrm{g}))$ and $r=\operatorname{dima} a_{+}(=$ rank of the symmetric space $G / K)$. Denote by $\mathfrak{g}, \mathfrak{x}, \mathfrak{p}, \mathfrak{a}, \mathfrak{a}_{-}^{C}$ and \mathfrak{a}_{+}^{c} the complexification of $\mathfrak{g}_{R}, \mathfrak{f}_{0}, \mathfrak{p}_{0}, \mathfrak{a}_{0}, a_{-}$and a_{+}, respectively. Let Δ be the non-zero root system of \mathfrak{g} with respect to \mathfrak{a}. A lexicographic order in $\mathfrak{a}_{R}=\sqrt{-1} a_{-}+a_{+}$ compatible to a_{+}induces a linear order in Δ, and we denote by Δ^{+}the set of all positive roots. Let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be the system of simple roots arranged according to the Dynkin diagram, and $\left\{\varepsilon_{1}, \cdots, \varepsilon_{l}\right\}$ the basis of a_{R} dual to $\left\{\alpha_{1}\right.$, $\left.\ldots, \alpha_{l}\right\}$. A root $\alpha \in \Delta$ will be called a purely-imaginary root if $\alpha \mid a_{+}=0$, a real root if $\alpha \mid a_{-}=0$, and a mixed root otherwise. A positive root $\alpha=\sum_{i=1}^{l} a_{i} \alpha_{i}$ is expressed simply by (a_{1}, \cdots, a_{l}). (In case of type (D) or (E), α is expressed also by $\binom{a_{1} \cdots a_{l-3} a_{l-2} a_{l-1}}{a_{l}}$ or $\binom{a_{1} a_{2} a_{3} a_{4} \cdots a_{l-1}}{a_{l}}$.) For $\alpha \in \Delta$, we set

$$
\mathfrak{g}^{\alpha}=\{X \in \mathrm{~g} ; \operatorname{ad}(H) X=\alpha(H) X \quad \text { for every } H \in \mathfrak{a}\}
$$

We choose $e_{\alpha} \in \mathfrak{g}^{\alpha}(\alpha \in \Delta)$ such that

$$
B\left(e_{\alpha}, e_{-\alpha}\right)=1 \text { and } \sigma e_{\alpha}=e_{\sigma \alpha}
$$

where B denotes the Killing form of g. And we set

$$
H_{\alpha}=\left[e_{\alpha}, e_{-\alpha}\right] .
$$

It is well-known that $H_{\alpha} \in \mathfrak{a}_{R}$ and $B\left(H_{\alpha}, H\right)=\alpha(H)$ for every $H \in \mathfrak{h}$. We set $|\alpha|^{2}=\alpha\left(H_{\alpha}\right)$ for $\alpha \in \Delta$.

Lemma 4.1. In case of $\mathrm{g}_{R}=\mathfrak{s p}(n, 1)$,

1) every (non-zero) nilpotent element in g_{R} is a principal nilpotent element of g_{R}, and
2) every nilpotent element in \mathfrak{g}_{R} has a real polarization.

Proof. 1) A (non-zero) nilpotent element in g_{R} is embedded into an S-triple in g_{R} as the nilpositive element, which is G-conjugate to a standard

S-triple (x, e, f) (Lemma 3.3. [13] and Corollary 4.2 [13]). The characteristic of $x\left(x \in \mathfrak{a}_{+}\right)$is zero at purely-imaginary roots. The Satake diagram of g_{R} is as follows:

So the characteristic of x is
i) $(1,0, \cdots, 0)\left(x=\varepsilon_{1}\right)$, or
ii) $\left(\frac{1}{2}, 0, \cdots, 0\right) \quad\left(x=\frac{1}{2} \varepsilon_{1}\right)$.

The case ii) does not occur since ii) is inconsistent with $\mathfrak{g}_{1} \neq\{0\}$. So the only possible case is i), which is the characteristic corresponding to a principal nilpotent element of g_{R}.

The statement 2) follows from 1), Theorem 3.1 and Proposition 3.3.
Q.E.D.

Lemma 4.2. Every nilpotent element in the simple Lie algebra of type (E IV) has a real w-polarization.

Proof. The Satake diagram of (E IV) is

From the table of Dynkin ([5] p. 178), the characteristic of a standard Striple (x, e, f) is
i) $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ & & 0 & & \end{array}\right) \quad\left(x=\varepsilon_{1}+\varepsilon_{5}\right)$,
or
ii) $\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 0\end{array} \frac{1}{2} \begin{array}{c}0\end{array}\right) \quad\left(x=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{5}\right)\right)$.

In case i), e is a principal nilpotent element of g_{R}, and has a real polarization (Theorem 3.1 and Proposition 3.3). So we shall consider the case ii). We set

$$
V^{1}=\sum_{\substack{\alpha(x)=-\frac{1}{2} \\ \alpha\left(\varepsilon_{1}\right)=1}} \mathfrak{g}^{\alpha}, \quad V^{2}=\sum_{\substack{\alpha(x)=-\frac{1}{2} \\ \alpha\left(\varepsilon_{5}\right)=1}} \mathfrak{g}^{\alpha} .
$$

Then one can see from an easy calculation of roots that

$$
\operatorname{dim} V^{i}=\frac{1}{2} \operatorname{dim}_{-\frac{1}{2}}
$$

V^{i} is an abelian subalgebra of \mathfrak{g}, and
V^{i} is stable under the adjoint action of g_{0}
for $i=1,2$. Therefore

$$
\mathfrak{p}_{i}=\sum_{j \geq 0} \mathfrak{g}_{j}+V^{i} \quad(i=1,2)
$$

is a w-polarization of e (Proposition 5.2 of [13]). Moreover, since $V^{i}(i=1,2)$ is σ-stable, \mathfrak{p}_{i} is a real w-polarization.
Q.E.D.

Lemma 4.3. Let g_{R} be a real simple Lie algebra not of type (A), and μ the highest root. Then e_{μ} has not a w-polarization in the sense of Definition 7.1. of $[13]$. (Note that e_{μ} is not necessarily in g_{R}.)

Proof. Consider an S-triple

$$
(x, e, f)=\left(\frac{1}{|\mu|^{2}} H_{\mu}, e_{\mu}, \frac{1}{|\mu|^{2}} e_{-\mu}\right)
$$

We can see from the root table of each case that there exists uniquely the simple root α_{i} such that $\mu-\alpha_{i} \in \Delta$ (so x is a scalar multiple of ε_{i}), and that the coefficient of μ at α_{i} is equal to 2 (i.e., $\mu\left(\varepsilon_{i}\right)=2$). From $[x, e]=e$, we have $\mu(x)=1$, so we have $x=\frac{1}{2} \varepsilon_{i}$. Thus the characteristic of x is

$$
\left.\left(0, \ldots, 0, \frac{\frac{i}{1}}{2}, 0, \ldots, 0\right)\right) .
$$

We set

$$
\begin{aligned}
& \Delta_{0}=\{\alpha \in \Delta ; \alpha(x)=0\}, \\
& \Delta_{0}^{+}=\Delta_{0} \cap \Delta^{+}
\end{aligned}
$$

For $\alpha \in \Delta_{0}$, let $\mu-p \alpha, \mu-(p-1) \alpha, \cdots, \mu+q \alpha(p, q \geqq 0)$ be an α-series containing μ. Then

$$
q-p=-2 \frac{\mu\left(H_{\alpha}\right)}{|\alpha|^{2}}=0
$$

And either p or q is equal to zero, since μ is the highest root. (If $\alpha \epsilon \Delta^{+}$,
then $q=0$; and if $-\alpha \in \Delta^{+}$, then $p=0$.) So we have $p=q=0$, and $\left[e, \mathfrak{g}^{\alpha}\right]=\{0\}$ for $\alpha \in \Delta_{0}$. Thus we have

$$
\mathrm{g}_{0} \cap \mathrm{~g}^{e}=\sum_{j \neq i} \boldsymbol{C} H_{\alpha_{j}}+\sum_{\alpha \in \Lambda_{0}} \mathrm{~g}^{\alpha} .
$$

Assume that e has a w-polarization \mathfrak{p}. By Proposition 5.3 of $[13](x \in \mathfrak{p})$ and the above, we have $\mathfrak{g}_{0} \subset \mathfrak{p}$, so we have $\sum_{j \geq 0} \mathfrak{g}_{j} \subset \mathfrak{p}$. Since $\mathfrak{g}_{-1}=\boldsymbol{C} f$ and $\mathfrak{g}_{j}=$ $\{0\}\left(j \leqq-\frac{3}{2}\right)$, we have

$$
\operatorname{dim}\left(\mathfrak{p} \cap g_{-\frac{1}{2}}\right)=\frac{1}{2} \operatorname{dim}_{-\frac{1}{2}}
$$

by the condition ii) of polarizations. But this cannot happen because, as one can see from an easy calculation of roots, $g_{-\frac{1}{2}}$ is an irreducible g_{0}-module. Therefore e has no w-polarizations.
Q.E.D.

Proposition 4.4. In case that g_{R} is a non-compact real form of type (B), (D) or (E), except for $\mathfrak{s o}(n, 1)$ and (E IV), there exists a nilpotent element with no w-polarizations.

Proof. It suffices to show that in each case the highest root μ is a real root.

1) The Satake diagram of type (B) (except for $\mathfrak{g n}(2 l, 1)$) is as follows:

The highest root $\mu=(12 \ldots 2)$ is real since it is orthogonal to purely-imaginary simple roots.
2) The Satake diagram of type $\left(D_{l}\right)(l \geqq 4)$ (except for $\mathfrak{s o}(2 l+1,1)$) is as follows:

In each case, the highest root $\left.\mu=\left(\begin{array}{llll}1 & 2 & 2 & \cdots\end{array}\right) 1 \begin{array}{l}1 \\ \\ \\ \\ 1\end{array}\right)$ is orthogonal to purelyimaginary roots and simple roots with an arrow, and so μ is real.
$3)$ The Satake diagram of type (E) (except for (E IV)) is as follows:

The highest root μ is

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 2 & 3 & 2
\end{array}\right) \quad \text { if } g_{R} \text { is of type }\left(E_{6}\right), \\
& \left(\begin{array}{ccccc}
2 & 3 & 4 & 3 & 2
\end{array}\right) \quad \text { if } g_{R} \text { is of type }\left(E_{7}\right), \\
& \left(\begin{array}{ccccc}
2 & 4 & 6 & 5 & 4
\end{array}\right] \quad 2 . \quad \text { if } \mathrm{g}_{R} \text { is of type }\left(E_{8}\right) .
\end{aligned}
$$

We have $\left(\mu, \alpha_{i}\right)=0$ for $i \neq 6$ if g_{R} is $\left(E_{6}\right)$, for $i \neq 1$ if g_{R} is $\left(E_{7}\right)$, for $i \neq 7$ if g_{R} is (E_{8}), and so in each case, μ is orthogonal to purely-imaginary roots and simple roots with arrows. Thus μ is a real root.
Q.E.D.

Lemma 4.5. In a non-compact real form of type (C), there exists a nilpotent element with no w-polarizations.

Proof. The Satake diagram of $\left(C_{l}\right)$ is

The root $\mu^{\prime}=\left(\begin{array}{lllll}1 & 2 & 2 & \ldots & 1\end{array}\right)$ is real since $\left(\mu^{\prime}, \alpha_{i}\right)=0$ for $i \neq 2$. We consider an S-triple (in g_{R})

$$
(x, e, f)=\left(\frac{1}{\left|\mu^{\prime}\right|^{2}} H_{\mu^{\prime}}, e_{\mu^{\prime}}, \frac{1}{\left|\mu^{\prime}\right|^{2}} e_{-\mu^{\prime}}\right) .
$$

Since $\left(\mu^{\prime}, \alpha_{i}\right)=0$ (so x is a scalar multiple of ε_{2}) and $[x, e]=e$ (i.e., $\mu^{\prime}(x)=1$) and the coefficient of μ^{\prime} at α_{2} is equal to 2 (i.e., $\mu^{\prime}\left(\varepsilon_{2}\right)=2$), we have $x=\frac{1}{2} \varepsilon_{2}$. So the characteristic of x is

$$
\left(0, \frac{1}{2}, 0, \ldots, 0\right) . \quad \text { We set }
$$

$$
\begin{aligned}
\Delta_{1} & =\{\alpha \in \Delta ; \alpha(x)=1\} \\
& =\{(122 \cdots 21),(222 \cdots 21),(022 \cdots 21)\}, \\
\Delta_{\frac{1}{2}}^{1} & =\left\{\alpha \in \Delta ; \alpha(x)=\frac{1}{2}, \alpha\left(\varepsilon_{1}\right)=1\right\}, \\
\Delta_{\frac{1}{2}}^{2} & =\left\{\alpha \in \Delta ; \alpha(x)=\frac{1}{2}, \alpha\left(\varepsilon_{1}\right)=0\right\}, \\
\Delta_{\frac{1}{2}} & =\left\{\alpha \in \Delta ; \alpha(x)=\frac{1}{2}\right\}=\Delta_{\frac{1}{2}}^{1} \cup \Delta_{\frac{1}{2}}^{2}, \\
\Delta_{0 e} & =\left\{\alpha \in \Delta ; \alpha(x)=0, \alpha\left(\varepsilon_{1}\right)=0\right\}, \\
\Delta_{0} & =\{\alpha \in \Delta ; \alpha(x)=0\}=\Delta_{0 e} \cup\{ \pm(10 \cdots 0)\}, \\
\Delta_{-j} & =\left\{-\alpha ; \alpha \in \Delta_{j}\right\} \quad\left(j=\frac{1}{2}, 1\right) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \mathrm{g}_{j}=\{0\} \quad\left(\text { if }|j| \geqq-\frac{3}{2}\right), \\
& \mathrm{g}_{j}=\sum_{\alpha \in d_{j}} \mathrm{~g}^{\alpha} \quad\left(\text { if }|j|=\frac{1}{2}, 1\right), \\
& \mathfrak{g}_{0} \cap \mathfrak{g}^{e}=\sum_{i \neq 2} \boldsymbol{C} H_{\alpha_{i}}+\sum_{\alpha \in \Delta_{0 e}} \mathfrak{g}^{\alpha}, \\
& \mathrm{g}_{0}=\boldsymbol{C} x+\left(\mathrm{g}_{0} \cap \mathrm{~g}^{e}\right)+\mathrm{g}^{(10 \ldots 0)}+\mathrm{g}^{-(10 \ldots 0)}, \\
& =\mathfrak{l}+\mathfrak{g}^{(10 \ldots . .0)}+\mathfrak{g}^{-(10 \ldots 0)}, \\
& \mathfrak{g}^{e}=\left(\mathfrak{g}_{0} \cap \mathfrak{g}^{e}\right)+\mathfrak{g}_{\frac{1}{2}}+\mathfrak{g}_{1}, \\
& \mathrm{~g}_{-\frac{1}{2}}=V^{1}+V^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{l}=\boldsymbol{C} x+\left(\mathrm{g}_{0} \cap \mathrm{~g}^{e}\right), \\
& V^{i}=\sum_{\alpha \in \mathrm{S}_{\frac{1}{2}}} \mathrm{~g}^{-\alpha} \quad(i=1,2) .
\end{aligned}
$$

By a simple calculation of roots, we see;

$$
\begin{aligned}
& V^{i} \text { is } \mathfrak{l} \text {-irreducible, } \\
& {\left[V^{1}, V^{1}\right]=\mathrm{g}^{-(22 \ldots . .21)},}
\end{aligned}
$$

$$
\left[V^{2}, V^{2}\right]=\mathrm{g}^{-(02 \ldots . .21)}
$$

Now we assume that e has a w-polarization \mathfrak{p}. We have $\mathfrak{l}+\mathfrak{g}_{\frac{1}{2}}+\mathfrak{g}_{1} \subset \mathfrak{p}$, by Proposition 2.1 and Proposition 5.3 of [13].

