Energy Inequalities and the Cauchy Problem for a Pseudo-Differential System

Mitsuyuki Itano and Kiyoshi Yoshida

(Received September 20, 1972)

Let $\vec{A}(t)$ be an $N \times N$ matrix of pseudo-differential operators of order $\leqq 1$ which depend on a parameter t. Here the term "pseudo-differential operator" will be understood as described in the preceding paper [10], which has been designed to be the introductory part of the present paper. Certain pseudocommutativity relations are assumed for $\vec{A}(t)$. Let us write $L=D_{t}+\vec{A}(t)$, $D_{t}=\frac{1}{i} \frac{\partial}{\partial t}$. Here we study the Cauchy problem which consists in finding a solution $\vec{u}=\left(u_{1}, u_{2}, \cdots, u_{N}\right), u_{j} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, to the equation

$$
L \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+}=R_{t}^{+} \times\left(R_{n}\right)_{x}
$$

with initial condition

$$
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}} \vec{u}=\vec{\alpha},
$$

when $\vec{f}=\left(f_{1}, f_{2}, \cdots, f_{N}\right), f_{j} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right), \alpha_{j} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ are arbitrarily given. It was shown in [10] that if a solution \vec{u} exists, then \vec{f} must admit the $\mathscr{D}_{L^{\prime}}{ }^{2}$-canonical extension. The energy inequalities of Friedrichs-Lewy type are assumed for L. Even if L is a system of differential operators, our treatments will give rise to some simplification and refinement to our related paper [9].

In Section 1 we shall show the approximation theorems, which are the analogues of the results [9] established for a system of differential operators. Sections 2 and 3 are devoted to the studies of the uniqueness and existence theorems for the Cauchy problem. In Section 4 we consider the pseudodifferential system with constant coefficients. The discussions are made here about the well-posedness in the L^{2} norm and its connection with the energy inequalities. In Section 5 a characterization of regular hyperbolicity of a pseudo-differential operator is given. This is an analogue of our recent result established in [9] for a differential operator. Section 6 is concerned with generalization of S. Kaplan's result [11] about the Cauchy problem for parabolic equation. The method developed in Sections 2 and 3 will much simplify his treatments. In the final section the Cauchy problem for ordinary differential operators is considered. It is shown that the method developed in Sections 2, 3 and 4 also lead to generalization of basic theorem in [1].

1. Approximation theorem

Let $R_{n+1}=R \times R_{n}$ be an ($n+1$)-dimensional Euclidean space with generic points $(t, x), x=\left(x_{1}, \cdots, x_{n}\right)$ and $\Xi_{n+1}=\Xi \times \Xi_{n}$ be its dual with point $(\tau, \xi), \xi$ $=\left(\xi_{1}, \cdots, \xi_{n}\right)$. We write $|x|=\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2}$ and for an n-tuple $p=\left(p_{1}, \cdots, p_{n}\right)$ of non-negative integers we write $|p|=p_{1}+\cdots+p_{n}, x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, D_{x}^{p}=D_{1}^{p_{1} \cdots} D_{n}^{p_{n}}$ with $D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$. By D_{t} we mean $\frac{1}{i} \frac{\partial}{\partial t}$. The Fourier transform, $\hat{\phi}, \phi \epsilon$ $\mathscr{S}\left(R_{n}\right)$, is defined by $\hat{\phi}(\xi)=\int \phi(x) e^{-i\langle x, \xi\rangle} d x$, which is extended by continuity to a temperate distribution $u \in \mathscr{S}^{\prime}\left(R_{n}\right)$ by the formula $\left.<\hat{u}, \phi>=<u, \hat{\phi}\right\rangle$, where $\langle x, \xi\rangle=\sum_{j=1}^{n} x_{j} \xi_{j}$.

We shall continue to employ the notations in our preceding paper [10]. We have considered there the spaces $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=\mathscr{D}_{t}^{\prime} \varepsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x},\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(\bar{R}_{n+1}^{+}\right)$and have shown that these spaces are reflexive, ultrabornological and Souslin. Let $A(t)$ be an OP_{r}-valued C^{∞} function of $t \in R_{t}$, that is, $A(t) \epsilon \mathbb{C}_{(r)}^{\infty}$ in the notation used in [10]. For any $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ (resp. $\left.\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\right), A(t) u$ is well defined, belongs to the space $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ (resp. $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{\left.L^{2}\right)_{x}}\right)\right)$ and the map $u \rightarrow A(t) u$ is continuous. If $\vec{A}(t)$ is an $N \times N$ matrix of operators $A_{i j}(t) \in \mathfrak{G}_{(r)}^{k}$, then we shall also write $\vec{A}(t) \in \mathfrak{§}_{(r)}^{k}$. If, for a vector distribution $\vec{u}=\left(u_{1}, \cdots, u_{N}\right)$, each component u_{j} belongs to the same space $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, then we shall write $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. When confusion appears impossible, we shall use a similar abbreviation.

Let Λ and S be operators with symbols $|\xi|$ and $\left(1+|\xi|^{2}\right)^{1 / 2}$ respectively. We shall denote by $\lambda\left(D_{x}\right)$ the operator with symbol $\lambda(\xi)$. Let us consider $\vec{A}(t) \epsilon \bigoplus_{(r)}^{k}$. In what follows, we assume that for any $T>0$ and any real λ there exists a constant $C_{\lambda, T}$ such that
(*) $\left\|\left(S^{-\lambda} \vec{A}(t) S^{\lambda}-\vec{A}(t)\right) \vec{\chi}\right\|_{(0)} \leqq C_{\lambda, T}\|\vec{\chi}\|_{(r-1)}, 0 \leqq t \leqq T, \vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right)$,
where we mean by $\|\vec{x}\|_{(r)}$ the norm defined by $\|\vec{x}\|_{(r)}^{2}=\sum_{j=1}^{N}\left\|x_{j}\right\|_{(r)}^{2}$ and $\left\|x_{j}\right\|_{(r)}=$ $\left(\frac{1}{(2 \pi)^{n}} \int\left|\hat{\chi}_{j}(\xi)\right|^{2}\left(1+|\xi|^{2}\right)^{r} d \xi\right)^{1 / 2}$. As shown in Section 4 in [10], a singular integral operator in the sense of $A . P$. Calderón [3] has the pseudo-commutativity (*). For a differential operator with constant coefficients, the commutativity in question is trivially satisfied. For any real s we can find a constant $C_{\lambda, T}^{(s)}$ such that $\left\|\left(S^{-\lambda} \vec{A}(t) S^{\lambda}-\vec{A}(t)\right) \vec{\chi}\right\|_{(s)} \leqq C_{\lambda, T}^{(s)}\|\vec{\chi}\|_{(s+r-1)}$ and the adjoint operator $\vec{A}^{*}(t)$ has also the property (*). In fact, for any $\vec{\chi}_{1}, \vec{\chi}_{2} \in C_{0}^{\infty}\left(R_{n}\right)$ the inequalities

$$
\begin{aligned}
\left|\left(\vec{\chi}_{1},\left(S^{-\lambda} \vec{A}^{*}(t) S^{\lambda}-\vec{A}^{*}(t)\right) \vec{\chi}_{2}\right)\right| & =\left|\left(\left(S^{\lambda} \vec{A}(t) S^{-\lambda}-\vec{A}(t)\right) \vec{\chi}_{1}, \vec{\chi}_{2}\right)\right| \\
& \leqq\left\|\left(S^{\lambda} \vec{A}(t) S^{-\lambda}-\vec{A}(t)\right) \vec{\chi}_{1}\right\|_{(-r+1)}\left\|\vec{\chi}_{2}\right\|_{(r-1)}
\end{aligned}
$$

$$
\leqq C_{-\lambda, T}^{(-r+1)}\left\|\vec{\chi}_{1}\right\|_{(0)}\left\|\vec{\chi}_{2}\right\|_{(r-1)}
$$

imply $\left\|\left(S^{-\lambda} \vec{A}^{*}(t) S^{\lambda}-A^{*}(t)\right) \vec{\chi}_{2}\right\|_{(0)} \leqq C_{-\lambda, T}^{(-r+1)}\left\|\vec{\chi}_{2}\right\|_{(r-1)}$.
To prove the approximation theorem below (Theorem 1) we shall need the following two lemmas. For any $\varepsilon>0$ we put $S_{\varepsilon}=1+\varepsilon \Lambda$. Then we have

Lemma 1. For any $x \in \mathscr{H}_{(s)}\left(R_{n}\right), S_{\varepsilon}^{-1} \chi$ belongs to the space $\mathscr{H}_{(s+1)}\left(R_{n}\right)$ and it converges in $\mathscr{H}_{(s)}\left(R_{n}\right)$ to x as $\varepsilon \downarrow 0$.

Proof. For a fixed $\varepsilon, \frac{\left(1+|\xi|^{2}\right)^{1 / 2}}{1+\varepsilon|\xi|}$ is bounded and we can write

$$
\left(1+|\xi|^{2}\right)^{(s+1) / 2}\left(S_{\varepsilon}^{-1} x\right)^{\wedge}=\frac{\left(1+|\xi|^{2}\right)^{1 / 2}}{1+\varepsilon|\xi|}\left(1+|\xi|^{2}\right)^{s / 2} \hat{\chi}(\xi)
$$

and therefore $S_{\varepsilon}^{-1} \chi \in \mathscr{H}_{(s+1)}\left(R_{n}\right)$. If we write

$$
\begin{aligned}
\left(1+|\xi|^{2}\right)^{s / 2}\left(S_{\varepsilon}^{-1} x-x\right)^{\wedge} & =\left(\frac{1}{1+\varepsilon|\xi|}-1\right)\left(1+|\xi|^{2}\right)^{s / 2} \hat{\chi}(\xi) \\
& =-\frac{\varepsilon|\xi|}{1+\varepsilon|\xi|}\left(1+|\xi|^{2}\right)^{s / 2} \hat{\chi}(\xi)
\end{aligned}
$$

then $0 \leqq \frac{\varepsilon|\xi|}{1+\varepsilon|\xi|} \leqq 1$ and $\frac{\varepsilon|\xi|}{1+\varepsilon|\xi|}$ converges to 0 for any fixed ξ as $\varepsilon \downarrow 0$. Thus we see that $\left\|S_{\varepsilon}^{-1} x-x\right\|_{(s)}$ converges to 0 as $\varepsilon \downarrow 0$.

Remark. Evidently $\left\|S_{\varepsilon}^{-1} x\right\|_{(s)} \leqq\|x\|_{(s)}$ and we see from the BanachSteinhaus theorem that $S_{\varepsilon}^{-1} \chi$ converges to χ in $\mathscr{H}_{(s)}\left(R_{n}\right)$ uniformly when χ varies in a compact subset of $\mathscr{H}_{(s)}\left(R_{n}\right)$.

Lemma 2. Let $A(t) \in \mathfrak{c}_{(r)}$. Then we have
(i) For any $T>0$ and ε with $0<\varepsilon \leqq 1$, there exists a constant $C_{T}^{(s)}$ such that

$$
\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{(s)} \leqq C_{T}^{(s)}\|\vec{\chi}\|_{(s+r-1)}, 0 \leqq t \leqq T, \vec{\chi} \in \mathscr{H}_{(s+r-1)}\left(R_{n}\right)
$$

(ii) For any $\vec{\chi} \in \mathscr{H}_{(s+r-1)}\left(R_{n}\right),\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{(s)}$ converges to 0 as $\varepsilon \downarrow 0$.

Proof. We may assume $\vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right)$, for $C_{0}^{\infty}\left(R_{n}\right)$ is dense in $\mathscr{H}_{(s+r-1)}\left(R_{n}\right)$ and $\vec{\chi} \rightarrow\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{(s)}$ is semi-continuous from below.
(i) For each $t, 0 \leqq t \leqq T$, the operator $\vec{B}(t)=S \vec{A}(t)-\vec{A}(t) S$ is of order $\leqq r$. Putting $R=\Lambda-S$, we have $|\hat{R}(\xi)| \leqq \frac{1}{\left(1+|\xi|^{2}\right)^{1 / 2}}$ and therefore the operator $R \vec{A}(t)-\vec{A}(t) R$ is of order $\leqq r-1$. Thus the operator $\vec{B}_{1}(t)=\Lambda \vec{A}(t)-\vec{A}(t) \Lambda$ is of order $\leqq r$ and we can write $S_{\varepsilon} \vec{A}(t)-\vec{A}(t) S_{\varepsilon}=\varepsilon \vec{B}_{1}(t)$. Putting $\vec{\Gamma}_{\varepsilon}(t)=$ $\vec{A}(t)-S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}$, for any $\vec{\chi} \in \mathscr{H}_{(s)}\left(R_{n}\right)$ we have

$$
\vec{\Gamma}_{\varepsilon}(t) \vec{\chi}=\frac{\varepsilon}{1+\varepsilon \Lambda} \vec{B}_{1}(t) \vec{\chi}=\frac{\varepsilon\left(1+\Lambda^{2}\right)^{1 / 2}}{1+\varepsilon \Lambda} S^{-1} \vec{B}_{1}(t) \vec{\chi}
$$

where $\frac{\varepsilon\left(1+|\xi|^{2}\right)^{1 / 2}}{1+\varepsilon|\xi|} \leqq 1$ and $S^{-1} \vec{B}_{1}(t)$ is of order $\leqq r-1$. Thus we obtain

$$
\left\|\left(\vec{A}(t)-S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}\right) \vec{\chi}\right\|_{(s)}=\left\|\vec{\Gamma}_{\varepsilon} \vec{\chi}\right\|_{(s)} \leqq\left\|S^{-1} \vec{B}_{1}(t) \vec{\chi}\right\|_{(s)} \leqq C_{T}^{(s)}\|\vec{\chi}\|_{(s+r-1)}
$$

where $C_{T}^{(s)}$ is a constant.
(ii) $\frac{\varepsilon\left(1+|\xi|^{2}\right)^{1 / 2}}{1+\varepsilon|\xi|}$ converges pointwise to 0 as $\varepsilon \downarrow 0$. If we let $\varepsilon \downarrow 0$ in (i), we see by the Banach-Steinhaus theorem that $\lim _{\varepsilon \downarrow 0}\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{(s)}$ $=0$ for any $\vec{\chi} \in \mathscr{H}_{(s)}\left(R_{n}\right)$.

For any real numbers σ, s we shall denote by $\widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$the space of $u \in \mathscr{D}^{\prime}\left(R_{n+1}^{+}\right)$such that ϕu belongs to the space $\mathscr{H}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)[5, \mathrm{p} .51]$ when ϕ is taken arbitrarily in $C_{0}^{\infty}(R)$. The topology in $\breve{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$is defined by the semi-norms $\widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right) \ni u \rightarrow\|\phi u\|_{(\sigma, s)}$. By $\widetilde{\mathscr{H}}_{(\sigma, s)}^{*}\left(\bar{R}_{n+1}^{+}\right)$we mean the adjoint space of $\widetilde{\mathscr{H}}_{(-\sigma,-s)}\left(\bar{R}_{n+1}^{+}\right)$, which consists of all $v \in \mathscr{\mathscr { H }}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$with support $\subset[0, T] \times R_{n}$ for some $T>0$. It is to be noticed that $\widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\stackrel{\check{\mathscr{H}}}{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$may be identified for $|\sigma|<\frac{1}{2}$ (cf. Proposition 7 in [8, p. 416]) and that in the space $\widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$the following conditions are equivalent (cf. Theorem 1 in [8, p. 410]):
(i) $\sigma>\frac{1}{2}$.
(ii) For any $u \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), u$ has the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value $\mathscr{D}_{L^{2}}^{\prime} \lim _{t \downarrow 0} u$ [10, p. 375].
(iii) For any $u \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), u$ has the distributional boundary value $\lim _{t \downarrow 0} u$ [7, p. 12].
and similarly the following conditions are equivalent (cf. Theorem 2 in $[8$, p. 413]):
(i) $\sigma>-\frac{1}{2}$.
(ii) For any $u \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), u$ has the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension over $t=0$ [10, p. 379].
(iii) For any $u \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), u$ has the canonical extension over $t=0$ [7, p. 12].

Let $\vec{u} \in \mathscr{H}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$and assume that $\vec{A}(t) \in \bigoplus_{(r)}^{l}$ with $l \geqq|\sigma|$. Then $\vec{A}(t) \vec{u}$ $\epsilon \widetilde{\mathscr{H}}_{(\sigma, s-r)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{u} \rightarrow \vec{A}(t) \vec{u}$ is a continuous map of $\widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$into $\widetilde{\mathscr{H}}_{(\sigma, s-r)}\left(\bar{R}_{n+1}^{+}\right)$(cf. Proposition 14 in [10, p. 385]). From the equality $S^{j} \vec{\Gamma}_{\varepsilon}(t) \vec{\chi}$ $=\frac{\varepsilon\left(1+\Lambda^{2}\right)^{1 / 2}}{1+\varepsilon \Lambda} S^{j-1} \vec{B}_{1}(t) \vec{\chi}$ for any $\vec{\chi} \in C_{0}^{\infty}\left(R_{n+1}\right)$ we have $\left\|S^{j} \vec{\Gamma}_{\varepsilon}(t) \vec{\chi}\right\|_{(0, s)} \leqq$
$C_{T}^{(s)}\|\vec{x}\|_{(0, s+r-1+j)}$. In the same way as in the proof of Proposition 14 in [10, p. 385], we have immediately the following

Corollary 1. Let $\vec{A}(t) \in \mathbb{C}_{(r)}^{l}$ with $l \geqq|\sigma|$. Then
(i) For any $T>0$ and ε with $0<\varepsilon \leqq 1$, there exists a constant $C_{T}^{(\sigma, s)}$ such that

$$
\begin{aligned}
\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{(\sigma, s)} & \leqq C_{T}^{(\sigma, s)}\|\vec{\chi}\|_{(\sigma, s+r-1)} \\
0 & \leqq t \leqq T, \vec{\chi} \in \widetilde{\mathscr{H}}_{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)
\end{aligned}
$$

(ii) For any $\vec{\chi} \in \widetilde{\mathscr{H}}_{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right),\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{(\sigma, s)}$ converges to 0 as $\varepsilon \downarrow 0$.

Let $\vec{A}(t) \in \mathfrak{C}_{(r)}$ with any fixed real r. With the aid of Lemmas 1 and 2 we can show the following

Theorem 1 (Approximation theorem). Let $\vec{u} \in \widetilde{\mathscr{H}}_{(0, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)$and assume that

$$
\left\{\begin{array}{l}
L \vec{u} \equiv D_{t} \vec{u}+\vec{A}(t) \vec{u}=\vec{f} \in \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right), \\
\mathscr{D}_{L^{2-}}^{\prime} \lim _{t \downarrow 0} \vec{u}=\vec{\alpha} \in \mathscr{H}_{(s)}\left(R_{n}\right) .
\end{array}\right.
$$

Then there exists a sequence $\left\{\vec{\psi}_{j}\right\}, \vec{\psi}_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$ such that
(i) $\vec{\psi}_{j} \rightarrow \vec{u}$ in $\widetilde{\mathscr{H}}_{(0, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)$,
(ii) $L \vec{\psi}_{j} \rightarrow \vec{f}$ in $\widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$,
(iii) $\quad \vec{\psi}_{j}(0, \cdot) \rightarrow \vec{\alpha}$ in $\mathscr{H}_{(s)}\left(R_{n}\right)$ as $j \rightarrow \infty$.

Proof. Put $\vec{u}_{\varepsilon}=S_{\varepsilon}^{-1} \vec{u}, \vec{f}_{\varepsilon}=S_{\varepsilon}^{-1} \vec{f}$ and $\vec{\alpha}_{\varepsilon}=S_{\varepsilon}^{-1} \alpha$ for $\varepsilon>0$. Then $\vec{u}_{\varepsilon} \epsilon$ $\widetilde{\mathscr{H}}_{(0, s+r)}\left(\bar{R}_{n+1}^{+}\right), \vec{f}_{\varepsilon} \in \widetilde{\mathscr{H}}_{(0, s+1)}\left(\bar{R}_{n+1}^{+}\right), \vec{\alpha}_{\varepsilon} \in \mathscr{H}_{(s+1)}\left(\bar{R}_{n}\right)$ and we can write

$$
L\left(\vec{u}_{\varepsilon}\right)=\vec{f}_{\varepsilon}+\vec{\Gamma}_{\varepsilon}\left(\vec{u}_{\varepsilon}\right),
$$

where $\vec{\Gamma}_{\varepsilon}\left(\vec{u}_{\varepsilon}\right)=\vec{A}(t) \vec{u}_{\varepsilon}-S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon} \vec{u}_{\varepsilon} \in \widetilde{\mathscr{H}}_{(0, s+1)}\left(R_{n+1}^{+}\right)$and $\lim _{t \downarrow 0} \vec{u}_{\varepsilon}=\vec{\alpha}_{\varepsilon}$. Furthermore, we see from Lemmas 1 and 2 that

$$
\begin{equation*}
\vec{u}_{\varepsilon} \rightarrow \vec{u} \quad \text { in } \quad \tilde{\mathscr{H}}_{(0, s+r-1)}\left(\bar{R}_{n+1}^{+}\right), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\vec{f}_{\varepsilon} \rightarrow \vec{f} \quad \text { in } \quad \tilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right), \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\vec{\Gamma}_{\varepsilon}\left(\vec{u}_{\varepsilon}\right) \rightarrow 0 \quad \text { in } \quad \tilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right), \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\vec{\alpha}_{\varepsilon} \rightarrow \vec{\alpha} \quad \text { in } \quad \mathscr{H}_{(s)}\left(R_{n}\right) \tag{4}
\end{equation*}
$$

as $\varepsilon \downarrow 0$. We note here $D_{t} \vec{u}_{\varepsilon}=\vec{f}_{\varepsilon}+\vec{\Gamma}_{\varepsilon}\left(\vec{u}_{\varepsilon}\right)-\vec{A}(t) \vec{u}_{\varepsilon} \in \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$.
For sufficiently small $\varepsilon_{0}>0$ if we put $\vec{v}^{1}=\vec{u}_{\varepsilon_{0}} \in \mathscr{\mathscr { H }}_{(0, s+r)}\left(\bar{R}_{n+1}^{+}\right), \vec{f}^{1}=\vec{f}_{\varepsilon_{0}}+$ $\vec{\Gamma}_{\varepsilon_{0}}\left(\vec{u}_{\varepsilon_{0}}\right) \in \widetilde{\mathscr{H}}_{(0, s+1)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{\alpha}^{1}=\vec{\alpha}_{\varepsilon_{0}} \in \mathscr{H}_{(s+1)}\left(R_{n}\right)$, then $L \vec{v}^{1}=\vec{f}^{1}, \lim _{t \downarrow 0} \vec{v}^{1}=\vec{\alpha}^{1}$ and we have

$$
\begin{array}{lll}
\vec{v}_{\varepsilon}^{1} \rightarrow \vec{v}^{1} & \text { in } & \tilde{\mathscr{H}}_{(0, s+r)}\left(\bar{R}_{n+1}^{+}\right), \\
\vec{f}_{\varepsilon}^{1}+\vec{\Gamma}_{\varepsilon}\left(\vec{v}_{\varepsilon}^{1}\right) \rightarrow \vec{f}^{1} & \text { in } & \tilde{\mathscr{H}}_{(0, s+1)}\left(\bar{R}_{n+1}^{+}\right), \\
\vec{\alpha}_{\varepsilon}^{1} \rightarrow \vec{\alpha}^{1} & \text { in } & \mathscr{H}_{(s+1)}\left(R_{n}\right) \tag{7}
\end{array}
$$

as $\varepsilon \downarrow 0$ and moreover $D_{t} \vec{v}_{\varepsilon}^{1} \in \widetilde{\mathscr{H}}_{(0, s+1)}\left(\bar{R}_{n+1}^{+}\right)$.
Determine $\vec{v}^{k}, k=2,3, \cdots$, successively, by $\vec{v}^{k}=\vec{v}_{\varepsilon_{0}}^{k-1}, \vec{f}^{k}=\vec{f}_{\varepsilon_{0}}^{k-1}+\vec{\Gamma}_{\varepsilon_{0}}\left(\vec{v}_{\varepsilon_{0}}^{k-1}\right)$ and $\vec{\alpha}^{k}=\vec{\alpha}_{\varepsilon_{0}}^{k-1}$. Then $\vec{v}^{k} \in \widetilde{\mathscr{H}}_{(0, s+r-1+k)}\left(\bar{R}_{n+1}^{+}\right), L \vec{v}^{k}=\vec{f}^{k} \in \widetilde{\mathscr{H}}_{(0, s+k)}\left(\bar{R}_{n+1}^{+}\right)$and $\lim _{t \downarrow 0} \vec{v}^{k}=$ $\vec{\alpha}^{k} \in \mathscr{H}_{(s+k)}\left(R_{n}\right) \subset \mathscr{H}_{(s)}\left(R_{n}\right)$ and we have $D_{t} \vec{v}^{k} \in \widetilde{\mathscr{H}}_{(0, s+k-1)}\left(\bar{R}_{n+1}^{+}\right)$. Thus $\vec{v}^{k} \epsilon$ $\widetilde{\mathscr{H}}_{(1, s+r+k-2)}\left(\bar{R}_{n+1}^{+}\right)$for $r \leqq 1$ and $\vec{v}^{k} \in \widetilde{\mathscr{H}}_{(1, s+k-1)}\left(\bar{R}_{n+1}^{+}\right)$for $r>1$.

Let us take k so that $k>2-r$ (resp. $k \geqq r$) in the case where $r \leqq 1$ (resp. $r>1)$. There exists a sequence $\left\{\vec{\psi}_{j}\right\}, \vec{\psi}_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$, such that $\vec{\psi}_{j}$ converges in $\widetilde{\mathscr{H}}_{(1, s+r+k-2)}\left(\bar{R}_{n+1}^{+}\right)$(resp. in $\left.\widetilde{\mathscr{H}}_{(1, s+k-1)}\left(\bar{R}_{n+1}^{+}\right)\right)$to \vec{v}^{k} for $r \leqq 1$ (resp. for $r>1$). Then $\vec{\psi}_{j}, L \vec{\psi}_{j}$ and $\vec{\psi}_{j}(0, \cdot)$ converge in $\widetilde{\mathscr{H}}_{(0, s+r-1)}\left(\bar{R}_{n+1}^{+}\right), \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\widetilde{\mathscr{H}}_{(s)}\left(R_{n}\right)$ to $\vec{v}^{k}, L \vec{v}^{k}$ and $\vec{v}^{k}(0, \cdot)$ respectively as $j \rightarrow \infty$.

