On Explicit One-step Methods Utilizing the Second Derivative

Hisayoshi Shintani

(Received September 20, 1972)

1. Introduction

Consider the initial value problem

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1.1}
\end{equation*}
$$

where the function

$$
\begin{equation*}
g(x, y)=f_{x}(x, y)+f(x, y) f_{y}(x, y) \tag{1.2}
\end{equation*}
$$

is assumed to be sufficiently smooth. Let

$$
\begin{equation*}
x_{1}=x_{0}+h, \quad y_{1}=y\left(x_{1}\right), \tag{1.3}
\end{equation*}
$$

where h is a small increment in x and $y(x)$ is the solution to the given initial value problem. We are concerned with the case where the approximate value z_{1} of y_{1} is computed by means of the explicit one-step methods of the type

$$
\begin{equation*}
z_{1}=y_{0}+h k_{0}+h^{2} \sum_{i=1}^{r} p_{i} l_{i} \quad\left(p_{r} \neq 0\right) \tag{1.4}
\end{equation*}
$$

and put

$$
\begin{equation*}
T=z_{1}-y_{1}=O\left(h^{p+1}\right) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{gather*}
k_{0}=f\left(x_{0}, y_{0}\right), \tag{1.6}\\
l_{i}=g\left(x_{0}+a_{i} h, y_{0}+a_{i} h k_{0}+h^{2} \sum_{j=1}^{i-1} b_{i j} l_{j}\right) \quad(i=1,2, \cdots, r) . \tag{1.7}
\end{gather*}
$$

In our previous paper [1] ${ }^{1)}$, we have shown that the formulas (1.4) of orders $p=r+2$ exist for $r=1,2,3,4$ and 5 . In this paper, together with (1.4), we consider the formulas

$$
\begin{equation*}
w_{1}=y_{0}+h k_{0}+h^{2} \sum_{j=1}^{r-1} q_{j} l_{j}, \tag{1.8}
\end{equation*}
$$

[^0]and put
\[

$$
\begin{align*}
& S=w_{1}-y_{1}=O\left(h^{q+1}\right) \tag{1.9}\\
& s=w_{1}-z_{1}=h^{2} \sum_{i=1}^{r} r_{i} l_{i} .
\end{align*}
$$
\]

In the case where $p>q$, for sufficiently small h, the truncation error S of w_{1} will be approximated by s. Thus we are interested in the relations among r, q and p. It will be shown that, for $r=2,3$ and 4, the formulas of orders $q=r$ and $p=r+2$ exist, but those of orders $q=r+1$ and $p=r+2$ do not exist; for $r=5$, those of orders $q=4$ and $p=7$ and those of orders $q=5$ and $p=6$ exist, but those of orders $q=5$ and $p=7$ do not exist. Finally numerical examples are presented.

2. Preliminaries

Let D be a differential operator defined by

$$
\begin{equation*}
D=\frac{\partial}{\partial x}+k_{0} \frac{\partial}{\partial y} \tag{2.1}
\end{equation*}
$$

and put

$$
\begin{gather*}
D^{i} g\left(x_{0}, y_{0}\right)=Z_{i}, D^{i} g_{y}\left(x_{0}, y_{0}\right)=Y_{i}, D^{i} g_{y y}\left(x_{0}, y_{0}\right)=X_{i}, \tag{2.2}\\
D^{i} g_{y y y}\left(x_{0}, y_{0}\right)=W_{i} \quad(i=0,1,2, \cdots) .
\end{gather*}
$$

Then $y_{0}^{(i)}=y^{(i)}\left(x_{0}\right)(i=1,2, \cdots)$ can be written as follows:

$$
\begin{gather*}
y_{0}^{(1)}=k_{0}, y_{0}^{(2)}=Z_{0}, y_{0}^{(3)}=Z_{1}, y_{0}^{(4)}=Z_{2}+Z_{0} Y_{0}, \tag{2.3}\\
y_{0}^{(5)}=Z_{3}+3 Z_{0} Y_{1}+Z_{1} Y_{0} \tag{2.4}\\
y_{0}^{(6)}=Z_{4}+6 Z_{0} Y_{2}+4 Z_{1} Y_{1}+Z_{2} Y_{0}+Z_{0} Y_{0}^{2}+3 Z_{0}^{2} X_{0}, \tag{2.5}\\
y_{0}^{(7)}=Z_{5}+10 Z_{0} Y_{3}+10 Z_{1} Y_{2}+5 Z_{2} Y_{1}+Z_{3} Y_{0}+8 Z_{0} Y_{0} Y_{1} \tag{2.6}\\
+Z_{1} Y_{0}^{2}+10 Z_{0} Z_{1} X_{0}+15 Z_{0}^{2} X_{1}, \\
y_{0}^{(8)}=Z_{6}+15 Z_{0} Y_{4}+20 Z_{1} Y_{3}+15 Z_{2} Y_{2}+6 Z_{3} Y_{1}+Z_{4} Y_{0}+21 Z_{0} Y_{0} Y_{2} \tag{2.7}\\
+10 Z_{1} Y_{0} Y_{1}+18 Z_{0} Y_{1}^{2}+Z_{2} Y_{0}^{2}+Z_{0} Y_{0}^{3}+18 Z_{0}^{2} Y_{0} X_{0}+15 Z_{0} Z_{2} X_{0} \\
+60 Z_{0} Z_{1} X_{1}+10 Z_{1}^{2} X_{0}+45 Z_{0}^{2} X_{2}+15 Z_{0}^{3} W_{0}
\end{gather*}
$$

Put for simplicity

$$
\begin{equation*}
d_{i j}=i(i+1) \sum_{k=1}^{j-1} a_{k}^{i-1} b_{j k} \quad(i=1,2, \ldots, r ; j=2,3, \ldots, r) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
e_{i j}=(i+2)(i+3) \sum_{k=2}^{j-1} a_{k}^{i-1} d_{1 k} b_{j k} \quad(j=3,4, \cdots, r), \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
l_{i j}=(i+3)(i+4) \sum_{k=2}^{j-1} a_{k}^{i-1} d_{2 k} b_{j k} \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
m_{i j}=(i+4)(i+5) \sum_{k=2}^{j-1} a_{k}^{i-1} d_{3 k} b_{j k} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
q_{i j}=(i+4)(i+5) \sum_{k=2}^{j-1} a_{k}^{i-1} d_{1 k}^{2} b_{j k}, \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
r_{i j}=(i+4)(i+5) \sum_{k=3}^{j-1} a_{k}^{i-1} e_{1 k} b_{j k} \quad(j=4,5, \ldots, r) . \tag{2.13}
\end{equation*}
$$

Then z_{1} in (1.4) can be expanded as follows:

$$
\begin{align*}
z_{1}= & y_{0}+h k_{0}+h^{2} A_{0} Z_{0}+h^{3} A_{1} Z_{1}+\frac{1}{2!} h^{4}\left(A_{2} Z_{2}+A_{3} Z_{0} Y_{0}\right) \tag{2.14}\\
& +\frac{1}{3!} h^{5}\left(A_{4} Z_{3}+3 A_{5} Z_{0} Y_{1}+A_{6} Z_{1} Y_{0}\right)+\frac{1}{4!} h^{6}\left(B_{1} Z_{4}+6 B_{2} Z_{0} Y_{2}\right. \\
& \left.+4 B_{3} Z_{1} Y_{1}+B_{4} Z_{2} Y_{0}+B_{5} Z_{0} Y_{0}^{2}+3 B_{6} Z_{0}^{2} X_{0}\right)+\frac{1}{5!} h^{7}\left(C_{1} Z_{5}\right. \\
& +10 C_{2} Z_{0} Y_{3}+10 C_{3} Z_{1} Y_{2}+5 C_{4} Z_{2} Y_{1}+C_{5} Z_{3} Y_{0}+8 C_{6} Z_{0} Y_{0} Y_{1} \\
& \left.+C_{7} Z_{1} Y_{0}^{2}+10 C_{8} Z_{0} Z_{1} X_{0}+15 C_{9} Z_{0}^{2} X_{1}\right)+\frac{1}{6!} h^{8}\left(D_{1} Z_{6}+15 D_{2} Z_{0} Y_{4}\right. \\
& +20 D_{3} Z_{1} Y_{3}+15 D_{4} Z_{2} Y_{2}+6 D_{5} Z_{3} Y_{1}+D_{6} Z_{4} Y_{0}+21 D_{7} Z_{0} Y_{0} Y_{2} \\
& +10 D_{8} Z_{1} Y_{0} Y_{1}+18 D_{9} Z_{0} Y_{1}^{2}+D_{10} Z_{2} Y_{0}^{2}+D_{11} Z_{0} Y_{0}^{3}+18 D_{12} Z_{0}^{2} Y_{0} X_{0} \\
& +15 D_{13} Z_{0} Z_{2} X_{0}+60 D_{14} Z_{0} Z_{1} X_{1}+10 D_{15} Z_{1}^{2} X_{0}+45 D_{16} Z_{0}^{2} X_{2} \\
& \left.+15 D_{17} Z_{0}^{3} W_{0}\right)+\cdots,
\end{align*}
$$