First we shall prove that $\mathfrak{p} \cap \mathfrak{g}_{-\frac{1}{2}}=\{0\}$. If $\mathfrak{p} \cap \mathfrak{g}_{-\frac{1}{2}} \neq\{0\}$, \mathfrak{p} includes V^{1} or V^{2}. Suppose that $\mathfrak{p}>V^{1}$. Then

$$
\mathfrak{g}^{-(22 \ldots 21)}=\left[V^{1}, V^{1}\right] \subset \mathfrak{p}
$$

Since $e \in \mathfrak{p}$, we have

$$
\mathfrak{g}^{-(10 \ldots 0)}=\left[e, \mathfrak{g}^{-(22 \ldots 21)}\right] \subset \mathfrak{p}
$$

So we have

$$
V^{2}=\left[\mathfrak{g}^{-(10 \ldots . .0)}, V^{1}\right] \subset \mathfrak{p} .
$$

Hence

$$
\mathfrak{g}_{-\frac{1}{2}} \subset \mathfrak{p}, \text { and } \mathfrak{g}_{-1}=\left[\mathfrak{g}_{-\frac{1}{2}}, \mathfrak{g}_{-\frac{1}{2}}\right] \subset \mathfrak{p}
$$

Thus we have $\mathfrak{p}=\mathfrak{g}$, which contradicts the condition ii) of polarizations. The supposition $\mathfrak{p}>V^{2}$ leads us to the same contradiction. Thus we have proved that $\mathfrak{p} \cap g_{-\frac{1}{2}}=\{0\}$,

Next we shall prove that $\mathfrak{p} \cap \mathfrak{g}_{-1}=\{0\}$. If $\mathfrak{p} \cap \mathfrak{g}_{-1} \neq\{0\}, \mathfrak{p}$ includes $\mathfrak{g}^{-(22 \ldots 21)}$ or $\mathfrak{g}^{-(022 . .21)}$. ($f \in \mathfrak{p}$ does not occur because $f \in \mathfrak{p}$, with $\mathfrak{g}^{e}(\mathfrak{p}$, implies $\mathfrak{p}=\mathfrak{g}$.) Suppose that $\mathfrak{p}) \mathfrak{g}^{-(22 \ldots 21)}$. Since $\left.g^{(110 \ldots 0}\right)\left(g_{\frac{1}{2}} \subset \mathfrak{p}\right.$, we have

$$
\mathfrak{g}^{-(112 \ldots 21)}=\left[\mathfrak{g}^{-(22 \ldots 21)}, \mathfrak{g}^{(110 \ldots 0)}\right] \subset \mathfrak{p}
$$

which contradicts the fact that $\mathfrak{p} \cap g_{-\frac{1}{2}}=\{0\}$. If we suppose that $\mathfrak{p} \supset \mathfrak{g}^{-(022 . . .21)}$, we have

$$
\mathrm{g}^{-(012 \ldots 21)}=\left[\mathrm{g}^{-(022 \ldots 21)}, \mathrm{g}^{(010 \ldots . . .0)}\right] \subset \mathfrak{p},
$$

since $\mathfrak{g}^{-(010 . . .0)} \subset \mathfrak{g}_{\frac{1}{2}} \subset \mathfrak{p}$. This is also inconsistent with $\mathfrak{p} \cap \mathfrak{g}_{-\frac{1}{2}}=\{0\}$.
So we have $\mathfrak{p} \subset \sum_{j \geq 0} \mathfrak{g}_{j}$. Hence

$$
\begin{aligned}
\operatorname{dim} \mathfrak{p} & \leqq \operatorname{dim} \sum_{j \geq 0} \mathfrak{g}_{j}=\frac{1}{2}\left(\operatorname{dimg}+\operatorname{dim} \mathfrak{g}_{0}\right) \\
& <\frac{1}{2}\left(\operatorname{dimg}+\operatorname{dim} \mathfrak{g}_{0}+\operatorname{dim} \mathfrak{g}_{\frac{1}{2}}\right) \\
& =\frac{1}{2}\left(\operatorname{dimg}+\operatorname{dim} \mathfrak{g}^{e}\right) .
\end{aligned}
$$

This is contradictory to the condition ii) of polarizations. So e has not a w-polarization.
Q.E.D.

Summing up Corollaries 6.2-6.3 ([13]), Examples 6.3-6.4 ([13]) and the above lemmata and propositions, we have:

Theorem 4.6. 1) In case that \mathfrak{g}_{R} is a real simple Lie algebra of type (A I) (A II)($E \mathrm{IV}$) or $\mathfrak{s p}(n, 1)$, every nilpotent element in \mathfrak{g}_{R} has a real w-polarization.
2) In case that \mathfrak{g}_{R} is a real simple Lie algebra of type (A) (E IV) or $\mathfrak{g o}(n$, 1), every element in g_{R} has a w-polarization.
3) If g_{R} is a non-compact real simple Lie algebra of other type, there exists a nilpotent element in g_{R} with no w-polarizations.

The following is an immediate consequence of Proposition 2.6 [13] and the above theorem:

Corollary 4.7. 1) In case that g_{R} is a real semisimple Lie algebra consisting only of simple ideals of type ($A \mathrm{I}$) ($A \mathrm{II}$) ($E \mathrm{IV}$) or $\mathfrak{s o}(n, 1)$, every nilpotent element in g_{R} has a real w-polarization.
2) In case that g_{R} is a real semisimple Lie algebra constisting only of
 tion.
3) If \mathfrak{g}_{R} is a non-compact real semisimple Lie algebra of other type, there exists a nilpotent element in g_{R} with no w-polarizations.

§ 5. Orbits and unitary representations

5.1. In this section we shall give a sketch of the Kostant's method (Kostant [11], [12] and Kirillov [9]) from the viewpoint of induced representations.

Let g_{R} be a Lie algebra of a connected Lie group G, and g its complexification. The group G acts on the dual space $g_{R}^{*}=\operatorname{Hom}_{R}\left(g_{R}, \boldsymbol{R}\right)$ as the contragredient representation of $\left(A d, \mathfrak{g}_{R}\right)$. Namely, for every $g \in G$ and $\lambda \epsilon \mathfrak{g}_{R}^{*}, g \lambda$ is defined by

$$
(g \lambda)(X)=\lambda\left(A d\left(g^{-1}\right) X\right) \quad \text { for every } X \epsilon \mathfrak{g}_{R}
$$

The G-orbit $O=G / G^{\lambda}$ in \mathfrak{g}_{R}^{*} through λ admits the canonical G-invariant symplectic structure ω defined as follows (a non-degenerate closed 2-form on an even dimensional C^{∞}-differentiable manifold is called a symplectic structure):

$$
\omega_{p}\left(\sigma(X)_{p}, \sigma(Y)_{p}\right)=-p([X, Y])
$$

for every $X, Y \epsilon \mathrm{~g}$ and $p \in O$, where $\sigma(X)\left(X \epsilon \mathrm{~g}_{R}\right)$ denotes the vector field on O generated by the 1-parameter subgroup $\{\exp t X\}_{-\infty<t<\infty}$ of G, i.e.,

$$
\sigma(X)_{p} f=(\sigma(X) f)(p)=\left[\frac{d}{d t} f(\exp -t X \cdot p)\right]_{t=0}
$$

(for $f \in C^{\infty}(O)$ and $p \in O$), and $\sigma(X)(X \in \mathfrak{g})$ is its canonical extension. It is proved in [12] that ω is well-defined as above and that ω is a G-invariant symplectic form on O.

Let \mathfrak{p} be an admissible polarization of λ, and define a linear mapping χ_{*}^{λ} of \mathfrak{p} to \boldsymbol{C} by

$$
\chi_{*}^{\lambda}(X)=2 \pi \sqrt{-1} \lambda(X) \quad \text { for every } X \in \mathfrak{p} .
$$

Then by the condition i) of a polarization, χ_{*}^{λ} is a Lie algebra homomorphism. We set

$$
\begin{array}{ll}
\mathfrak{d}=\mathfrak{p} \cap \sigma \mathfrak{p}, & \mathfrak{d}_{0}=\mathfrak{b} \cap \mathfrak{g}_{R}=\mathfrak{p} \cap \mathfrak{g}_{R}, \\
\mathfrak{e}=\mathfrak{p}+\sigma \mathfrak{p}, & \mathfrak{e}_{0}=\mathfrak{e} \cap \mathfrak{g}_{R},
\end{array}
$$

and denote by D_{0} (resp. E_{0}) the analytic subgroup of G generated by \grave{D}_{0} (resp. \mathfrak{e}_{0}). We assume that D_{0} and E_{0} are closed subgroups of G. Let D (resp. E) be the subgroup of G generated by D_{0} (resp. E_{0}) and G^{λ}. By the condition iii. of a polarization,

$$
\begin{aligned}
& D=G^{\lambda} D_{0}=\left\{x y ; x \in G^{\lambda}, y \in D_{0}\right\}, \\
& E=G^{\lambda} E_{0}=\left\{x y ; x \in G^{\lambda} y \in E_{0}\right\}
\end{aligned}
$$

and $D_{0}\left(\right.$ resp. $\left.E_{0}\right)$ is a normal subgroup of $D($ resp. $E)$.
Remark 5.1. When G is semisimple, the above definition of D and E seems to need some modifications, as will be pointed out in 5.6.
5.2. The symplectic form ω on O determines the de Rham cohomology class $[\omega]$.

Lemma 5.2.1 (Kostant [12].) When G is simply connected, the following conditions are equivaleut:

1) There exists a character χ^{λ} of G^{λ}, whose differential coincides with χ_{*}^{λ} on g_{R}^{λ}.
2) $[\omega]$ is integral.

Let G_{0}^{λ} be the connected component of G^{λ} containing the unit. Then we have

Lemma 5.2.2. 1) The manifold D / G^{λ} is (canonically) diffeomorphic to $D_{0} /\left(D_{0} \cap G^{\lambda}\right)$.
2) If D / G^{λ} is simply connected, then
i) $D_{0} \cap G^{\lambda}=G_{0}^{\lambda}$, and
ii) There exists a canonical 1-1 correspondence between the set of the connected components of D and that of G^{λ}.

Proof. 1) Define a mapping $\varphi: D_{0} /\left(D_{0} \cap G^{\lambda}\right) \rightarrow D / G^{\lambda}$ by

$$
\varphi(\bar{g})=g G^{\lambda} \quad \text { for every } g \in D_{0}
$$

where \bar{g} denotes the element in $D_{0} /\left(D_{0} \cap G^{\lambda}\right)$ corresponding to g. This mapping φ is injective, since $g G^{\lambda}=g^{\prime} G^{\lambda}$ implies that $g^{-1} g^{\prime} \in D_{0} \cap G^{\lambda}$, for $g, g^{\prime} \epsilon$ D_{0}. Each element g in D can be decomposed as $g=g^{\prime} h\left(g^{\prime} \in D_{0}, h \in G^{\lambda}\right)$. Then

$$
\varphi\left(\bar{g}^{\prime}\right)=g^{\prime} G^{\lambda}=g^{\prime} h G^{\lambda}=g G^{\lambda} .
$$

Hence φ is surjective
2) i) It suffices to show that $D_{0} \cap G^{\lambda}$ is connected. There exists the following homotopy exact sequence of the fibre space ($D_{0}, p, D_{0} / D_{0} \cap G^{\lambda}$):

$$
\pi_{1}\left(D_{0} / D_{0} \cap G^{\lambda}, p(e)\right) \rightarrow \pi_{0}\left(D_{0} \cap G^{\lambda}, e\right) \rightarrow \pi_{0}\left(D_{0}, e\right)
$$

where p denotes the canonical projection of D_{0} onto $D_{0} / D_{0} \cap G^{\lambda}$, and e the unit of D_{0}. Here, we have

$$
\pi_{1}\left(D_{0} / D_{0} \cap G^{\lambda}, p(e)\right)=\{0\}
$$

by 1) and the assumption on D / G^{λ}, and

$$
\pi_{0}\left(D_{0}, e\right)=\{0\}
$$

since D_{0} is connected. Hence

$$
\pi_{0}\left(D_{0} \cap G^{\lambda}, e\right)=\{0\}
$$

and so $D_{0} \cap G^{\lambda}$ is connected.
ii) Let $x=h y$ and $x^{\prime}=h^{\prime} y^{\prime}$ be elements in $D\left(y, y^{\prime} \in D_{0}, h, h^{\prime} \in G^{\lambda}\right)$. Since $x^{-1} x^{\prime}=y^{-1} h^{-1} h^{\prime} y^{\prime}$, the relation $x^{-1} x^{\prime} \in D_{0}$ is equivalent to $h^{-1} h^{\prime} \in D_{0}$, which is also equivalent to $h^{-1} h^{\prime} \in G_{0}^{\lambda}$ because $G_{0}^{\lambda}=D_{0} \cap G^{\lambda}$. So we can assign the connected component of G^{λ} containing h to the connected component of D containing x, and this assignment gives a 1-1 correspondence between the set of connected components of D and that of G^{λ}.
Q.E.D.