Let $\sigma>-\frac{1}{2}$ and suppose $\vec{A}(t) \epsilon \mathfrak{C}_{(r)}^{l}$ with $l \geqq|\sigma|$. In the same way as in the proof of the theorem we can prove the following

Corollary 2. Let $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)$and assume that

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \epsilon \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), \\
\mathscr{D}_{L^{2}-1 \lim _{t \downarrow 0}} \vec{u}=\vec{\alpha} \in \mathscr{H}_{(\nu)}\left(R_{n}\right)
\end{array}\right.
$$

for any real ע. Then there exists a sequence $\left\{\vec{\psi}_{j}\right\}, \vec{\psi}_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$, such that
(i) $\quad \vec{\psi}_{j} \rightarrow \vec{u} \quad$ in $\quad \tilde{\mathscr{H}}_{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)$,
(ii) $L \vec{\psi}_{j} \rightarrow \vec{f}$ in $\tilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$,
(iii) $\quad \vec{\psi}_{j}(0, \cdot) \rightarrow \vec{\alpha} \quad$ in $\quad \mathscr{H}_{(\nu)}\left(R_{n}\right)$
as $j \rightarrow \infty$.
Let σ, s be any real numbers and r a fixed positive real number. According to S. Kaplan [11] we shall use the notation $\mathscr{K}^{(\sigma, s)}$ to denote the space $\mathscr{B}_{2, k}$ $[5, \mathrm{p} .36]$, where $k=k_{\sigma, s}=\left(\tau^{2}+\lambda^{2 r}(\xi)\right)^{\sigma / 2 r} \lambda^{s}(\xi), \lambda(\xi)=\left(1+|\xi|^{2}\right)^{1 / 2} . \mathscr{K}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$, $\mathscr{\mathscr { K }}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), \widetilde{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$and the like will have obvious meanings. We shall denote the norm in $\mathscr{K}^{(\sigma, s)}$ by $\|\cdot\|_{\sigma, s}$. Then we see from Proposition 5 in [8,
p. 413] that the canonical extension u_{\sim} exists for every $u \epsilon \widetilde{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$if and only if $\sigma>-\frac{r}{2}$ and from Corollary 1 in [8, p. 412] that $\lim _{t \downarrow 0} u$ exists for every $u \in \widetilde{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$if and only if $\sigma>\frac{r}{2}$ and $\lim _{t \downarrow 0} u \in \mathscr{H}_{(\sigma+s-r / 2)}\left(R_{n}\right)$. In this case the trace map $u \rightarrow u(0, \cdot)$ of $\widetilde{\mathscr{K}}^{(\sigma, s)}$ into $\mathscr{H}_{(\sigma+s-r / 2)}\left(R_{n}\right)$ is an epimorphism (cf. Theorem 1 in [6, p. 21]). It is also to be noticed that $\mathscr{K}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\dot{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$may be identified for $|\sigma|<\frac{r}{2}$ (cf. Proposition 7 in [8, p. 416]). In the same way as in the proof of Proposition 14 in [10, p. 385] we can prove that $\left(A(t) \in \mathfrak{c}_{(r)}^{l}, l r \geqq|\sigma|\right.$, is a continuous linear map of $\widetilde{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$into $\widetilde{\mathscr{K}}^{(\sigma, s-r)}\left(\bar{R}_{n+1}^{+}\right)$for any real numbers σ, s. Similarly we have the following

Corollary 1^{\prime}. Let $A(t) \epsilon \bigoplus_{(r)}^{l}$ with $l r \geqq|\sigma|$. Then
(i) For any $T>0$ and ε with $0<\varepsilon \leqq 1$, there exists a constant $C_{T}^{(\sigma, s)}$ such that

$$
\begin{gathered}
\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{\sigma, s} \leqq C_{T}^{(\sigma, s)}\|\vec{\chi}\|_{\sigma, s+r-1} \\
0 \leqq t \leqq T, \vec{\chi} \in \widetilde{\mathscr{K}}^{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)
\end{gathered}
$$

(ii) For any $\vec{\chi} \in \widetilde{\mathscr{K}}^{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right),\left\|\left(S_{\varepsilon}^{-1} \vec{A}(t) S_{\varepsilon}-\vec{A}(t)\right) \vec{\chi}\right\|_{\sigma, s}$ converges to 0 $a s \varepsilon \downarrow 0$.

Corollary 2^{\prime}. Let $\sigma>-\frac{r}{2}$ and $\vec{A}(t) \in \mathfrak{§}_{(r)}^{l}$ with $l r \geqq|\sigma|$. Let $\vec{u} \epsilon$ $\widetilde{\mathscr{K}}^{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)$and assume that

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \in \widetilde{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), \\
\mathscr{D}_{L^{2}}^{\prime}-\lim _{t \downarrow 0} \vec{u}=\vec{\alpha} \in \mathscr{H}_{(\nu)}\left(R_{n}\right)
\end{array}\right.
$$

for any real ν. Then there exists a sequence $\left\{\vec{\psi}_{j}\right\}, \vec{\psi}_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$, such that
(i) $\vec{\psi}_{j} \rightarrow \vec{u}$ in $\widetilde{\mathscr{K}}^{(\sigma, s+r-1)}\left(\bar{R}_{n+1}^{+}\right)$,
(ii) $L \vec{\psi}_{j} \rightarrow \vec{f}$ in $\quad \widetilde{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$,
(iii) $\quad \vec{\psi}_{j}(0, \cdot) \rightarrow \vec{\alpha} \quad$ in $\quad \mathscr{H}_{(\nu)}\left(R_{n}\right)$
as $j \rightarrow \infty$.

2. Uniqueness and existence theorems for the Cauchy problem (I)

For the sake of simplicity we assume $A(t) \epsilon \mathbb{G}_{(1)}^{\infty}$ in this and next sections. Let H be a slab $[0, T] \times R_{n}, T>0$, and denote by $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ the set of distributions $\epsilon \mathscr{D}^{\prime}(\dot{H})$ which can be extended to distributions $\epsilon \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

The quotient topology is induced in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$. Similarly for $\mathscr{D}^{\prime}(H)$ and $\mathscr{D}^{\prime}((-\infty, T])$.

Consider the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \quad \text { in } \quad \dot{H}, \tag{8}\\
u_{0} \equiv \mathscr{D}_{L^{2}-\lim _{t \downarrow 0}} \vec{u}=\vec{\alpha}
\end{array}\right.
$$

for given $\vec{f} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ and $\vec{\alpha} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. If a solution $\vec{u} \epsilon \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ exists, then \vec{f} must have the $\mathscr{D}_{L^{2}}{ }^{2}$-canonical extension \vec{f}_{\sim} over $t=0$ and \vec{u}_{\sim} satisfies the equation

$$
L\left(\vec{u}_{\sim}\right)=\vec{f}_{\sim}-i \delta_{t} \otimes \vec{\alpha} .
$$

Conversely, if $\vec{v} \in \mathscr{D}^{\prime}((-\infty, T])\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ vanishing for $t<0$ is a solution of $L \vec{v}=\vec{f}_{\sim}-i \delta_{t} \otimes \vec{\alpha}$, that is,
(9) $\quad\left(\left(\vec{v}, L^{*} \vec{w}\right)\right)=\left(\left(\vec{f}_{\sim}, \vec{w}\right)\right)-i\left(\vec{\alpha}, \vec{w}_{0}\right), \quad \vec{w} \in C_{0}^{\infty}\left((-\infty, T) \times R_{n}\right)$,
where ((,)) means the scalar product between $\mathscr{D}^{\prime}((-\infty, T])\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\mathscr{D}((-\infty, T)) \widehat{\otimes}_{l}\left(\mathscr{D}_{L^{2}}\right)_{x}$, then the restriction $\vec{u} \mid H \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ is a solution of the Cauchy problem (8) (cf. Corollary 3 in [10, p. 393]). The equation (9) implies Green's formula:

$$
\left(\left((L \vec{u})_{\sim}, \vec{w}\right)\right)-\left(\left(\vec{u}, L^{*} \vec{w}\right)\right)=i\left(\vec{u}_{0}, \vec{w}_{0}\right) .
$$

Let $\vec{f} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H), \vec{\alpha}, \vec{\beta} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and assume that \vec{f} has a two-sided $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension \vec{f}_{\sim}^{\sim}. The problem to find a solution $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ of the equation $L \vec{u}=\vec{f}$ in \dot{H} with the conditions $\vec{u}_{0}=\vec{\alpha}, \vec{u}_{T} \equiv \mathscr{D}_{L^{2}}^{\prime 2} \lim _{t \uparrow T} \vec{u}=\vec{\beta}$ is reduced to the problem of finding $\vec{v} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ with supp $\vec{v} \subset H$ such that

$$
\begin{equation*}
\left(\left(\vec{v}, L^{*} \vec{w}\right)\right)=\left(\left(\vec{f}_{\sim}^{\sim}, \vec{w}\right)\right)-i\left(\vec{\alpha}, \vec{w}_{0}\right)+i\left(\vec{\beta}, \vec{w}_{T}\right), \vec{w} \in C_{0}^{\infty}\left(R_{n+1}\right) \tag{10}
\end{equation*}
$$

where $(()$,$) means the scalar product between \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\mathscr{D}_{t} \otimes\left(\mathscr{D}_{L^{2}}\right)_{x}$. The equation (10) implies Green's formula:

$$
\left(\left((L \vec{u})_{\sim}^{\sim}, \vec{w}\right)\right)-\left(\left(\vec{u}_{\sim}^{\sim}, L^{*} \vec{w}\right)\right)=-i\left\{\left(\vec{u}_{T}, \vec{w}_{T}\right)-\left(\vec{u}_{0}, \vec{w}_{0}\right)\right\} .
$$

In Sections 2 and 3, L will be assumed to admit the inequality :

$$
\begin{gathered}
\left(E_{(0)}^{2} \uparrow\right)_{T}:\|\vec{\phi}(t, \cdot)\|_{(0)}^{2} \leqq C_{T}\left(\|\vec{\phi}(0, \cdot)\|_{(0)}^{2}+\int_{0}^{t}\left\|L \vec{\phi}\left(t^{\prime}, \cdot\right)\right\|_{(0)}^{2} d t^{\prime}\right), \\
0 \leqq t \leqq T, \quad \vec{\phi} \in C_{0}^{\infty}\left(R_{n+1}\right),
\end{gathered}
$$

where C_{T} is a constant. We shall agree to write $\left(E_{(0)}^{2} \uparrow\right)$ if $\left(E_{(0)}^{2} \uparrow\right)_{T}$ holds true for every $T>0$.

We shall often need the following lemma (cf. Lemma 4 in [9, p. 78]).

Lemma 3. Let $r(t)$ and $\rho(t)$ be two real-valued functions defined in the interval $0 \leqq t \leqq T$ and suppose that r is continuous and ρ is non-decreasing. Then the inequality

$$
r(t) \leqq C\left(\rho(t)+\int_{0}^{t} r\left(t^{\prime}\right) d t^{\prime}\right)(C>0 \text { is a constant })
$$

implies

$$
r(t) \leqq C e^{C t} \rho(t)
$$

Let s be arbitrarily chosen. If we apply the inequality $\left(E_{(0)}^{2} \uparrow\right)_{T}$ to $S^{s} \vec{\phi}$ instead of $\vec{\phi}$, then the pseudo-commutativity ($*$) and Lemma 3 yield the following inequality :

$$
\begin{gathered}
\left(E_{(s)}^{2} \uparrow\right)_{T}:\|\vec{\phi}(t, \cdot)\|_{(s)}^{2} \leqq C_{T}^{(s)}\left(\|\vec{\phi}(0, \cdot)\|_{(s)}^{2}+\int_{0}^{t}\left\|L \vec{\phi}\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime}\right) \\
0 \leqq t \leqq T, \quad \vec{\phi} \in C_{0}^{\infty}\left(R_{n+1}\right)
\end{gathered}
$$

where $C_{T}^{(s)}$ is a constant. We can also apply Lemma 3 to conclude that if $\left(E_{(0)}^{2} \uparrow\right)_{T}$ holds for L and $\vec{B}(t) \in \mathbb{C}_{(0)}$, then so does for $L^{1}=L+\vec{B}(t)$.

Let us denote by $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{(s)}\right)$ the space of $\mathscr{H}_{(s)}\left(R_{n}\right)$-valued continuous functions of t defined on $[0, \infty)$. Then we have

Proposition 1. Suppose ($E_{(0)}^{2} \uparrow$) holds for L. If, for a given $\vec{u} \epsilon$ $\widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right), \quad L \vec{u}=\vec{f} \in \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\lim _{t \downarrow 0} \vec{u}=\vec{\alpha} \in \mathscr{H}_{(s)}\left(R_{n}\right)$ hold, then $\vec{u} \in$ $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{(s)}\right)$ and \vec{u} satisfies the inequality $\left(E_{(s)}^{2} \uparrow\right)$, that is,

$$
\|\vec{u}(t, \cdot)\|_{(s)}^{2} \leqq C_{T}^{(s)}\left(\|\vec{\alpha}\|_{(s)}^{2}+\int_{0}^{t}\left\|\vec{f}\left(t^{\prime}, \cdot\right)\right\|_{(s)} d t^{\prime}\right)
$$

In particular, if $\vec{f}=0$ and $\vec{\alpha}=0$, then $\vec{u}=0$.
Proof. In virtue of Theorem 1 there exists a sequence $\left\{\vec{\phi}_{k}\right\}, \vec{\phi}_{k} \in C_{0}^{\infty}\left(R_{n+1}\right)$, with properties mentioned there and we have

$$
\begin{aligned}
&\left\|\vec{\phi}_{k}(t, \cdot)-\vec{\phi}_{k^{\prime}}(t, \cdot)\right\|_{(s)}^{2} \leqq C_{T}^{(s)}\left(\left\|\vec{\phi}_{k}(0, \cdot)-\vec{\phi}_{k^{\prime}},(0, \cdot)\right\|_{(s)}^{2}+\right. \\
&\left.\quad+\int_{0}^{t}\left\|L \vec{\phi}_{k}\left(t^{\prime}, \cdot\right)-L \vec{\phi}_{k^{\prime}}\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime}\right)
\end{aligned}
$$

which means that $\left\{\vec{\phi}_{k}(t, \cdot)\right\}$ is a Cauchy sequence in $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{(s)}\right)$. Let \vec{v} be the limit of $\left\{\vec{\phi}_{k}\right\}$. Clearly \vec{v} coincides with \vec{u} as a distribution and \vec{u} satisfies $\left(E_{(s)}^{2} \uparrow\right)$ and the proposition is proved.

Let $u \in \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$. Then u may be considered as an $\mathscr{H}_{(s)}\left(R_{n}\right)$-valued measurable function $u(t, \cdot)$ defined for almost everywhere $t \in(0, \infty)$ and $\int_{0}^{T}\|u(t, \cdot)\|_{(s)}^{2} d t<+\infty$ for any $T>0$. Thus almost all points $t_{0} \in(0, \infty)$ are Lebesgue points of $u(t, \cdot)$:

$$
\lim _{h \downarrow 0} \frac{1}{2 h} \int_{t_{0}-h}^{t_{0}+h}\left\|u\left(t^{\prime}, \cdot\right)-u\left(t_{0}, \cdot\right)\right\|_{(s)} d t^{\prime}=0
$$

Let t_{0} be a Lebesgue point of $u(t, \cdot)$. For any $\phi \in C_{0}^{\infty}\left(R_{t}\right)$ such that $\phi \geqq 0$, $\int \phi(t) d t=1$ and $\operatorname{supp} \phi \subset[-1,1]$, we have for any small $\varepsilon>0$

$$
\begin{aligned}
& \left\|\frac{1}{\varepsilon} \int \phi\left(\frac{t-t_{0}}{\varepsilon}\right) u(t, \cdot) d t-u\left(t_{0}, \cdot\right)\right\|_{(s)} \\
= & \left\|\frac{1}{\varepsilon} \int \phi\left(\frac{t-t_{0}}{\varepsilon}\right)\left(u(t, \cdot)-u\left(t_{0}, \cdot\right)\right) d t\right\|_{(s)} \\
\leqq & \frac{\sup \phi}{\varepsilon} \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon}\left\|u(t, \cdot)-u\left(t_{0}, \cdot\right)\right\|_{(s)} d t .
\end{aligned}
$$

Thus we see that $u\left(t_{0}, \cdot\right)$ is the section of u for $t=t_{0}$.
If $\vec{u} \in \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$and $L \vec{u}=\vec{f} \in \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$, then \vec{u} may be considered as an $\mathscr{H}_{(s)}$-valued continuous function of $t \in(0, \infty)$. In fact, let $t_{0}>0$ be a sufficiently small Lebesgue point of $\vec{u}(t, \cdot)$. Then $\lim _{t \downarrow t_{0}} \vec{u}$ exists in $\mathscr{H}_{(s)}\left(R_{n}\right)$ and therefore \vec{u} is an $\mathscr{H}_{(s)}\left(R_{n}\right)$-valued continuous function of $t \in\left[t_{0}, \infty\right)$, where t_{0} can be chosen arbitrarily small.

For any σ, s we denote by $\mathscr{H}_{(\sigma, s)}(H)$ the space of all distributions $u \in \mathscr{D}^{\prime}(H)$ such that there exists a distribution $U \in \mathscr{H}_{(\sigma, s)}\left(R_{n+1}\right)$ with $U=u$ in \dot{H}. The norm of u is defined by $\|u\|_{(\sigma, s)}=\inf \|U\|_{(\sigma, s)}$, the infimum being taken over all such U.

In the following Propositions 2 through 7 we assume that $\left(E_{(0)}^{2} \uparrow\right)_{T}$ holds for L.

Proposition 2. If $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H), L \vec{u}=0$ in \dot{H} and $\mathscr{D}_{L^{2}-}^{\prime-\lim _{t \downarrow 0}} \vec{u}=0$, then $\vec{u}=0$ in $\xrightarrow[H]{h}$.

Proof. Since $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ there exist integers k, l such that $\vec{u} \in \mathscr{H}_{(k, l)}(H)$. Suppose that $k<0$. From the relation $D_{t} \vec{u}=-\vec{A}(t) \vec{u} \in \mathscr{H}_{(k, l-1)}(H)$ it follows that $\vec{u} \in \mathscr{H}_{(k+1, l-1)}(H)$. Repeating this procedure, we see that $\vec{u} \epsilon$ $\mathscr{H}_{(0, l-k)}(H)$, and applying Proposition 1 we can conclude that $\vec{u}=0$ in \dot{H}.

Proposition 3. For any given $\vec{g} \in \mathscr{H}_{(0, s)}(H)$ and $\vec{\beta} \in \mathscr{H}_{(s)}\left(R_{n}\right)$, s being a real number, the Cauchy problem:

$$
\left\{\begin{array}{l}
L^{*} \vec{v}=\vec{g} \text { in } \dot{H}, \tag{11}\\
\lim _{t \downarrow T} \vec{v}=\vec{\beta}
\end{array}\right.
$$

has a solution $\vec{v} \in \mathscr{H}_{(0, s)}(H)$ such that $\vec{r}=\lim _{t \downarrow 0} \vec{v}$ exists in $\mathscr{H}_{(s)}\left(R_{n}\right)$ and such that the inequality

$$
\|\vec{r}\|_{(s)}+\int_{0}^{T}\|\vec{v}(t, \cdot)\|_{(s)} d t \leqq C_{T}\left(\|\vec{\beta}\|_{(s)}+\int_{0}^{T}\|\vec{g}(t, \cdot)\|_{(s)} d t\right)
$$

holds, where C_{T} is a constant.
Proof. Consider the space $\boldsymbol{H}_{(-s)}=\mathscr{H}_{(-s)}\left(R_{n}\right) \times \mathscr{H}_{(0,-s)}(H)$ and its subspace $A=\left\{(\vec{u}(0, \cdot), L \vec{u}): \vec{u} \in C_{0}^{\infty}(H)\right\}$. Then the map

$$
l: A \ni(\vec{u}(0, \cdot), L \vec{u}) \rightarrow \int_{0}^{T}(\vec{u}(t, \cdot), \vec{g}(t, \cdot)) d t-i\left(\vec{u}_{T}, \vec{\beta}\right)
$$

is continuous. In fact, from the energy inequality $\left(E_{(-s)}^{2} \uparrow\right)_{T}$ for L we have

$$
\begin{aligned}
& \left|\int_{0}^{T}(\vec{u}(t, \cdot), \vec{g}(t, \cdot)) d t-i\left(\vec{u}_{T}, \vec{\beta}\right)\right| \\
& \leqq \max _{0 \leqq t \leq T}\|\vec{u}(t, \cdot)\|_{(-s)} \int_{0}^{T}\|\vec{g}(t, \cdot)\|_{(s)} d t+\left\|\vec{u}_{T}\right\|_{(-s)}\|\beta\|_{(s)} \\
& \leqq \sqrt{C_{T}^{(-s)}}\left(\|\vec{u}(0, \cdot)\|_{(-s)}^{2}+\int_{0}^{T}\|L \vec{u}(t, \cdot)\|_{(-s)}^{2} d t\right)^{1 / 2}\left(\|\vec{\beta}\|_{(s)}+\int_{0}^{T}\|\vec{g}(t, \cdot)\|_{(s)} d t\right)
\end{aligned}
$$

which implies the inequality

$$
\|l\| \leqq \sqrt{C_{T}^{(-s)}}\left(\|\vec{\beta}\|_{(s)}+\int_{0}^{T}\|\vec{g}(t, \cdot)\|_{(s)} d t\right)
$$

Thus there exists $(i \vec{f}, \vec{v}) \in \boldsymbol{H}_{(s)}$ such that

$$
\begin{equation*}
\int_{0}^{T}(L \vec{u}(t, \cdot), \vec{v}(t, \cdot)) d t-i\left(\vec{u}_{0}, \vec{r}\right)=\int_{0}^{T}(\vec{u}(t, \cdot), \vec{g}(t, \cdot)) d t-i\left(\vec{u}_{T}, \vec{\beta}\right) \tag{12}
\end{equation*}
$$

and

$$
\left(\|\vec{\gamma}\|_{(s)}^{2}+\int_{0}^{T}\|\vec{v}(t, \cdot)\|_{(s)}^{2} d t\right)^{1 / 2} \leqq \sqrt{C_{T}^{(-s)}}\left(\|\vec{\beta}\|_{(s)}+\int_{0}^{T}\|g(t, \cdot)\|_{(s)} d t\right)
$$

From Green's formula (12) we see that $\|\vec{v}\|$ is a solution of the Cauchy problem (11), which completes the proof.

We shall say that $(\mathrm{CP})_{(s)}$ holds for L if the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \quad \text { in } H, \tag{13}\\
\lim _{t \downarrow 0} \vec{u}=\vec{\alpha}
\end{array}\right.
$$

has a solution $\vec{u} \in \mathscr{H}_{(0, s)}(H)$ for any given $\vec{f} \in \mathscr{H}_{(0, s)}(H)$ and $\vec{\alpha} \epsilon \mathscr{H}_{(s)}\left(\boldsymbol{R}_{n}\right)$. Then we have the following

Proposition 4. If $(\mathrm{CP})_{(s)}$ holds for L, then so does it for $L^{1}=L+\vec{B}(t)$, $\vec{B}(t) \epsilon \sqsubseteq_{(0)}$.

Proof. Let (CP) $)_{(s)}$ hold for L and consider the Cauchy problem:

$$
\left\{\begin{array}{l}
L^{1} \vec{u}=\vec{h} \quad \text { in } \dot{H}, \\
\lim _{t \downarrow 0} \vec{u}=\vec{r}
\end{array}\right.
$$

for any given $\vec{h} \in \mathscr{H}_{(0, s)}(H)$ and $\vec{r} \in \mathscr{H}_{(s)}\left(R_{n}\right)$.
Let $\vec{v}^{0} \in \mathscr{H}_{(0, s)}(H)$ be chosen so that

$$
\left\{\begin{array}{l}
L \vec{v}^{0}=\vec{h} \quad \text { in } \dot{H}, \\
\lim _{t \downarrow 0} \vec{v}^{0}=\vec{r}
\end{array}\right.
$$

If there exists a $\vec{w} \in \mathscr{H}_{(0, s)}(H)$ such that

$$
\left\{\begin{array}{l}
L \vec{w}=-\vec{B}(t) \vec{w}-\vec{B}(t) \vec{v}^{0} \\
\lim _{t \downarrow 0} \vec{w}=0
\end{array}\right.
$$

then $\vec{u}=\vec{v}^{0}+\vec{w}$ will be the solution to be found. The method of successive approximation will be successful to this end.

Put $\vec{w}^{0}=0$ and determine $\vec{w}^{l} \in \mathscr{H}_{(0, s)}(H)$ successively by

$$
\left\{\begin{array}{l}
L \vec{w}^{l+1}=-\vec{B}(t) \vec{w}^{l}-\vec{B}(t) \vec{v}^{0} \\
\lim _{t \downarrow 0} \vec{w}^{l+1}=0
\end{array}\right.
$$

Then $L\left(\vec{w}^{l+1}-\vec{w}^{l}\right)=-\vec{B}(t)\left(\vec{w}^{l}-\vec{w}^{l-1}\right)$ and we have from $\left(E_{(s)}^{2} \uparrow\right)_{T}$ for L

$$
\begin{aligned}
\left\|\left(\vec{w}^{l+1}-\vec{w}^{l}\right)(t, \cdot)\right\|_{(s)}^{2} & \leqq C_{s, T} \int_{0}^{t}\left\|\left(\vec{w}^{l}-\vec{w}^{l-1}\right)\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime} \\
& \leqq C_{s, T}^{l} \int_{0}^{t} \frac{\left(t-t^{\prime}\right)^{l-1}}{(l-1)!}\left\|\vec{w}^{1}(t, \cdot)\right\|_{(s)}^{2} d t \\
& \leqq \frac{\left(C_{s, T} T\right)^{l}}{l!} \sup _{0 \leqq t^{\prime} \leqq T}\left\|\vec{w}^{1}\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2}, 0 \leqq t \leqq T
\end{aligned}
$$

and therefore $\left\|\left(\vec{w}^{l+l^{\prime}}-\vec{w}^{l}\right)(t, \cdot)\right\|_{(s)} \leqq C_{s, T}^{\prime}$, where $C_{s, T}^{\prime}$ is a constant independent of l, l^{\prime}. Thus $\left\{\vec{w}^{l}\right\}$ is a Cauchy sequence in $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{(s)}\right), t \in[0, T)$. If we put $\vec{w}=\lim _{l \rightarrow \infty} \vec{w}^{l}$, then \vec{w} will be the solution as desired.

Proposition 5. If $(\mathrm{CP})_{(s)}$ holds for some s, then it does also for any s.
Proof. Let $(\mathrm{CP})_{(s)}$ hold for L. This means that the set $A=\{(\vec{\phi}(0, \cdot), L \vec{\phi})$: $\left.\vec{\phi} \in C_{0}^{\infty}(H)\right\}$ is dense in $\boldsymbol{H}_{(s)}=\mathscr{H}_{(s)} \times \mathscr{H}_{(0, s)}(H)$. Let s^{\prime} be any real number. Then the map $\left[S^{s^{\prime}-s}\right]:(\vec{\alpha}, \vec{f}) \rightarrow\left(S^{s^{\prime}-s} \vec{\alpha}, S^{s^{\prime}-s} \vec{f}\right)$ is an isomorphism of $\boldsymbol{H}_{(s)}$ onto
$\boldsymbol{H}_{\left(s^{\prime}\right)}$ and $\left[S^{s^{\prime}-s}\right](A)$ is also dense in $\boldsymbol{H}_{\left(s^{\prime}\right)}$. If we put $\vec{\psi}=S^{s^{\prime}-s} \vec{\phi}, \vec{\phi} \in C_{0}^{\infty}(H)$, then we have

$$
\begin{aligned}
\left(S^{s^{\prime}-s}(\vec{\phi}(0, \cdot)), S^{s^{\prime}-s} L \vec{\phi}\right) & =\left(\vec{\psi}(0, \cdot), S^{s^{\prime}-s} L S^{s-s^{\prime}} \vec{\psi}\right) \\
& =(\vec{\psi}(0, \cdot), L \vec{\psi}+\vec{B}(t) \vec{\psi}),
\end{aligned}
$$

where $\vec{B}(t)=S^{s^{\prime}-s} L S^{s-s^{\prime}}-L=S^{s^{\prime}-s} \vec{A}(t) S^{s-s^{\prime}}-\vec{A}(t)$ is of order $\leqq 0$. Thus $(\mathrm{CP})_{\left(s^{\prime}\right)}$ holds for $L^{1}=L+\vec{B}(t)$ and therefore so does it for L.