We set

$$
R^{\lambda}=\left\{\begin{array}{lll}
x ; & \text { i) } & x \text { is a character of } G^{\lambda} \\
& \text { ii) } & \text { the derivative of } x \text { coincides } \\
& \text { with } \chi_{*}^{\lambda} \text { on } \mathfrak{g}_{R}^{\lambda}
\end{array}\right\}
$$

and

$$
R_{0}^{\lambda}=\left\{\begin{array}{ll}
x ; & x \text { is a character of } D \\
& \text { with the infinitesimal representation } \\
& x_{*}^{\lambda} .
\end{array}\right\}
$$

Then, by the restriction on $G^{\lambda}, R_{0}^{\lambda}$ is naturally included in R^{λ}; i.e., $R_{0}^{\lambda} \hookrightarrow R^{\lambda}$.
Lemma 5.2.3. When D / G^{λ} is simply connected, the natural inclusion of R_{0}^{λ} to R^{λ} is a bijection.

Proof. It suffices to show that a character x of G^{λ} whose infinitesimal representation coincides with χ_{*}^{λ} on $\mathfrak{g}_{R}^{\lambda}$ is extendible to a unitary character of D.

Let \tilde{D}_{0} be the universal covering group of D_{0}, and Z the subgroup of the center of \widetilde{D}_{0} such that $\widetilde{D}_{0} / Z \cong D_{0}$, and p the canonical homomorphism of \widetilde{D}_{0} onto D_{0}. The analytic subgroup H of \tilde{D}_{0} generated by g_{R}^{λ} coincides with $p^{-1}\left(G_{0}^{\lambda}\right)$, so H is closed, and we have

$$
H /(H \cap Z) \cong G_{0}^{\lambda} \quad \text { (isomorphic as Lie groups). }
$$

The mapping \bar{p} of \tilde{D}_{0} / H to D_{0} / G_{0}^{λ} is well-defined by

$$
\bar{p}(\bar{g})=p(g) G_{0}^{\lambda} \in D_{0} / G_{0}^{\lambda}
$$

where $\bar{g}=g H$ denotes the element in \tilde{D}_{0} / H corresponding to $g \in \widetilde{D}_{0}$. It is easily seen that \bar{p} is surjective and locally diffeomorphic, so \bar{p} is a covering mapping of \widetilde{D}_{0} / H onto D_{0} / G_{0}^{λ}. By Lemma 5.2.2. the manifold D_{0} / G_{0}^{λ} is simply connected, so we have $\widetilde{D}_{0} / H \cong D_{0} / G_{0}^{\lambda}$. Hence

$$
Z \subset H
$$

and

$$
G_{0}^{\lambda} \cong H /(H \cap Z) \cong H / Z
$$

(The proof of $Z \subset H$ is as follows: each element $z \in Z$ satisfies $p(z)=e$, so we have $\bar{p}(\bar{z})=e G_{0}^{\lambda}$, which implies $z \epsilon H$, since $\widetilde{D}_{0} / H \cong D_{0} / G_{0}^{\lambda}$.)

Since \tilde{D} is simply connected, the Lie algebra homomorphism χ_{*}^{λ} can be lifted uniquely to the character $\tilde{\chi}$ of \tilde{D}_{0}. The representation of \tilde{D}_{0} does not necessarily, in general, induce the representation of $G_{0}^{\lambda}=H / Z$. In our case, however, we discuss under the assumption that there exists a character χ of G_{0}^{λ} with the infinitesimal representation $\chi_{*}^{\lambda} \mid g_{R}^{\lambda}$ (i.e., R^{λ} is not empty). Therefore $\tilde{\chi}$ induces the character χ of G_{0}^{λ}, so we have $\tilde{\chi}(Z)=\{1\}$. Thus $\tilde{\chi}$ induces a character x_{1} of D_{0}, since $D_{0} \cong \tilde{D}_{0} / Z$. In particular, we have

$$
x_{1}=x \quad \text { on } G_{0}^{\lambda} .
$$

Each element h in G^{λ} induces an automorphism I_{h} of D_{0} by

$$
I_{h}(g)=h g h^{-1} \quad \text { for every } g \in D_{0}
$$

We set $x_{1}^{\prime}=x_{1} \circ I_{h}$. The infinitesimal representation $\left(x_{1}^{\prime}\right)_{*}$ of x_{1} is given by

$$
\left(x_{1}^{\prime}\right)_{*}=\left(x_{1}\right)_{*} \circ A d(h),
$$

and we have

$$
\begin{aligned}
\left(\chi_{1}^{\prime}\right)_{*}(X) & =\left(x_{1}\right)_{*}(\operatorname{Ad}(h) X) \\
& =2 \pi \sqrt{-1} \lambda(\operatorname{Ad}(h) X) \\
& =2 \pi \sqrt{-1}\left(h^{-1} \lambda\right)(X) \\
& =2 \pi \sqrt{-1} \lambda(X)=\left(x_{1}\right)_{*}(X),
\end{aligned}
$$

for every $X \epsilon \mathfrak{D}_{0}$. So we have $\left(x_{1}^{\prime}\right)_{*}=\left(x_{1}\right)_{*}$, and $\chi_{1}^{\prime}=x_{1}$. Thus we have proved that

$$
x_{1}\left(h g h^{-1}\right)=x_{1}(g)
$$

for every $g \in D_{0}$ and $h \in G^{\lambda}$.
Let $x=y h=y^{\prime} h^{\prime}$ be two expressions of an element x in D, where $y, y^{\prime} \epsilon$ D_{0} and $h, h^{\prime} \in G^{\lambda}$. Since $y^{-1} y^{\prime}=h h^{-1} \in D_{0} \cap G^{\lambda}=G_{0}^{\lambda}$ and $\chi_{1}=\chi$ on G_{0}^{λ}, we have

$$
x_{1}\left(y^{-1} y^{\prime}\right)=x\left(h h^{-1}\right)
$$

So we can define a mapping χ_{0} of D to C^{*} by

$$
x_{0}(y h)=x_{1}(y) x(h)
$$

where $y \in D_{0}$ and $h \in G^{\lambda}$.
By the definition of x_{0}, in order to prove that $\chi_{0} \in R_{0}^{\lambda}$, it is enough to show that x_{0} is a group homomorphism. For $x=y h, x^{\prime}=y^{\prime} h^{\prime} \in D\left(y, y^{\prime} \in D_{0}\right.$ and $h, h^{\prime} \in G^{\lambda}$), we have

$$
x x^{\prime}=y h y^{\prime} h^{\prime}=y\left(h y^{\prime} h^{-1}\right) h h^{\prime} .
$$

So we have

$$
\begin{aligned}
\chi_{0}\left(x x^{\prime}\right) & =x_{1}\left(y \cdot h y^{\prime} h^{-1}\right) x\left(h h^{\prime}\right) \\
& =x_{1}(y) x_{1}\left(h y^{\prime} h^{-1}\right) x(h) x\left(h^{\prime}\right) \\
& =x_{1}(y) x_{1}\left(y^{\prime}\right) x(h) x\left(h^{\prime}\right) \\
& =x_{1}(y) x(h) \cdot \chi_{1}\left(y^{\prime}\right) x\left(h^{\prime}\right) \\
& =x_{0}(x) x_{0}\left(x^{\prime}\right) .
\end{aligned}
$$

And

$$
x_{0}(e)=x_{1}(e) x(e)=1 .
$$

Thus we have $\chi_{0} \in R_{0}^{\lambda}$, and the restriction of χ_{0} on G^{λ} coincides with χ.
Q.E.D.

Hereafter we assume that χ_{*}^{λ} can be lifted to a unitary character χ^{λ} of D.
5.3. In this section, we introduce G-quasi-invariant measures on G / D and G / E.

Lemma 5.3.1. $\mathrm{D}=\{X \in \mathrm{e} ; \lambda([e, X])=\{0\}\}$.
Proof. From the conditions of polarizations and the non-singularity of the symplectic structure ω on O, we have

$$
\mathfrak{p}=\{X \in \mathfrak{g} ; \lambda([\mathfrak{p}, X])=\{0\}\} .
$$

We set

$$
V=\{X \in \mathfrak{e} ; \lambda([\mathrm{e}, X])=\{0\}\}
$$

Since $\mathfrak{e}=\mathfrak{p}+\sigma \mathfrak{p}$ and $\sigma \lambda=\lambda$, we have

$$
\begin{aligned}
V & =\{X \epsilon \mathfrak{e} ; \lambda([\mathfrak{p}, X])=\{0\}\} \cap\{X \in \mathfrak{e} ; \lambda([\sigma \mathfrak{p}, X])=\{0\}\} \\
& =\mathfrak{p} \cap\{X \epsilon \mathrm{e} ; \lambda([\mathfrak{p}, \sigma X])=\{0\}\} \\
& =\mathfrak{p} \cap\{\sigma X ; X \epsilon \mathfrak{e} \text { and } \lambda([\mathfrak{p}, X])=\{0\}\} \\
& =\mathfrak{p} \cap \sigma \mathfrak{p}=\mathfrak{b} .
\end{aligned}
$$

Q.E.D.

Lemma 5.3.2. $\quad \operatorname{det} A d_{D}(x)=\operatorname{det} A d_{E}(x)$ for every $x \in D$.
Proof. The statement of this lemma is shown using the theory of symplectic structures. We set $\lambda_{0}=\varphi(\lambda)$, where φ is the canonical projection of g_{R}^{*} onto the dual space $\mathrm{e}_{0}^{*}=\operatorname{Hom}_{R}\left(\mathrm{e}_{0}, \boldsymbol{R}\right)$ of e_{0}. The E-orbit Ω in e_{0}^{*} through λ_{0} admits a canonical E-invariant symplectic structure ω_{0} (ω_{0} is defined in the same way as in 5.1). Let $E^{\lambda_{0}}$ denote the isotropy subgroup of E with respect to λ_{0} and $e_{0}^{\lambda 0}$ its Lie algebra, i.e.,

$$
\begin{aligned}
\mathrm{e}_{0}^{\lambda 0} & =\left\{X \in \mathrm{e}_{0} ; \lambda_{0}([\mathrm{e}, X])=\{0\}\right\} \\
& =\left\{X \in \mathrm{e}_{0} ; \lambda([\mathrm{e}, X])=\{0\}\right\} \\
& =\mathfrak{D}_{0},
\end{aligned}
$$

by Lemma 5.3.1. Then D and $E^{\lambda_{0}}$ are Lie subgroups of G with the same Lie algebra D_{0}. Since D_{0} is the connected component of D containing the unit, $D_{0} \subset E^{\lambda_{0}}$. We have $G^{\lambda} \subset E^{\lambda_{0}}$, since G^{λ} is the stabilizer of λ in G and G^{λ} is included in E.
So we have

$$
D=G^{\lambda} D_{0} \subset E^{\lambda_{0}} .
$$

Now the orbit $\Omega=E / E^{\lambda_{0}}$ has the B-invariant volume element induced from the symplectic structure ω_{0}, and this volume element is realized as a differential form. So by Proposition 1.6 Chap. X of Helgason [7], we have

$$
\operatorname{det} A d_{E_{0}{ }_{0}}(x)=\operatorname{det} A d_{E}(x) \quad \text { for every } x \in E^{\lambda_{0}} .
$$

Since $E^{\lambda_{0}}$ and D are Lie subgroups of E with the same Lie algebra \mathfrak{D}_{0}, we have

$$
\operatorname{det} A d_{E^{\lambda_{0}}}(x)=\operatorname{det} A d_{D}(x) \quad \text { for every } x \in D .
$$

So we have

$$
\operatorname{det} A d_{D}(x)=\operatorname{det} A d_{E}(x) \quad \text { for every } x \in D
$$

Q.E.D.

Let μ_{G} (resp. μ_{D} or μ_{E}) denote a left-invariant measure, and Δ_{G} (resp. Δ_{D} or Δ_{E}) the modular function on G (resp. D or E); i.e.,

$$
d \mu_{G}(y x)=\Delta_{G}\left(x^{-1}\right) d \mu_{G}(y), \text { etc. }
$$

μ_{G}, μ_{D} and μ_{E} are determined uniquely up to constant factors. Modular functions are given explicitly by

$$
\begin{array}{ll}
\Delta_{G}(x)=\operatorname{det} A d_{G}(x) & \text { for every } x \in G, \\
\Delta_{D}(x)=\operatorname{det} A d_{D}(x) & \text { for every } x \in D, \\
\Delta_{E}(x)=\operatorname{det} A d_{E}(x) & \text { for every } x \in E .
\end{array}
$$

This is due to Corollary 1.3 Chap. X of Helgason [7]. It is known from the invariant measure theory that there exists a C^{∞}-function ρ on G satisfying

1) $\rho(g)>0$ for every $g \in G$,
2) $\rho(g h)=\frac{\Delta_{E}(h)}{\Delta_{G}(h)} \rho(g)$ for $g \in G$ and $h \in E$,
and that there exists such G-quasi-invariant measures ν_{D} and ν_{E} on G / D and G / E that

$$
\begin{aligned}
\int_{G} f(g) \rho(g) d \mu_{G}(g) & =\int_{G / D} d \nu_{D}(g D) \int_{D} f(g h) d \mu_{D}(h) \\
& =\int_{G / E} d \nu_{E}(g E) \int_{E} f(g h) d \mu_{E}(h)
\end{aligned}
$$

for every continuous function f on G with compact support, where $g D$ (resp. $g E$) denotes the element in G / D (resp. G / E) corresponding to $g \in G$.

We denote by $C_{c}(G)\left(\right.$ resp. $C_{c}(G / D)$ or $\left.C_{c}(G / E)\right)$ the space of all continuous functions on G (resp. G / D or G / E) with compact support. We shall often use the following lemma:

Lemma 5.3.3. (Helgason [7] Lemma 1.8 Chap. X). Let G be a Lie group and H a closed subgroup. Let $d h$ be a left invariant measure >0 on H and put

$$
\bar{f}(g H)=\int_{H} f(g h) d h, f \in C_{c}(G) .
$$

Then the mapping $f \rightarrow \bar{f}$ is a linear mapping of $C_{c}(G)$ onto $C_{c}(G / H)$.
For each element $g \in G$, we define a C^{∞}-function ξ_{g} on G by

$$
\xi_{g}(x)=\frac{\rho(g x)}{\rho(x)}
$$

Lemma 5.3.4. The function ξ_{g} has the following property:

$$
\xi_{g}(x h)=\xi_{g}(x) \quad \text { for every } x \in G \text { and } h \in E .
$$

Proof. This is shown by an easy calculation:

$$
\xi_{g}(x h)=\frac{\rho(g x h)}{\rho(x h)}=\frac{\frac{\Delta_{E}(h)}{\Delta_{G}(h)} \rho(g x)}{\frac{\Delta_{E}(h)}{\Delta_{G}(h)} \rho(x)}=\frac{\rho(g x)}{\rho(x)}=\xi_{g}(x)
$$

Q.E.D.

So we can define a C^{∞}-function $\xi_{g}^{D}\left(\right.$ resp. $\left.\xi_{g}^{E}\right)$ on $G / D($ resp. $G / E)$ by

$$
\begin{array}{ll}
\xi_{g}^{D}(x D)=\xi_{g}(x) & \text { for every } x D \in G / D, \\
\xi_{g}^{E}(x E)=\xi_{g}(x) & \text { for every } x E \in G / E .
\end{array}
$$

For $g \epsilon G$, let $\gamma(g) \nu_{D}$ denote the quasi-invariant measure on G / D defined by

$$
\left(\gamma(g) \nu_{D}\right)(S)=\nu_{D}\left(g^{-1} S\right)
$$

where S is a ν-measurable subset of G / D and $g^{-1} S=\left\{g^{-1} x ; x \in S\right\}$. With the usual notation, $\gamma(g) \nu_{D}$ is expressed by

$$
d\left(\gamma(g) \nu_{D}\right)(x)=d \nu_{D}\left(g^{-1} x\right)
$$

where $g \in G$ and $x \in G / D$. The left-translation $\gamma(g) \nu_{E}$ of the measure ν_{E} is also defined in the same way as above.

Lemma 5.3.5. For every $g \in G$, we have

$$
d \nu_{D}(g x)=\xi_{g}^{D}(x) d \nu_{D}(x),
$$

and

$$
d \nu_{E}(g x)=\xi_{g}^{E}(x) d \nu_{E}(x) .
$$

Proof. By Lemma 5.3.3, for each $\bar{f} \in C_{c}(G / D)$, we can find $f \in C_{c}(G)$ such that

$$
\bar{f}(y D)=\int_{D} f(y h) d \mu_{D}(h) \quad \text { for } y \in G .
$$

We set $x=y D \in G / D$, then

$$
\begin{aligned}
& \int_{G / D} \bar{f}(x) d \nu_{D}(g x)=\int_{G / D} \bar{f}\left(g^{-1} x\right) d \nu_{D}(x) \\
= & \int_{G / D} d \nu_{D}(x) \int_{D} f\left(g^{-1} y h\right) d \mu_{D}(h) \\
= & \int_{G} f\left(g^{-1} u\right) \rho(u) d \mu_{G}(u) \\
= & \int_{G} f(u) \rho(g u) d \mu_{G}(u) \\
= & \int_{G}\left[f(u) \frac{\rho(g u)}{\rho(u)}\right] \rho(u) d \mu_{G}(u) \\
= & \int_{G / D} d \nu_{D}(x) \int_{D} f(y h) \frac{\rho(g y h)}{\rho(y h)} d \mu_{D}(h) \\
= & \int_{G / D} \bar{f}(x) \xi_{g}^{D}(x) d \nu_{D}(x) .
\end{aligned}
$$

Thus we have $d \nu_{D}(g x)=\xi_{g}^{D}(x) d \nu_{D}(x)$. The discussion as to ν_{E} is the same as above.
Q.E.D.

Let $\rho_{D}\left(\right.$ resp. $\left.\rho_{E}\right)$ be the canonical projection of G onto G / D (resp. G / E), and $\rho_{D E}$ that of G / D onto G / E. The following lemma is an easy consequence of the definition of ξ_{g} and Lemma 5.3.4.

Lemma 5.3.6. For every $g, g^{\prime} \in G$, we have

1) $\xi_{g g^{\prime}}(x)=\xi_{g}\left(g^{\prime} x\right) \xi_{g^{\prime}}(x) \quad$ for every $x \in G$,

$$
\begin{array}{ll}
\xi_{g g^{\prime}}^{D}(x)=\xi_{g}^{D}\left(g^{\prime} x\right) \xi_{g^{\prime}}^{D}(x) & \text { for every } x \in G / D, \\
\xi_{g g^{\prime}}^{E}(x)=\xi_{g}^{E}\left(g^{\prime} x\right) \xi_{g^{\prime}}^{E}(x) & \text { for every } x \in G / E .
\end{array}
$$

2) $\xi_{g}\left(\right.$ resp. $\left.\xi_{g}^{D}\right)$ is constant on each fibre of $\rho_{E}\left(\right.$ resp. $\left.\rho_{D E}\right)$.
5.4. Let L_{λ} denote the Hermitian G-homogeneous line bundle over G / D associated to the unitary character χ^{λ} of D, and we set
$\Gamma\left(L_{\lambda}\right)=$ the space of all C^{∞}-sections of L_{λ},
$\Gamma_{2}\left(L_{\lambda}\right)=$ the pre-Hilbert space of all square-integrable C^{∞}-sections of L_{λ},
$C^{\infty}(G)^{\lambda}=$ the space of all C^{∞}-functions f on G such that $f(g h)=\chi^{\lambda}\left(h^{-1}\right)$ $f(g)$ for every $g \in G$ and $h \in D$.

Notations: 1) For $x \in G / D,| |_{x}$ (or simply | |) denotes the Hermitian norm on the fibre over x of the line bundle L_{λ}.
2) For $s \in \Gamma\left(L_{\lambda}\right),\|s\|(0 \leqq\|s\| \leqq \infty)$ denotes the square-integral-norm of s :

$$
\|s\|^{2}=\int_{G / D}|s(x)|_{x}^{2} d \nu_{D}(x)
$$

The group G acts on $\Gamma\left(L_{\lambda}\right)$ by

$$
(g s)(x)=g\left(s\left(g^{-1} x\right)\right) \quad \text { for } s \in \Gamma\left(L_{\lambda}\right), g \in G \text { and } x \in G / D
$$

and acts on $C^{\infty}(G)^{\lambda}$ by left-translations, and $\Gamma_{2}\left(L_{\lambda}\right)$ is a G-invariant subspace of $\Gamma\left(L_{\lambda}\right)$. There exists the canonical G-isomorphism between $\Gamma\left(L_{\lambda}\right)$ and $C^{\infty}(G)^{\lambda}$, which we shall denote by

Each element X in g_{R} acts on $C^{\infty}(G)$ as a left-invariant vector field \tilde{X} :

$$
(\tilde{X} f)(g)=\left[\frac{d}{d t} f(g \exp t X)\right]_{t=0} \quad \text { for every } f \in C^{\infty}(G) \text { and } g \epsilon G
$$

and, by the canonical extension, \tilde{X} is defined for every $X \epsilon \mathrm{~g}$. We set

$$
\mathfrak{S}_{\lambda}^{\prime}=\left\{s \in \Gamma_{2}\left(L_{\lambda}\right) ; \tilde{X} \psi_{s}=2 \pi \sqrt{-1} \lambda(X) \psi_{s} \text { for every } X \in \mathfrak{p}\right\}
$$

and for every $g \in G$ and $s \in \mathscr{S}_{\lambda}^{\prime}$, we define a section $\pi_{\lambda}^{\prime}(g) s$ by

$$
\left(\pi_{\lambda}^{\prime}(g) s\right)(x)=\sqrt{\xi_{g^{-1}}^{D}}(x) \cdot(g s)(x) \quad \text { for } x \in G / D
$$

Then we have
Lemma 5.4.1. 1) $\mathfrak{S}_{\lambda}^{\prime}$ is $\pi_{\lambda}^{\prime}(G)$-stable.
2) $\pi_{\lambda}^{\prime}\left(g g^{\prime}\right)=\pi_{\lambda}^{\prime}(g) \pi_{\lambda}^{\prime}\left(g^{\prime}\right)$ for every $g, g^{\prime} \in G$.
3) $\pi_{\lambda}^{\prime}(g)$ is norm-preserving.

Proof. 3) For $s \in \mathscr{S}_{\lambda}^{\prime}$ and $g \in G$, we have

$$
\begin{aligned}
\left\|\pi_{\lambda}^{\prime}(g) s\right\|^{2} & =\int_{G / D}\left|\left(\pi^{\prime}(g) s\right)(x)\right|^{2} d \nu_{D}(x) \\
& =\int_{G / D}\left|g\left(s\left(g^{-1} x\right)\right)\right|^{2} \xi_{g^{-1}}^{D}(x) d \nu_{D}(x) \\
& =\int_{G / D}|g(s(x))|^{2} \xi_{g^{-1}}^{D}(g x) d \nu_{D}(g x) \\
& =\int_{G / D}|s(x)|^{2} \xi_{g^{-1}}^{D}(g x) \xi_{g}^{D}(x) d \nu_{D}(x) \\
& =\int_{G / D}|s(x)|^{2} \xi_{e}^{D}(x) d \nu_{D}(x) \\
& =\int_{G / D}|s(x)|^{2} d \nu_{D}(x)=\|s\|^{2},
\end{aligned}
$$

where we have used Lemma 5.3.5 and Lemma 5.3.6. So $\pi_{\lambda}^{\prime}(g)$ is norm-preserving.

1) Fix $g \in G$ and $s \in \mathscr{E}_{\lambda}^{\prime}$. Since $\pi_{\lambda}^{\prime}(g)$ is norm-preserving, $\pi_{\lambda}^{\prime}(g) s$ belongs to $\Gamma_{2}\left(L_{\lambda}\right)$. So we need only to show that

$$
\tilde{X} \psi_{\pi_{2}^{\prime}(g) s}=2 \pi \sqrt{-1} \lambda(X) \psi_{\pi_{\lambda}^{\prime}(g) s} \quad \text { for every } X \epsilon \mathfrak{p}
$$

Now it is easily seen that

$$
\psi_{\pi_{\lambda}^{\prime}(g) s}=\sqrt{\xi_{g^{-1}}} \cdot g \psi_{s}
$$

Since ξ_{g} is constant on each fibre of ρ_{E} (Lemma 5.3.6), we have $\tilde{X} \xi_{g}=0$ for every $X \in \mathfrak{p}$, and by the left-invariantness of \tilde{X},

$$
\tilde{X}\left(g \psi_{s}\right)=g\left(\tilde{X} \psi_{s}\right) \quad \text { for every } X \epsilon \mathfrak{g} .
$$

Therefore, for each $X \in \mathfrak{p}$, we have

$$
\begin{aligned}
& \tilde{X} \psi_{\pi_{\lambda}^{\prime}(g) s}=\sqrt{\xi_{g^{-1}}} \cdot g\left(\tilde{X} \psi_{s}\right) \\
& =\sqrt{\xi_{g^{-1}}} \cdot g\left(2 \pi \sqrt{-1} \lambda(X) \psi_{s}\right) \\
& =2 \pi \sqrt{-1} \lambda(X) \cdot \sqrt{\xi_{g^{-1}}} \cdot g \psi_{s} \\
& =2 \pi \sqrt{-1} \lambda(X) \psi_{\pi_{\lambda}^{\prime}(g) s} .
\end{aligned}
$$

Thus we have proved that $\pi_{\lambda}^{\prime}(g) s \in \mathfrak{S}_{\lambda}^{\prime}$ for every $g \in G$ and $s \in \mathscr{S}_{\lambda}^{\prime}$.
2) The statement 1) of Lemma 5.3 .6 implies that $\xi_{g g^{\prime}}=\left(g^{\prime-1} \xi_{g}\right) \cdot \xi_{g^{\prime}}$. So we have,

$$
\begin{aligned}
\pi_{\lambda}^{\prime}\left(g g^{\prime}\right) s & =\sqrt{\xi_{g^{\prime-1} g^{-1}}} \cdot g\left(g^{\prime} s\right) \\
& =\sqrt{g \xi_{g^{\prime-1}}} \sqrt{\xi_{g^{-1}}} \cdot g\left(g^{\prime} s\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\xi_{g^{-1}}} g\left(\sqrt{\xi_{g^{\prime-1}}} g^{\prime} s\right) \\
& =\pi_{\lambda}^{\prime}(g)\left(\pi_{\lambda}^{\prime}\left(g^{\prime}\right) s\right),
\end{aligned}
$$

for every $s \in \mathscr{G}_{\lambda}^{\prime}$.
Q.E.D.

Let ($\pi_{\lambda}, \mathfrak{F}_{\lambda}$) be the completion of ($\pi_{\lambda}^{\prime}, \mathfrak{F}_{\lambda}^{\prime}$) with respect to the norm || ||. Then, by the above lemma, we have:

Theorem 5.4.2. ($\pi_{\lambda}, \mathfrak{S}_{\lambda}$) is a unitary representation of G.
5.5. We shall give here an example when G is a non-compact simple Lie group.