Proposition 6. If for any $\vec{f} \in \mathscr{H}_{(0, s)}(H)$ and $\vec{\alpha} \in \mathscr{H}_{(s)}\left(R_{n}\right)$ the Cauchy problem (8) has a solution $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$, then $\vec{u} \in \mathscr{H}_{(0, s)}(H)$

Proof. There exist integers k, l such that $\vec{u} \in \mathscr{H}_{(k, l)}(H)$. Suppose that $k<0$. Then from the equation $D_{t} \vec{u}=\vec{f}-\vec{A}(t) \vec{u}$ we see that $D_{t} \vec{u} \in \mathscr{H}_{\left(k, s_{1}\right)}(H)$, $s_{1}=\min (s-k, l-1)$ and therefore $\vec{u} \in \mathscr{H}_{\left(k+1, s_{2}\right)}(H), s_{2}=\min \left(l-1, s_{1}\right)$. Repeating this procedure, we can find s^{\prime} such that $\vec{u} \in \mathscr{H}_{\left(0, s^{\prime}\right)}(H)$. For any $(\vec{\alpha}, \vec{f}) \in \boldsymbol{H}_{(s)}$ $=\mathscr{H}_{(s)}\left(R_{n}\right) \times \mathscr{H}_{(0, s)}(H)$ a solution of the Cauchy problem (13) belongs to the space $\bigcup_{m=-\infty}^{\infty} \mathscr{H}_{(0, m)}(H)$. Since a solution is unique in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ for \vec{f} and $\vec{\alpha}$, we see from the closed graph theorem that $(\vec{\alpha}, \vec{f}) \rightarrow \vec{u}$ is a continuous map of $\boldsymbol{H}_{(s)}$ into $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{\left.\left.L^{2}\right)_{x}\right)}\right)(H)\right.$. The space $\mathscr{H}_{(s)}\left(R_{n}\right)$ and $\mathscr{H}_{(0, s)}(H)$ are both of type (\boldsymbol{F}). Thus by Theorem A in A. Grothendieck [4, p. 16] there exists a fixed m such that the corresponding solution \vec{u} belonging to the space $\mathscr{H}_{(0, m)}(H)$ for every $(\vec{\alpha}, \vec{f}) \in \boldsymbol{H}_{(s)}$.

Suppose that $m<s$. For any $\vec{g} \in \mathscr{H}_{(0, m)}(H)$ and $\vec{\beta} \in \mathscr{H}_{(m)}\left(R_{n}\right)$ there exist sequences $\left\{\vec{g}_{j}\right\},\left\{\vec{\beta}_{j}\right\}, \vec{g}_{j} \in C_{0}^{\infty}(H), \vec{\beta}_{j} \in C_{0}^{\infty}\left(R_{n}\right)$ such that $\vec{g}_{j}, \vec{\beta}_{j}$ converge to $\vec{g}, \vec{\beta}$ in $\mathscr{H}_{(0, m)}(H), \mathscr{H}_{(m)}\left(R_{n}\right)$ as $j=\infty$ respectively. Denote by \vec{v}_{j} a unique solution $\epsilon \mathscr{H}_{(0, m)}(H)$ of the Cauchy problem (13) associated with \vec{g}_{j} and $\vec{\beta}_{j}$. Owing to $\left(E_{(m)}^{2} \uparrow\right)_{T},\left\{\vec{v}_{j}\right\}$ is a Cauchy sequence in $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{(m)}\right), t \in[0, T)$, and therefore \vec{v}_{j} has the limit $\vec{v} \in \mathscr{H}_{(0, m)}(H)$ and \vec{v} is a solution of the Cauchy problem (13) associated with \vec{g} and $\vec{\beta}$. In virtue of Proposition 5, it follows that $\vec{u} \epsilon$ $\mathscr{H}_{(0,-s)}(H)$, which was to be proved.

Proposition 7. (CP $)_{(s)}$ holds for L if and only if the conditions that $\vec{w} \in \mathscr{H}_{(0, s)}(H), L^{*} \vec{w}=0$ in \dot{H} and $\lim _{t \uparrow T} \vec{w}=0$ imply $\vec{w}=0$ in \dot{H}.

Proof. Let $(\mathrm{CP})_{(s)}$ hold for L and $\vec{w} \in \mathscr{H}_{(0,-s)}(H)$ and assume that $L^{*} \vec{w}=0$ in ${ }_{H}^{H}$ with $\lim _{t \uparrow T} \vec{w}=0$. For any $\vec{f} \in C_{0}^{\infty}(\vec{H})$ let $\vec{u} \in \mathscr{H}_{(0, s)}(H)$ be a solution of $L \vec{u}=\vec{f}$. Since $\left(E_{(s)}^{2} \uparrow\right)_{T}$ holds for L, there exists a sequence $\left\{\vec{\phi}_{j}\right\}, \vec{\phi}_{j} \in C_{0}^{\infty}(H)$, vanishing near $t=0$ and we have $\int_{0}^{T}\left(L \vec{\phi}_{j}(t, \cdot), \vec{w}(t, \cdot)\right) d t=0$. Thus $\vec{w}=0$ in \dot{H}.

To prove the converse, it suffices to show that $A=\left\{(\vec{\phi}(0, \cdot), L \vec{\phi}): \vec{\phi} \in C_{0}^{\infty}(H)\right\}$ is dense in $\boldsymbol{H}_{(s)}=\mathscr{H}_{(s)}\left(R_{n}\right) \times \mathscr{H}_{(0, s)}(H)$. Let $(i \vec{\beta}, \vec{w}) \in \boldsymbol{H}_{(-s)}$ such that

$$
\int_{0}^{T}(L \vec{\phi}(t, \cdot), \vec{w}(t, \cdot)) d t-i\left(\vec{\phi}_{0}, \vec{\beta}\right)=0, \quad \vec{\phi} \in C_{0}^{\infty}(H)
$$

which implies $L^{*} \vec{w}=0$ in \dot{H} and $\lim _{t \uparrow T} \vec{w}=0$. Thus we see that $\vec{w}=0$ in \dot{H} and $\vec{\beta}=0$, completing the proof.

Proposition 8. Let $(\mathrm{CP})_{(s)}$ hold for L. Then the energy inequality $\left(E_{(0)}^{2} \uparrow\right)_{T}$ implies the following:

$$
\begin{gathered}
\left(E_{(0)}^{1} \uparrow\right)_{T}:\|\vec{\phi}(t, \cdot)\|_{(0)} \leqq C_{T}^{\prime}\left(\|\vec{\phi}(0, \cdot)\|_{(0)}+\int_{0}^{t}\left\|L \vec{\phi}\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}\right) \\
0 \leqq t \leqq T, \quad \vec{\phi} \in C_{0}^{\infty}\left(R_{n+1}\right)
\end{gathered}
$$

Proof. From the fact that (CP) $)_{(s)}$ holds for L in any slab $H_{1}=\left[0, T_{1}\right]$ $\times R_{n}, 0<T_{1} \leqq T$, we see by the preceding proposition that the conditions $\vec{w} \in \mathscr{H}_{(0,-s)}\left(H_{1}\right), L^{*} \vec{w}=0$ in \dot{H}_{1} and $\lim _{t \uparrow T_{1}} \vec{w}=0$ imply $\vec{w}=0$. in \dot{H}_{1}, and therefore by Proposition 3 we can conclude that $\left(E_{(s)}^{1} \uparrow\right)_{T}$ holds for L. In virtue of the pseudo-commutativity (*) and Lemma 3 we see that $\left(E_{(s)}^{1} \uparrow\right)_{T}$ implies $\left(E_{\left(s^{\prime}\right)}^{1} \uparrow\right)_{T}$ for any s^{\prime}, completing the proof.

We shall say that $(\mathrm{CP})_{(s)}$ holds for L if the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+}, \tag{14}\\
\lim _{t \downarrow 0} \vec{u}=\vec{\alpha}
\end{array}\right.
$$

has a solution $\vec{u} \in \mathscr{H}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$for any given $\vec{g} \in \mathscr{H}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{\alpha} \in \mathscr{H}_{(s)}\left(R_{n}\right)$.
Consider the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+} \tag{15}\\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}} \vec{u}=\vec{\alpha}
\end{array}\right.
$$

for given $\vec{\alpha} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $\vec{f} \epsilon \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, which has the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension \vec{f}_{\sim}. For the Cauchy problem (15) we can prove with necessary modifications the analogues of Propositions 2 through 8, which were obtained for the slab H.

Theorem 2. Suppose ($E_{(0)}^{2} \uparrow$) holds for L. Then
(1) A solution of the Cauchy problem (15) is unique in $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.
(2) For any given $\vec{g} \in \widetilde{\mathscr{H}}_{(0, s)}^{*}\left(\bar{R}_{n+1}^{+}\right)$, the equation $L^{*} \vec{w}=\vec{g}$ in R_{n+1}^{+}has a solution $\vec{w} \in \widetilde{\mathscr{H}}_{(0, s)}^{*}\left(\bar{R}_{n+1}^{+}\right)$such that $\vec{r}=\lim _{t \downarrow 0} \vec{w}$ exists in $\mathscr{H}_{(s)}\left(R_{n}\right)$ and

$$
\|\vec{\gamma}\|_{(s)}+\int_{0}^{\infty}\|\vec{w}(t, \cdot)\|_{(s)} d t \leqq C_{s} \int_{0}^{\infty}\|\vec{g}(t, \cdot)\|_{(s)} d t
$$

with a constant C_{s}.
(3) The following conditions are equivalent:
(i) (CP) $)_{(s)}$ holds for some real s.
(ii) (CP) $)_{(s)}$ holds for every real s.
(iii) (CP) $)_{(s)}$ holds for $L^{1}=L+\vec{B}(t)$ with $\vec{B}(t) \in \mathbb{C}_{(0)}$.
(iv) If $\vec{w} \in \widetilde{\mathscr{H}}_{(0, s)}^{*}\left(\bar{R}_{n+1}^{+}\right)$and $L \vec{w}=0$ in R_{n+1}^{+}, then $\vec{w}=0$.

If each of these conditions is satisfied, then the energy inequality $\left(E_{(s)}^{1} \uparrow\right)$ holds true for any s.

Let k be a non-negative integer and s a real number. Along the same line as in the proofs of Proposition 5 and Corollary 3 in [9, p. 89, p. 90] we can obtain

Proposition 9. Suppose $\left(E_{(0)}^{2} \uparrow\right)$ and (CP) $)_{(0)}$ hold for L. Then for any $\vec{f} \in \widetilde{\mathscr{H}}_{(k, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{\alpha} \in \mathscr{H}_{(k+s)}\left(R_{n}\right)$ the Cauchy problem (14) has a unique solution $\vec{u} \in \mathscr{H}_{(k+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$and \vec{u} has the following properties:
(i) $\left(\vec{u}, \cdots, D_{t}^{k} \vec{u}\right) \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(k+s)}\right) \times \cdots \times \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(s)}\right)$,

$$
\begin{array}{r}
\sum_{j=0}^{k}\left\|D_{t}^{j} \vec{u}(t, \cdot)\right\|_{(k+s-j)}^{2} \leqq C_{T}\left(\|\vec{\alpha}\|_{(k+s)}^{2}+\sum_{j=0}^{k-1}\left\|D_{t}^{j} \vec{f}(0, \cdot)\right\|_{(k+s-1-j)}^{2}+\right. \tag{ii}\\
\left.+\sum_{j=0}^{k} \int_{0}^{t}\left\|D_{t}^{j} \vec{f}\left(t^{\prime}, \cdot\right)\right\|_{(k+s-j)}^{2} d t^{\prime}\right), \quad 0 \leqq t \leqq T
\end{array}
$$

for any $T>0$.
Applying the interpolation theorem for the Hilbert scales and proceeding along the same lines as in the proof of Corollary 4 in [9, p. 96] we can obtain

Proposition 10. Suppose $\left(E_{(0)}^{2} \uparrow\right)$ and (CP) $)_{(0)}$ hold for L. Then for any $\vec{f} \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{\alpha} \in \mathscr{H}_{(\sigma+s)}\left(R_{n}\right), \sigma$ being a non-negative number, the Cauchy problem (14) has a unique solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$and $(\vec{\alpha}, \vec{f}) \rightarrow \vec{u}$ is a continuous map of $\mathscr{H}_{(\sigma+s)}\left(R_{n}\right) \times \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$into $\tilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$.

Next we show the following
Theorem 3. Suppose $\left(E_{(0)}^{2} \uparrow\right)$ and (CP) $)_{(0)}$ hold for L. Let $\sigma=k+\sigma^{\prime}$ with non-negative integer k and $-\frac{1}{2}<\sigma^{\prime} \leqq \frac{1}{2}$. Then for any $\vec{f} \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{\alpha} \in \mathscr{H}_{(\sigma+s)}\left(R_{n}\right)$ the Cauchy problem (15) has a unique solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$ and \vec{u} has the following properties:
(i) $\left(\vec{u}, \cdots, D_{t}^{k} \vec{u}\right) \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(\sigma+s)}\right) \times \cdots \times \mathscr{E}_{t}^{0}\left(\mathscr{H}_{\left(\sigma^{\prime}+s\right)}\right)$,
(ii) $(\vec{\alpha}, \vec{f}) \rightarrow \vec{u}$ is a continuous map of $\mathscr{H}_{(\sigma+s)}\left(R_{n}\right) \times \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$into $\widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$.

Proof. As shown in Theorem 2 a solution of the Cauchy problem (15) is unique in $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. We shall first consider the case $\sigma \geqq 0$. Owing to Proposition 9 and Corollary 3, there exists a solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$ and \vec{u} has the property (ii). We have only to show that $\left(\vec{u}, \ldots, D_{t}^{k} \vec{u}\right) \epsilon$ $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{(\sigma+s)}\right) \times \cdots \times \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(s)}\right)$. Clearly $\vec{u} \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(\sigma+s)}\right)$ and $\vec{f} \epsilon \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(\sigma+s-1 / 2)}\right)$ for $\sigma>\frac{1}{2}$ and therefore $D_{t} \vec{u}=\vec{f}-\vec{A}(t) \vec{u} \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(\sigma+s-1)}\right)$. Repeating this process, we see that (i) holds true.

Next, consider the case $-\frac{1}{2}<\sigma<0$. The canonical extension \vec{f}_{\sim} belongs to the space $\stackrel{\circ}{\mathscr{\mathscr { H }}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$. If we put

$$
\vec{g}=\frac{\vec{f}_{\sim}}{D_{t}-i \lambda\left(D_{x}\right)}, \text { i.e. } \quad D_{t} \vec{g}-i \lambda\left(D_{x}\right) \vec{g}=\vec{f}_{\sim}
$$

where $\lambda(\xi)=\left(1+|\xi|^{2}\right)^{1 / 2}$ and $\lambda\left(D_{x}\right) \in \mathfrak{C}_{(1)}^{\infty}$, then $\vec{g} \in \stackrel{\circ}{\mathscr{\mathscr { H }}}_{(\sigma+1, s)}\left(\bar{R}_{n+1}^{+}\right), \frac{1}{2}<\sigma+1<1$. From Corollary 3 in [8, p. 419] we see that $\lim _{t \downarrow 0} g$ exists and equals 0 . The Cauchy problem (15) can be written in the form

$$
\left\{\begin{array}{l}
D_{t}(\vec{u}-\vec{g})+\vec{A}(t)(\vec{u}-\vec{g})=-i \lambda\left(D_{x}\right) \vec{g}-\vec{A}(t) \vec{g} \quad \text { in } R_{n+1}^{+} \\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}}(\vec{u}-\vec{g})=\vec{\alpha}
\end{array}\right.
$$

where $-i \lambda\left(D_{x}\right) \vec{g}-\vec{A}(t) \vec{g} \in \dot{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right), \sigma+1>\frac{1}{2}$. Thus there exists a unique solution $\vec{v}=\vec{u}-\vec{g} \in \widetilde{\mathscr{H}}_{(\sigma+2, s-2)}\left(\bar{R}_{n+1}^{+}\right) \cap \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(\sigma+s)}\right)$ and therefore $\vec{u}=\vec{v}+\vec{g}$ $\epsilon \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right) \cap \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(\sigma+s)}\right)$. In view of the closed graph theorem it follows that $(\vec{\alpha}, \vec{f}) \rightarrow \vec{u}$ is a continuous map of $\mathscr{H}_{(\sigma+s)}\left(R_{n}\right) \times \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$into $\widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. This completes the proof of the theorem.

We shall close this section with some remarks on energy inequalities.
Proposition 11. If the following inequality for L :

$$
\left(\tilde{E}_{(0)}^{2} \uparrow\right)_{T}:\left\|\vec{\phi}\left(t_{1}, \cdot\right)\right\|_{(0)}^{2} \leqq C_{T}\left(\left\|\vec{\phi}\left(t_{0}, \cdot\right)\right\|_{(0)}^{2}+\int_{t_{0}}^{t_{1}}\|L \vec{\phi}(t, \cdot)\|_{(0)}^{2} d t\right), \vec{\phi} \in C_{0}^{\infty}\left(R_{n+1}\right)
$$

holds for any $t_{0}, t_{1}, 0 \leqq t_{0} \leqq t_{1} \leqq T$ with a constant C_{T}, then the condition that $\vec{w} \in \mathscr{H}_{(0, s)}(H), L^{*} \vec{w}=0$ in \vec{H} and $\lim _{t \uparrow T} \vec{w}=0$ imply $\vec{w}=0$ in \dot{H} is equivalent to saying that the inequality for L^{*} :

$$
\left(E_{(0)}^{1} \downarrow\right)_{T}:\left\|\vec{\phi}\left(t_{0}, \cdot\right)\right\|_{(0)} \leqq C_{t}^{\prime}\left(\left\|\vec{\phi}\left(t_{1}, \cdot\right)\right\|_{(0)}+\int_{t_{0}}^{t_{1}}\left\|L^{*} \vec{\phi}(t, \cdot)\right\|_{(0)} d t\right), \vec{\phi} \in C_{0}^{\infty}\left(R_{n+1}\right)
$$

holds for any $t_{0}, t_{1}, 0 \leqq t_{0} \leqq t_{1} \leqq T$, where C_{T}^{\prime} is a constant.
If this is the case, then ($\left.\tilde{E}_{(0)}^{1} \uparrow\right)$ holds true for L.

Proof. We may take $s=0$. Suppose a solution of the Cauchy problem for L^{*} is unique in $\mathscr{H}_{(0,0)}(H)$. Then it is unique in $\mathscr{H}_{(0,0)}\left(H_{1}\right), H_{1}=\left[0, t_{1}\right] \times R_{n}$. We shall first show that it is also unique in $\mathscr{H}_{(0,0)}\left(H^{\prime}\right), H^{\prime}=\left[t_{0}, t_{1}\right] \times R_{n}$. Let $\vec{w} \in \mathscr{H}_{(0,0)}\left(H^{\prime}\right), L^{*} \vec{w}=0$ in H^{\prime} and $\lim _{t \uparrow t_{1}} \vec{w}=0$. Let t_{0}^{\prime} be a Lebesgue point of the $\mathscr{H}_{(0)}\left(R_{n}\right)$-valued function $\vec{w}(t, \cdot)$ defined on $\left(t_{0}, t_{1}\right)$. Then \vec{w} has the section $\vec{w}\left(t_{0}^{\prime}, \cdot\right)=\vec{\beta} \in \mathscr{H}_{(0)}\left(R_{n}\right)$ for $t=t_{0}^{\prime}$. The Cauchy problem $L^{*} \vec{w}_{1}=0$ in $\left(0, t_{0}^{\prime}\right) \times R_{n}$ with initial condition $\lim _{t \uparrow t_{0}^{\prime}} \vec{w}_{1}=\vec{\beta}$ has a unique solution $\vec{w}_{1} \epsilon \mathscr{H}_{(0,0)}\left(\left[0, t_{0}^{\prime}\right] \times R_{n}\right)$. If we put $\vec{W}=\vec{w}$ in $\left[t_{0}^{\prime}, t_{1}\right) \times R_{n}$ and $\vec{W}=\vec{w}_{1}$ in $\left(0, t_{0}^{\prime}\right] \times R_{n}$, then $L^{*} \vec{W}=0$ in $\left(0, t_{1}\right) \times R_{n}$ and $\lim _{t \uparrow t_{1}} \vec{W}=0$. Our assumption implies $\vec{W}=0$ and therefore $\vec{w}=0$.

Thus, replacing $0, T$ by t_{0}, t_{1} in the proof of Proposition 3, and repeating the same procedure as given there, we see that for given $\vec{g} \in \mathscr{H}_{(0,0)}\left(H^{\prime}\right)$ and $\vec{\beta} \in \mathscr{H}_{(0)}\left(R_{n}\right)$ the Cauchy problem $L^{*} \vec{v}=\vec{g}$ in \dot{H}^{\prime} with initial condition $\lim _{t \uparrow t_{1}} \vec{v}=\vec{\beta}$ has a unique solution $\vec{v} \in \mathscr{H}_{(0,0)}\left(H^{\prime}\right)$ and \vec{v} satisfies the following:

$$
\|\vec{\gamma}\|_{(0)}+\int_{t_{0}}^{t_{1}}\|\vec{v}(t, \cdot)\|_{(0)} d t \leqq C_{T}^{\prime}\left(\|\vec{\beta}\|_{(0)}+\int_{t_{0}}^{t_{1}}\|\vec{g}(t, \cdot)\|_{(0)} d t\right)
$$

where $\vec{r}=\lim _{t \downarrow t_{0}} \vec{v}$ and C_{T}^{\prime} is a constant. As a result, we can conclude that $\left(E_{(0)}^{1} \downarrow\right)_{T}$ holds true for any $\vec{\phi} \in C_{0}^{\infty}\left(R_{n+1}\right)$.

The converse is trivial, since the approximation theorem holds for L^{*}.
Proposition 12. Suppose $\left(E_{(0)}^{2} \uparrow\right)_{T}$ holds for L and L^{*}. Then
(i) $\left(\tilde{E}_{(0)}^{1} \uparrow\right)_{T}$ holds for L and L^{*}.
(ii) $(\mathrm{CP})_{(0)}$ holds for L if and only if $\left(\tilde{E}_{(0)}^{1} \downarrow\right)_{T}$ holds for L^{*}.

Proof. (i) Let t_{0}, t_{1} be any two points such that $0 \leqq t_{0} \leqq t_{1} \leqq T$. Then Proposition 3 implies that for any given $\vec{\beta} \in \mathscr{H}_{(0)}\left(R_{n}\right)$ the Cauchy problem

$$
\left\{\begin{array}{l}
L^{*} \vec{v}=0 \quad \text { in } \dot{H}_{1}, \\
\lim _{t \uparrow t_{1}} \vec{v}=\vec{\beta}
\end{array}\right.
$$

where $H_{1}=\left[0, t_{1}\right] \times R_{n}$, has a solution $\vec{v} \in \mathscr{H}_{(0,0)}\left(H_{1}\right)$ such that $\|\vec{v}(0, \cdot)\|_{(0)} \leqq$ $C_{1}\|\vec{\beta}\|_{(0)}$ with a constant C_{1} independent of t_{1}. From the fact that $\left(E_{(0)}^{2} \uparrow\right)_{T}$ holds for L^{*} it follows that

$$
\|\vec{v}(t, \cdot)\|_{(0)} \leqq C\|\vec{v}(0, \cdot)\|_{(0)} \leqq C_{2}\|\vec{\beta}\|_{(0)}, \quad 0 \leqq t \leqq t_{1} .
$$

From Green's formula

$$
\int_{t_{0}}^{t_{1}}\left(L \vec{u}\left(t^{\prime}, \cdot\right), \vec{v}\left(t^{\prime}, \cdot\right)\right) d t^{\prime}=-i\left\{\left(\vec{u}\left(t_{1}, \cdot\right), \vec{\beta}\right)-\left(\vec{u}\left(t_{0}, \cdot\right), \vec{v}\left(t_{0}, \cdot\right)\right)\right\}
$$

for any $\vec{u} \in C_{0}^{\infty}\left(R_{n+1}\right)$, we have

$$
\begin{aligned}
& \left|\left(\vec{u}\left(t_{1}, \cdot\right), \vec{\beta}\right)\right| \leqq C_{3}\left\{\left\|\vec{u}\left(t_{0}, \cdot\right)\right\|_{(0)}\left\|\vec{v}\left(t_{0}, \cdot\right)\right\|_{(0)}+\right. \\
& \left.\quad+\int_{t_{0}}^{t_{1}}\left\|L \vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(0)}\left\|\vec{v}\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}\right\} \\
& \leqq C_{4}\|\vec{\beta}\|_{(0)}\left\{\left\|\vec{u}\left(t_{0}, \cdot\right)\right\|_{(0)}+\int_{t_{0}}^{t_{1}}\left\|L \vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}\right\},
\end{aligned}
$$

where C_{2}, C_{3} and C_{4} are constants independent of t_{0} and t_{1}. This implies that we have with a constant C_{T}

$$
\left\|\vec{u}\left(t_{1}, \cdot\right)\right\|_{(0)} \leqq C_{T}\left(\left\|\vec{u}\left(t_{0} \cdot,\right)\right\|_{(0)}+\int_{t_{0}}^{t_{1}}\left\|L \vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}\right)
$$

Combining (i) with Proposition 11 leads to (ii), which completes the proof.

3. Uniqueness and existence theorems for the Cauchy problem (II)

Let σ, s be any real numbers and write $\sigma=k+\sigma^{\prime}$ with integer k and $-\frac{1}{2}<\sigma^{\prime} \leqq \frac{1}{2}$. Then we have the following

Proposition 13. Suppose $\left(E_{(0)}^{2} \uparrow\right)$ and (CP) $)_{(0)}$ hold for L. Then
(i) For any $\vec{\alpha} \in \mathscr{H}_{(\sigma+s)}\left(R_{n}\right)$ and $\vec{f} \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$, where \vec{f} is assumed to have the \mathscr{D}_{L}^{\prime}-canonical extension $\vec{f}_{-} \epsilon \stackrel{\mathscr{\mathscr { H }}}{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$, the Cauchy problem (15) has a unique solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$.
(ii) Let $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and assume that $\mathscr{D}_{L^{2}}^{\prime-l_{t} \lim ^{\prime} \vec{u}}$ exists, $L \vec{u}=\vec{f}$
 some real σ, s. Then $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. In particular, if $\vec{\alpha}=0$ then $\vec{u} \epsilon$ $\dot{\mathscr{\mathscr { H }}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$.

Proof. Consider the case $k \geqq 0$. In Theorem 2 we have shown that there exists a solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$for the Cauchy problem (I5). Since a solution of the Cauchy problem (15) is unique in $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ we have only to show that if $\alpha=0$ then $\vec{u}_{\sim} \in \dot{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. Suppose $\vec{\alpha}=0$. Then $\lim _{t \downarrow 0}\left(\vec{u}, \cdots, D_{t}^{k} \vec{u}\right)=0$. In fact, if $k=0$ then $\lim _{t \downarrow 0} \vec{u}=\mathscr{D}_{L^{2}}^{\prime}-\lim _{t \downarrow 0} \vec{u}=0$. Let $k>0$. $\stackrel{t \downarrow 0}{T h e n}$ the condition $\vec{f}_{\sim} \epsilon \stackrel{\circ}{\mathscr{\mathscr { H }}}_{\left(k+\sigma^{\prime}, s\right)}\left(\bar{R}_{n+1}^{+}\right)$implies $\lim _{t \downarrow 0}^{t \downarrow 0}\left(\vec{f}, \cdots, D_{t}^{k-1} \vec{f}\right)=$ $\underset{\substack{\mathscr{D}^{2} \\ t \downarrow 0}}{L_{0}^{2-1}}\left(\vec{f}, \cdots, D_{t}^{k-1} \vec{f}\right)=0$ (cf. Theorem 3 in $[8, \mathrm{p} .419]$). Since $\lim _{t \downarrow 0} \vec{A}(t) \vec{u}=$ $\lim _{t \downarrow 0} \vec{A}^{\prime}(t) \vec{u}=\cdots=0$, it follows from the equation $D_{t} \vec{u}=\vec{f}-\vec{A}(t) \vec{u}$ that $\lim _{t \downarrow 0} D_{t} \vec{u}=0$. Then from the equation $D_{t}^{2} \vec{u}=D_{t} \vec{f}+i \vec{A}^{\prime}(t) \vec{u}+\vec{A}(t) D_{t} \vec{u}$ we obtain $\lim _{t \downarrow 0} D_{t}^{2} \vec{u}=0$.

Repeating this procedure, we see that $\lim _{t \downarrow 0}\left(\vec{u}, \cdots, D_{t}^{k} \vec{u}\right)=0$. In the case where $\sigma^{\prime}<\frac{1}{2}$, by Theorem 3 in $\left[8\right.$, p. 419] we have $\left.\vec{u}_{\sim} \in \stackrel{\check{\mathscr{H}}}{(\sigma+1, s-1)} \bar{R}_{n+1}^{+}\right)$. Let $\sigma^{\prime}=\frac{1}{2}$. Then $\quad \vec{u}_{\sim} \epsilon \stackrel{\mathscr{\mathscr { H }}}{(\sigma+1-\varepsilon, s-1+\varepsilon)}\left(\bar{R}_{n+1}^{+}\right)\left(\stackrel{\ddot{\mathscr{H}}}{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), \quad 0<\varepsilon<1, \quad\right.$ and therefore $\left(D_{t}-i \lambda\left(D_{x}\right)\right) \vec{u}_{\sim}=\vec{f}_{\sim}-\vec{A}(t) \vec{u}_{\sim}-i \lambda\left(D_{x}\right) \vec{u}_{\sim} \epsilon \stackrel{\mathscr{\mathscr { H }}}{(\sigma, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. Consequently $\vec{u}_{\sim} \epsilon$ $\stackrel{\ddot{\mathscr{H}}}{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$.

Consider the case where $k \leqq 0$. We shall reason by descending induction over k. Assume that the results are valid for any $k+1$. Let $\vec{f}_{\dot{\mathscr{C}}} \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$ with $\vec{f}_{\sim} \epsilon \dot{\mathscr{\mathscr { H }}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right), \sigma=k+\sigma^{\prime}$ and $\vec{\alpha} \in \mathscr{H}_{(\sigma+s)}\left(R_{n}\right)$. Let $\vec{g} \in \dot{\mathscr{\mathscr { H }}}_{(\sigma+1, s)}\left(\bar{R}_{n+1}^{+}\right)$be such that

$$
D_{t} \vec{g}-i \lambda\left(D_{x}\right) \vec{g}=\vec{f}_{\sim}
$$

Then it follows from Corollary 3 in $[10, \mathrm{p} .393]$ that $\mathscr{D}_{L^{2}-1 \lim _{t \downarrow 0}} \vec{g}=0$. The Cauchy problem (15) can be written in the form

$$
\left\{\begin{array}{l}
D_{t}(\vec{u}-\vec{g})+\vec{A}(t)(\vec{u}-\vec{g})=-i \lambda\left(D_{x}\right) \vec{g}-\vec{A}(t) \vec{g} \quad \text { in } R_{n+1}^{+} \\
\mathscr{D}_{L^{2}}^{\prime} \lim _{t \downarrow 0}(\vec{u}-\vec{g})=\vec{\alpha}
\end{array}\right.
$$

where $-i \lambda\left(D_{x}\right) \vec{g}-\vec{A}(t) \vec{g} \in \dot{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. Then there exists a solution $\vec{v}=\vec{u}-\vec{g} \in \widetilde{\mathscr{H}}_{(\sigma+2, s-2)}\left(\bar{R}_{n+1}^{+}\right)$and therefore $\vec{u}=\vec{v}+\vec{g} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. In particular, if $\vec{\alpha}=0$ then $\vec{v} \in \stackrel{\mathscr{H}}{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. Thus the proof is complete.

Proposition 14. Suppose $\left(E_{(0)}^{2} \uparrow\right)$ and (CP) $)_{(0)}$ hold for L. For any given $\vec{h} \in \stackrel{\dot{\mathscr{H}}}{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$there exists a unique solution $\vec{v} \in \dot{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$of $L \vec{v}=\vec{h}$.

Proof. First we let $\sigma>-\frac{1}{2}$. The problem to find a solution $\vec{v} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+} \varepsilon$ $\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ for $L \vec{v}=\vec{h}$ is equivalent to the one to find a solution $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ of the Cauchy problem $L \vec{u}=\vec{f}, \vec{f}=\vec{h} \mid R_{n+1}^{+} \in \widetilde{\mathscr{H}}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$, with initial condition $\mathscr{D}_{L^{2}-1 \lim _{t \downarrow 0}} \vec{u}=0$. Thus we see that there exists a solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$ and $\vec{u}_{\sim} \in \dot{\mathscr{\mathscr { H }}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$. Moreover we can conclude that \vec{v} is unique in $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

Let $\sigma \leqq-\frac{1}{2}$. We can then show the existence of a solution $\vec{v} \epsilon$ $\dot{\mathscr{\mathscr { H }}}_{(\sigma+1, s-1)}\left(\bar{R}_{n+1}^{+}\right)$by proceeding along the same line as in the proof of Proposition 13. And the proof is now complete.

Theorem 4. Suppose $\left(E_{(0)}^{2} \uparrow\right)^{-}$and $(\mathrm{CP})_{(0)}$ hold for L. Then for any $\vec{h} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ there exists a unique solution $\vec{v} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ of $L \vec{v}=\vec{h}$ and $\vec{h} \rightarrow \vec{v}$ is a continuous map of $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ onto itself.

Proof. Let $\left\{t_{j}\right\}$ be a sequence of real numbers such that $t_{0}<0<t_{1}<t_{2}<\cdots$ and $\lim _{j \rightarrow \infty} t_{j}=\infty$ and put $U_{j}=\left(t_{j}, t_{j+2}\right)$. Then $\left\{U_{j}\right\}_{j=0,1, \ldots}$ is an open covering
of $\left(t_{0}, \infty\right)$. We can choose a partition of unity $\left\{\phi_{j}\right\}$ subordinate to the covering. Then $\vec{h}=\sum_{j=0}^{\infty} \phi_{j} \vec{h}$. Consider the equations

$$
L \vec{v}_{j}=\phi_{j} \vec{h}, \quad j=0,1, \cdots,
$$

where $\phi_{j} \vec{h} \in \dot{\mathscr{\mathscr { H }}}_{\left(\sigma_{j}, s_{j}\right)}\left(\bar{R}_{n+1}^{+}\right)$for some real numbers σ_{j}, s_{j}. In virtue of Proposition 14 it follows that there exists a solution $\vec{v}_{j} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. From our assumption that $\left(E_{(0)}^{2} \uparrow\right)$ holds for L we see that \vec{v}_{j} vanishes for $t<t_{j}$. Thus $\vec{v}=\sum_{j=0}^{\infty} \vec{v}_{j}$ is well defined in the space $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and \vec{v} is unique in $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

Let us consider the map

$$
l:\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \ni \vec{v} \rightarrow L \vec{v} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right),
$$

which is linear, continuous and onto. Since the space $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is ultrabornological and Souslin (Corollary 1 in [10, p.374]), we see from Corollary in $[16, \mathrm{p} .604]$ that l is an epimorphism. Thus the proof is complete.

Now we can state the following theorem which is an immediate consequence of Theorem 4 and the discussions given just before Lemma 3.

Theorem 5. Suppose $\left(E_{(0)}^{2} \uparrow\right)$ and (CP) i0) hold for L. Then for any $\vec{\alpha} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $\vec{f} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, where \vec{f} is assumed to have the $\mathscr{D}_{L_{2}}^{\prime}$-canonical extension $\vec{f}_{\sim} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, the Cauchy problem (15) has a unique solution $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\left(\vec{\alpha}, \vec{f}_{\sim}\right) \rightarrow \vec{u}$ is a continuous map under the topology of $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} \times\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and the topology of $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

4. Pseudo-differential operators with constant coefflcients

Let $A_{i j} \in \mathrm{OP}_{r}, i, j=1,2, \cdots, N$, such that $\frac{\partial}{\partial x_{k}}\left(A_{i j} \phi\right)=A_{i j}\left(\frac{\partial}{\partial x_{k}} \phi\right), k=1,2, \ldots, N$, hold for any $\phi \in C_{0}^{\infty}\left(R_{n}\right)$. Then there exist distributions $T_{A_{i j}} \in \mathscr{D}^{\prime}\left(R_{n}\right)$, with which we can write $A_{i j} u=T_{A_{i j}} *^{\prime} u, u \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, where by $*^{\prime}$ we mean the partial convolution with respect to the variable x. By taking δ as u we see that $T_{A_{i j}} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. We shall denote by \vec{A} (resp. $\left.\vec{T}_{A}\right)$ the $N \times N$ matrix with entries $A_{i j}\left(\right.$ resp. $\left.T_{A_{i j}}\right)$. Then we can write $\vec{A} \vec{u}=\vec{T}_{A^{*}} \vec{u}$. The map $l: \hat{\vec{u}} \rightarrow\left(1+|\xi|^{2}\right)^{-\frac{r}{2}} \times$ $\hat{\vec{T}}_{A}(\xi) \hat{\vec{u}}$ is a bounded operator of $L^{2}\left(\Xi_{n}\right)$ into itself and its norm is given by the formula

$$
\|l\|=\text { ess. sup }\left|\left(1+|\xi|^{2}\right)^{-\frac{r}{2}} \hat{\vec{T}}_{A}(\xi)\right|
$$

where we mean by $|\vec{X}|$ the operator norm of a matrix \vec{X}. Thus $\hat{\vec{T}}_{A_{i j}}(\xi)$ is a locally summable function for $i, j=1,2, \cdots, N$ and

$$
\left|\hat{\vec{T}}_{A}(\xi)\right| \leqq C\left(1+|\xi|^{2}\right)^{\frac{r}{2}}
$$

with a constant $C=\|l\|$.
In this section we shall deal with the operator $L=D_{t}+\vec{A}$, where $\vec{A} \in \mathrm{OP}_{r}$ is a convolution operator given above.

Proposition 15. If $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ satisfies $L \vec{u}=0$ in R_{n+1}^{+}and $\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}} \vec{u}=0$, then $\vec{u}=0$ in R_{n+1}^{+}.

Proof. By Proposition 9 we see that \vec{u} may be considered as a $\mathscr{D}_{L^{2}}^{\prime}$-valued C^{∞} function of t. If we write $\vec{A} \vec{u}=\vec{T}_{A} *^{\prime} \vec{u}$ with a $\vec{T}_{A} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ such that $\left|\hat{\vec{T}}_{A}(\xi)\right| \leqq C\left(1+|\xi|^{2}\right)^{r / 2}$, then the Fourier transformation of $D_{t} \vec{u}+\vec{A}(t) \vec{u}$ with respect to x is written in the form

$$
D_{t} \hat{\vec{u}}(t, \xi)+\hat{\vec{T}}_{A}(\xi) \hat{\vec{u}}(t, \xi)=0 .
$$

Since $e^{i \hat{T}_{A}(\xi) t}$ is a locally summable function of ξ, $e^{i \dot{T}_{A}(\xi) t} \hat{\hat{u}}$ is well defined as $\mathscr{D}^{\prime}\left(\Xi_{n}\right)$-valued C^{∞} function of t and $D_{t}\left(e^{i \tilde{T}_{A}(\xi) t} \hat{u}\right)=0$ and therefore $\vec{U}(\xi)=$ $e^{i \hat{T}_{A}(\xi) t} \hat{\vec{u}}(t, \xi) \in \mathscr{D}^{\prime}\left(\Xi_{n}\right)$. On the other hand, from $\mathscr{D}_{L^{2}}^{\prime} \lim _{t \downarrow 0} u=0$ we see that $\lim _{t \downarrow 0} \vec{u}=\lim _{t \downarrow 0} \hat{\vec{u}}=0$. Thus $\vec{U}(\xi)=0$ as a distribution. Thus we can conclude that $\vec{u}=0$ as a distribution.

We shall say the Cauchy problem for L is well posed in the L^{2} norm if for any $\vec{\alpha} \in C_{0}^{\infty}\left(R_{n}\right)$ the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{u}=0 \quad \text { in } \quad(0, T) \times R_{n} \\
\lim _{t \downarrow 0} \vec{u}=\vec{\alpha}
\end{array}\right.
$$

has a unique solution $\vec{u} \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(0)}\right), 0 \leqq t \leqq T$, and

$$
\|\vec{u}(t, \cdot)\|_{(0)} \leqq C_{T}\|\vec{u}(0, \cdot)\|_{(0)}, \quad 0 \leqq t \leqq T
$$

where $T>0$ is arbitrary.
Then the Cauchy problem for L is well posed in the L^{2} norm if and only if

$$
\left|e^{-i \hat{\mathscr{T}}_{A}(\xi) t}\right| \leqq C_{T}, \quad 0 \leqq t \leqq T
$$

If we put $k=\left(\log C_{T}\right) / T$, then

$$
\left|e^{-i \hat{T}_{A}(\xi) t}\right| \leqq C_{T} e^{k t}, \quad 0 \leqq t<\infty
$$

and therefore

$$
\left|e^{-\left(i \hat{T}_{A}(\xi)+k I\right) t}\right| \leqq C_{T}, \quad 0 \leqq t<\infty
$$

In [17, p. 411] G. Strang gave a necessary and sufficient condition in order that a Kowalewski system may be strongly hyperbolic. In connection
with his studies we shall show the following
Proposition 16. The following conditions are equivalent:
(1) The Cauchy problem for L is well posed in the L^{2} norm.
(2) $\left(E_{(0)}^{1} \uparrow\right)$ holds for L and $\left(E_{(0, \downarrow}^{1} \downarrow\right)$ holds for L^{*}.
(3) $\left(E_{(0)}^{2} \uparrow\right)$ holds for L and $\left(E_{(0)}^{2} \downarrow\right)$ holds for L^{*}.
(4) $\left(E_{(0)}^{2} \uparrow\right)$ holds for L.

Proof Since the implications $(2) \Rightarrow(3),(3) \Rightarrow(4)$ are trivial, we have only to show the implications $(1) \Rightarrow(2)$ and $(4) \Rightarrow(1)$.
(1) $\Rightarrow(2)$. For any $\vec{u} \in C_{0}^{\infty}\left(R_{n+1}\right)$ if we put $\vec{f}=L \vec{u}$, then we have

$$
D_{t} \hat{\vec{u}}(t, \xi)+\hat{\vec{T}}_{A}(\xi) \hat{\vec{u}}(t, \xi)=\hat{\vec{f}}(t, \xi),
$$

and therefore

$$
\hat{\vec{u}}(t, \xi)=e^{-i \hat{F}_{A}(\xi) t} \hat{\vec{u}}(0, \xi)+i \int_{0}^{t} e^{-i \dot{f}_{A}(\xi)\left(t-t^{\prime}\right)} \dot{\vec{f}}\left(t^{\prime}, \xi\right) d t^{\prime}
$$

which implies that ($E_{(0)}^{1} \uparrow$) holds for L and similarly $\left(E_{(0)}^{1} \downarrow\right)$ holds for L^{*}.
$(4) \Rightarrow(1)$. Consider the set $\left.A=\left\{(\vec{\phi}(0, \cdot), L \vec{\phi}): \vec{\phi} \in C_{0}^{\infty}{ }_{(n+1}\right)\right\}$. Then the set A is dense in $\mathscr{H}_{(0)}\left(R_{n}\right) \times \widetilde{\mathscr{H}}_{(0,0)}\left(\bar{R}_{n+1}^{+}\right)$. In fact, let $(-i \vec{\beta}, \vec{w})$ be any element of $\mathscr{H}_{(0)}\left(R_{n}\right) \times \widetilde{\mathscr{H}}_{(0,0)}^{*}\left(\bar{R}_{n+1}^{+}\right)$such that

$$
\int_{0}^{\infty}(L \vec{\phi}(t, \cdot), \vec{w}(t, \cdot)) d t-i(\vec{\phi}(0, \cdot), \vec{\beta})=0 .
$$

This means that $L^{*} \vec{w}=0$ in R_{n+1}^{+}, and therefore the preceding proposition implies $\vec{w}=0$ and $\vec{\beta}=0$. Thus there exists a sequence $\left\{\vec{\phi}_{j}\right\}, \vec{\phi}_{j} \in C_{0}^{\infty}\left(R_{n+1}\right)$, such that $L \vec{\phi}_{j} \rightarrow 0$ in $\widetilde{\mathscr{H}}_{(0,0)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{\phi}_{j}(0, \cdot) \rightarrow \vec{\alpha}$. In virtue of $\left(E_{(0)}^{2} \uparrow\right)$ we see that $\left\{\vec{\phi}_{j}(t, \cdot)\right\}$ is a Cauchy sequence in $\mathscr{E}_{t}^{0}\left(\mathscr{H}_{(0)}\right)$. If we put $\vec{u}=\lim _{j \rightarrow \infty} \vec{\phi}_{j}$, then $\vec{u} \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(0)}\right)$ and for any $T>0$ we have $\|\vec{u}(t, \cdot)\|_{(0)} \leqq C_{T}\|\vec{\alpha}\|_{(0)}, 0 \leqq t \leqq T$.

Let \mathfrak{F} be a family of $N \times N$ matrices $\vec{M}(\xi)$ of measurable functions of ξ. As an analogue of a result of H.-O. Kreiss [12, p. 71; 13, p.113], we can show the following

Proposition 17. The following conditions are equivalent:
(1) $\left|e^{\vec{M}(\xi) t}\right| \leqq C$ for all $t \geqq 0$ and $\vec{M} \in \mathfrak{F}$ a.e. on Ξ_{n}.
(1)' For any complex number s with $\operatorname{Re} s>0$ there exists a constant C such that for all $\vec{M} \in \mathfrak{F}$

$$
(\vec{M}(\xi)-s I)^{-1} \leqq C / \operatorname{Re} s \text { a.e. on } \Xi_{n} .
$$

(2) There exist a constant C and a matrix \vec{S}, whose entries are measurable functions of ξ, such that for all $\vec{M} \in \mathfrak{F}$

$$
|\vec{S}(\xi)|,\left|\vec{S}^{-1}(\xi)\right| \leqq C
$$

and

$$
S M S^{-1}=\left(\begin{array}{ccccc}
x_{1} & b_{12} \ldots \ldots \cdots \cdots & b_{1 N} \\
0 & x_{2} & b_{23} \ldots \cdots \cdots & b_{2 N} \\
\ldots \ldots \ldots \ldots \ldots \cdots \cdots \cdots \cdots \\
0 \ldots \ldots \ldots \cdots \cdots & 0 & x_{N}
\end{array}\right) \quad \text { a.e. on } \Xi_{n}
$$

where $0 \geqq \operatorname{Re} x_{1} \geqq \operatorname{Re} x_{2} \geqq \cdots \geqq \operatorname{Re} x_{N}$ and $\left|b_{i j}\right| \leqq C\left|\operatorname{Re} x_{i}\right|$.
(3) There exist a constant C and a positive definite Hermitian matrix $\vec{H}(\xi)$ such that for all $\vec{M} \in \mathfrak{F}$

$$
|\vec{H}(\xi)|,\left|\vec{H}^{-1}(\xi)\right| \leqq C \text { and } \vec{H} \vec{M}+\vec{M}^{*} \vec{H} \leqq 0 \quad \text { a.e. on } \Xi_{n} .
$$

The proposition with $\vec{M}(\xi)$ replaced by $-i \vec{T}_{A}(\xi)-k I$ yields the following
Corollary 3. The following conditions are equivalent:
(1) $\left|e^{-\left(i \dot{T}_{A}(\xi)+k I\right) t}\right| \leqq C$ for $t \geqq 0$ and a.e. on Ξ_{n}.
(2) There exist a constant C and a matrix \vec{S} such that

$$
|S(\xi)|,\left|S^{-1}(\xi)\right| \leqq C
$$

and

$$
\vec{S} \hat{\vec{T}}_{A} \vec{S}^{-1}=\left(\begin{array}{cccc}
x_{1} b_{12} \ldots \ldots \ldots \cdots & b_{1 N} \\
0 x_{2} b_{23} \ldots \ldots \ldots & b_{2 N} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
0 \ldots \ldots \ldots \ldots \ldots & 0 & x_{N}
\end{array}\right) \quad \text { a.e. on } \Xi_{n}
$$

where $k \geqq \operatorname{Im} x_{1} \geqq \cdots \geqq \operatorname{Im} x_{N}$ and $\left|b_{i j}\right| \leqq C\left(\left|\operatorname{Im} x_{i}-k\right|\right)$.
(3) There exist a constant C and a positive definite Hermitian matrix $\vec{H}(\xi)$ such that

$$
|\vec{H}(\xi)|,\left|\vec{H}^{-1}(\xi)\right| \leqq C \text { and }-i\left(\vec{H}(\xi) \hat{\vec{T}}_{A}(\xi)-\hat{\vec{T}}_{A}^{*}(\xi) \vec{H}(\xi)\right) \leqq k C \quad \text { a.e. on } \Xi_{n} .
$$

Proposition 18. Suppose $\hat{\vec{T}}_{A}(\xi)$ is positive homogeneous of degree $r>0$, that is, $\hat{\vec{T}}_{A}(\lambda \xi)=\lambda^{r} \hat{\vec{T}}_{A}(\xi)$ for $\lambda>0$. For the operator $L=D_{t}+\vec{A}(t)$, the energy inequality $\left(E_{0, ~ 2}^{2} \uparrow \downarrow\right)$ holds if and only if the eigenvalues χ_{j} of the matrix $\hat{\vec{T}}_{A}(\xi)$ are real and $\hat{T}_{A}(\xi)$ is symmetrizable.

Proof. Suppose ($E_{(0)}^{2} \uparrow$) holds for L. Let $\chi_{j}(\xi), j=1,2, \cdots, N$, be the eigenvalues of $\hat{T}_{A}(\xi)$. From that $\left(E_{(0)}^{2} \uparrow\right)$ holds for L it follows by Corollary 3 (2) that $k \geqq \operatorname{Im} \chi_{j}(\xi)$ and $\chi_{j}(\lambda \xi)=\lambda^{r} \chi_{j}(\xi)$, and therefore $\frac{k}{\lambda^{r}} \geqq \operatorname{Im} \chi_{j}(\xi)$. On the other hand, that ($E_{(0)}^{2} \downarrow$) holds for L means that ($E_{(0)}^{2} \downarrow$) holds for $L^{1}=D_{t}-\vec{A}$. In the same way as above, we can conclude that $0 \geqq-\operatorname{Im} \chi_{j}(\xi)$, and therefore $\operatorname{Im} x_{j}(\xi)=0$ for $j=1,2, \cdots, N$.

From the relation $\left|e^{-i \dot{\vec{T}}_{A}(\xi) t}\right| \leqq C_{T}, 0 \leqq t \leqq T$, together with the fact that $\hat{\vec{T}}_{A}(\xi)$ is positive homogeneous of degree r, we may take $k=0$, and by Corollary 3 (2) we can conclude that $b_{i j}=0$ for any i, j. Taking $\vec{H}(\xi)=\vec{S}^{*}(\xi) \vec{S}(\xi)$, we see that $\vec{H}(\xi)$ is a positive definite Hermitian matrix, $\vec{H}(\xi), \vec{H}^{-1}(\xi)$ are bounded and $\vec{H}(\xi) \hat{\vec{T}}_{A}(\xi)$ is Hermitian.

The converse is well known [3, p. 111].
Let $\vec{A} \in \mathrm{OP}_{r}, r>0$ and $\chi_{j}(\xi), j=1,2, \cdots, N$, be the characteristic roots of the matrix $\hat{\vec{T}}_{A}(\xi)$. If there exist constants $C>0$ and C_{0} such that

$$
\operatorname{Im} \chi_{j}(\xi) \leqq-C|\xi|^{r}+C_{0}
$$

then the Cauchy problem for the operator $L=D_{t}+\vec{A}$ is well posed in the L^{2} norm. In fact, we have for any $T>0$

$$
\begin{aligned}
\left|e^{-i \hat{T}_{A}(\xi) t}\right| & \leqq\left(1+2 t\left|\hat{\vec{T}}_{A}(\xi)\right|+\cdots+(2 t)^{N-1}\left|\hat{\vec{T}}_{A}(\xi)\right|^{N-1}\right) e^{t \max _{j} \operatorname{Im} x_{j}(\xi)} \\
& \leqq C_{1}\left(1+t|\xi|^{r}+\cdots+\left(t|\xi|^{r}\right)^{N-1}\right) e^{-C t|\xi|^{r}} \\
& \leqq C_{2}, \quad 0 \leqq t \leqq T .
\end{aligned}
$$

For example, the Cauchy problem for the operator $D_{t}-i \lambda^{r}\left(D_{x}\right), \lambda(\xi)=$ $\left(1+|\xi|^{2}\right)^{1 / 2}$ is well posed in the L^{2} norm.

Let us consider a pseudo-differential operator with the form:

$$
P(D)=D_{t}^{m}+\sum_{j=1}^{m} A_{j} D_{t}^{m-j}
$$

where A_{j} are convolution operators such that $A_{j} \in \mathrm{OP}_{r_{j}}$. For any given $\vec{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{m-1}\right), \alpha_{j} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $f \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, where f is assumed to have the $\mathscr{D}_{L^{2}}^{\prime 2}$-canonical extension $f_{\sim} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, the problem to find a solution $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ of the Cauchy problem

$$
\left\{\begin{array}{l}
P(D) u=f \quad \text { in } R_{n+1}^{+}, \tag{16}\\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}^{\prime}}\left(u, D_{t} u, \cdots, D_{t}^{m-1} u\right)=\vec{\alpha}
\end{array}\right.
$$

is reduced to the problem to find $w \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ such that

$$
P w=f_{\sim}+\sum_{k=0}^{m-1} D_{t}^{k} \delta \otimes r_{k}
$$

where $\gamma_{k}=-i\left(\alpha_{m-k-1}+\sum_{\nu=1}^{m-k-1} A_{m-\nu-k} \alpha_{\nu-1}\right)([9, \mathrm{p} .82])$ and $u=\left(w \mid R_{n+1}^{+}\right)_{\sim}$. We shall use the notation $\Gamma(\vec{\alpha})=\left(\gamma_{0}, \cdots, \gamma_{m-1}\right)$.