Example 5.5. $\quad G=S L(3, \boldsymbol{R}) \quad\left(\mathfrak{g}_{R}=\mathfrak{h}(3, \boldsymbol{R})\right)$.
We set

$$
\begin{aligned}
& K=S O(3, \boldsymbol{R})=\left\{g \in G ;{ }^{t} g=g^{-1}\right\}, \\
& A_{+}=\left\{\left(\begin{array}{lll}
r & 0 & 0 \\
0 & s & 0 \\
0 & 0 & (r s)^{-1}
\end{array}\right) ; r, s>0\right\} \\
& A=\left\{\left(\begin{array}{lll}
r & 0 & 0 \\
0 & s & 0 \\
0 & 0 & (r s)^{-1}
\end{array}\right) ; r, s \text { are non-zero } \begin{array}{l}
\text { real numbers }
\end{array}\right\}, \\
& A_{-}=A \cap K=\left\{\left(\begin{array}{lll}
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right) ; \begin{array}{l}
\text { the number of } \\
\text { is even }
\end{array}\right\} \\
& N=\left\{\left(\begin{array}{lll}
1 & u & w \\
0 & 1 & v \\
0 & 0 & 1
\end{array}\right) ; u, v, w \in \boldsymbol{R}\right\}
\end{aligned}
$$

Then $G=K A_{+} N$ is an Iwasawa decomposition of G, and A is a Cartan subgroup of G with maximal vector part. The centralizer M of A_{+}in K coincides with A_{-}, and

$$
B=M A_{+} N=A N=\left\{\left(\begin{array}{ccc}
r & u & w \\
0 & s & v \\
0 & 0 & (r s)^{-1}
\end{array}\right) \epsilon G\right\}
$$

is a minimal parabolic subgroup of G. We set

$$
e=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \epsilon \mathrm{g}_{R}
$$

Since e is a principal nilpotent element of \mathfrak{g}, e has a unipue w-polarization \mathfrak{p}, and it is at the same time a real polarization (Corollary 5.6 of [13]). \mathfrak{p} is given by

$$
\mathfrak{p}=\left\{\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right) ; \begin{array}{c}
a_{i j} \boldsymbol{\epsilon} \boldsymbol{C} \\
\sum_{i=1}^{3} a_{i i}=0
\end{array}\right\}
$$

and subgroups D_{0} and E_{0} in 5.1 are given by

$$
\begin{aligned}
D_{0}=E_{0} & =\left\{\left(\begin{array}{ccc}
r & u & w \\
0 & s & v \\
0 & 0 & (r s)^{-1}
\end{array}\right) ; \begin{array}{l}
u, v, w \in \boldsymbol{R} \\
r, s>0
\end{array}\right\} \\
& =A_{+} N .
\end{aligned}
$$

The subgroup G^{e} is obtained by a simple calculation:

$$
G^{e}=\left\{\left(\begin{array}{ccc}
1 & b & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) ; b, c \in \boldsymbol{R}\right\}
$$

So G^{e} is connected, and we have

$$
D=G^{e} D_{o}=A_{+} N
$$

Then the unitary representation of G constructed on the G-orbit through e is equivalent to $\operatorname{ind}_{A_{+} \uparrow G}\left(1_{A_{+} N}\right)$, where $1_{A_{+} N}$ denotes the trivial character of $A_{+} N$. This representation is reducible, and the direct sum of 4-numbers of irreducible components:

$$
\operatorname{ind}_{A_{+} \uparrow \uparrow G}\left(1_{A_{+} N}\right) \sim \sum_{i=0}^{3} \operatorname{ind}_{A N \uparrow G}\left(\varepsilon_{i}\right),
$$

where $\varepsilon_{i}(0 \leqq i \leqq 3)$ is a unitary character of $A N$ defined by

$$
\varepsilon_{0}(x)=1
$$

and

$$
\varepsilon_{i}(x)=\operatorname{sgn}\left(x_{i i}\right) \quad(i=1,2,3),
$$

where

$$
x=\left(\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
0 & x_{22} & x_{23} \\
0 & 0 & x_{33}
\end{array}\right) \epsilon A N
$$

and $\operatorname{sgn}(u)$ designates the sign of a non-zero real number u.
5.6. In order to avoid the inconvenience as in Example 5.5, we make a modification on the definition of D and E, when G is a connected semisimple Lie group. Since a polarization \mathfrak{p} is a parabolic subalgebra of g (Theorem 2.2 of [13]), $\mathfrak{p} \cap \mathfrak{g}_{R}$ contains a Cartan subalgebra \mathfrak{h}_{0} of \mathfrak{g}_{R}. The Cartan subgroup H of G corresponding to \mathfrak{h}_{0} is, by definition, the centralizer of \mathfrak{h}_{0} in G, and let D_{0} and E_{0} be the same as in 5.1. We set $D=A D_{0}$ and $E=A E_{0}$. Since A stabilizes \mathfrak{D}_{0} and \mathfrak{e}_{0}, D and E are subgroups of G. The argument in 5.3-5.4 is still valid for such D and E.
5.7. We shall give another expression of the G-quasi-invariant measure $\nu_{D}\left(\right.$ or $\left.\nu_{E}\right)$ in 5.3.

Definition 5.7. 1) A linear mapping ν of $C_{c}(G / D)$ to C with the following property is called a Radon measure on G / D : for each compact subset K of G / D, there exists such a non-negative constant M_{K} that

$$
|\nu(f)| \leqq M_{K} \sup _{x \in G / D}|f(x)|
$$

for all $f \in C_{c}(G / D)$ whose support is contained in K.
2) A linear mapping ν of $C_{c}(G / D)$ to \boldsymbol{R} which satisfies $\nu(f) \geqq 0$ for every $f \geqq 0$ is called a positive Radon measure on G / D. (It is a well-known fact that a positive Radon measure is a Radon measure.)

Each element ψ in $C^{\infty}(G)^{\lambda}$ defines a linear mapping ν_{ϕ}^{\prime} of $C_{c}(G)$ to \boldsymbol{C} by

$$
\nu_{\phi}^{\prime}(f)=\int_{G}|\psi(g)|^{2} f(g) \rho(g) d \mu_{G}(g)
$$

for $f \in C_{c}(G)$.
Lemma 5.7.1. Let $\psi \in C^{\infty}(G)^{\lambda}$ be fixed, then

$$
\nu_{\phi}^{\prime}(f)=\int_{G / D}\left|s_{\psi}(x)\right|^{2} \bar{f}(x) d \nu_{D}(x)
$$

for every $f \in C_{c}(G)$, where $f \rightarrow \bar{f}$ is a linear mapping in Lemma 5.3.3.

Proof. We have

$$
\begin{aligned}
\nu_{\phi}^{\prime}(f) & =\int_{G}|\psi(g)|^{2} f(g) \rho(g) d \mu_{G}(g) \\
& =\int_{G / D} d \nu_{D}(\bar{g}) \int_{D}|\psi(g h)|^{2} f(g h) d \mu_{D}(h) \\
& =\int_{G / D}\left|s_{\psi}(x)\right|^{2} \bar{f}(x) d \nu_{D}(x),
\end{aligned}
$$

since

$$
|\psi(g x)|=|\psi(g)|=\left|s_{\phi}(\bar{g})\right| \quad(\bar{g}=g D \in G / D)
$$

Q.E.D.

By the above lemma, $\nu_{\phi}^{\prime}(f)$ does not depend on the choice of a representative f of \bar{f}, but depends only on ψ and \bar{f}. So a linear mapping ν_{ψ} of $C_{c}(G / D)$ to \boldsymbol{C} is well-defined by

$$
\nu_{\psi}(\bar{f})=\nu_{\phi}^{\prime}(f)
$$

and ν_{ϕ} is a positive Radon measure on G / D. Let $\|\psi\|^{2}\left(0 \leqq\|\psi\|^{2} \leqq \infty\right)$ be the total volume of G / D with respect to this measure ν_{ϕ} :

$$
\|\varphi\|=\operatorname{vol}_{\nu_{\varphi}}(G / D)
$$

We set

$$
C_{2}^{\infty}(G)^{\lambda}=\left\{\psi \in C^{\infty}(G)^{\lambda} ;\|\psi\|<\infty\right\} .
$$

For ψ and $\psi^{\prime} \in C_{2}^{\infty}(G)^{\lambda}$, the Radon measure $\nu_{\left(\phi, \psi^{\prime}\right)}$ on G / D is defined by using $\psi(g) \overline{\phi^{\prime}(g)}$, and we set

$$
\left(\psi, \psi^{\prime}\right)=\operatorname{vol}_{\nu\left(\left(, q^{\prime}\right)\right.}(G / D)
$$

The space $C_{2}^{\infty}(G)^{\lambda}$ becomes a pre-Hilbert space with this Hermitian inner product, and at the same time it is a G-submodule of $C^{\infty}(G)^{\lambda}$. We set

$$
\tilde{\tilde{E}}_{\lambda}^{\prime}=\left\{\psi \in C_{2}^{\infty}(G)^{\lambda} ; \tilde{X} \psi=2 \pi \sqrt{-1} \lambda(X) \psi \quad \text { for every } X \in \mathfrak{p}\right\}
$$

and for every $g \in G$ and $\psi \in \tilde{\mathcal{S}_{\lambda}^{\prime}}$, we define a C^{∞}-function $\pi_{\lambda}^{\prime}(g) \psi$ on G by

$$
\tilde{\pi}_{\lambda}^{\prime}(g) \psi=\sqrt{\xi_{g^{-1}}} \cdot g \psi
$$

Lemma 5.7.2. 1) $\quad \tilde{\mathfrak{E}}_{\lambda}^{\prime}$ is $\tilde{\pi}_{\lambda}^{\prime}(G)$-stable.
2) $\tilde{\pi}_{\lambda}^{\prime}\left(g g^{\prime}\right)=\tilde{\pi}_{\lambda}^{\prime}(g) \tilde{\pi}_{\lambda}^{\prime}\left(g^{\prime}\right) \quad$ for every $g, g^{\prime} \in G$.
3) $\tilde{\pi}_{\lambda}^{\prime}(g)$ is norm-preserving.

The proof of this lemma is the same as that of Lemma 5.4.1. And the completion ($\tilde{\pi}_{\lambda}, \tilde{\mathscr{E}}_{\lambda}$) of ($\left.\tilde{\pi}_{\lambda}^{\prime}, \tilde{E}_{\lambda}^{\prime}\right)$ with respect to the norm \| \|is a unitary representation of G.

Lemma 5.7.3. The mapping $s \rightarrow \psi_{s}$ is an isometry $\Gamma_{2}\left(L_{\lambda}\right)$ onto $C_{2}^{\infty}(G)^{\lambda}$.
Proof. It suffices to show that $\left\|\psi_{s}\right\|=\|s\|$ for every $s \in \Gamma\left(L_{\lambda}\right)$. Let K_{1}, K_{2}, \cdots be a sequence of compact sets in G / D such that

$$
K_{n} \subset K_{n+1} \quad \text { for every } n \in \boldsymbol{N}
$$

and

$$
G / D=\bigcup_{n=1}^{\infty} K_{n},
$$

where \boldsymbol{N} is the set of all positive integers. Let $\varphi_{n} \in C_{c}(\boldsymbol{G})(n \in \boldsymbol{N})$ be a function such that

$$
\begin{aligned}
& \text { i) } \bar{\varphi}_{n}=1 \text { on } K_{n} \quad \text { and } \bar{\varphi}_{n} \geqq 0 \text { on } G / D, \\
& \text { ii) } \quad \bar{\varphi}_{n} \leqq \bar{\varphi}_{n+1} \quad \text { for every } n \in \mathbf{N} .
\end{aligned}
$$

Then we have, by Lemma 5.7.1,

$$
\begin{aligned}
\nu_{\psi_{s}}\left(\bar{\varphi}_{n}\right) & =\int_{G}\left|\psi_{s}(g)\right|^{2} \varphi_{n}(g) \rho(g) d \mu_{G}(g) \\
& =\int_{G / D}|s(x)|^{2} \bar{\varphi}_{n}(x) d \nu_{D}(x),
\end{aligned}
$$

therefore

$$
\begin{aligned}
\left\|\psi_{s}\right\|^{2} & =\operatorname{vol}_{\nu_{\varphi_{s}}}(G / D)=\lim _{n \rightarrow \infty} \nu_{\psi_{s}}\left(\bar{\varphi}_{n}\right) \\
& =\lim _{n \rightarrow \infty} \int_{G / D}|s(x)|^{2} \bar{\varphi}_{n}(x) d \nu_{D}(x)
\end{aligned}
$$

Then, by the Lebesgue's integral theorem for a sequence of monotonously increasing non-negative integrable functions, we have

$$
\begin{aligned}
\left\|\psi_{s}\right\|^{2} & =\int_{G / D} \lim _{n \rightarrow \infty}|s(x)|^{2} \bar{\varphi}_{n}(x) d \nu_{D}(x) \\
& =\int_{G / D}|s(x)|^{2} d \nu_{D}(x)=\|s\|^{2} .
\end{aligned}
$$

Q.E.D.

This lemma, combined with the fact that $\psi_{\pi_{\lambda}^{\prime}(g) s}=\sqrt{\xi_{g^{-1}}} \cdot g \psi_{s}=\tilde{\pi}_{\lambda}^{\prime}(g) \psi_{s}$, leads us to:

Theorem 5.7.4. ($\tilde{\pi}_{\lambda}, \tilde{\mathcal{E}}_{\lambda}$) is a unitary representation of G equivalent to ($\pi_{\lambda}, \mathfrak{S}_{\lambda}$), and $s \rightarrow \psi_{s}$ induces an isometric intertwining operator between them.

§6. Polarizations and most continuous principal series

In this section, we construct representations of most continuous principal series using orbits and polarizations. First of all, we shall state the BorelWeil theorem for a (non-connected in general) reductive compact Lie group.
6.1. Let G be a connected semisimple compact Lie group with Lie algebra \mathfrak{g}_{0}. Let \mathfrak{h}_{0} be a Cartan subalgebra of \mathfrak{g}_{0} and Δ the non-zero root system of \mathfrak{g} with respect to \mathfrak{h}, and Δ_{+}the set of all positive roots with respect to an arbitrarily fixed lexicographic linear order in Δ. For $\alpha \in \Delta$, we set

$$
\mathfrak{g}^{\alpha}=\{X \in \mathfrak{g} ; \operatorname{ad}(H) X=\alpha(H) X \quad \text { for every } H \in \mathfrak{b}\}
$$

Let $\left(\sigma_{\nu}, V_{\nu}\right)$ be a finite-dimensional irreducible representation of G with highest weight ν, and we set

$$
\Delta^{\prime}=\{\alpha \in \Delta ;\langle\alpha, \nu\rangle=0\}
$$

where $<,>$ denotes the inner product in $\mathfrak{h}^{*}=\operatorname{Hom}_{c}(\mathfrak{h}, \boldsymbol{C})$ induced from the Killing form of \mathfrak{g}. Let L be a subgroup of G generated by $\mathfrak{l}_{o}=\mathfrak{h}_{0}+\left(\sum_{\alpha \in \epsilon^{\prime}} \mathfrak{g}^{\alpha}\right) \cap$ g_{0}, and ε_{ν} the unitary character of L defined by ν. We set

$$
\mathfrak{S}_{\nu}=\left\{\begin{array}{c}
f \epsilon C^{\infty}(G) ; f(g l)=\varepsilon_{\nu}\left(l^{-1}\right) f(g) \quad \text { for every } g \in G \text { and } l \in L \\
\tilde{X} f=0 \quad \text { for every } X \in \mathfrak{g}_{+}
\end{array}\right\},
$$

where $\tilde{X}\left(X \epsilon \mathrm{~g}_{0}\right)$ denotes the left-invariant vector field on G defined by

$$
(\tilde{X} f)(g)=\left[\frac{d}{d t} f(g \exp t X)\right]_{t=0}
$$

for every $f \in C^{\infty}(G)$ and $g \epsilon G$, and $\tilde{X}(X \in \mathfrak{g})$ is its canonical extension and $g_{+}=$ $\sum_{\alpha \in \Phi_{+}} \mathfrak{g}^{\alpha}$. The group G acts on \mathfrak{S}_{ν} by the left-translation:

$$
\left(\pi_{\nu}(g) f\right)(x)=f\left(g^{-1} x\right)
$$

for every $f \in \mathfrak{S}_{\nu}$ and $g, x \in G$. Then the well-known Borel-Weil theorem is stated in the following form:

Lemma 6.1. ($\left.\pi_{\nu}, \mathfrak{S}_{\nu}\right)$ is a finite-dimensional irreducible representation of G equivalent to (σ_{ν}, V_{ν}).
6.2. Let G be a connected reductive compact Lie group and g_{0} its Lie
algebra. Then g_{0} admits the direct sum decomposition (as Lie algebras):

$$
\mathrm{g}_{0}=\mathrm{z}_{0}+\mathrm{g}_{0}^{s},
$$

where z_{0} (resp. g_{0}^{s}) is the center (resp. the semisimple part) of g_{0} (i.e., $g_{0}^{s}=\left[g_{0}\right.$, $\left.\mathrm{g}_{0}\right]$). Let Z (resp. G^{s}) be the analytic subgroup of G generated by g_{0} (resp. g_{0}^{s}), then we have

$$
G=Z G^{s}=\left\{z g ; z \in Z, g \in G^{s}\right\}
$$

since G is connected. Let \mathfrak{H}_{0}^{s} be a Cartan subalgebra of $\mathfrak{g}_{0}^{s}, \Delta$ the non-zero root system of $\left(g^{s}, \mathfrak{h}^{s}\right)$, and Δ_{+}and \mathfrak{g}^{α} be the same as in 6.1. For a finite-dimensional irreducible representation (σ, V) of $G, \sigma(z)(z \in Z)$ is a scalar operator on V and the restriction $\left(\sigma \mid G^{s}, V\right)$ of (σ, V) to G^{s} is an irreducible representation of G^{s}. So the representation (σ, V) of G is characterized by the character μ of Z and the highest weight ν of G^{s} with respect to Λ_{+}. (If necessary, we write ($\sigma_{\mu \nu}, V_{\mu \nu}$) instead of (σ, V).) We set

$$
\begin{gathered}
\Delta^{\prime}=\{\alpha \in \Delta ;<\alpha, \nu>=0\}, \\
\mathfrak{h}_{0}=\mathfrak{z}_{0}+\mathfrak{h}_{0}^{s},
\end{gathered}
$$

and

$$
\mathfrak{l}_{0}=\mathfrak{h}_{0}+\sum_{\alpha \in \Delta^{\prime}} \mathfrak{g}^{\alpha},
$$

where $<,>$ denotes the inner product in $\left(\mathfrak{h}^{s}\right)^{*}=\operatorname{Hom}_{c}\left(\mathfrak{h}^{s}, \boldsymbol{C}\right)$ induced from the Killing form of g^{s}. Let L be the analytic subgroup of G generated by \mathfrak{l}_{0}, and ε the character of L defined by μ and ν. We set

$$
\mathfrak{S}=\left\{\begin{array}{c}
f \in C^{\infty}(G) ; \\
\tilde{X}(g l)=\varepsilon\left(l^{-1}\right) f(g) \quad \text { for every } g \in G \text { and } l \epsilon L \\
\tilde{X} f=0 \text { for every } X \epsilon g_{+}
\end{array}\right\},
$$

and denote by π the left-translation of G on \mathfrak{S}. Then
Lemma 6.2. (π, \mathfrak{S}) is a finite-dimensional irreducible representation of G equivalent to (σ, V).

Proof The subgroup $L^{s}=L \cap G^{s}$ is the analytic subgroup of G^{s} generated by

$$
\mathfrak{l}_{0}^{s}=\mathfrak{l}_{0} \cap \mathfrak{g}_{0}^{s}=\mathfrak{h}_{0}^{s}+\sum_{\alpha \in \Lambda^{\prime}} \mathfrak{g}^{\alpha}
$$

We put

$$
\varepsilon_{\nu}=\varepsilon \mid L^{s}
$$

and

$$
\mathfrak{g}_{\nu}=\left\{\begin{array}{c}
f \in C^{\infty}\left(G^{s}\right) ; f(g l)=\varepsilon_{\nu}\left(l^{-1}\right) f(g) \quad \text { for } g \in G^{s} \text { and } l \in L^{s} \\
\tilde{X} f=0 \quad \text { for every } X \in \mathfrak{g}_{+}
\end{array}\right\}
$$

and let π_{ν} denote the representation of G^{s} on \mathfrak{K}_{ν} defined by the left-translation. By Lemma 6.1, ($\left.\pi_{\nu}, \mathfrak{S}_{\nu}\right)$ is the irreducible representation of G^{s} equivalent to $\left(\sigma \mid G^{s}, V\right)$. Define a linear mapping φ of $\mathfrak{S}_{\mathcal{E}}$ to \mathscr{S}_{ν} by

$$
\varphi(f)=f \mid G^{s} \quad \text { for } f \in \mathfrak{C}
$$

Then φ is an injective G^{s}-homomorphism, and the image of φ is a non-zero G^{s}-submodule of \mathfrak{S}_{ν}, which must coincide with \mathfrak{S}_{ν} by the G^{s}-irreducibility of \mathfrak{S}_{ν}. Then φ is a G^{s}-isomorphism of \mathfrak{W} onto \mathfrak{S}_{ν}. Therefore \mathfrak{S} is G^{s}-irreducible (equivalent to $\left(\sigma \mid G^{s}, V\right)$), and so G-irreducible and equivalent to (σ, V), since $\pi(z)(z \in Z)$ is a scalar operator on \mathfrak{S} which is equal to $\mu(z)$.
Q.E.D.
6.3. Let G be a (non-connected) reductive compact Lie group, and $g_{0}=z_{0}+g_{0}^{s}$ its Lie algebra. (z_{0} (resp. g_{0}^{s}) is the center (resp. the semisimple part) of \mathfrak{g}_{0}.) Let \mathfrak{h}_{0}^{s} be a Cartan subalgebra of \mathfrak{g}_{0}^{s}, and we define Δ, Δ_{+}and \mathfrak{g}^{α} in the same way as in 6.2. Let H be the centralizer of $\mathfrak{h}_{0}=z_{0}+\mathfrak{h}_{0}^{s}$ in G (i.e., H is the Cartan subgroup of G corresponding to \mathfrak{H}_{0}). We assume that H is an abelian subgroup of G and that $G=H G_{0}$, where G_{0} is the connected component of G containing the unit. For a finite-dimensional irreducible representation (σ, V) of G, we define a subspace V^{+}(the subspace of highest weight vectors) of V by

$$
V^{+}=\left\{v \in V ; \sigma_{*}(X) v=0 \quad \text { for every } X \in \mathfrak{g}_{+}\right\}
$$

Then V^{+}is an H-submodule of V.
Note: V_{+}is 1-dimensional and ($\sigma \mid G_{0}, V$) is an irreducible representation of G_{0}. In fact, we put $k=\operatorname{dim} V_{+}$. Then V^{+}can be decomposed directly as

$$
V^{+}=\sum_{i=1}^{k} V_{i}^{+}
$$

where $V_{i}^{+}(1 \leqq i \leqq k)$ is a 1 -dimensional H-submodule. We set

$$
\begin{aligned}
& \mathfrak{U}\left(\mathrm{g}_{-}\right)=\text {the universal enveloping algebra } \\
& \text { over } \mathfrak{g}_{-}=\sum_{\alpha \in \Delta_{+}} \mathfrak{g}^{-\alpha}
\end{aligned}
$$

and

$$
V_{i}=\sigma_{*}\left(\mathfrak{U}\left(\mathfrak{g}_{-}\right)\right) V_{i}^{+} \quad(1 \leqq i \leqq k)
$$

Then $V_{i}(1 \leqq i \leqq k)$ is an irreducible G-submodule, and $V=\sum_{i=1}^{k} V_{i}$ (direct sum as G-modules). So we have $k=1$ by the irreducibility of V.

Using ($\sigma \mid G_{0}, V$), we define Δ^{\prime} as in 6.2 , and we set

$$
\begin{aligned}
\mathfrak{l}_{0} & =\mathfrak{h}_{0}+\sum_{\alpha \in d^{\prime}} \mathfrak{g}^{\alpha}, \\
L_{0} & =\text { the analytic subgroup of } G \text { generated by } \mathfrak{I}_{0}, \\
L & =H L_{0} .
\end{aligned}
$$

And let ε be the character of H defined by

$$
\sigma(h) v=\varepsilon(h) v \quad \text { for } h \in H \text { and } v \in V^{+} .
$$

We set

$$
\mathfrak{S}=\left\{\begin{array}{c}
f \epsilon C^{\infty}(G) ; f(g l)=\varepsilon\left(l^{-1}\right) f(g) \quad \text { for } g \in G \text { and } l \in L, \\
\tilde{X} f=0 \quad \text { for every } X \in \mathfrak{g}_{+}
\end{array}\right\},
$$

and let π denote the representation of G on \mathscr{S} defined by left-translations.
Lemma 6.3. (π, \mathfrak{S}) is a finite-dimensional irreducible representation of G equivalent to (σ, V).

Proof We set

$$
\begin{aligned}
& \varepsilon_{0}=\varepsilon \mid L_{0}, \\
& \mathfrak{g}_{0}=\left\{\begin{array}{c}
f \in C^{\infty}\left(G_{0}\right) ; f(g l)=\varepsilon_{0}\left(l^{-1}\right) f(g) \quad \text { for } g \in G_{0} \text { and } l \in L_{0}, \\
\tilde{X} f=0 \quad \text { for every } X \in \mathfrak{g}_{+}
\end{array}\right\},
\end{aligned}
$$

and let π_{0} denote the left-translation of G_{0} on \mathfrak{S}_{0}. Then, by Lemma 6.2, (π_{0}, \mathscr{S}_{0}) is the irreducible representation of G_{0} equivalent to $\left(\sigma \mid G_{0}, V\right)$. Define a linear mapping φ of \mathfrak{S} to \mathfrak{S}_{0} by

$$
\varphi(f)=f \mid G_{0} \quad \text { for } f \in \mathfrak{S}
$$

Then, by the assumption that $G=G_{0} H, \varphi$ is an injective G_{0}-homomorphism. So the image of φ is a non-zero G_{0}-submodule of \mathfrak{S}_{0}, which must coincide with \mathfrak{S}_{0} by the irreducibility of \mathfrak{C}_{0}. Thus φ is a bijective G_{0}-isomorphism. Therefore \mathfrak{S} is G_{0}-irreducible (equivalent to $\left(\sigma \mid G_{0}, V\right)$) and so G-irreducible.

Denote by V_{+}(resp. \mathfrak{S}_{+}) the space of all highest weight vectors in V (resp. \mathfrak{g}), regarding them as the representation spaces of G_{0}. In order to prove the G-equivalence of σ and π, it suffices to show that the action of H on \mathscr{S}_{+}is equivalent with that on V_{+}: i.e., $\pi(a) f=\varepsilon(a) f$ for every $a \in H$ and $f \in \mathfrak{S}_{+}$. Now we consider a linear mapping T of \mathfrak{S} onto \boldsymbol{C} defined by $T f=f(e)(f \epsilon$ $\mathfrak{S})$. If we regard the space \boldsymbol{C} as an H-module by $a c=\varepsilon(a) c$ for $a \epsilon H$ and $c \in \boldsymbol{C}$, then T is an H-intertwining operator since

$$
T(a f)=(a f)(e)=f\left(a^{-1}\right)=\varepsilon(a) f(e)
$$

$$
=\varepsilon(a)(T f)
$$

for $a \in H$ and $f \in \mathfrak{S}$. Let W be the sum of all H-submodules of \mathfrak{S} which are isomorphic to ε. Then W is non-trivial and must coincide with \mathfrak{S}_{+}because \mathfrak{K}_{+}is the only subspace of $\mathfrak{S}_{\mathfrak{C}}$ whose H_{0}-module structure is isomorphic to $\varepsilon \mid H_{0}$. Thus we have proved that \mathscr{S}_{+}is the H-submodule equivalent to ε.
Q.E.D.
6.4. Henceforward we fix a connected semisimple Lie group G with Lie algebra g_{0}. Let θ be a Cartan involution of g_{0}, and $g_{0}=\mathfrak{f}_{0}+\mathfrak{p}_{0}$ be the Cartan decomposition of g_{0} associated to θ, where \mathfrak{f}_{0} is a maximal compactly imbedded subalgebra of g_{0}. Let $\mathfrak{a}_{0}=\mathfrak{a}_{-}+\mathfrak{a}_{+}\left(\mathfrak{a}_{-} \subset \mathfrak{f}_{0}, \mathfrak{a}_{+} \subset \mathfrak{p}_{0}\right)$ be a θ-stable Cartan subalgebra of \mathfrak{g}_{0} with maximal vector part. We set $\mathfrak{g}=\mathfrak{g}_{0}^{c}, \mathfrak{a}=\mathfrak{a}_{0}^{c}$ and $\mathfrak{a}_{R}=\sqrt{-1} \mathfrak{a}_{-}$ $+a_{+}$. The non-zero root system Δ of g with respect to a admits a direct sum decomposition $\Delta=\Sigma \cup \Lambda$, where

$$
\begin{aligned}
& \Sigma=\left\{\alpha \in \Delta ; \alpha \mid a_{+}=0\right\}=\left\{\alpha \in \Delta ; \mathfrak{g}^{\alpha} \subset \mathfrak{b}\right\} \\
& \Lambda=\left\{\alpha \in \Delta ; \alpha \mid a_{+} \neq 0\right\} .
\end{aligned}
$$

A lexicographic order in \mathfrak{a}_{R} compatible to a_{+}induces a linear order in Δ and determines positive subsystems Λ_{+}, Σ_{+}and Λ_{+}. We set

$$
\begin{aligned}
\mathfrak{n}_{0} & =\left(\sum_{\alpha \in \Lambda_{+}} \mathfrak{g}^{\alpha}\right) \cap \mathfrak{g}_{0}, \\
\mathfrak{m}_{0} & =\mathfrak{a}_{-}+\left(\sum_{\alpha \in \Sigma} \mathfrak{g}^{\alpha}\right) \cap \mathfrak{g}_{0}, \\
\mathfrak{m}_{+} & =\sum_{\alpha \in \Sigma_{+}} \mathfrak{g}^{\alpha}, \\
M & =Z_{K}\left(\mathfrak{a}_{+}\right)=\text {the centralizer of } \mathfrak{a}_{+} \text {in } K, \\
A & =\text { the Cartan subgroup of } G \text { corresponding to } \mathfrak{a}_{0}, \\
A_{-} & =A \cap K, \\
A_{+} & =A \cap \exp \mathfrak{p}_{0}=\exp \mathfrak{a}_{+} \\
& =\text {the analytic subgroup of } G \text { generated by } \mathfrak{a}_{+}, \\
N & =\text { the analytic subgroup of } G \text { generated by } \mathfrak{n}_{0} .
\end{aligned}
$$