On the other hand, by the Calderón transformation

$$
v_{j}=S^{m-j} D_{t}^{j-1} u, j=1,2, \cdots, m
$$

the Cauchy problem (16) can be written in the form

$$
\left\{\begin{array}{l}
L \vec{v} \equiv D_{t} \vec{v}+\vec{A} \vec{v}=\vec{f} \quad \text { in } R_{n+1}^{+} \tag{17}\\
\mathscr{D}_{L^{2}}^{\prime-} \lim _{t \downarrow 0} \vec{v}=\vec{\beta}
\end{array}\right.
$$

where $\vec{f}=(0, \cdots, 0, f), \vec{\beta}=\left(S^{m-1} \alpha_{0}, \cdots, \alpha_{m-1}\right)$,
and $\vec{A} \in \mathrm{OP}_{r}, r=\max \left(1, r_{j}+(1-j)\right)$.
Let us denote by [$\left.E_{(0)}^{2} \uparrow\right]$ the following energy inequality :

$$
\begin{aligned}
& {\left[E_{(0)}^{2} \uparrow\right]: \sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi(t, \cdot)\right\|_{(m-1-j)}^{2} \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi(0, \cdot)\right\|_{(m-1-j)}^{2}+\right.} \\
& \left.\quad+\int_{0}^{t}\left\|P \phi\left(t^{\prime}, \cdot\right)\right\|_{(0)}^{2} d t^{\prime}\right), 0 \leqq t \leqq T, \phi \in C_{0}^{\infty}\left(R_{n+1}\right)
\end{aligned}
$$

with a constant C_{T}. We shall use the notations $\left[E_{(0)}^{2} \downarrow\right],\left[E_{(0)}^{1} \uparrow\right],\left[E_{(0)}^{1} \uparrow\right]$ and the like with obvious meanings. If $\left[E_{(0)}^{2} \uparrow\right]$ holds for P, then $\left[E_{(0)}^{2} \downarrow\right]$ holds for $P^{*}=D_{t}^{m}+\sum_{j=0}^{m-1} \bar{A}_{j} D_{t}^{m-j}$. In fact, if we put $\psi(t)=\bar{\phi}(-t)$ for any $\phi \in C_{0}^{\infty}\left(R_{n+1}\right)$, then $\overline{P^{*}(D)} \phi=P(D) \psi$ and

$$
\begin{aligned}
\sum_{j=0}^{m-1}\left\|D_{t}^{j} \psi(t, \cdot)\right\|_{(m-1-j)}^{2} & \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} \psi(0, \cdot)\right\|_{(m-1-j)}^{2}+\right. \\
& \left.+\int_{0}^{t}\left\|P(D) \psi\left(t^{\prime}, \cdot\right)\right\|_{(0)}^{2} d t^{\prime}\right), \quad 0 \leqq t \leqq T
\end{aligned}
$$

which implies

$$
\begin{aligned}
\sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi(-t, \cdot)\right\|_{(m-1-j)}^{2} \leqq C_{T}(& \sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi(0, \cdot)\right\|_{(m-1-j)}^{2}+ \\
& \left.+\int_{-t}^{0}\left\|P^{*}(D) \phi\left(t^{\prime}, \cdot\right)\right\|_{(0)}^{2} d t^{\prime}\right)
\end{aligned}
$$

Similarly if $\left[E_{(0)}^{1} \uparrow\right]$ holds for P, then $\left[E_{(0)}^{1} \downarrow\right]$ holds for P^{*}.
Proposition 19. Suppose $\left[E_{(0)}^{2} \uparrow\right]$ holds true for P. For any $f \epsilon$ $\widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$and $\vec{\alpha} \in \mathscr{H}_{(m-1)}\left(R_{n}\right) \times \cdots \times \mathscr{H}_{(0)}\left(R_{n}\right)$ the Cauchy problem (16) has a unique solution $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and u has the properties

$$
\begin{equation*}
D_{t}^{j} u \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(s+m-1-j)}\right), j=0,1, \ldots, m-1 \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{aligned}
\sum_{j=0}^{m-1}\left\|D_{t}^{j} u(t, \cdot)\right\|_{(m+s-1-j)}^{2} & \leqq C_{T}^{(s)}\left(\sum_{j=0}^{m-1}\left\|\alpha_{j}\right\|_{(m+s-1-j)}^{2}+\right. \\
& \left.+\int_{0}^{t}\left\|f\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime}\right)
\end{aligned}
$$

with a constant $C_{T}^{(s)}$.
Proof. Uniqueness of a solution is trivial by Proposition 15. It is sufficient to show that the set $A=\left\{\left(\Gamma\left(\vec{\phi}_{0}\right), P \vec{\phi}\right): \phi \in C_{0}^{\infty}\left(R_{n+1}\right)\right\}, \vec{\phi}_{0}=(\phi(0, \cdot), \cdots$, $\left.D_{t}^{m-1} \phi(0, \cdot)\right)$, is dense in $\left(\mathscr{H}_{(s+m-1)}\left(R_{n}\right) \times \cdots \times \mathscr{H}_{(s)}\left(R_{n}\right)\right) \times \widetilde{\mathscr{H}}_{(0, s)}\left(\bar{R}_{n+1}^{+}\right)$. Let $\vec{\beta} \in \mathscr{H}_{(0)}\left(R_{n}\right) \times \cdots \times \mathscr{H}_{(-m+1)}\left(R_{n}\right)$ and $w \in \widetilde{\mathscr{H}}_{(0,-s)}^{*}\left(\bar{R}_{n+1}^{+}\right)$such that

$$
\int(P \phi(t, \cdot), w(t, \cdot)) d t+\left(\Gamma\left(\vec{\phi}_{0}\right), \vec{\beta}\right)=0, \quad \phi \in A
$$

Then $P^{*} w=0$ in R_{n+1}^{+}, and therefore $w=0$ and $\beta=0$.
If for any $\vec{\alpha} \in C_{0}^{\infty}\left(R_{n+1}\right)$ the Cauchy problem:

$$
\left\{\begin{array}{l}
P(D) u=0 \quad \text { in }(0, T) \times R_{n} \\
\lim _{t \downarrow 0}\left(u, D_{t} u, \cdots, D_{t}^{m-1} u\right)=\alpha,
\end{array}\right.
$$

where $T>0$ is arbitrary, has a unique solution $u \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(m-1)}\right)$ such that $D_{t}^{j} u \in \mathscr{E}_{t}^{0}\left(\mathscr{H}_{(m-1-j)}\right), j=0,1, \ldots, m-1$, and

$$
\sum_{j=0}^{m-1}\left\|D_{t}^{j} u(t, \cdot)\right\|_{(m-1-j)}^{2} \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} u(0, \cdot)\right\|_{(m-1-j)}^{2}\right), \quad 0 \leqq t \leqq T
$$

with a constant C_{T}, then we shall say that P satisfies the property (W).
Let L be the operator associated with P by the Calderón transformation. Then we have the following

Theorem 6. The following conditions are equivalent:
(1) P satisfies the property (W).
(2) $\left[E_{(0)}^{1} \uparrow\right]$ holds for P and $\left[E_{(0) \downarrow}^{1} \downarrow\right]$ holds for P^{*}.
(3) $\left[E_{(0)}^{2} \uparrow\right]$ holds for P.
(4) The Cauchy problem for L is well posed in the L^{2} norm.
(5) $\quad\left(E_{(0)}^{1} \uparrow\right)$ holds for L and $\left(E_{(0)}^{1} \downarrow\right)$ holds for L^{*}.
(6) $\left(E_{(0)}^{2} \uparrow\right)$ holds for L.

Proof. The conditions (4), (5) and (6) are equivalent by Proposition 16 and the equivalences of (2) and (5), (3) and (6) are trivial by the definition. The implication $(3) \Rightarrow(1)$ is an immediate consequence of the preceding proposition. We have only to show the implication (1) \Rightarrow (4). Let $\vec{\alpha}=\left(\alpha_{0}, \cdots\right.$, $\left.\alpha_{m-1}\right) \in C_{0}^{\infty}\left(R_{n}\right)$. Then $\left(S^{-m+1} \alpha_{0}, S^{-m+2} \alpha_{1}, \cdots, \alpha_{m-1}\right) \epsilon\left(\mathscr{D}_{L^{2}}\right)_{x}$, where $C_{0}^{\infty}\left(R_{n}\right)$ is dense in $\left(\mathscr{D}_{L^{2}}\right)_{x}$. Since the property (W) holds also true of the initial data
$\left(S^{-m+1} \alpha_{0}, \cdots, \alpha_{m-1}\right) \epsilon\left(\mathscr{D}_{L^{2}}\right) x$, the Cauchy problem for L is well posed in the L^{2} norm.

Now let us consider the case where A_{j} can be written in the form

$$
A_{j}=A_{j}^{0} \Lambda^{j}+B_{j}, \quad j=1,2, \ldots, m
$$

where $\hat{T}_{A_{j}^{0}}(\xi)$ are positive homogeneous of degree $0, \hat{T}_{A_{j}^{0}}(\xi)$ continuous on $|\xi|=1$ and B_{j} of order $\leqq j-1$. We put

$$
P_{0}(D)=D_{t}^{m}+\sum_{j=1}^{m} A_{j}^{0} \Lambda^{j} D_{t}^{m-j}
$$

Then we have the following
Proposition 20. [$\left.E_{(0)}^{2} \uparrow \downarrow\right]$ holds for $P(D)$ if and only if the roots of the polynomial $P_{0}(\tau, \xi)$ of τ are real and distinct.

Proof. Suppose [$\left.E_{(0)}^{2} \uparrow \downarrow\right]$ holds for $P(D)$. Then $\left(E_{(0)}^{2} \downarrow \uparrow\right)$ holds for L. L can be written in the form $L=\vec{A}^{0} \Lambda+\vec{B}$, where $\hat{\vec{T}}_{A^{0}}(\xi)$ is positive homogeneous of degree $0, \hat{T}_{A^{0}}(\xi)$ continuous on $|\xi|=1$ and \vec{B} of order $\leqq 0$. Thus we see by Lemma 3 that ($\left.E_{(0) \uparrow \downarrow}^{2} \uparrow\right)$ holds also for $L_{0}=\vec{A}^{0} \Lambda$. Observe that $P_{0}(\tau, \xi)$ is the minimal polynomial of the matrix $\hat{\vec{T}}_{A^{0}}(\xi)$. In virtue of Proposition 18 we see that the roots are real and distinct.

Conversely, suppose the roots of $P_{0}(\tau, \xi)=0$ are real and distinct. Then by necessary modifications of the proofs of Theorems 24 and 25 in A.P. Calderón [3, p. 109, p. 110] there exists a positive definite Hermitian matrix $\vec{H}(\xi)$ such that $\vec{H}(\xi) \hat{\vec{T}}_{A^{0}}(\xi)=\hat{\vec{T}}_{A^{0}}(\xi) \vec{H}(\xi)$. Applying Corollary 3 and Lemma 3 we see that $\left[E_{(0) \downarrow \uparrow]}^{2}\right.$ holds for P.

Corollary 4. In the case where the coefficients of the operators $A_{j}^{0}, j=$ $1,2, \ldots, m$, are real, $\left[E_{(0)}^{2} \uparrow\right]$ holds for P if and only if the roots of $P_{0}(\tau, \xi)=0$ are real and distinct.

5. A characterization of regular hyperbolicity

In our previous paper [9, p. 101] it is shown that a differential operator $P(D)=D_{t}^{m}+\sum_{j=0}^{m-1} \sum_{j+|p| \leqslant m} a_{j, p}(t, x) D_{t}^{j} D_{x}^{p}, a_{j, p} \in \mathscr{B}$, is regularly hyperbolic if and only if, for any fixed $T>0, P(D)$ satisfies the energy inequality:

$$
\begin{aligned}
{\left[\tilde{E}_{(0)}^{1} \uparrow\right]: } & \sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi\left(t_{1}, \cdot\right)\right\|_{(m-1-j)} \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi\left(t_{0}, \cdot\right)\right\|_{(m-1-j)}+\right. \\
& +\int_{t_{0}}^{t_{1}}\|P(D) \phi(t, \cdot)\|_{(0)} d t, \quad 0 \leqq t_{0} \leqq t_{1} \leqq T, \quad \phi \in C_{0}^{\infty}\left(R_{n+1}\right)
\end{aligned}
$$

where C_{T} is a constant.
The aim of this section is to generalize this result to a pseudo-differential operator.
T. Bałabon [1] has investigated the Cauchy problem for a pseudo-differential operators with the form:

$$
P(D)=D_{t}^{m}+\sum_{j=1}^{m} A_{j}(t) D_{t}^{m-j}
$$

where $A_{j}(t)=A_{j}\left(t, x, D_{x}\right)$ is a pseudo-diffenertial operator of order j in the sense of J.J. Kohn and L. Nirenberg, which depends smoothly on t and its asymptotic expansion has only operators of integral order.

Let \mathfrak{B} be the space of all B_{∞} singular integral operators in the sense of A.P. Calderón $[3,14]$ with semi-norms $\left\{p_{m}\right\}_{m}=0,1, \ldots$:

$$
p_{m}: \quad K \rightarrow\|K\|_{m}=\max _{0 \leqq|\alpha| \leqq 2 n}\left\{\sup _{|\varsigma|=1}\left\|\left(\frac{\partial}{\partial \varsigma}\right)^{\alpha} \sigma(K)(x, \varsigma)\right\|_{m}\right\},
$$

where $\|K\|_{m}$ is the norm of B_{m} singular integral operator K.
Consider a pseudo-differential operator with the form

$$
P(D)=D_{t}^{m}+\sum_{j=1}^{m} A_{j}(t) D_{t}^{m-j}, A_{j}(t)=A_{j}^{0}(t) \Lambda^{j}+B_{j}(t)
$$

where $A_{j}^{0}(t)=A_{j}^{0}\left(t, x, D_{x}\right)$ are \mathfrak{B}-valued continuous functions of $t \in R_{t}$ and $B_{j}(t) \in \mathbb{C}_{(j-1)}$. We shall give a characterization of the regular hyperbolicity of $P(D)$ by making use of the energy inequalities.

We shall denote by $P^{0}(D)$ the principal part of $P(D)$:

$$
P^{0}(D)=D_{t}^{m}+\sum_{j=1}^{m} A_{j}^{0}(t) \Lambda^{j} D_{t}^{m-j}
$$

and we put

$$
P_{\left(t_{0}, x_{0}\right)}^{0}(D)=D_{t}^{m}+\sum_{j=1}^{m} A_{j}^{0}\left(t_{0}, x_{0}, D_{x}\right) \Lambda^{j} D_{t}^{m-j}
$$

where the point $\left(t_{0}, x_{0}\right)$ is fixed. Let T be any fixed positive number.
Proposition 21. Suppose the following energy inequality $\left[\tilde{E}_{(0)}^{1} \uparrow\right]$ holds for $P(D)$:

$$
\begin{aligned}
{\left[\tilde{E}_{(0)}^{1} \uparrow\right]: } & \sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi\left(t_{1}, \cdot\right)\right\|_{(m-1-j)} \leqq C_{T}\left(\sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi\left(t_{0}, \cdot\right)\right\|_{(m-1-j)}+\right. \\
& +\int_{t_{0}}^{t_{1}}\left\|(P \phi)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}, \quad 0 \leqq t_{0} \leqq t_{1} \leqq T, \quad \phi \in C_{0}^{\infty}\left(R_{n+1}\right)
\end{aligned}
$$

where C_{T} is a constant. Then $\left[E_{(0)}^{1} \uparrow\right]$ holds for $P_{\left(t_{0}, x_{0}\right)}^{0}(D)$ with a constant independent of $\left(t_{0}, x_{0}\right) \in[0, T] \times R_{n}$.

Proof. Let $\left(t_{0}, x_{0}\right) \in[0, T) \times R_{n}$. For any fixed $\tilde{t} \in(0, T]$ we take λ so large that $t_{0}<t_{1}=t_{0}+\frac{\tilde{t}}{\lambda} \leqq T$. Let $\phi_{\lambda}(t, x)=u\left(\lambda\left(t-t_{0}\right), \lambda\left(x-x_{0}\right)\right)$ for any $u \in C_{0}^{\infty}\left(R_{n+1}\right)$. Then we have

$$
\begin{align*}
\sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi_{\lambda}\left(t_{1}, \cdot\right)\right\|_{(m-1-j)} \leqq C_{T}(& \sum_{j=0}^{m-1}\left\|D_{t}^{j} \phi_{\lambda}\left(t_{0}, \cdot\right)\right\|_{(m-1-j)}+ \tag{18}\\
& \left.+\int_{t_{0}}^{t_{1}}\left\|\left(P(D) \phi_{\lambda}\right)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \left\|D_{t}^{j} \phi_{\lambda}\left(t_{1}, \cdot\right)\right\|_{(m-1-j)}^{2}=\sum_{|p| \leqq m-1-j} \lambda^{2(j+|p|-n \mid 2)}\binom{m-1-j}{p}\left\|D_{t}^{j} D_{p}^{x} u(\tilde{t}, \cdot)\right\|_{(0)}^{2} \\
& \left\|D_{j}^{t} \phi_{\lambda}\left(t_{0}, \cdot\right)\right\|_{(m-1-j)}^{2}=\sum_{|p| \leqq m-1-j} \lambda^{2(j+|p|-n \mid 2)}\binom{m-1-j}{p}\left\|D_{t}^{j} D_{x}^{p} u(0, \cdot)\right\|_{(0) \cdot}^{2} .
\end{aligned}
$$

Moreover, we can write

$$
P(D) \phi_{\lambda}=D_{t}^{m} \phi_{\lambda}+\sum_{j=1}^{m} A_{j}^{0}(t) \Lambda^{j} D_{t}^{m-j} \phi_{\lambda}+\sum_{j=1}^{m} B_{j}(t) D_{t}^{m-j} \phi_{\lambda}
$$

where

$$
\begin{aligned}
A_{j}^{0}(t) \Lambda^{j} D_{t}^{m-j} \phi_{\lambda} & =\frac{1}{(2 \pi)^{2}} \lambda^{m-n} \int \sigma\left(A_{j}^{0}\right)(t, x, \xi)\left|\frac{\xi}{\lambda}\right|^{j} D_{t}^{m-j} \hat{u}\left(\lambda\left(t-t_{0}\right), \frac{\xi}{\lambda}\right) e^{i<x-x_{0}, \xi>} d \xi \\
& =\frac{\lambda^{m}}{(2 \pi)^{n}} \int \sigma\left(A_{j}^{0}\right)(t, x, \xi)|\xi|^{j} D_{t}^{m-j} \hat{u}\left(\lambda\left(t-t_{0}\right), \xi\right) e^{i<\lambda\left(x-x_{0}\right), \xi>} d \xi \\
& =\lambda^{m}\left(A_{j}^{0}\left(\frac{\cdot}{\lambda}+t_{0}, \frac{\cdot}{\lambda}+x_{0}, D_{x}\right) \Lambda^{j} D_{t}^{m-j} u\right)\left(\lambda\left(t-t_{0}\right), \lambda\left(x-x_{0}\right)\right),
\end{aligned}
$$

and therefore

$$
\begin{aligned}
&\left\|\left(P(D) \phi_{\lambda}\right)(t, \cdot)\right\|_{(0)} \leqq \lambda^{m-(n / 2)} \|\left(P_{0}\left(\frac{t}{\lambda}+t, \frac{x}{\lambda}+x_{0}\right)\right. \\
&(D) u)\left(\lambda\left(t-t_{0}\right), \cdot\right) \|_{(0)}+ \\
&+C_{1} \lambda^{m-1-\frac{n}{2}} \sum_{j=1}^{m}\left\|\left(\lambda^{-2}+|\xi|^{2}\right)^{\frac{j-1}{2}} D_{t}^{m-j} \hat{u}\left(\lambda\left(t-t_{0}\right), \cdot\right)\right\|_{(0)}
\end{aligned}
$$

where C_{1} is a constant independent of u but depends on B_{j}. Thus we have

$$
\begin{gathered}
\int_{t_{0}}^{t_{1}}\left\|\left(P(D) \phi_{\lambda}\right)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t \leqq \lambda^{m-1-n / 2} \int_{0}^{t}\left\|\left(P_{\left(\frac{t}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}\right)}(D) u\right)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}+ \\
+C_{1} \lambda^{m-2-n / 2} \sum_{j=1}^{m} \int_{0}^{t}\left\|\left(\lambda^{-2}+|\xi|^{2}\right)^{\frac{j-1}{2}} D_{t}^{m-j} \hat{u}\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}
\end{gathered}
$$

In the case where $n \geqq 2$ we can expand the operator $A_{j}^{0}\left(\frac{t^{\prime}}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}\right.$, $\left.D_{x}\right) f$ in the form

$$
\begin{aligned}
A_{0}^{j}\left(\frac{t^{\prime}}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}, D_{x}\right) f & =a_{0}^{j}\left(\frac{t^{\prime}}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}\right) f \\
+ & \sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} a_{l m}^{j}\left(\frac{t^{\prime}}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}\right) G_{l m} f
\end{aligned}
$$

where $\left\{G_{l m}\right\}$ be a system of Giraud operators associated with a complete orthonormal system of spherical harmonics of degree m and $d(m)=g(m)-g(m-2)$, $g(m)=\binom{m+n-1}{n-1}$, and we set $g(-1)=g(-2)=0$. Since sup $\left\lvert\, a_{0}^{j}\left(\frac{t}{\lambda}+t_{0}\right.$, \right. $\left.\frac{x}{\lambda}+x_{0}\right) \left.\left|\leqq C^{\prime}, \sup \right| a_{l m}^{j}\left(\frac{t}{\lambda}+t_{0}, \frac{x}{\lambda}+x_{0}\right) \right\rvert\, \leqq C^{\prime} m^{-\frac{3}{2} n}\left\|A_{j}^{0}\right\|_{0},\left\|G_{l m} f\right\|_{(0)} \leqq C^{\prime} m^{\frac{n-2}{2}}$ $\gamma_{m}\|f\|_{(0)}$ with $\gamma_{m}=-i^{m}(2 \sqrt{\pi})^{-n} \Gamma(m)\left(\Gamma\left(\frac{m+n}{2}\right)\right)^{-1}$ and $d(m) \leqq C^{\prime} m^{n-2}$, where C^{\prime} is a constant independent of $\left(t_{0}, x_{0}\right)[3,14]$, we obtain with a constant $C^{\prime \prime}$ independent of (t_{0}, x_{0})

$$
\begin{align*}
\| A_{j}^{o}\left(\frac{t}{\lambda}+t_{0},\right. & \left.\frac{x}{\lambda}+x_{0}, D_{x}\right) \Lambda_{j} D_{t}^{m-j} u\left(t^{\prime}, \cdot\right) \|_{(0)} \tag{19}\\
& \leqq C^{\prime \prime}\left(1+\sum_{m=1}^{\infty} m^{-3}\right)\left\|A_{j}^{0}\right\|_{0}\left\|D_{t}^{m-j} u\left(t^{\prime}, \cdot\right)\right\|_{(j)}
\end{align*}
$$

In the case where $n=1$ we can write

$$
\begin{aligned}
A_{j}^{0}\left(\frac{t^{\prime}}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}, D_{x}\right) f & =a_{0}^{j}\left(\frac{t^{\prime}}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}\right) f+ \\
& +a_{1}^{j}\left(\frac{t^{\prime}}{\lambda}+t_{0}, \frac{x^{\prime}}{\lambda}+x_{0}\right) \lim _{\varepsilon \downarrow 0} \int_{|x-y|>\varepsilon} \frac{f(y)}{x-y} d y
\end{aligned}
$$

where $a_{0}^{j}(t, \cdot)$ and $a_{1}^{j}(t, \cdot)$ are B_{∞}-valued continuous function of t. Thus the estimate (19) remains valid.