Then we have an Iwasawa decomposition $G=K A_{+} N$, and $B=M A_{+} N$ is a minimal parabolic subgroup of G, and A_{-}is a Cartan subgroup of the (non-connected in general) reductive compact Lie group M. Let M_{0} (resp. $\left(A_{-}\right)_{0}$ or A_{0}) be the connected component of M (resp. A_{-}or A) containing the identity element, then $M=A_{-} M_{0}$. Hereafter we assume that A is abelian. This condition is always satisfied if G admits the complexification.
6.5. Let (σ, V) be a finite-dimensional irreducible unitary representation of M, and λ the unitary character of A_{+}. Then the irreducible unitary representation (σ, λ) of B is well-defined by

$$
(\sigma, \lambda)(\operatorname{man})=\sigma(m) \lambda(a) \quad \text { for } m \in M, a \in A_{+} \text {and } n \in N
$$

We define the unitary character ε of A_{-}as in 6.3. Then ε and λ determine elements $H_{1} \in \mathfrak{a}_{-}$and $H_{2} \in \mathfrak{a}_{+}$by

$$
\begin{array}{ll}
\varepsilon_{*}(H)=2 \pi \sqrt{-1}<H_{1}, H> & \text { for every } H \epsilon \mathfrak{a}_{-}, \\
\lambda_{*}(H)=2 \pi \sqrt{-1}<H_{2}, H> & \text { for every } H \epsilon \mathfrak{a}_{+}
\end{array}
$$

where $<,>$ denotes the inner product in \mathfrak{a}_{0} defined by the Killing form B. We set

$$
H_{0}=H_{1}+H_{2} \in \mathfrak{a}_{0} .
$$

Then by Theorem 3.6, there exists a nilpotent element e in \mathfrak{n}_{0} such that

$$
\left[H_{0}, e\right]=0
$$

and

$$
\mathfrak{q}=\mathfrak{a}+\sum_{\alpha \in 山_{+}} \mathfrak{g}^{\alpha}+\sum_{\alpha(\gamma \in \in \Sigma} \sum_{\left.\alpha \in H^{\prime}\right)} \mathfrak{g}^{\alpha} \text { is an admissible polarization of } X=H_{0}+e .
$$

We set

$$
\mathfrak{l}_{0}=\mathfrak{a}_{-}+\left(\sum_{\substack{\alpha \in E \\ \alpha\left(H_{1}\right)=0}} \mathfrak{g}^{\alpha}\right) \cap \mathfrak{g}_{0},
$$

$$
L_{0}=\text { the analytic subgroup of } G \text { with Lie algebra } \mathfrak{l}_{0},
$$

and

$$
L=A_{-} L_{0} .
$$

Then ε can be extended uniquely to the character of L, which is also denoted by ε. In this case, we have

$$
\begin{aligned}
\mathfrak{D}_{0} & =\mathfrak{l}_{0}+\mathfrak{a}_{+}+\mathfrak{n}_{0}, \\
\mathfrak{e}_{0} & =\mathfrak{m}_{0}+\mathfrak{a}_{+}+\mathfrak{n}_{0}, \\
D_{0} & =L_{0} A_{+} N, \\
E_{0} & =M_{0} A_{+} N .
\end{aligned}
$$

As we have noted in 5.6 , we define subgroups D and E of G by

$$
D=A_{-} D_{0}=L A_{+} N
$$

and

$$
E=A_{-} E_{0}=M A_{+} N=B
$$

By Lemma 5.3.2, there exists a B-invariant volume element $\nu_{B \mid D}$ on B / D, which can be normalized by

$$
\int_{B} f(b) d \mu_{B}(b)=\int_{B \mid D} d \nu_{B \mid D}(b D) \int_{D} f(b h) d \mu_{D}(h)
$$

for every $f \in C_{c}(B)$. Since $B / D(\cong M / L)$ is compact, we can normalize μ_{D} so that the total volume of B / D with respect to $\nu_{B \mid D}$ may be equal to 1 . The following lemma is useful for calculation of measures:

Lemma 6.5.1 (Helgason [7] Lemma 1.10 (Chap X)). Let U be a Lie group with Lie algebra \mathfrak{u}. Suppose \mathfrak{u} is a direct sum $\mathfrak{u}=\mathfrak{m}+\mathfrak{h}$ where \mathfrak{m} and \mathfrak{h} are subalgebras of \mathfrak{u}. Let M and H denote the analytic subgroups of U with Lie algebras \mathfrak{m} and \mathfrak{h}, respectively. Suppose the mapping $\alpha:(m, h) \rightarrow m h$ is a 1-1 mapping of $M \times H$ onto U. Then the positive left invariant measures $d h, d m, d u$ can be normalized in such a way that

$$
\int_{U} f(u) d u=\int_{M \times H} f(m h) \frac{\operatorname{det} A d_{H}(h)}{\operatorname{det} A d_{U}(h)} d m d h
$$

for all $f \in C_{c}(U)$.
As a simple application of this lemma, we have
Lemma 6.5.2. The left invariant measures $d m, d l, d a, d n$ on M, L, A_{+}, N can be normalized by

$$
\int_{B} f(b) d \mu_{B}(b)=\int_{M \times A_{+} \times N} f(\operatorname{man}) d m d a d n
$$

for every $f \in C_{c}(B)$, and

$$
\int_{D} f(x) d \mu_{D}(x)=\int_{L_{\times A_{+} \times N}} f(l a n) d l d a d n
$$

for every $f \in C_{c}(D)$.
Proof. Fix positive left-invariant measures $d a$ and $d n$ arbitrarily. Since

$$
\operatorname{det} A d_{N}(n)=\operatorname{det} A d_{A_{+} N}(n)=1
$$

for every $n \in N$, the positive left invariant measure $d(a n)$ on $A_{+} N$ can be normalized by $d(a n)=d a d n$. We set

$$
\rho_{0}=\frac{1}{2} \sum_{\alpha \in A_{+}} \alpha \epsilon \mathfrak{a}_{+}^{*}=\operatorname{Hom}_{R}\left(\mathfrak{a}_{+}, \boldsymbol{R}\right)
$$

Since

$$
\begin{aligned}
\operatorname{det} A d_{A_{+} N}(a n) & =\operatorname{det} A d_{B}(a n) \\
& =\operatorname{det} A d_{D}(a n)=e^{2 \rho_{0}(\log (a))}
\end{aligned}
$$

for every $a \in A_{+}$and $n \in N$, the positive left invariant measures $d m, d l$ on M, L can be normalized as

$$
d(m a n)=d m d(a n),
$$

and

$$
d(l a n)=d l d(a n)
$$

Thus we have proved

$$
d(m a n)=d m d a d n,
$$

and

$$
d(l a n)=d l d a d n
$$

Q.E.D.

Let $\nu_{M / L}$ be the M-invariant volume element on M / L such that

$$
\int_{M} f(m) d m=\int_{M / L} d \nu_{M / L}(m L) \int_{L} f(m l) d l
$$

for every $f \in C_{c}(M)$. Then we have
Lemma 6.5.3 $\quad \nu_{M / L}=\nu_{B \mid D}$, under the canonical diffeomorphism $M / L \cong B / D$.
Proof. For $f \in C_{c}(B)$, we have

$$
\begin{aligned}
& \int_{B} f(b) d \mu_{B}(b)=\int_{M \times A_{+} \times N} f(m a n) d m d a d n \\
= & \int_{M / L} d \nu_{M / L}(m L) \int_{L \times A_{+} \times N} f(m l a n) d l d a d n \\
= & \int_{M / L} d \nu_{M / L}(m L) \int_{D} f(m x) d \mu_{D}(x) .
\end{aligned}
$$

Comparing with the definition of $\nu_{B / D}$, we have

$$
d \nu_{M / L}(m L)=d \nu_{B / D}(m D) .
$$

Thus we have proved that $\nu_{M / L}=\nu_{B \mid D}$.
Q.E.D.
6.6. The unitary representation $\left(\tilde{\pi}_{\sigma \lambda}, \tilde{\mathfrak{F}}_{\sigma \lambda}\right)$ constructed in 5.7 is the completion of ($\left.\tilde{\pi}_{\sigma \lambda}^{\prime}, \tilde{\mathfrak{S}}_{\sigma \lambda}^{\prime}\right)$:

$$
\left.\begin{array}{l}
\tilde{\mathfrak{K}}_{\sigma \lambda}^{\prime}=\left\{\begin{array}{cl}
\left.f \in C^{\infty}(G) ; 1\right) & f(x l a n)=\varepsilon\left(l^{-1}\right) \lambda\left(a^{-1}\right) f(x) \\
\text { 2) } & \text { for } x \in G, l \in L, a \in A_{+} \text {and } n \in N, \\
3) & \|f\|_{D}<\infty
\end{array}\right\}, \\
\text { for } X \in \sum_{\alpha \in \Sigma_{+}} \mathrm{g}^{\alpha},
\end{array}\right\},
$$

We set

$$
\begin{aligned}
& W_{\sigma \lambda}^{\prime}=\left\{\begin{aligned}
f ; 0) & f \text { is a } V \text {-valued } C^{\infty} \text {-function on } G, \\
\text { 1) } & f(x b)=(\sigma, \lambda)\left(b^{-1}\right) f(x) \quad \text { for } x \in G \text { and } b \in B, \\
2) & \|f\|_{B}<\infty
\end{aligned}\right\}, \\
& \eta_{\sigma \lambda}^{\prime}(g) f=\sqrt{\xi_{g^{-1}}} \cdot g f \quad \text { for } g \in G \text { and } f \in W_{\sigma \lambda}^{\prime},
\end{aligned}
$$

where $\|f\|_{B}$ is the norm of f defined in the same way as in 5.7 , and $g f$ denotes the left translation of f by g. The completion ($\eta_{\sigma \lambda}, W_{\sigma \lambda}$) of ($\eta_{\sigma \lambda}^{\prime}, W_{\sigma \lambda}^{\prime}$) is called a representation of most continuous principal series, and sometimes denoted by $\operatorname{ind}_{B \uparrow G}(\sigma, \lambda)$.

By Lemma 6.3, the representation (σ, V) of M is equivalent to ($\sigma^{\prime}, V^{\prime}$), where

$$
V^{\prime}=\left\{\begin{array}{cc}
f \in C^{\infty}(M) ; & f(m l)=\varepsilon\left(l^{-1}\right) f(m) \quad \text { for } m \in M \text { and } l \in L \\
\tilde{X} f=0 \quad \text { for every } X \in \sum_{\alpha \in \Sigma_{+}} g^{\alpha}
\end{array}\right\}
$$

and σ^{\prime} is left-translation of M on V^{\prime}. We introduce a Hermitian inner product (,) in V^{\prime} as follows: for $f, f^{\prime} \in V^{\prime}$, the C^{∞}-function φ on M / L is well-defined by $\varphi(x L)=f(x) \overline{f^{\prime}(x)}(x \in M)$ since ε and λ are unitary, and so we put

$$
\left(f, f^{\prime}\right)=\int_{M / L} \varphi(y) d \nu_{M / L}(y)
$$

By the M-invariantness of $\nu_{M / L},\left(\sigma^{\prime}, V^{\prime}\right)$ is a unitary representation of M with respect to this Hermitian inner product. Let S be an isometric intertwining operator of V onto V^{\prime}. And we define a linear mapping T^{\prime} of $W_{\sigma \lambda}^{\prime}$ to $\tilde{\mathscr{F}}_{\sigma \lambda}^{\prime}$ by

$$
\left(T^{\prime} f\right)(x)=[S(f(x))](e)
$$

for $f \epsilon W_{\sigma \lambda}^{\prime}$ and $x \epsilon G$, where e denotes the unit of G.
Theorem 6.6. $\quad T^{\prime}$ is an isometry of $W_{\sigma \lambda}^{\prime}$ onto $\tilde{\mathfrak{F}}_{\sigma \lambda}^{\prime}$, which commutes with
G-actions. So T^{\prime} can be extended to an isometric intertwining operator of ($\eta_{\sigma \lambda}$, $W_{\sigma \lambda}$) onto ($\tilde{\pi}_{\sigma \lambda} \tilde{\mathfrak{E}}_{\sigma \lambda}$), and the representation ($\tilde{\pi}_{\sigma \lambda}, \tilde{\mathscr{E}}_{\sigma \lambda}$) is a unitary representation of G of the most continuous principal series.

We shall give a proof of this theorem step-wisely.
6.7. We set $\varphi(x)=[S(f(x))](e) \quad$ for $f \in W_{\sigma \lambda}^{\prime}$ and $x \in G$.

Lemma 6.7.1. 1) $\varphi(x m)=[S(f(x))](m) \quad$ for $x \in G$ and $m \in M$.
Proof. Since S is an intertwining operator, we have

$$
\begin{aligned}
\varphi(x m) & =[S(f(x m))](e)=\left[S\left(\sigma\left(m^{-1}\right) f(x)\right)\right](e) \\
& =\left[\sigma^{\prime}\left(m^{-1}\right) S(f(x))\right](e) \\
& =[S(f(x))](m) .
\end{aligned}
$$

Q.E.D.

Lemma 6.7.2. 1) $\tilde{X} \varphi=0 \quad$ for $X \in \mathfrak{m}_{+}$.
2) $\varphi(x l a n)=\varepsilon\left(l^{-1}\right) \lambda\left(a^{-1}\right) \varphi(x) \quad$ for $x \in G, l \in L, a \in A_{+}$and $n \in N$.

Proof. 1) For $f \in W_{\sigma \lambda}^{\prime}$, we define a C^{∞}-function f_{x} on M by $f_{x}(m)=$ $[S(f(x))](m)$. Then, by Lemma 6.7.1, we have

$$
(\tilde{X} \varphi)(x)=\left(\tilde{X} f_{x}\right)(e)
$$

for every $x \in G$ and $X \in \mathfrak{m}$. So we have

$$
\tilde{X} \varphi=0 \quad \text { for } X \in \mathfrak{m}_{+}
$$

since $f_{x} \in V^{\prime}$.
2) Since $f \in W_{\sigma \lambda}^{\prime}$, and $S(f(x)) \in V^{\prime}$, we have

$$
\begin{aligned}
\varphi(x l a n) & =[S(f(x l a n))](e) \\
& =\lambda\left(a^{-1}\right)[S(f(x l))](e) \\
& =\lambda\left(a^{-1}\right)[S(f(x))](l) \\
& =\lambda\left(a^{-1}\right) \varepsilon\left(l^{-1}\right)[S(f(x))](e) \\
& =\lambda\left(a^{-1}\right) \varepsilon\left(l^{-1}\right) \varphi(x) .
\end{aligned}
$$

Q.E.D.