Dividing both sides of (18) by $\lambda^{m-1-(n / 2)}$, letting $\lambda \rightarrow \infty$ and applying Lebesgue's convergence theorem we obtain the estimate

$$
\begin{gather*}
\sum_{j=0}^{m-1}\left\|\left(\Lambda^{m-1-j} D_{t}^{j} u\right)(\tilde{t}, \cdot)\right\|_{(0)} \leqq C_{T}\left(\sum_{j=0}^{m-1}\left(\Lambda^{m-1-j} D_{t}^{j} u\right)(0, \cdot) \|_{(0)}+\right. \tag{20}\\
\left.+\int_{0}^{i}\left\|P_{\left(t_{0}, x_{0}\right)}^{0}(D) u\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}\right)
\end{gather*}
$$

where C_{T} is a constant independent of (t_{0}, x_{0}) and u.
If we take $u(t, x) e^{i\left\langle x, \xi_{0}\right\rangle}, \xi_{0}=(1,0, \ldots, 0)$, instead of $u(t, x)$, then we get
$\hat{u}\left(t, \xi-\xi_{0}\right)$ as the partial Fourier transform and we have

$$
\begin{gather*}
\sum_{j=0}^{m-1}\left\|\left(\Lambda\left(D_{x}+\xi_{0}\right)\right)^{m-1-j} D_{t}^{j} u(\tilde{t}, \cdot)\right\|_{(0)} \leqq C_{T}\left(\sum_{j=0}^{m-1}\left(\Lambda\left(D_{x}+\xi_{0}\right)\right)^{m-1-j} D_{t}^{j} u(\tilde{t}, \cdot) \|_{(0)}+\right. \tag{21}\\
\left.+\int_{0}^{\tilde{t}}\left\|\left(P_{\left(t_{0}, x_{0}\right)}^{0}(D) u e^{i<x, \xi_{0}>}\right)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}\right)
\end{gather*}
$$

where $\Lambda\left(D_{x}+\xi_{0}\right)$ is defined by $\left(\Lambda\left(D_{x}+\xi_{0}\right) u\right)^{\wedge}=\left|\xi+\xi_{0}\right| \hat{u}$.
It is evident that

$$
\begin{aligned}
& \left(P_{\left(t_{0}, x_{0}\right)}^{0}(D) u e^{\left.i<x, \xi_{0}\right\rangle}\right)^{\wedge} \\
= & D_{t}^{m} \hat{u}\left(t, \xi-\xi_{0}\right)+\sum_{j=1}^{m} \sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi\right)|\xi|^{j} D_{t}^{m-j} \hat{u}\left(t, \xi-\xi_{0}\right) \\
= & D_{t}^{m} \hat{u}\left(t, \xi-\xi_{0}\right)+\sum_{j=1}^{m} \sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi-\xi_{0}\right)\left|\xi-\xi_{0}\right|^{j} D_{t}^{m-j} \hat{u}\left(t, \xi-\xi_{0}\right)+ \\
& +\sum_{j=1}^{m} \sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi\right)\left(|\xi|^{j}-\left|\xi-\xi_{0}\right|^{j}\right) D_{t}^{m-j} \hat{u}\left(t, \xi-\xi_{0}\right)+ \\
& +\sum_{j=1}^{m}\left(\sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi\right)-\sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi-\xi_{0}\right)\right)\left|\xi-\xi_{0}\right|^{j} D_{t}^{m-j} \hat{u}\left(t, \xi-\xi_{0}\right) .
\end{aligned}
$$

From the following estimates:

$$
\left|\sigma\left(A_{j}^{o}\right)\left(t_{0}, x_{0}, \xi\right)\left(|\xi|^{j}-\left|\xi-\xi_{0}\right|^{j}\right)\right| \leqq C_{2}\left(1+\left|\xi-\xi_{0}\right|^{2}\right)^{(j-1) / 2}
$$

and

$$
\begin{aligned}
& \left|\sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi\right)-\sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi-\xi_{0}\right)\right|\left|\xi-\xi_{0}\right|^{j} \\
= & \left|\sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \frac{\xi}{|\xi|}\right)-\sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \frac{\xi-\xi_{0}}{\left|\xi-\xi_{0}\right|}\right)\right|\left|\xi-\xi_{0}\right|^{j} \\
\leqq & C_{3}\left|\frac{\xi}{|\xi|}-\frac{\xi-\xi_{0}}{\left|\xi-\xi_{0}\right|}\right|\left|\xi-\xi_{0}\right|^{j} \\
\leqq & 2 C_{3} \frac{\left|\xi-\xi_{0}\right|^{j}}{|\xi|+\left|\xi-\xi_{0}\right|} \leqq C_{4}\left(1+\left|\xi-\xi_{0}\right|^{2}\right)^{(j-1) / 2},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left.\mid P_{\left(t_{0}, x_{0}\right)}^{0}(D) u e^{i<x, \xi_{0}>}\right)^{\wedge} \mid \\
\leqq & \left.\left|D_{t}^{m} u\left(t, \xi-\xi_{0}\right)+\sum_{j=1}^{m} \sigma\left(A_{j}^{0}\right)\left(t_{0}, x_{0}, \xi\right)\right| \xi\right|^{j} D_{t}^{m-j} \hat{u}\left(t, \xi-\xi_{0}\right) \mid \\
& +\left(C_{2}+C_{4}\right) \sum_{j=1}^{m}\left(1+\left|\xi-\xi_{0}\right|^{2}\right)^{(j-1) / 2}\left|D_{t}^{m-j} \hat{u}\left(t, \xi-\xi_{0}\right)\right|,
\end{aligned}
$$

and therefore

$$
\begin{align*}
& \int_{0}^{\tau}\left\|\left(P_{\left(t t_{0}, x_{0}\right)}^{0}(D) u e^{i<x, \xi_{0}>}\right)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime} \tag{22}\\
\leqq & \int_{0}^{\tau}\left\|\left(P_{\left(t_{0}, x_{0}\right)}^{0}(D) u\right)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}+C_{T}^{0} \sum_{j=1}^{m-1} \int_{0}^{\tau}\left\|D_{t}^{j} u\left(t^{\prime}, \cdot\right)\right\|_{(m-1-j)} d t^{\prime},
\end{align*}
$$

where C_{2}, C_{3}, C_{4} and C_{T}^{0} are constants independent of (t_{0}, x_{0}).
There exists a constant C_{5} such that

$$
\begin{aligned}
\frac{1}{C_{5}^{2}}\left(1+|\xi|^{2}\right)^{m-1-j} & \leqq|\xi|^{2(m-1-j)}+\left|\xi+\xi_{0}\right|^{2(m-1-j)} \\
& \leqq C_{5}^{2}\left(1+|\xi|^{2}\right)^{m-1-j}
\end{aligned}
$$

Thus we obtain the following estimate from (20), (21) and (22)

$$
\begin{aligned}
& \frac{1}{C_{5}} \sum_{j=0}^{m-1}\left\|S^{m-1-j} D_{t}^{j} u(\tilde{t}, \cdot)\right\|_{(0)} \leqq C_{T}\left\{C_{2} \sum_{j=0}^{m-1}\left\|S^{m-1-j} D_{t}^{j} u(0, \cdot)\right\|_{(0)}\right. \\
& \quad+2 \int_{0}^{\tau}\left\|\left(P_{\left(t_{0}, x_{0}\right)}^{0}(D) u\right)\left(t^{\prime}, \cdot\right)\right\|_{(0)} d t^{\prime}+C_{T}^{0} \sum_{j=0}^{m-1} \int_{0}^{\tilde{t}}\left\|D_{t}^{j} u\left(t^{\prime}, \cdot\right)\right\|_{(m-1-j)} d t^{\prime}
\end{aligned}
$$

By Lemma 3 we see that $\left[\tilde{E}_{(0)}^{1} \uparrow\right]$ holds for $P_{\left(t_{0} x_{0}\right)}^{0}(D)$ with a constant independent of $\left(t_{0}, x_{0}\right) \in[0, T) \times R_{n}$ and u. By letting $t_{0} \uparrow T$, we see that $\left[E_{(0)}^{1} \uparrow\right]$ holds for $P_{\left(T, x_{0}\right)}^{0}(D)$ with the same constant. Thus the proof is complete.

Let $\lambda_{j}(t, x, \xi), j=1,2, \cdots, m$, be the roots of the algebraic equation $P^{0}(t, x, \tau, \xi)=0$ with respect to τ. If (i) $\lambda_{j}(t, x, \xi)$ are real for $j=1,2, \ldots, m$ and (ii) there exists a positive constant d_{T} depending on T such that $\left|\lambda_{j}(t, x, \xi)-\lambda_{k}(t, x, \xi)\right| \geqq d_{T}, j \neq k$, hold for $t \epsilon[0, T], x \in R_{n}$ and $\xi \in \Xi_{n}$ with $|\xi|=1$, then P is said to be regularly hyperbolic.

Theorem 7. P is regularly hyperbolic if $\left[\tilde{E}_{(0)}^{1} \uparrow \downarrow\right]$ holds for $P(D)$. The converse holds true when there exists a constant C_{T} such that

$$
\left\|A_{j}^{0}(t)-A_{j}^{0}\left(t^{\prime}\right)\right\|_{0} \leqq C_{T}\left|t-t^{\prime}\right|, \quad 0 \leqq t, t^{\prime} \leqq T
$$

Proof. Suppose [$\left.\tilde{E}_{(0)}^{1} \uparrow \downarrow\right]$ hold for $P(D)$. Then, it follows from the preceding proposition that $\left[E_{(0)}^{1} \uparrow \downarrow\right]$ holds for $P_{\left(t_{0}, x_{0}\right)}^{0}(D),\left(t_{0}, x_{0}\right) \in[0, T] \times R_{n}$, with a constant independent of $\left(t_{0}, x_{0}\right)$. Owing to Theorem $6,\left(E_{(0)}^{1} \uparrow \downarrow\right)$ holds for $L_{\left(t_{0}, x_{0}\right)}^{0}(D)$, the system of linear operators corresponding to $P_{\left(t_{0}, x_{0}\right)}^{0}(D)$ under the Calderon transformation, and therefore from Proposition 18 we see that for any fixed (t_{0}, x_{0}) the roots $\lambda_{j}\left(t_{0}, x_{0}, \xi\right), j=1,2, \cdots, m$, are real and distinct.

For any $\xi^{\prime}, \xi^{\prime \prime} \in \Xi_{n}$ on $|\xi|=1$ we denote by l the spherical distance between $\xi^{\prime}, \xi^{\prime \prime}$ and $\xi(s), 0 \leqq s \leqq l \leqq \pi$, a point on an arc of a great circle with end points $\xi^{\prime}, \xi^{\prime \prime}$. Writing $\sigma\left(A_{j}\right)=\hat{A}_{j}(t, x, \xi)$, we have

$$
\begin{aligned}
\left|\hat{A}_{j}\left(t, x, \xi^{\prime \prime}\right)-\hat{A}_{j}\left(t, x, \xi^{\prime}\right)\right|= & \left|\int_{0}^{l} \sum_{k=1}^{n} \frac{\partial}{\partial \xi_{k}} \hat{A}_{j}(t, x, \xi(s)) \frac{\partial \xi_{k}}{\partial s} d s\right| \\
& \leqq \int_{0}^{l}\left(\sum_{k=1}^{n}\left\|\frac{\partial}{\partial \xi_{k}} \hat{A}_{j}(t, x, \xi(s))\right\|^{2}\right)^{1 / 2} d s \leqq M l
\end{aligned}
$$

where M is a constant and $l \leqq \pi\left|\xi^{\prime}-\xi^{\prime \prime}\right|$.
Let us consider the set

$$
\mathfrak{S}=\left\{\left(\hat{A}_{1}^{0}(t, x, \cdot), \cdots, \hat{A}_{m}^{0}(t, x, \cdot)\right): t \in[0, T], x \in R_{n}\right\},
$$

where $\hat{A}_{j}^{0}(t, x, \cdot)$ are continuous functions of $\xi \in \Xi_{n}$ on $|\xi|=1$ with parameter (t, x), and equip \mathfrak{S} with the uniform convergence topology. Since the set \mathfrak{S} is equicontinuous and uniformly bounded, its closure $\overline{\mathfrak{S}}$ is compact. For any $\left(\hat{B}_{1}, \ldots, \hat{B}_{m}\right) \in \overline{\mathbb{S}}$ the polynomial $Q(\tau, \xi)=\tau^{m}+\sum_{j=1}^{m} \hat{B}_{j}(\xi) \tau^{m-j}$ in τ have simple zeros only. Let Δ_{Q} be its discriminant. Since it is a continuous function of $\left(\hat{B}_{1}, \cdots, \hat{B}_{m}\right) \in \overline{\mathcal{S}}$ and $\xi \in \Xi_{n}$ with $|\xi|=1$, it follows that $\Delta_{Q}(\xi) \geqq d_{T}>0$ for a constant d_{T} depending on T.

Conversely, suppose P is regularly hyperbolic. By means of the Calderón transformation $v_{j}=S^{m-j} D_{t}^{j-1} u, j=1,2, \cdots, m$, we are reduced to consider the system of linear operators

$$
L \vec{v} \equiv D_{t} \vec{v}+\vec{A}^{0}(t) \Lambda \vec{v}+\vec{B}(t) \vec{v}, \quad \vec{v}=\left(v_{1}, \cdots, v_{m}\right)
$$

where the eigenvalues of the matrix $\hat{\vec{A}}^{0}(t, x, \xi)$ are $\lambda_{j}(t, x, \xi), j=1,2, \cdots, m$. Owing to Theorem 25 in [3, p. 110], we see that there exists an $N \times N$ matrix $\vec{N}(t)$ whose elements are continuous linear operators of the space $\mathscr{H}_{(0)}\left(R_{n}\right)$ into itself for every t and which satisfies the following properties:
(i) $\vec{N}(t)$ is a positive definite Hermitian matrix and $t \rightarrow \vec{N}(t)$ is continuous.
(ii) $\left\|\left(\vec{N}(t) \vec{A}^{0}(t) S-S \vec{A}^{0 *}(t) \vec{N}(t)\right) \vec{x}\right\|_{(0)} \leqq M\|\vec{\chi}\|_{(0)}, 0 \leqq t \leqq T, \vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right)$ with a constant M.

By Proposition 22 below (which will be proved in the next section) we see that ($E_{(0)}^{1} \uparrow \downarrow$) holds for L and therefore $\left[E_{(0)}^{1} \uparrow \downarrow\right]$ holds for $P(D)$. Thus the proof is complete.

Corollary 5. Assume that $\hat{A}_{j}^{0}(t, x, \xi), j=1,2, \cdots, m$, are real. If $\left[\tilde{E}_{(0)}^{1} \uparrow\right]$ holds for $P(D)$, then P is regularly hyperbolic.

If $A_{j}^{0}(t)$ is \mathfrak{B}-valued C^{m-j} function of t and $B_{j}(t) \epsilon \underbrace{m-j}_{(j-1)}$ for each j, then we can consider the formal adjoint operator $P^{*}(D)$. Suppose [$\left.E_{(0)}^{2} \uparrow\right]$ holds for $P(D)$ and $P^{*}(D)$. Then in the same way as in the proof of Proposition 8 in $[9$, p. 100$]$ we can show that $\left[\tilde{E}_{(0)}^{1} \uparrow\right]$ holds for $P(D)$ and $\left[\tilde{E}_{(0)}^{1} \downarrow\right]$ for $P_{\left(t 0_{0}, x_{0}\right)}^{*}(D)$. Thus we have the following

Corollary 6. If $\left[E_{(0)}^{2} \uparrow\right]$ holds for $P(D)$ and $P^{*}(D)$, then P is regularly hyperbolic.

6. A generalization of Kaplan's treatment on parabolic operators

Let $\vec{A}(t) \in \mathfrak{C}_{(r)}$. We shall first give a sufficient condition in order that ($\tilde{E}_{(0)}^{1} \uparrow \downarrow$) may hold for $L=D_{t}+\vec{A}(t)$.

Proposition 22. Let $\vec{H}(t), 0 \leqq t \leqq \infty$, be an $N \times N$ positive definite matrix whose elements are continuous linear operators of the space $\mathscr{H}_{(0)}\left(R_{n}\right)$ into itself for each t and suppose that for any $T>0$
(i) There exists a constant γ_{T} such that

$$
\frac{1}{r_{T}}\|\vec{\chi}\|_{(0)}^{2} \leqq(\vec{H}(t) \vec{\chi}, \vec{\chi}) \leqq r_{T}\|\vec{\chi}\|_{(0)}^{2}, \quad 0 \leqq t \leqq T, \quad \vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right)
$$

(ii) $\vec{H}(t)$ is locally Lipsitzian:

$$
\left\|\left(\vec{H}(t)-\vec{H}\left(t^{\prime}\right)\right) \vec{\chi}\right\|_{(0)} \leqq C_{T}\|\vec{\chi}\|_{(0)}\left|t-t^{\prime}\right|, \quad 0 \leqq t, t^{\prime} \leqq T, \quad \vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right)
$$

(iii) There exists a constant C_{T} such that

$$
\left\|\left(\vec{H}(t) \vec{A}(t)-\vec{A}^{*}(t) \vec{H}(t)\right) \vec{\chi}\right\|_{(0)} \leqq C_{T}\|\vec{x}\|_{(0)}, \quad 0 \leqq t \leqq T, \quad \vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right) .
$$

Then ($\tilde{E}_{(0)}^{1} \uparrow \downarrow$) holds for L.
Proof. For any $\vec{u} \in C_{0}^{\infty}\left(R_{n+1}\right)$ we put $\vec{f}=L \vec{u}, h^{2}(t)=(\vec{H}(t) \vec{u}(t, \cdot), \vec{u}(t, \cdot))$ and consider Dini's derivates $D_{ \pm}\left(h^{2}(t)\right)$. Then we have

$$
\begin{aligned}
& D_{ \pm}\left(h^{2}(t)\right) \leqq C_{T}\|\vec{u}(t, \cdot)\|_{(0)}^{2}+\left|\left(\vec{H}(t) D_{t} \vec{u}(t, \cdot), \vec{u}(t, \cdot)\right)-\left(\vec{H}(t) \vec{u}(t, \cdot), D_{t} \vec{u}(t, \cdot)\right)\right| \\
& \leqq C_{T}\|\vec{u}(t, \cdot)\|_{(0)}^{2}+\left|\left(\left(\vec{H}(t) \vec{A}(t)-\vec{A}^{*}(t) \vec{H}(t)\right) \vec{u}(t, \cdot), \vec{u}(t, \cdot)\right)\right|+ \\
& \quad+2\|\vec{f}(t, \cdot)\|_{(0)}\|\vec{H}(t) \vec{u}(t, \cdot)\|_{(0)} \\
& \leqq\left(C_{T}+C_{T}^{\prime}\right)\|\vec{u}(t, \cdot)\|_{(0)}^{2}+2\|\vec{f}(t, \cdot)\|_{(0)}\|\vec{H}(t) \vec{u}(t, \cdot)\|_{(0)} \\
& \leqq r_{T}\left(C_{T}+C_{T}^{\prime}\right) h^{2}(t)+2\left(\gamma_{T}\right)^{1 / 2}\|\vec{f}(t, \cdot)\|_{(0)} h(t)
\end{aligned}
$$

with a constant C_{T}^{\prime}. Put $2 C=\gamma_{T}\left(C_{T}+C_{T}^{\prime}\right)$. From the fact that $D_{-} h^{2}=2 h D_{-} h$ for $h(t)>0$ and $D_{-} h^{2} \leqq 0$ for $h(t)=0$ we obtain

$$
D_{-}\left(e^{-C t} h\right) \leqq e^{-C t}\left(\gamma_{T}\right)^{1 / 2}\|\vec{f}(t, \cdot)\|_{(0)}
$$

and therefore

$$
\begin{aligned}
\left\|\vec{u}\left(t_{1}, \cdot\right)\right\|_{(0)} \leqq r_{T} e^{c\left(t_{1}-t_{0}\right)}\left\|\vec{u}\left(t_{0}, \cdot\right)\right\|_{(0)}+\gamma_{T} \int_{t_{0}}^{t_{1}} e^{-c\left(t-t_{1}\right)}\|\vec{f}(t, \cdot)\|_{(0)} d t & \\
& 0 \leqq t_{0} \leqq t_{1} \leqq T
\end{aligned}
$$

On the other hand, from the inequality

$$
-D_{+} h(t) \leqq C\left(h(t)+\left(\gamma_{T}\right)^{1 / 2}\|\vec{f}(t, \cdot)\|_{(0)}\right)
$$

we obtain

$$
\left\|\vec{u}\left(t_{0}, \cdot\right)\right\|_{(0)} \leqq r_{T} e^{C\left(t_{1}-t_{0}\right)}\|\vec{u}(t, \cdot)\|_{(0)}+\gamma_{T} \int_{t_{0}}^{t_{1}} e^{C\left(t-t_{0}\right)}\|\vec{f}(t, \cdot)\|_{(0)} d t,
$$

which completes the proof.
Proposition 23. If we assume in Proposition 22 that

$$
\vec{H}^{-1}(t)\left(\left(\mathscr{D}_{L^{2}}\right)\right) \subset \mathscr{H}_{(r)}\left(R_{n}\right) \quad \text { for each } t, 0 \leqq t<\infty
$$

then $\left(\tilde{E}_{(0)}^{1} \uparrow \downarrow\right)$ holds for L^{*}.
Proof. From the condition (i), it follows that $\vec{H}^{-1}(t)$ exists and has the property (i). For any t, t^{\prime} with $0 \leqq t, t^{\prime} \leqq T$, we obtain

$$
\begin{aligned}
\left\|\left(\vec{H}^{-1}(t)-\vec{H}^{-1}\left(t^{\prime}\right)\right) \vec{\chi}\right\|_{(0)} & =\left\|\left(\vec{H}^{-1}(t)\left(\vec{H}\left(t^{\prime}\right)-\vec{H}(t)\right) \vec{H}^{-1}\left(t^{\prime}\right)\right) \vec{\chi}\right\|_{(0)} \\
& \leqq C_{T} \gamma_{T}^{2}\left|t^{\prime}-t\right|\|\vec{\chi}\|_{(0)} .
\end{aligned}
$$

If we put $\vec{\phi}(t, \cdot)=\vec{H}^{-1}(t) \vec{\chi} \in \mathscr{H}_{(r)}\left(R_{n}\right)$ for any $\vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right)$, then we have

$$
\begin{aligned}
\left\|\left(\vec{H}^{-1}(t) \vec{A}^{*}(t)-\vec{A}(t) \vec{H}^{-1}(t)\right) \vec{\chi}\right\|_{(0)} & =\left\|\vec{H}^{-1}(t)\left(\vec{A}^{*}(t) \vec{H}(t)-\vec{H}(t) \vec{A}(t)\right) \vec{\phi}(t, \cdot)\right\|_{(0)} \\
& \leqq \gamma_{T} C_{T}\|\vec{\phi}(t, \cdot)\|_{(0)} \\
& \leqq \gamma_{T}^{2} C_{T}\|\vec{\chi}\|_{(0)} .
\end{aligned}
$$

Applying the preceding proposition, we see that ($\tilde{E}_{(0)}^{1} \uparrow \downarrow$) holds for L^{*}.
Let $\vec{A}(t)$ be an element of $\mathfrak{G}_{(r)}, r>0$, satisfying the pseudo-commutativity (*) and assume there exists an $N \times N$ positive definite matrix $\vec{H}(t), 0 \leqq t \leqq \infty$, whose elements are continuous linear operators of $\mathscr{H}_{(-r / 2)}\left(R_{n}\right)$ into itself for each t, and assume $\vec{H}(t)$ has the following properties: (i) There exists a constant r_{T} such that $\frac{1}{\gamma_{T}}\|\vec{\chi}\|_{(0)}^{2} \leqq(\vec{H}(t) \vec{\chi}, \vec{\chi}) \leqq \gamma_{T}\|\vec{\chi}\|_{(0)}^{2}, 0 \leqq t \leqq T$, for $\vec{\chi} \in C_{0}^{\infty}\left(\boldsymbol{R}_{n}\right)$. (ii) There exists a constant C_{T} such that $\left\|\left(\vec{H}(t)-\vec{H}\left(t^{\prime}\right)\right) \vec{\chi}\right\|_{(0)} \leqq C_{T}\|\vec{\chi}\|_{(0)}\left|t-t^{\prime}\right|$, $0 \leqq t, t^{\prime} \leqq T$, for $\vec{\chi} \epsilon C_{0}^{\infty}\left(R_{n}\right)$ and (iii) $(\vec{H}(t) \vec{A}(t) \vec{\chi}, \vec{\chi})$ is coercive in the sense:

$$
\operatorname{Im}(\vec{H}(t) \vec{A}(t) \vec{\chi}, \vec{\chi}) \leqq \mu_{0}\|\vec{\chi}\|_{(0)}^{2}-\mu_{1}\|\vec{\chi}\|_{(r / 2)}^{2}, 0 \leqq t \leqq T, \vec{\chi} \in C_{0}^{\infty}\left(R_{n}\right)
$$

with constants $\mu_{1}=\mu_{1}(T)$ and $\mu_{0}=\mu_{0}(T)>0$.
S. Kaplan [11] has investigated the Cauchy problem for the parabolic operator with the form:

$$
\frac{\partial}{\partial t}-M(t)=\frac{\partial}{\partial t}-\sum_{\mid \alpha \leqq \leqq 2 m} a_{\alpha}(t, x) D_{x}^{\alpha}, \quad a_{\alpha} \in \mathscr{B}\left(R_{n+1}\right)
$$

and $M(t)$ is assumed to be uniformly strongly elliptic, where m is a positive
integer. The operator $M(t)$ satisfies the condition (iii)' with $N=1, H(t)=1$ and $r=2 m$.

We shall first note that the following energy inequality holds true for $L=D_{t}+\vec{A}(t)$.

Theorem 8. For any $\vec{u} \in \mathscr{H}_{(0, s+r)}(H), H=[0, T] \times R_{n}$, there exists a constant C_{T} such that

$$
\begin{align*}
\left\|\vec{u}\left(t_{1}, \cdot\right)\right\|_{(s+r / 2)}^{2} & +\int_{t_{0}}^{t_{1}}\|\vec{u}(t, \cdot)\|_{(s+r)}^{2} d t \leqq C_{T}\left(\left\|\vec{u}\left(t_{0}, \cdot\right)\right\|_{(s+r / 2)}^{2}+\right. \tag{23}\\
& \left.+\int_{t_{0}}^{t_{1}}\|L \vec{u}(t, \cdot)\|_{(s)}^{2} d t\right), \quad 0 \leqq t_{0} \leqq t_{1} \leqq T
\end{align*}
$$

Proof. For any $\vec{u} \in C_{0}^{\infty}\left(R_{n+1}\right)$, if we put $\vec{f}=L \vec{u}$, then we have

$$
\begin{aligned}
& D_{-}(\vec{H}(t) \vec{u}(t, \cdot), \vec{u}(t, \cdot)) \\
& \quad \leqq K\|\vec{u}(t, \cdot)\|_{(0)}^{2}+i\left\{\left(\vec{H}(t) D_{t} \vec{u}(t, \cdot), \vec{u}(t, \cdot)\right)-\left(\vec{H}(t) \vec{u}(t, \cdot), D_{t} \vec{u}(t, \cdot)\right)\right\} \\
& =K\|\vec{u}(t, \cdot)\|_{(0)}^{2}+2 \operatorname{Im}(\vec{u}(t, \cdot), \vec{H}(t) \vec{f}(t, \cdot))+2 \operatorname{Im}(\vec{H}(t) \vec{A}(t) \vec{u}(t, \cdot), \vec{u}(t, \cdot)) \\
& \quad \leqq 2|(\vec{H}(t) \vec{f}(t, \cdot), \vec{u}(t, \cdot))|-2 \mu_{1}\|\vec{u}(t, \cdot)\|_{(r / 2)}^{2}+\left(2 \mu_{0}+K\right)\|\vec{u}(t, \cdot)\|_{(0)}^{2}
\end{aligned}
$$

with a constant K. Putting $h^{2}(t)=(\vec{H}(t) \vec{u}(t, \cdot), \vec{u}(t, \cdot))$, we obtain

$$
\begin{aligned}
h^{2}\left(t_{1}\right)-h^{2}\left(t_{0}\right) & \leqq 2 \int_{t_{0}}^{t_{1}}|(\vec{H}(t) \vec{f}(t, \cdot), \vec{u}(t, \cdot))| d t- \\
& -2 \mu_{1} \int_{t_{0}}^{t_{1}}\|\vec{u}(t, \cdot)\|_{(r / 2)}^{2} d t+\left(2 \mu_{0}+K\right) \int_{t_{0}}^{t_{1}}\|\vec{u}(t, \cdot)\|_{(0)}^{2} d t,
\end{aligned}
$$

and therefore if we put $\vec{v}=S^{-s-r / 2} \vec{u}$, then we can write

$$
\begin{gathered}
\frac{1}{r}\left\|\vec{v}\left(t_{1}, \cdot\right)\right\|_{(s+r / 2)}^{2}-\gamma_{T}\left\|\vec{v}\left(t_{0}, \cdot\right)\right\|_{(s+r / 2)}^{2} \leqq 2 \int_{t_{0}}^{t_{1}}\left|\left(\vec{H}(t) L S^{s+r / 2} \vec{v}, S^{s+r / 2} \vec{v}\right)\right| d t- \\
-2 \mu_{1} \int_{t_{0}}^{t_{1}}\|\vec{v}(t, \cdot)\|_{(s+r)}^{2} d t+\left(2 \mu_{0}+K\right) \int_{t_{0}}^{t_{1}}\|\vec{v}(t, \cdot)\|_{(s+r / 2)}^{2} d t
\end{gathered}
$$

where

$$
\begin{aligned}
& \left|\left(\vec{H}(t) L S^{s+r / 2} \vec{v}, S^{s+r / 2} \vec{v}\right)\right| \\
& \leqq\left|\left(\vec{H}(t) S^{s+r / 2} L v, S^{s+r / 2} \vec{v}\right)\right|+\left|\left(\vec{H}(t)\left(\vec{A}(t) S^{s+r / 2}-S^{s+r / 2} \vec{A}(t)\right) \vec{v}, S^{s+r / 2} \vec{v}\right)\right| \\
& \leqq C_{1}\|(L \vec{v})(t, \cdot)\|_{(s)}\|\vec{v}(t, \cdot)\|_{(s+r)}+C_{2}\|\vec{v}(t, \cdot)\|_{(s+r-1)}\|\vec{v}(t, \cdot)\|_{(s+r)} .
\end{aligned}
$$

For any given $\varepsilon>0$ there exists a constant $C(\varepsilon)$ such that

$$
\|\vec{v}(t, \cdot)\|_{(s+r-1)}^{2} \leqq \varepsilon^{2}\|\vec{v}(t, \cdot)\|_{(s+r)}^{2}+C(\varepsilon)\|\vec{v}(t, \cdot)\|_{(s)}^{2} .
$$

Applying the Schwarz inequality, we have the estimate with a constant $C^{\prime}(\varepsilon)$

$$
\begin{aligned}
2 \int_{t_{0}}^{t_{1}} \mid\left(\vec{H}(t) L S^{s+r / 2} \vec{v},\right. & \left.S^{s+r / 2} \vec{v}\right) \mid d t \leqq 3 \varepsilon \int_{t_{0}}^{t_{1}}\|\vec{v}(t, \cdot)\|_{(s+r)}^{2} d t+ \\
& +C^{\prime}(\varepsilon) \int_{t_{0}}^{t_{1}}\|L \vec{v}(t, \cdot)\|_{(s)}^{2} d t+C^{\prime}(\varepsilon) \int_{t_{0}}^{t_{1}}\|\vec{v}(t, \cdot)\|_{(s)}^{2} d t
\end{aligned}
$$

Taking $\varepsilon=\frac{1}{3} \mu_{1}$ and applying Lemma 3 in Section 2, we obtain the inequality with a constant C_{T} such that

$$
\begin{aligned}
&\left\|\vec{v}\left(t_{1}, \cdot\right)\right\|_{(s+r / 2)}^{2}+\int_{t_{0}}^{t_{1}}\|\vec{v}(t, \cdot)\|_{(s+r)}^{2} d t \leqq C_{T}\left(\left\|\vec{v}\left(t_{0}, \cdot\right)\right\|_{(s+r / 2)}^{2}+\right. \\
&+\int_{t_{0}}^{t_{1}}\|L \vec{v}(t, \cdot)\|_{(s)}^{2} d t
\end{aligned}
$$

which will yield the estimate (23) since $C_{0}^{\infty}(H)$ is dense in $\mathscr{H}_{(0, s+r)}(H)$. Thus the proof is complete.

By modifying the method developed in Sections 2 and 3 we shall show the uniqueness and existence theorems for the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \quad \text { in } \dot{H}, \tag{24}\\
\mathscr{D}_{L^{2}-1}^{\prime-\lim _{t \downarrow 0}} \vec{u}=\vec{\alpha}
\end{array}\right.
$$

for any preassigned $\vec{\alpha} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $\vec{f} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$, where \vec{f} is assumed to have the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension \vec{f}_{\sim}.

From now on, we assume that $\vec{A}(t) \epsilon \mathfrak{๒}_{(r)}^{\infty}$.
Theorem 9. If $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$ and \vec{u} is a solution of the Cauchy problem $L \vec{u}=0$ in \dot{H} with initial condition $\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}} \vec{u}=0$, then $\vec{u}=0$.

Proof. There exists real numbers σ, s such that $\vec{u} \in \mathscr{K}^{(\sigma, s)}(H)$. From the equation $D_{t} \vec{u}=-\vec{A}(t) \vec{u} \in \mathscr{K}^{(\sigma, s-r)}(H)$ we see that $\vec{u} \in \mathscr{K}^{(\sigma+r, s-r)}(H)$. Thus we may assume that $\sigma \geqq 0$. From the energy inequality in the preceding theorem we can conclude that $\vec{u}=0$.

We shall say that (CP) ${ }_{(s)}^{\prime}$ holds for L if the Cauchy problem (24) has a solution $\vec{u} \in \mathscr{H}_{(0, s+r)}(H)$ for any given $\vec{f} \in \mathscr{H}_{(0, s)}(H)$ and $\vec{\alpha} \in \mathscr{H}_{(s+r / 2)}\left(R_{n}\right)$. Then, in the same way as in the proof of Propositions 4 and 5 we have

Proposition 4'. If (CP$)_{(s)}^{\prime}$ holds for L, then it also holds for $L^{1}=L+\vec{B}(t)$, $\vec{B}(t) \in \mathfrak{S}_{(r-1)}$.

Proposition 5'. If (CP) $)_{(s)}^{\prime}$ holds for some s, then it does for any s.
Next we shall show an analogue of Proposition 7.

Proposition 7'. (CP)'s holds for L if and only if the conditions that $\vec{w} \in \mathscr{K}_{(0,-s)}(H), L^{*} \vec{w}=0$ in \dot{H} and $\mathscr{D}_{L^{2-}}^{\prime-\lim _{t \uparrow T}} \vec{w}=0$ imply $\vec{w}=0$ in \dot{H}.

Proof. Let (CP) $)_{(s)}^{\prime}$ hold for L and $\vec{w} \in \mathscr{H}_{(0,-s)}(H)$ and assume that $L^{*} \vec{w}=0$ in \dot{H} with $\mathscr{D}_{L^{2}-\lim _{t \uparrow T}} \vec{w}=0$. For any $\vec{f} \in C_{0}^{\infty}(\mathscr{H})$, let $\vec{u} \in \mathscr{H}_{(0, s+r)}(H)$ be a solution of $L \vec{u}=\vec{f}$. From the fact that the energy inequality (23) holds true, there exists a sequence $\left\{\vec{\phi}_{j}\right\}, \vec{\phi}_{j} \in C_{0}^{\infty}(H)$ vanishing near $t=0$ and we have $\int_{0}^{T}\left(L \vec{\phi}_{j}(t, \cdot), \vec{w}(t, \cdot)\right) d t=0 . \quad$ Thus $\vec{w}=0$ in \vec{H}.

To prove the converse, we first show that $A=\left\{(\vec{\phi}(0, \cdot), L \vec{\phi}): \vec{\phi} \in C_{0}^{\infty}(H)\right\}$ is dense in $\mathscr{H}_{(s+r / 2)}\left(R_{n}\right) \times \mathscr{H}_{(0, s)}(H)$. Let $(i \vec{\beta}, \vec{w}) \in \mathscr{H}_{(-s-r / 2)}\left(R_{n}\right) \times \mathscr{H}_{(0,-s)}(H)$ such that

$$
\int_{0}^{T}(L \vec{\phi}(t, \cdot), \vec{w}(t, \cdot)) d t-i\left(\vec{\phi}_{0}, \vec{\beta}\right)=0, \quad \vec{\phi} \in C_{0}^{\infty}(H),
$$

which implies $L^{*} \vec{w}=0$ in \dot{H}, and $\mathscr{D}_{L^{2}-1 \lim _{t \downarrow 0}} \vec{w}=0$. Thus we see that $\vec{w}=0$ in H^{\prime} and $\vec{\beta}=0$. For any $\vec{f} \in \mathscr{H}_{(0, s)}(H)$ and $\vec{\alpha} \in \mathscr{H}_{(s+r / 2)}\left(R_{n}\right)$ there exists a sequence $\left\{\vec{\phi}_{j}\right\}, \vec{\phi}_{j} \in C_{0}^{\infty}(H)$, such that $\vec{\phi}_{j}(0, \cdot), L \vec{\phi}_{j}$ converge in $\mathscr{H}_{(s+r / 2)}\left(R_{n}\right), \mathscr{H}_{(0, s)}(H)$ to $\vec{\alpha}$, \vec{f} respectively as $j \rightarrow \infty$. From the energy inequality (23) we see that $\left\{\vec{\phi}_{j}\right\}$ is a Cauchy sequence in $\mathscr{H}_{(0, s+r)}(H)$. Let \vec{u} be the limit of the sequence $\left\{\vec{\phi}_{j}\right\}$. Then \vec{u} satisfies the equation $L \vec{u}=\vec{f}$ in \vec{H} with $\mathscr{D}_{L^{2}}^{\prime 2} \lim _{t \downarrow 0} \vec{u}=\vec{\alpha}$. From the fact that $\vec{u} \in \mathscr{H}_{(0, s+r)}(H)$ and $D_{t} \vec{u} \in \mathscr{H}_{(0, s)}(H)$ we see that $\vec{u} \in \mathscr{K}^{(r, s)}(H)$.

Proposition 24. Suppose (CP) ${ }_{(0)}$ holds for L. For any $\vec{f} \in \mathscr{K}^{(k r, s)}(H), k$ being any non-negative integer, and $\vec{\alpha} \in \mathscr{H}_{((k+1 / 2) r+s)}\left(R_{n}\right)$ there exists a unique solution $\vec{u} \in \mathscr{K}^{((k+1) r, s)}(H)$ of the Cauchy problem (24). Furthermore \vec{u} satisfies the inequality

$$
\begin{align*}
& \sum_{j=0}^{k}\left\|D_{t}^{j} \vec{u}(t, \cdot)\right\|_{(s+(k-j+1 / 2) r)}^{2}+\sum_{j=0}^{k} \int_{0}^{t}\left\|D_{t}^{j} \vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(s+(k-j+1) r)}^{2} d t^{\prime} \tag{25}\\
& \leqq C_{T}\left(\|\vec{\alpha}\|_{(s+(k+1 / 2) r)}^{2}+\sum_{j=0}^{k-1}\left\|D_{t}^{j} \vec{f}(0, \cdot)\right\|_{(s+(k-1 / 2) r)}^{2}+\right. \\
& \left.\quad+\sum_{j=0}^{k} \int_{0}^{t}\left\|D_{t}^{j} \vec{f}\left(t^{\prime}, \cdot\right)\right\|_{(s+(k-j) r)}^{2} d t^{\prime}\right)
\end{align*}
$$

with a constant C_{T}.
Proof. If $k=0$ this result is already shown in Theorem 8 and Proposition 7^{\prime}. Let $\vec{f} \in \mathscr{K}^{(r, s)}(H)$ and $\vec{\alpha} \in \mathscr{H}_{(s+(3 / 2) r)}\left(R_{n}\right)$. Then the Cauchy problem (24) has a unique solution $\vec{u} \in \mathscr{K}^{(2 r, s)}(H)$. Furthermore \vec{u} satisfies the inequality:

$$
\begin{align*}
\|\vec{u}(t, \cdot)\|_{(s+(3 / 2) r)}^{2}+\int_{0}^{t}\left\|\vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(s+2 r)}^{2} d t \leqq & C_{1}\left(\|\vec{u}(0, \cdot)\|_{(s+(3 / 2) r)}^{2}+\right. \tag{26}\\
& \left.+\int_{0}^{t}\left\|L u\left(t^{\prime}, \cdot\right)\right\|_{(s+r)}^{2} d t^{\prime}\right)
\end{align*}
$$

Put $\vec{v}=D_{t} \vec{u}$. Then $\vec{v} \in \mathscr{K}^{(r, s)}(H)$ and we have $L \vec{v}=D_{t} \vec{f}+i \vec{A}^{\prime}(t) \vec{u} \in \mathscr{H}_{(0, s)}(H)$, and therefore

$$
\begin{aligned}
\|\vec{v}(t, \cdot)\|_{(s+r / 2)}^{2} & +\int_{0}^{t}\left\|\vec{v}\left(t^{\prime}, \cdot\right)\right\|_{(s+r)}^{2} d t \leqq C_{2}\left(\|\vec{v}(0, \cdot)\|_{(s+r / 2)}^{2}+\right. \\
& \left.+\int_{0}^{t}\left\|D_{t} \vec{f}\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime}+\int_{0}^{t}\left\|\vec{A}^{\prime}\left(t^{\prime}\right) \vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime}\right)
\end{aligned}
$$

where C_{2} is a constant. Applying Lemma 3 in Section 2, we obtain with a constant C_{3}

$$
\begin{align*}
&\|\vec{v}(t, \cdot)\|_{(s+r / 2)}^{2}+\int_{0}^{t}\left\|\vec{v}\left(t^{\prime}, \cdot\right)\right\|_{(s+r)}^{2} d t^{\prime} \leqq C_{3}\left(\|\vec{v}(0, \cdot)\|_{(s+r / 2)}^{2}+\right. \tag{27}\\
&\left.+\int_{0}^{t}\left\|D_{t} \vec{f}\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime}\right)
\end{align*}
$$

From (26) and (27) we have with a constant C_{T}

$$
\begin{aligned}
& \|\vec{u}(t, \cdot)\|_{(s+(3 / 2) r)}^{2}+\left\|D_{t} \vec{u}(t, \cdot)\right\|_{(s+r / 2)}^{2}+\int_{0}^{t}\left\|\vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(s+2 r)}^{2} d t+ \\
& +\int_{0}^{t}\left\|D_{t} \vec{u}\left(t^{\prime}, \cdot\right)\right\|_{(s+r)}^{2} d t \leqq C_{T}\left(\|\vec{u}(0, \cdot)\|_{(s+(3 / 2) r)}^{2}+\|\vec{f}(0, \cdot)\|_{(s+r / 2)}^{2}+\right. \\
& \left.\quad+\int_{0}^{t}\left\|\vec{f}\left(t^{\prime}, \cdot\right)\right\|_{(s+r)}^{2} d t^{\prime}+\int_{0}^{t}\left\|D_{t} \vec{f}\left(t^{\prime}, \cdot\right)\right\|_{(s)}^{2} d t^{\prime}\right)
\end{aligned}
$$

Repeating this procedure, we obtain the inequality (25).
We note here that $\mathscr{K}^{(k r, s)}(H), k$ being non-negetive integer, has the equivalent norm

$$
\left(\sum_{j=0}^{k} \int_{0}^{T} D_{t}^{j}\left\|u\left(t^{\prime}, \cdot\right)\right\|_{(s+(k-j) r)}^{2} d t^{\prime}\right)^{1 / 2}
$$

With the aid of the interpolation theorem for the Hilbert scales, we can show

Corollary 7, Suppose (CP) ${ }_{(0)}$, holds for L. For any $\vec{f} \in \mathscr{K}^{(\sigma, s)}(H), \sigma \geqq 0$ and $\vec{\alpha} \in \mathscr{H}_{(\sigma+s+r / 2)}\left(R_{n}\right)$ there exists a unique solution of the Cauchy problem (24) and $(\vec{\alpha}, \vec{f}) \rightarrow \vec{u}$ is a continuous map of $\mathscr{H}_{(\sigma+s+r / 2)}\left(R_{n}\right) \times \mathscr{K}^{(\sigma, s)}(H)$ into $\mathscr{K}^{(\sigma+r, s)}(H)$.

We shall denote by $\mathscr{\mathscr { K }}^{(\sigma, s)}\left(H_{-}\right)$the space which is a restriction of the space $\dot{\mathscr{K}}^{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$to $(-\infty, T] \times R_{n}$ and similarly for $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(H_{-}\right)$. By Proposition 7 in [8, p. 416] we see that for every $\vec{u} \in \mathscr{K}^{(\sigma, s)}(H)$ with $|\sigma|<\frac{r}{2}$ its canonical extension \vec{u}_{\sim} over $t=0$ belongs to the space $\mathscr{\mathscr { K }}^{(\sigma, s)}\left(H_{-}\right)$.

Proposition 25. Suppose (CP) ${ }_{(0)}^{\prime}$ holds for L. For any $\vec{f} \in \mathscr{K}^{(\sigma, s)}(H)$, $-\frac{r}{2}<\sigma<0$ and $\vec{\alpha} \in \mathscr{H}_{(\sigma+s+r / 2)}\left(R_{n}\right)$ there exists a unique solution $\vec{u} \in \mathscr{K}^{(\sigma+r, s)}(H)$ of the Cauchy problem (24).

Proof. For any given $\vec{f} \in \mathscr{K}^{\left(\sigma_{s}\right)}(H)$ we shall consider \vec{g} satisfying the equation

$$
D_{t} \vec{g}-i \lambda^{r}\left(D_{x}\right) \vec{g}=\vec{f}_{\sim}
$$

Then $\vec{g} \in \mathscr{K}^{(\sigma+r, s)}\left(H_{-}\right)$and therefore $\mathscr{D}_{L^{2-}}^{\prime} \lim _{t \downarrow 0} \vec{g}=0$. The Cauchy problem (24) can be written in the form

$$
\left\{\begin{array}{l}
D_{t}(\vec{u}-\vec{g})+\vec{A}(t)(\vec{u}-\vec{g})=-i \lambda^{r}\left(D_{x}\right) \vec{g}-\vec{A}(t) \vec{g} \quad \text { in } H, \tag{28}\\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}}(\vec{u}-\vec{g})=\vec{\alpha},
\end{array}\right.
$$

where $-i \lambda^{r}\left(D_{x}\right) \vec{g}-\vec{A}(t) \vec{g} \in \dot{\mathscr{K}}^{(\sigma+r, s-r)}\left(H_{-}\right), \frac{r}{2}<\sigma+r<r$. Thus there exists a unique solution $\vec{v}=\vec{u}-\vec{g} \in \widetilde{K}^{(\sigma+2 r, s-r)}(H)$ and therefore $\vec{u}=\vec{v}+\vec{g} \in \mathscr{K}^{(\sigma+r, s)}(H)$.

Let σ, s be any real numbers and write $\sigma=k r+\sigma^{\prime}$ with integer k and $-\frac{r}{2}<\sigma^{\prime} \leqq \frac{r}{2}$. We are now prepared to show the following theorem, a generalization of a result of S. Kaplan [11, p. 180].

Theorem 10. Suppose (CP) ${ }_{(0)}^{\prime}$ holds for L. For any $\vec{\alpha} \epsilon \mathscr{H}_{(\sigma+s+r / 2)}\left(R_{n}\right)$ and $\vec{f} \in \mathscr{K}^{(\sigma, s)}(H)$ with $\vec{f}_{\sim} \in \mathscr{K}^{(\sigma, s)}\left(H_{-}\right)$, there exists a unique solution $\vec{u} \in \mathscr{K}^{(\sigma+r, s)}(H)$ of the Cauchy problem (24). In particular, if $\vec{\alpha}=0$ then $\vec{u}_{\sim} \in \mathscr{K}^{(\sigma+r, s)}\left(H_{-}\right)$.

Proof. Consider the case $k \geqq 0$. In Corollary 7 we have shown that there exists a solution $\vec{u} \in \mathscr{K}^{(\sigma+r, s)}(H)$. Since a solution of the Cauchy problem is unique in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)(H)$, we have only to show that if $\vec{\alpha}=0$ then $\vec{u}_{\sim} \epsilon$ $\mathscr{K}^{(\sigma+r, s)}\left(H_{-}\right)$. Suppose $\vec{\alpha}=0$. Then $\lim _{t \downarrow 0}\left(\vec{u}, \cdots, D_{t}^{k} \vec{u}\right)=0$. In fact, if $k=0$ then $\lim _{t \downarrow 0} \vec{u}=\mathscr{D}_{L^{2}}^{\prime-} \lim _{t \downarrow 0} \vec{u}=0$. Let $k>0$. Then the condition $\vec{f}_{\sim} \in \dot{\mathscr{K}}^{\left(k r+\sigma^{\prime}, s\right)}\left(H_{-}\right)$ implies $\lim _{t \downarrow 0}\left(f, \cdots, D_{t}^{k-1} \vec{f}\right)=\mathscr{D}_{L}^{\prime} \lim _{t \downarrow 0}\left(\vec{f}, \cdots, D_{t}^{k-1} \vec{f}\right)=0$ (cf. Theorem 3 in [8, p. 419]). In the same way as in the proof of Proposition 13 we can prove that $\lim _{t \downarrow 0}\left(\vec{u}, \cdots, D_{t}^{k} \vec{u}\right)=0$. In the case $\sigma^{\prime}<\frac{r}{2}$, Theorem 3 in [8, p. 419] implies immediately $\vec{u} \in \mathscr{\mathscr { K }}^{(\sigma+r, s)}\left(H_{-}\right)$. Let $\sigma^{\prime}=\frac{r}{2}$. Then $\vec{u}_{\sim} \epsilon \dot{\mathscr{K}}^{(\sigma+r-\varepsilon, s+\varepsilon)}\left(H_{-}\right) \subset$ $\dot{\mathscr{K}}^{(\sigma, s+r)}\left(H_{-}\right), 0<\varepsilon \leqq r$. Combining with the relation $D_{t}\left(\vec{u}_{\sim}\right)=\vec{f}_{\sim}-\vec{A}(t) \vec{u}_{\sim} \epsilon$ $\mathscr{\mathscr { K }}^{(\sigma, s)}\left(H_{-}\right)$shows that $\vec{u}_{\sim} \in \dot{\mathscr{K}}^{(\sigma+r, s)}\left(H_{-}\right)$.

Consider the case where $k<0$. We shall reason by descending induction over k. Assume that the results hold true of any $k+1$. Let $\vec{f}_{\sim} \in \dot{\mathscr{K}}^{(\sigma, s)}\left(H_{-}\right)$,
$\sigma=k r+\sigma^{\prime}$, and $\vec{\alpha} \in \mathscr{H}_{(\sigma+s+r / 2)}\left(R_{n}\right)$. Let $\vec{g} \in \mathscr{\mathscr { K }}^{(\sigma+r, s)}\left(H_{-}\right)$be a solution of the equation

$$
D_{t} \vec{g}-i \lambda^{r}\left(D_{x}\right) \vec{g}=\vec{f}_{\sim}
$$

Then $\mathscr{D}_{L^{2}-l_{t \downarrow 0}^{\prime}} \vec{g}=0$. The Cauchy problem (24) can be written in the form (28) and $-i \lambda^{r}\left(D_{x}\right) \vec{g}-\vec{A}(t) \vec{g} \in \dot{\mathscr{K}}^{(\sigma+r, s-r)}\left(H_{-}\right)$, and therefore there exists a solution $\vec{v}=\vec{u}-\vec{g} \epsilon \mathscr{K}^{(\sigma+2 r, s-r)}(H)$ and $\vec{u}=\vec{v}+\vec{g} \in \mathscr{K}^{(\sigma+r, s)}(H)$. Especially, if $\vec{\alpha}=0$ then $\vec{u}_{\sim} \in \dot{\mathscr{K}}^{(\sigma+r, s)}\left(H_{-}\right)$.

Along the same line as in the proof of the preceding theorem we can prove the following

Proposition 26. Suppose (CP) ${ }_{(0)}^{\prime}$ holds for L. For any $\vec{h} \in \mathscr{K}^{(\sigma, s)}\left(H_{-}\right)$ there exists a unique solution $\vec{v} \in \mathscr{K}^{(\sigma+r, s)}\left(H_{-}\right)$of $L \vec{v}=\vec{h}$.

The following theorems are the analogues of Theorems 4 and 5 and can be proved in a similar way, so the proofs are omitted.

Theorem 11. Suppose (CP) ${ }_{(0)}^{\prime}$ holds for L. Then for any $\vec{h} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ there exists a unique solution $\vec{v} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ of $L \vec{v}=\vec{h}$ and $\vec{h} \rightarrow \vec{v}$ is a continuous map of $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ onto itself.

Theorem 12. Suppose (CP) ${ }_{(0)}^{\prime}$ holds for L. Then for any $\vec{\alpha} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and $\vec{f} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, which has the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension $\vec{f}_{-} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, the Cauchy problem (24) has a unique solution $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\left(\vec{\alpha}, \vec{f}_{\sim}\right) \rightarrow \vec{u} \sim$ is a continuous map under the topology of $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} \times\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and the topology of $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

7. Notes on a system of ordinary differential operators

Let L be a system of ordinary differential operators of the form $L=D_{t}+\vec{A}(t)$, where $\vec{A}(t)$ is an $N \times N$ matrix of C^{∞} functions on R_{t} and consider the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{u}=\vec{f} \text { in } R^{+} \tag{29}\\
\lim _{t \downarrow 0} \vec{u}=\vec{\alpha}
\end{array}\right.
$$

for any preassigned $\vec{f} \in \mathscr{D}^{\prime}\left(R^{+}\right)$and $\vec{\alpha} \in \boldsymbol{C}^{N}$. If $\vec{u} \in \mathscr{D}^{\prime}\left(R^{+}\right)$exists, then \bar{f} has the canonical extension $\vec{f}_{\sim} \in \mathscr{D}_{+}^{\prime}$ and

$$
\begin{equation*}
L\left(\vec{u}_{\sim}\right)=\vec{f}_{\sim}-i \vec{\alpha} \delta . \tag{30}
\end{equation*}
$$

Conversely, if $\vec{v} \in \mathscr{D}_{+}^{\prime}$ satisfies the equation (30), then the restriction $\vec{u}=\vec{v} \mid R^{+}$is a solution of the Cauchy problem (29) and $\vec{v}=\vec{u}_{-}$, where by \mathscr{D}_{+}^{\prime} we
mean the closed subspace of $\mathscr{D}^{\prime}(R)$ with support $\subset \bar{R}^{+}$.
Now we shall show that our considerations in the present paper can also be applied to the Cauchy problem for ordinary differential system as a special case.

For any $\vec{\phi} \in C_{0}^{\infty}(R)$

$$
\vec{\phi}\left(t_{1}\right)=\vec{\phi}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} \vec{\phi}^{\prime}(t) d t
$$

whence for any $T>0$

$$
\left|\vec{\phi}\left(t_{1}\right)\right| \leqq\left|\vec{\phi}\left(t_{0}\right)\right|+\int_{t_{0}}^{t_{1}}|L \vec{\phi}(t)| d t+\max _{0 \leqq t \leqq T}|\vec{A}(t)| \int_{t_{0}}^{t_{1}}|\vec{\phi}(t)| d t, \quad 0 \leqq t_{0} \leqq t_{1} \leqq T .
$$

By Lemma 3 in Section 2, we can find a constant C_{T} such that

$$
\begin{equation*}
\left|\vec{\phi}\left(t_{1}\right)\right| \leqq C_{T}\left(\left|\vec{\phi}\left(t_{0}\right)\right|+\int_{t_{0}}^{t_{1}}|L \vec{\phi}(t)| d t\right), \quad 0 \leqq t_{0} \leqq t_{1} \leqq T, \quad \vec{\phi} \in C_{0}^{\infty}(R) \tag{31}
\end{equation*}
$$

Similarly, for the formal adjoint L^{*} of L we have

$$
\begin{equation*}
\left|\vec{\phi}\left(t_{0}\right)\right| \leqq C_{T}\left(\left|\vec{\phi}\left(t_{1}\right)\right|+\int_{t_{0}}^{t_{1}}\left|L^{*} \vec{\phi}(t)\right| d t\right), \quad 0 \leqq t_{0} \leqq t_{1} \leqq T, \quad \vec{\phi} \in C_{0}^{\infty}(R) \tag{32}
\end{equation*}
$$

We shall first show the following
Theorem 12. If $\vec{u} \in \mathscr{D}^{\prime}\left(R^{+}\right)$satisfies $L \vec{u}=0$ in $t>0$ and $\lim _{t \downarrow 0} \vec{u}=0$, then $\vec{u}=0$.

Proof. In the same way as in the proof of Proposition 8 in [7, p. 22] we see that $\vec{u} \in \mathscr{E}_{t}^{\infty}\left(R^{+}\right)$. By the energy inequality (31) we have immediately $\vec{u}=0$ in R^{+}.

In what follows we shall show the existence theorems for the Cauchy problem (29).

Proposition 27. Let $\sigma>-\frac{1}{2}$. For any $\vec{\alpha} \in \boldsymbol{C}^{N}$ and $\vec{f} \in \widetilde{\mathscr{H}}_{(\sigma)}\left(\bar{R}^{+}\right)$there exists a unique solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1)}\left(\bar{R}^{+}\right)$of the Cauchy problem (29).

Proof. (1) Let $\sigma=k$ be a non-negative integer. First consider the case $k=0$. The set $A=\left\{(\vec{\phi}(0), L \vec{\phi}): \vec{\phi} \in C_{0}^{\infty}\left(\bar{R}^{+}\right)\right\}$is dense in $\boldsymbol{C}^{N} \times \widetilde{\mathscr{H}}_{(0)}\left(\bar{R}^{+}\right)$. In fact, let $(i \vec{\beta}, \vec{w}) \in \boldsymbol{C}^{N} \times \widetilde{\mathscr{H}}_{(0)}^{*}\left(\bar{R}^{+}\right)$such that

$$
(L \vec{\phi}, \vec{w})-i(\vec{\phi}(0), \vec{\beta})=0, \quad \vec{\phi} \in C_{0}^{\infty}\left(\bar{R}^{+}\right)
$$

Then we see that $L^{*} \vec{w}=0$ in R^{+}. By the energy inequality (32) we conclude that $\vec{w}=0$ in R^{+}and therefore $\vec{\beta}=0$.