Lemma 6.7.3. $\quad\left\|T^{\prime} f\right\|=\|f\| \quad$ for $f \in W_{\sigma}^{\prime} \lambda$.
Proof. We denote by $\left\|\left\|_{B},\right\|\right\|_{D},\| \|_{V}$ and $\left\|\|_{V^{\prime}}\right.$ the norm of $W_{\sigma \lambda}$, $\tilde{\mathfrak{E}}_{\sigma \lambda}, V$ and V^{\prime} respectively. Let K_{1}, K_{2}, \ldots be a sequence of compact sets in G / B such that

$$
K_{n} \subset K_{n+1} \quad \text { for every } n \in \boldsymbol{N}
$$

and

$$
G / B=\bigcup_{n=1}^{\infty} K_{n}
$$

and let $\psi_{n} \in C_{c}(G / B)(n \in N)$ be a function such that
i) $\quad \psi_{n}=1 \quad$ on $K_{n} \quad$ and $\psi_{n} \geqq 0$ on G / B,
ii) $\psi_{n} \leqq \psi_{n+1} \quad$ for every $n \in \boldsymbol{N}$.

We set

$$
\psi_{n}^{\prime}=\psi_{n} \circ \rho_{D B} \quad(n \in \boldsymbol{N})
$$

where $\rho_{D B}$ is the canonical fibration defined in 5.3. There exists a sequence $\varphi_{1}, \varphi_{2}, \ldots$ in $C_{c}(G)$ such that
i) $\varphi_{n} \geqq 0$,
ii) $\varphi_{n} \leqq \varphi_{n+1}$,
iii) $\bar{\varphi}_{n}=\psi_{n}^{\prime}$,
where $\quad \bar{\varphi}_{n}(x D)=\int_{D} \varphi_{n}(x h) d \mu_{D}(h)$.
We set

$$
\tilde{\varphi}_{n}(x B)=\int_{B} \varphi_{n}(x b) d \mu_{B}(b) .
$$

Then $\tilde{\varphi}_{n} \in C_{c}(G / D)$, and we have

$$
\begin{aligned}
\tilde{\varphi}_{n}(x B) & =\int_{B \mid D} d \nu_{B \mid D}(b D) \int_{D} \varphi_{n}(x b h) d \mu_{D}(h) \\
& =\int_{B \mid D} \tilde{\varphi}_{n}(x b D) d \nu_{B \mid D}(b D) \\
& =\int_{B \mid D} \psi_{n}^{\prime}(x b D) d \nu_{B \mid D}(b D)
\end{aligned}
$$

Since $\psi_{n}^{\prime}(x b D)=\psi_{n}(x E)$ and $\nu_{B \mid D}(B / D)=1$, we have $\tilde{\varphi}_{n}=\psi_{n}$.
Now, for any $f \in W_{\sigma \lambda}^{\prime}$, we shall calculate $\|f\|_{B}$ and $\|T f\|_{D}$:

$$
\begin{aligned}
\|f\|_{B}^{2} & =\lim _{n \rightarrow \infty} \int_{G}\|f(x)\|_{V}^{2} \varphi_{n}(x) \rho(x) d \mu_{G}(x) \\
& =\lim _{n \rightarrow \infty} \int_{G} d \nu_{B}(x B) \int_{B}|f(x b)|^{2} \varphi_{n}(x b) d \mu_{B}(b)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \int_{G / B} d \nu_{B}(x B) \int_{B}|f(x)|^{2} \varphi_{n}(x b) d \mu_{B}(b) \\
& =\lim _{n \rightarrow \infty} \int_{G / B}|f(x B)|^{2} \tilde{\varphi}_{n}(x B) d \nu_{B}(x B) \\
& =\int_{G / B}\|f(y)\|^{2} d \nu_{B}(y)
\end{aligned}
$$

by the Lebesgue's integral theorem for a sequence of monotonously increasing non-negative integrable functions.

$$
\begin{gathered}
\left\|T^{\prime} f\right\|_{D}^{2}=\lim _{n \rightarrow \infty} \int_{G}\left|\left(T^{\prime} f\right)(x)\right|^{2} \varphi_{n}(x) \rho(x) d \mu_{G}(x) \\
=\lim _{n \rightarrow \infty} \int_{G / B} d \nu_{B}(x B) \int_{B}\left|\left(T^{\prime} f\right)(x b)\right|^{2} \varphi_{n}(x b) d \mu_{B}(b) \\
=\lim _{n \rightarrow \infty} \int_{G / B} d \nu_{B}(x B) \int_{M \times A_{+} \times N}\left|\left(T^{\prime} f\right)(x m a n)\right|^{2} \varphi_{n}(x m a n) d m d a d n \\
=\lim _{n \rightarrow \infty} \int_{G / B} d \nu_{B}(x B) \int_{M / L} d \nu_{M / L}(m L) \int_{L \times A_{+} \times N}\left|\left(T^{\prime} f\right)(x m l a n)\right|^{2} \\
\quad \times \varphi_{n}(x m l a n) d l d a d n .
\end{gathered}
$$

For each $x \in G$, we put $f_{x}=S(f(x)) \in V^{\prime}$. Then

$$
\begin{aligned}
\left|\left(T^{\prime} f\right)(x m l a n)\right| & =\left|\lambda\left(a^{-1}\right) \varepsilon\left(l^{-1}\right)\left(T^{\prime} f\right)(x m)\right| \\
& =\left|\left(T^{\prime} f\right)(x m)\right|=\left|f_{x}(m)\right|
\end{aligned}
$$

by Lemma 6.7.1. So we have

$$
\begin{aligned}
\left\|T^{\prime} f\right\|_{D}^{2} & =\lim _{n \rightarrow \infty} \int_{G / B} d \nu_{B}(x B) \int_{M / L} d \nu_{M / L}(m L) \int_{L \times A_{+} \times N}\left|f_{x}(m)\right|^{2} \varphi_{n}(x m l a n) d l d a d n \\
& =\lim _{n \rightarrow \infty} \int_{G / B} d \nu_{B}(x B) \int_{M / L}\left|f_{x}(m)\right|^{2} \bar{\varphi}_{n}(x m D) d \nu_{M / L}(m L) \\
& =\lim _{n \rightarrow \infty} \int_{G / B} d \nu_{B}(x B) \int_{M / L}\left|f_{x}(m)\right|^{2} \bar{\varphi}_{n}(x D) d \nu_{M / L}(m L)
\end{aligned}
$$

since $\bar{\varphi}_{n}=\tilde{\varphi}_{n} \circ \rho_{D E}$ is constant on each fibre of $\rho_{D B}$. By the definition of $\left\|\|_{V^{\prime}}\right.$ in 6.6,

$$
\left\|f_{x}\right\|_{V^{\prime}}^{2}=\int_{M / L}\left|f_{x}(m)\right|^{2} d \nu_{M / L}(m L)
$$

and, since S is unitary,

$$
\left\|f_{x}\right\|_{V^{\prime}}=\|f(x)\|_{V}=\|f(x B)\|_{V}
$$

So we have

$$
\begin{aligned}
\left\|T^{\prime} f\right\|_{D}^{2} & =\lim _{n \rightarrow \infty} \int_{G / B}\left\|f_{x}\right\|_{V^{\prime}}^{2} \tilde{\varphi}_{n}(x B) d \nu_{B}(x B) \\
& =\int_{G / B}\left\|f_{x}\right\|_{V^{\prime}}^{2} d \nu_{B}(x B) \\
& =\int_{G / B}\|f(x B)\|_{V}^{2} d \nu_{B}(x B) \\
& =\int_{G / B}\|f(y)\|_{V}^{2} d \nu_{B}(y)
\end{aligned}
$$

where we used the Lebesgue's theorem. Thus we have proved that $\left\|T^{\prime} f\right\|_{D}=$ $\|f\|_{B}$.
Q.E.D.

Lemma 6.7.4. $\quad \pi_{\sigma \lambda}^{\prime}(g) T^{\prime} f=T^{\prime} \eta^{\prime}{ }_{\sigma \lambda}(g) f$ for every $f \in W_{\sigma \lambda}^{\prime}$ and $g \in G$.
Proof. This is shown by an easy calculaton:

$$
\begin{aligned}
\left(\tilde{\pi}_{\sigma \lambda}^{\prime}(g) T^{\prime} f\right)(x) & =\sqrt{\xi_{g^{-1}}(x)}\left(T^{\prime} f\right)\left(g^{-1} x\right) \\
& =\sqrt{\xi_{g^{-1}}(x)}\left[S\left(f\left(g^{-1} x\right)\right)\right](e), \\
\left(T^{\prime}\left(\eta_{\sigma \lambda}^{\prime}(g) f\right)\right)(x) & =\left[S\left(\left(\eta_{\sigma \lambda}^{\prime}(g) f\right)(x)\right)\right](e) \\
& =\left[S\left(\sqrt{\xi_{g^{-1}}(x)} f\left(g^{-1} x\right)\right)\right](e),
\end{aligned}
$$

for all $x \in G$.
Q.E.D.
6.8. We shall prove the bijectiveness of T^{\prime}. For $\varphi \in \tilde{\mathscr{F}}_{\sigma \lambda}^{\prime}$ and $x \in G$, we define $\varphi_{x} \in V^{\prime}$ by

$$
\varphi_{x}(m)=\varphi(x m)
$$

and we set $f(x)=S^{-1} \varphi_{x} \quad(\epsilon V)$.
Lemma 6.8.1. $\varphi_{x m a n}=\sigma^{\prime}\left(m^{-1}\right) \lambda\left(a^{-1}\right) \varphi_{x}$ for every $x \in G, m \in M, a \in A_{+}$and $n \in N$.

Proof. For $m^{\prime} \in M$, we have

$$
\begin{aligned}
\varphi_{x \operatorname{man}}\left(m^{\prime}\right) & =\varphi\left(x m a n m^{\prime}\right) \\
& =\varphi\left(x m m^{\prime} \cdot a \cdot m^{\prime-1} n m^{\prime}\right) \\
& =\lambda\left(a^{-1}\right) \varphi\left(x m m^{\prime}\right) \\
& =\lambda\left(a^{-1}\right) \varphi_{x}\left(m m^{\prime}\right) \\
& =\lambda\left(a^{-1}\right)\left(\sigma^{\prime}\left(m^{-1}\right) \varphi_{x}\right)\left(m^{\prime}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 6.8.2. $f \in W_{\sigma \lambda}^{\prime}$.
Proof. For $x \in G, m \in M, a \in A_{+}$and $n \in N$, we have

$$
\begin{aligned}
f(x m a n) & =S^{-1} \varphi_{x m a n}=S^{-1}\left(\sigma^{\prime}\left(m^{-1}\right) \lambda\left(a^{-1}\right) \varphi_{x}\right) \\
& =\sigma\left(m^{-1}\right) \lambda\left(a^{-1}\right) S^{-1} \varphi_{x} \\
& =\sigma\left(m^{-1}\right) \lambda\left(a^{-1}\right) f(x) .
\end{aligned}
$$

Q.E.D.

Thus $\varphi \rightarrow f$ determines a linear mapping U of $\tilde{\mathfrak{E}}_{\sigma \lambda}^{\prime}$ to $W_{\sigma \lambda}^{\prime}:(U \varphi)(x)=S^{-1} \varphi_{x}$, for $\varphi \in \mathfrak{g}_{\sigma \lambda}^{\prime}$ and $x \in G$.

Lemma 6.8.3. 1) $U T^{\prime}$ is the identity of $W_{\sigma \lambda}^{\prime}$,
2) $T^{\prime} U$ is the identity of $\tilde{\tilde{S}_{\sigma \lambda}^{\prime}}$.
(And so T is a linear isomorphism of $W_{\sigma \lambda}^{\prime}$ onto $\tilde{\mathfrak{E}}_{\sigma \lambda}^{\prime}$.)
Proof. 1) For $f \in W_{\sigma \lambda}^{\prime}$ and $x \in G$, we have

$$
\left(T^{\prime} f\right)_{x}=S(f(x))
$$

since

$$
\begin{aligned}
\left(T^{\prime} f\right)_{x}(m) & =\left(T^{\prime} f\right)(x m)=[S(f(x m))](e) \\
& =[S(f(x))](m)
\end{aligned}
$$

for every $m \in M$. So we have

$$
\left(U T^{\prime} f\right)(x)=S^{-1}\left(T^{\prime} f\right)_{x}=S^{-1} S(f(x))=f(x)
$$

2) For $\varphi \in \tilde{\mathscr{E}}_{\sigma \lambda}^{\prime}$ and $x \in G$, we have

$$
\begin{aligned}
\left(T^{\prime} U \varphi\right)(x) & =[S((U \varphi)(x))](e)=\left[S\left(S^{-1} \varphi_{x}\right)\right](e) \\
& =\varphi_{x}(e)=\varphi(x)
\end{aligned}
$$

Q.E.D.

Theorem 6.6 follows from Lemma 6.7.3, Lemma 6.7.4 and Lemma 6.8.3

References

[1] L. Auslander and B. Kostant: Quantization and representations of solvable Lie groups, Bull. Amer. Math. Soc., 73 (1967), 692-695.
[2] Amer. Math. Soc., 73 (1967), 602-695. 14 (1971), 255-354.
[3] R. J. Blattner: On induced representations II, Amer. J. Math., 83 (1961), 499-512.
[4] R. Bott: Homogeneous vector bundles, Ann. of Math., 66 (1957), 203-248.
[5] E. B. Dynkin: Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Trans., 6 (1957), 111-244.
[6] Harish-Chandra: Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc., 76 (1970), 529-551.
[7] S. Helgason: Differential geometry and symmetric spaces, Academic Press (1962).
[8] A. A. Kirillov: Unitary representations of nilpotent Lie groups, Russian Math. Surveys, 17 (1962), 53-104.
[9] -: Construction of irreducible unitary representations of Lie groups, Vestnik Mosc. Univ., 2 (1970), 41-51.
[10] B. Kostant: The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 973-1032.
[11] -: Orbits, symplectic structures and representation theory, Proc. U.S.-Japan Sem. on Diff. Geom. Kyoto, (1965), 71.
[12] -: Quantization and unitary representations, Lectures in Modern Analysis and Applications III. Lecture Notes (Springer Verlag), 170 (1970), 87-208.
[13] H. Ozeki and M. Wakimoto: On polarizations of certain homogeneous spaces, Hiroshima Math. J., 2 (1972), 445-482.
[14] J. A. Wolf: The action of a real semisimple group on a complex flag manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1969), 1121-1237.
[15] -: The action of a real semisimple group on a complex flag manifold, II: Unitary representations on partially holomorphic cohomology spaces (to appear).

Department of Mathematics,
 Faculty of Science, Hiroshima University