For any $\vec{\alpha} \in \boldsymbol{C}^{N}$ and $\vec{f} \in \widetilde{\mathscr{H}}_{(k)}\left(\bar{R}^{+}\right)$there exists a sequence $\left\{\vec{\phi}_{j}\right\}, \vec{\phi}_{j} \in C_{0}^{\infty}\left(\bar{R}^{+}\right)$, such that $\vec{\phi}_{j}(0), L \vec{\phi}_{j}$ converge in \boldsymbol{C}^{N} and $\tilde{\mathscr{H}}_{(k)}\left(\bar{R}^{+}\right)$to $\vec{\alpha}, \vec{f}$ respectively as $j \rightarrow \infty$.

By the energy inequality (31) we see that $\vec{\phi}_{j}$ is a Cauchy sequence in $\mathscr{E}_{t}^{0}\left(\bar{R}^{+}\right)$. Let \vec{u} be the limit of $\vec{\phi}_{j}$. Then $\vec{u} \in \mathscr{E}_{t}^{0}\left(\bar{R}^{+}\right)$is a solution of the Cauchy problem (24). From the equation $D_{t} \vec{u}=\vec{f}-\vec{A}(t) \vec{u} \in \mathscr{H}_{(0)}\left(\bar{R}^{+}\right)$we see that $\vec{u} \in \mathscr{H}_{(1)}\left(\bar{R}^{+}\right)$.

Let $k=1$ and $\vec{f} \in \mathscr{H}_{(1)}\left(\bar{R}^{+}\right)$. Then $\vec{v}=D_{t} \vec{u} \in \tilde{\mathscr{H}}_{(0)}\left(\bar{R}^{+}\right)$and $L \vec{v}=D_{t} \vec{f}+i A^{\prime}(t) \vec{u}$ $\epsilon \mathscr{H}_{(0)}\left(\bar{R}^{+}\right)$, and therefore $\vec{v} \in \widetilde{\mathscr{H}}_{(1)}\left(\bar{R}^{+}\right)$, which implies $\vec{u} \in \widetilde{\mathscr{H}}_{(2)}\left(\bar{R}^{+}\right)$.

In the case where $\sigma=k \geqq 2$, repeating this procedure, we see that $\vec{u} \in \widetilde{\mathscr{H}}_{(k+1)}\left(\bar{R}^{+}\right)$.
(2) Let σ be a non-negative real number. For any $\vec{\alpha} \epsilon C^{N}$ and $\vec{f} \epsilon$ $\widetilde{\mathscr{H}}_{(\sigma)}\left(\bar{R}^{+}\right)$there exists a solution $\vec{u} \in \mathscr{H}_{(k+1)}\left(\bar{R}^{+}\right)$of the Cauchy problem (29), where $k=[\sigma]$. Since $D_{t} \vec{u}=\vec{f}-\vec{A}(t) \vec{u} \in \widetilde{\mathscr{H}}_{(\sigma)}\left(\bar{R}^{+}\right)$we see that $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1)}\left(\bar{R}^{+}\right)$.
(3) Let σ be such that $-\frac{1}{2}<\sigma<0$. For any $\vec{f} \in \widetilde{\mathscr{H}}_{(\sigma)}\left(\bar{R}^{+}\right)$if we define \vec{g} by the equation $\left(D_{+}-i\right) \vec{g}=\vec{f}_{\sim}$, then $\vec{g} \in \dot{\mathscr{H}}_{(\sigma+1)}\left(\bar{R}^{+}\right)$and $\lim _{t \downarrow 0} \vec{g}=0$. The Cauchy problem (29) can be written in the form

$$
\left\{\begin{array}{l}
D_{t}(\vec{u}-\vec{g})+\vec{A}(t)(\vec{u}-\vec{g})=-i \vec{g}-\vec{A}(t) \vec{g} \\
\lim _{t \downarrow 0}(\vec{u}-\vec{g})=\vec{\alpha}
\end{array}\right.
$$

where $-i \vec{g}-\vec{A}(t) \vec{g} \epsilon \stackrel{\dot{\mathscr{H}}}{(\sigma+1)}\left(\bar{R}^{+}\right)$. Thus there exists a solution $\vec{v}=\vec{u}-\vec{g} \epsilon$ $\widetilde{\mathscr{H}}_{(\sigma+2)}\left(\bar{R}^{+}\right)$and therefore $\vec{u}=\vec{v}+\vec{g} \in \widetilde{\mathscr{H}}_{(\sigma+1)}\left(\bar{R}^{+}\right)$. Thus the proof is complete.

In the same way as in the proof of Proposition 13 we can prove the following

Proposition 28. Let σ be any real number. For any $\vec{\alpha} \epsilon \boldsymbol{C}^{N}$ and $\vec{f} \epsilon$ $\widetilde{\mathscr{H}}_{(\sigma)}\left(\bar{R}^{+}\right)$with $\vec{f}_{\sim} \in \dot{\mathscr{H}}_{(\sigma)}\left(\bar{R}^{+}\right)$there exists a unique solution $\vec{u} \in \widetilde{\mathscr{H}}_{(\sigma+1)}\left(\bar{R}^{+}\right)$. In particular, if $\vec{\alpha}=0$ then $u \in \stackrel{\dot{\mathscr{H}}}{(\sigma+1)}\left(\bar{R}^{+}\right)$.

As an extension of Theorem 37 in E. Berz [2, p. 32] we have
Proposition 29. Let σ be any real number. For any $\vec{h} \in \dot{\mathscr{H}}_{(\sigma)}\left(\bar{R}^{+}\right)$there exists a unique solution $\vec{v} \in \dot{\mathscr{H}}_{(\sigma+1)}\left(\bar{R}^{+}\right)$.

The following two theorems are the analogues of Theorems 4 and 5 and these can be proved in a similar way.

Theorem 13. For any $\vec{h} \in \mathscr{D}_{+}^{\prime}$, there exists a unique solution $\vec{v} \in \mathscr{D}_{+}^{\prime}$ of the equation $L \vec{u}=\vec{h}$ and $\vec{h} \rightarrow \vec{v}$ is a continuous map of \mathscr{D}_{+}^{\prime} onto itself.

Theorem 14. For any $\vec{\alpha} \in \boldsymbol{C}^{N}$ and $\vec{f} \in \mathscr{D}^{\prime}\left(R^{+}\right)$with the canonical extension
 $\left(\vec{\alpha}, \vec{f}_{\sim}\right) \rightarrow \vec{u} \sim$ is a continuous map under the topology $\boldsymbol{C}^{N} \times \mathscr{D}_{+}^{\prime}$ and the topology $\mathscr{D}^{\prime}{ }^{+}$.

Let us consider an ordinary differential operator

$$
P(D)=D_{t}^{m}+\sum_{j=1}^{m} a_{j}(t) D_{t}^{m-j}, \quad a_{j} \in C^{\infty}(R) .
$$

Substituting $u_{j}=D_{t}^{j-1} u, j=1,2, \cdots, m$, then we obtain the equivalent system:

$$
\left\{\begin{array}{l}
D_{t} u_{j}-u_{j+1}=0 \text { for } j=1,2, \cdots, m-1 \\
D_{t} u_{m}+\sum_{j=1}^{m} a_{j}(t) u_{m-j+1}=f
\end{array}\right.
$$

Thus we have
Corollary 8. For any $h \in \mathscr{D}_{+}^{\prime}$, there exists a unique solution $v \in \mathscr{D}_{+}^{\prime}$ of the equation $P v=h$.

Corollary 9. For any $\left(\alpha_{0}, \ldots, \alpha_{m-1}\right) \in \boldsymbol{C}^{m}$ and $f \in \mathscr{D}^{\prime}\left(R^{+}\right)$with the canonical extension f_{\sim}, there exists a unique solution $u \in \mathscr{D}^{\prime}\left(R^{+}\right)$of the Cauchy problem:

$$
\left\{\begin{array}{l}
P u=f \text { in } R^{+}, \\
\lim _{t \downarrow 0}\left(u, D_{t} u, \cdots, D_{t}^{m-1} u\right)=\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{m-1}\right) .
\end{array}\right.
$$

We can prove an analogue of Theorem 37 in E. Berz [2, p. 32].
Proposition 30. Let l be a non-negative integer such that $l \leqq m$ and let $h \in \mathscr{D}_{+}^{\prime}$. Then the unique solution $v \in \mathscr{D}_{+}^{\prime}$ of $P v=h$ is a canonical distribution and $\lim _{t \downarrow 0}\left(v \mid R^{+}\right)=\cdots=\lim _{t \downarrow 0} D_{t}^{m-1-l}\left(v \mid R^{+}\right)=0$ when $l<m$, if and only if h can be written in the form $h=D_{t}^{l} g$, where $g \in \mathscr{D}_{+}^{\prime}$ is a canonical distribution.

Prooe. Let h be written in the form $h=D_{t}^{l} g, g \in \mathscr{D}_{+}^{\prime}$ being canonical. Suppose $l=0$. Then, in virtue of Corollary 1 in [7, p. 19], the restriction $u=v \mid R^{+}$is a solution of the Cauchy problem:

$$
\left\{\begin{array}{l}
P u=h \quad \text { in } R^{+}, \\
\lim _{t \downarrow 0}\left(u, D_{t} u, \cdots, D_{t}^{m-1} u\right)=0
\end{array}\right.
$$

and $v=u_{\sim}$.
By the induction on l we shall prove the v is a canonical distribution and $\lim _{t \downarrow 0}\left(u, \cdots, D_{t}^{m-1-l} u\right)=0$. Let $l>0$ and suppose the assertion is true for $l-1$, $0<l<m$. Consider the equation $P w=D_{t}^{l-1} g$. Then $w \in \mathscr{D}_{+}^{\prime}$ is canonical and $\lim _{t \downarrow 0}\left(w \mid R^{+}\right)=\cdots=\lim _{t \downarrow 0} D_{t}^{m-l}\left(w \mid R^{+}\right)=0$, and therefore $w, \cdots, D_{t}^{m-1-l} w$ are canonical. If we put $v=D_{t} w+\chi$, then

$$
P \chi=-i \sum_{j=1}^{m} a_{j}^{\prime}(t) D_{t}^{m-j} w .
$$

Thus $x \in \mathscr{D}_{+}^{\prime}$ is canonical and $\lim _{t \downarrow 0}\left(x \mid R^{+}\right)=\cdots=\lim _{t \downarrow 0} D_{t}^{m-l}\left(x \mid R^{+}\right)=0$ and therefore $v=D_{t} w+x$ is canonical and $\lim _{t \downarrow 0}\left(u, \cdots, D_{t}^{m-1-l} u\right)=0$ for $l<m$.

Conversely, let v be canonical and $\lim _{t \downarrow 0}\left(u, \cdots, D_{t}^{m-1-l} u\right)=0$ when $l<m$. Put $Y_{k}=\frac{1}{(k-1)!} t^{k-1}$. Owing to the relation (16) in [10, p. 392], we have

$$
(-i)^{l} D_{t}^{m-l} v+\sum_{j=1}^{m} \sum_{k=1}^{l}(-i)^{k}\binom{l}{k} Y_{k} *\left(D_{t}^{k} a_{j}\left(Y_{l} * D_{t}^{m-j} v\right)\right)=Y_{l} * h .
$$

Since v is canonical and $\lim _{t \downarrow 0}\left(u, \cdots, D_{t}^{m-1-t} u\right)=0, l<m$, we see that $v, D_{t} v, \cdots$, $D_{t}^{m-1} v$ are canonical and therefore the left hand side of the equation is canonical. Thus $Y_{l} * h$ is a canonical distribution, which implies that we can write $h=D_{t}^{l} g$, with a canonical g. The proof is thus complete.

Proposition 31. Let $\left\{\vec{u}_{\iota}\right\}_{\iota \in I}$ be a directed set in $\mathscr{E}_{t}^{0}\left(\bar{R}^{+}\right)$and put $\vec{f}_{\iota}=L \vec{u}_{\iota}$ in $\mathscr{D}^{\prime}\left(R^{+}\right)$. If \vec{f}_{c} can be written in the form $\vec{f}_{c}=D_{t} \vec{g}_{c}$ in R^{+}, where $\vec{g}_{\iota} \in \mathscr{E}_{t}^{0}\left(\bar{R}^{+}\right)$ and $\vec{g}_{\iota}(0)=0$, and if $\vec{u}_{\iota}(0), \vec{g}_{،}$ converge in $\boldsymbol{C}^{N}, \mathscr{E}_{t}^{0}\left(\vec{R}^{+}\right)$to $\vec{\alpha}$, \vec{g} respectively, then \vec{u}_{ι} converges in $\mathscr{E}_{t}^{0}\left(\bar{R}^{+}\right)$to \vec{u} and \vec{u} satisfies the equation $L \vec{u}=\vec{f}$ in R^{+}and $\vec{u}(0)=\vec{\alpha}$, where $\vec{f}=D_{t} \vec{g}$.

Proof. Consider the Cauchy problem:

$$
\left\{\begin{array}{l}
L \vec{v}_{\iota}=\vec{g}_{\iota} \text { in } R^{+} \\
\lim _{t \downarrow 0} \vec{v}_{\iota}=0
\end{array}\right.
$$

There exists a unique solution $\vec{v}_{\iota} \in \mathscr{E}_{t}^{1}\left(\bar{R}^{+}\right)$and \vec{v}_{ι} converges in $\mathscr{E}_{t}^{1}\left(\bar{R}^{+}\right)$to \vec{v} when c run through I. Then \vec{v} is a solution of the Cauchy problem $L \vec{v}=\vec{g}$ in R^{+}with $\vec{v}(0)=0$. On the other hand, from the equation $D_{t} \vec{v}_{\iota}=\vec{g}_{\iota}-\vec{A}(t) \vec{v}_{\iota}$ we have $D_{t} \vec{v}_{\iota}(0)=0$. If we put $\vec{u}_{\iota}=D_{t} \vec{v}+\vec{w}_{t}$, then

$$
\left\{\begin{array}{l}
L \vec{w}_{\imath}=i \vec{A}^{\prime}(t) \vec{v}_{\imath} \quad \text { in } \quad R^{+} \\
\lim _{t \downarrow 0} \vec{w}_{\imath}=\vec{u}(0)
\end{array}\right.
$$

where $\vec{A}^{\prime}(t) \vec{v} \in \mathscr{E}_{t}^{1}\left(\bar{R}^{+}\right)$. Thus there exists a unique solution $\vec{w}_{\iota} \in \mathscr{E}_{t}^{2}\left(\bar{R}^{+}\right)$. Since $\vec{u}_{\iota}(0), \vec{A}(t) \vec{v}_{\iota}$ converge in $\boldsymbol{C}^{N}, \mathscr{E}_{t}^{1}\left(\vec{R}^{+}\right)$to $\alpha, \vec{A}(t) \vec{v}$ respectively, \vec{w}_{ι} converges in $\mathscr{E}_{t}^{2}\left(\bar{R}^{+}\right)$to \vec{w}. Consequently $\vec{u}_{t}=D_{t} \vec{v}_{\iota}+\vec{w}_{\iota}$ converges in $\mathscr{E}_{t}^{0}\left(\bar{R}^{+}\right)$to $\vec{u}=D_{t} \vec{v}+\vec{w}$ and \vec{u} satisfies $L \vec{u}=\vec{f}$ in R^{+}and $\vec{u}(0)=\vec{\alpha}$, completing the proof.

Consider the Cauchy problem

$$
\left\{\begin{array}{l}
L \vec{v}=\vec{h} \text { in } R, \tag{33}\\
\vec{v}(0)=\vec{\alpha}
\end{array}\right.
$$

for any preasigned $\vec{\alpha} \in C^{N}$ and $\vec{h} \in \mathscr{D}^{\prime}(R)$, where $\vec{v}(0)$ is the value of \vec{v} in the sense of S. Łojasiewicz. By Theorem 5 in [10, p. 392] and Theorem 14, if $\vec{h} \in \mathscr{D}^{\prime}(R)$ has no mass on $t=0$ and the restrictions $\vec{h}_{1}=\vec{h} \mid R^{+}$and $\vec{h}_{2}=\vec{h} \mid R^{-}$ have the canonical extensions $\vec{h}_{1 \sim}$ and \vec{h}_{2}^{\sim} over $t=0$, then, owing to Theorem 5 in $\left[10\right.$, p. 392] and Theorem 14, there exists a unique solution $\vec{v} \in \mathscr{D}^{\prime}(R)$ of the Cauchy problem (33), and $\vec{v}_{1}=\vec{v}\left|R^{+}, \vec{v}_{2}=\vec{v}\right| R^{-}$satisfy the equations

$$
\begin{aligned}
L\left(\vec{v}_{1 \sim}\right) & =\vec{h}_{1 \sim}-i \vec{\alpha} \delta, \\
L\left(\vec{v}_{2}^{\tilde{2}}\right) & =\vec{h}_{2}^{\tilde{2}}+i \vec{\alpha} \delta,
\end{aligned}
$$

Thus we have the following
Theorem 15. Let $\left\{\vec{v}_{\iota}\right\}_{\iota \in I}$ be a directed set in $\mathscr{E}_{t}^{0}(R)$ and put $\vec{h}_{\iota}=L \vec{v}_{\iota}$ in $\mathscr{D}^{\prime}(R)$. If \vec{h}_{ι} can be written in the form $\vec{h}_{\iota}=D_{t} \vec{g}_{\iota}$, where $\vec{g}_{\iota} \in \mathscr{E}_{t}^{0}(R)$ and $\vec{g}_{\iota}(0)=0$, and if $\vec{v}_{\iota}(0)$, $\vec{g}_{،}$ converge in $\boldsymbol{C}^{N}, \mathscr{E}_{t}^{0}(R)$ to $\vec{\alpha}, \vec{g}$ respectively, then \vec{v}_{ι} converges in $\mathscr{E}_{t}^{0}(R)$ to \vec{v} and \vec{v} satisfies the equation $L \vec{v}=\vec{h}$ and $\vec{v}(0)=\vec{\alpha}$, where $\vec{h}=D_{t} \vec{g}$.

Let us again consider the differential operator $P(D)$. The discussions made for a system will allow to show the following

Theorem 16. Let $\left\{v_{\iota}\right\}_{\iota \in I}$ be a directed set in $\mathscr{E}_{t}^{0}(R)$ and put $h_{\iota}=P v_{\iota}$ in $\mathscr{D}^{\prime}(R)$. If the values $\left(v_{\iota}(0), D_{t} v_{\iota}(0), \cdots, D_{t}^{m-1} v_{\iota}(0)\right)=\vec{\alpha}_{\iota}$ exist and if h_{ι} can be written in the form $h_{\iota}=D_{t}^{l} g_{\iota}, 0 \leqq l \leqq m$, where $g_{\iota} \in \mathscr{E}_{t}^{0}(R)$ and $\left(g_{\iota}(0), D_{t} g_{\iota}(0)\right.$, $\left.\cdots, D_{t}^{l-1} g_{\iota}(0)\right)=0$, then v_{ι} belongs to the space $\mathscr{E}_{t}^{m-l}(R)$. If $\vec{\alpha}_{t}, g_{،}$ converge in $\boldsymbol{C}^{m}, \mathscr{E}_{t}^{0}(R)$ to $\vec{\alpha}, g$ respectively, then v, converges in $\mathscr{E}_{t}^{m-l}(R)$ to v and v satisfies the equation $P v=h$ and $\left(v(0), D_{t} v(0), \cdots, D_{t}^{m-1} v(0)\right)=\vec{\alpha}$.

Proof. Since the values $\left(g_{\imath}(0), \cdots, D_{t}^{l-1} g_{\iota}(0)\right)$ exist, $D_{t}^{j} g_{،}$ has no mass on $t=0$ and the restrictions $\left(D_{t}^{j} g_{i}\right)\left|R^{+},\left(D_{t}^{j} g_{\imath}\right)\right| R^{-}$have the canonical extensions over $t=0$ for each $j, 0 \leqq j \leqq l$. Put $v_{\iota}^{+}=v_{\iota}\left|R^{+}, v_{\iota}^{-}=v_{\iota}\right| R^{-}, h_{\iota}^{+}=h_{\iota} \mid R^{+}$and $h_{\iota}^{-}=$ $h_{\iota} \mid R^{-}$and consider the Cauchy problems

$$
\left\{\begin{array} { l }
{ P v _ { \iota } ^ { + } = h _ { \iota } ^ { + } \quad \text { in } R ^ { + } , } \\
{ \operatorname { l i m } _ { t \downarrow 0 } (v _ { \iota } ^ { + } , \ldots , D _ { t } ^ { m - 1 } v _ { \iota } ^ { + }) = \vec { \alpha } _ { \iota } , }
\end{array} \quad \left\{\begin{array}{l}
P v_{\iota}^{-}=h_{\iota}^{-} \text {in } R^{-} \\
\lim _{t \uparrow 0}\left(v_{\iota}^{-}, \ldots, D_{t}^{m-1} v_{\iota}^{-}\right) \vec{\alpha}_{\iota}
\end{array}\right.\right.
$$

The reasonings made in the proofs of Propositions 30, 31 will show that $v_{\iota}=$ $v_{\iota}^{+}+v_{\iota}^{-} \in \mathscr{E}_{t}^{m-l}(R)$ and that v_{ι} converges in $\mathscr{E}_{t}^{m-l}(R)$ to v, which satisfies $P v=h$ and $\left(v(0), D_{t} v(0), \cdots, D_{t}^{m-l} v(0)\right)=0$. This completes the proof.

In closing this paper let us add a comment on the coerciveness considered in Section 6. Let us consider the operator $L=D_{t}+\vec{A}$, where \vec{A} is an $N \times N$ matrix of convolution operators and $\vec{A} \in \mathrm{OP}_{r}, r>0$, and assume that L is parabolic in the sense of I. G. Petrowski. If we let $\chi_{j}(\xi)$ be the characteristic roots of $\hat{\vec{T}}_{A}(\xi)$, where $\vec{A} \vec{u}=\vec{T}_{A} * \vec{u}$ with $\vec{u} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, then there exist constants $C>0$ and C_{0} such that

$$
\begin{equation*}
\operatorname{Im} x_{j}(\xi) \leqq-C|\xi|^{r}+C_{0}, \quad \xi \in \Xi_{n} . \tag{34}
\end{equation*}
$$

We shall show that L satisfies the energy inequality (23) in Section 6.
The inequality (34) is equivalent to the inequality

$$
\begin{equation*}
\operatorname{Im} \chi_{j}(\xi) \leqq-C^{\prime}\left(1+|\xi|^{2}\right)^{r / 2}+C_{1} \tag{35}
\end{equation*}
$$

with constants $C^{\prime}>0$ and C_{1}. Let us consider an $N \times N$ matrix $\vec{B}=\left(\frac{i}{2} C^{\prime} S^{r}\right) \vec{E}$ with an $N \times N$ unit matrix \vec{E}. Then the operator $\tilde{L}=L+\vec{B}=D_{t}+\vec{A}$ is also parabolic. As noted in Section 4, \tilde{L} is well posed in the L^{2} norm. Owing to Corollary 3 in Section 4 it follows that there exists a positive definite Hermitian matrix $\vec{H}(\xi)$ such that

$$
-i\left(\vec{H}(\xi) \hat{\vec{T}}_{\hat{A}}(\xi)-\hat{\vec{T}}_{\vec{A}}^{*}(\xi) \vec{H}(\xi)\right) \leqq C_{2} \quad \text { a.e. on } \Xi_{n}
$$

with a constant C_{2}. Since $\hat{\vec{T}}_{\tilde{A}}(\xi)=\hat{\vec{T}}_{A}(\xi)+i \frac{C^{\prime}}{2}\left(1+|\xi|^{2}\right)^{r / 2}$, we have

$$
\begin{aligned}
\operatorname{Im}(\vec{H} L \vec{u}, \vec{u})= & -\frac{i}{2}\{(\vec{H} L \vec{u}, \vec{u})-(\vec{u}, \vec{H} L \vec{u})\} \\
= & -\frac{i}{2}\left(\left(\vec{H} \vec{A}-\vec{A}^{*} \vec{H}\right) \vec{u}, \vec{u}\right) \\
& \leqq C_{2}\|\vec{u}\|^{2}-C^{\prime}\left(\vec{H} \vec{u}, S^{r} \vec{u}\right) \\
= & C_{2}\|\vec{u}\|^{2}-C^{\prime}\left(\vec{H} S^{r / 2} \vec{u}, S^{r / 2} \vec{u}\right) \\
& \leqq C_{2}\|\vec{u}\|^{2}-C^{\prime \prime}\|\vec{u}\|_{(r / 2)}^{2}, \quad \vec{u} \in C_{0}^{\infty}\left(R_{n}\right)
\end{aligned}
$$

with a constant $C^{\prime \prime}$. In virtue of Proposition 22 we see that L satisfies the energy inequality (23).

References

[1] T. Bałaban, On the Cauchy problem for pseudodifferential hyperbolic operators, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 575-577.
[2] E. Berz, Operatorenrechnung auf funktionalanalytischer Grundlage, Math. Z., 88 (1965), 1-39.
[3] A. P. Calderón, Intergrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas, Universidad de Buenos Aires, 1960.
[4] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16 (1955).
[5] L. Hörmander, Linear partial differential operators, Springer, 1969.
[6] M. Itano, On a trace theorem for the space $H^{\mu}\left(R^{N}\right)$, J. Sci. Hiroshima Univ. Ser. A-I, 30 (1966), 11-29.
[7] -, On the fine Cauchy problem for the system of linear partial differential equations, J. Sci. Hiroshima Univ. Ser. A-I, 33 (1969), 11-27.
[8] -, Note on the canonical extensions and the boundary values for distributions in the space H^{μ}, Hiroshima Math. J., 1 (1971), 405-425.
[9] and K. Yoshida, Energy inequalities and Cauchy problem for a system of linear partial differential equations, Hiroshima Math. J., 1 (1971), 75-108.
[10] —, A study of $\mathscr{D}_{L^{2}}^{\prime}$-valued distributions on a semi-axis in connection with the Cauchy problem for a pseudo-differential system, Hiroshima Math. J., 2 (1972), 369-396.
[11] S. Kaplan, An analogue of Gårding's inequality for parabolic operators and its applications, J. Math. Mech., 19 (1969), 171-187.
[12] H. -O. Kreiss, Über Matrizen die beschränkte Halbgruppen erzeugen, Math. Scand., 7 (1959), 71-80.
[13] —, Über sachgemässe Cauchyprobleme, Math. Scand., 13 (1963), 109-128.
[14] U. Neri, Singular integrals, Lecture notes in Mathematics, Springer, 1967.
[15] L. Schwarts, Théorie des distributions, Hermann, 1966.
[16] ——Sur le théorè̀me du graphe fermé, C. R. Acad. Sc. Paris Sér. A, 263 (1966), 602-605.
[17] G. Strang, On strong hyperbolicity, J. Math. Kyoto Univ., 6-3 (1967), 397-417.

> Department of Mathematics, Faculty of General Education, Hiroshima University and
> Department of Mathematics, Faculty of Science, Hiroshima University