where

$$
\begin{align*}
A_{0} & =\sum_{i=1}^{r} p_{i}, A_{1}=\Sigma a_{i} p_{i}, A_{2}=\Sigma a_{i}^{2} p_{i}, A_{3}=\sum_{j=2}^{r} d_{1 j} p_{j}, \tag{2.15}\\
A_{4} & =\Sigma a_{i}^{3} p_{i}, A_{5}=\Sigma a_{j} d_{1 j} p_{j}, A_{6}=\Sigma d_{2 j} p_{j}, \tag{2.16}\\
B_{1} & =\Sigma a_{i}^{4} p_{i}, B_{2}=\Sigma a_{j}^{2} d_{1 j} p_{j}, B_{3}=\Sigma a_{j} d_{2 j} p_{j}, B_{4}=\Sigma d_{3 j} p_{j}, \tag{2.17}\\
B_{5} & =\sum_{k=3}^{r} e_{1 k} p_{k}, B_{6}=\Sigma d_{1 j}^{2} p_{j},
\end{align*}
$$

$$
\begin{equation*}
C_{1}=\Sigma a_{i}^{5} p_{i}, C_{2}=\Sigma a_{j}^{3} d_{1 j} p_{j}, C_{3}=\Sigma a_{j}^{2} d_{2 j} p_{j}, C_{4}=\Sigma a_{j} d_{3 j} p_{j} \tag{2.18}
\end{equation*}
$$

$$
\begin{aligned}
& C_{5}=\Sigma d_{4 j} p_{j}, 8 C_{6}=5 \Sigma a_{k} e_{1 k} p_{k}+3 \Sigma e_{2 k} p_{k}, C_{7}=\Sigma l_{1 k} p_{k}, \\
& C_{8}=\Sigma d_{1 j} d_{2 j} p_{j}, C_{9}=\Sigma a_{j} d_{1 j}^{2} p_{j}, \\
& D_{1}=\Sigma a_{i}^{6} p_{i}, D_{2}=\Sigma a_{j}^{4} d_{1 j} p_{j}, D_{3}=\Sigma a_{j}^{3} d_{2 j} p_{j}, D_{4}=\Sigma a_{j}^{2} d_{3 j} p_{j}, \\
& D_{5}=\Sigma a_{j} d_{4 j} p_{j}, D_{6}=\Sigma d_{5 j} p_{j}, 7 D_{7}=5 \Sigma a_{k}^{2} e_{1 k} p_{k}+2 \Sigma e_{3 k} p_{k}, \\
& 5 D_{8}=3 \Sigma a_{k} l_{1 k} p_{k}+2 \Sigma l_{2 k} p_{k}, D_{9}=\Sigma a_{k} e_{2 k} p_{k}, D_{10}=\Sigma m_{1 k} p_{k}, \\
& D_{11}=\sum_{l=4}^{r} r_{1 p} p_{l}, 6 D_{12}=5 \Sigma d_{1 k} e_{1 k} p_{k}+\Sigma q_{1 k} p_{k}, \\
& D_{13}=\Sigma d_{1 j} d_{3 j} p_{j}, D_{14}=\Sigma a_{j} d_{1 j} d_{2 j} p_{j}, D_{15}=\Sigma d_{2 j}^{2} p_{j}, \\
& D_{16}=\Sigma a_{j}^{2} d_{1 j}^{2} p_{j}, D_{17}=\Sigma d_{1 j}^{3} p_{j} .
\end{aligned}
$$

If we impose the condition that

$$
\begin{equation*}
a_{1}=0, d_{1 j}=a_{j}^{2} \quad(j=2,3, \cdots, r), \tag{2.20}
\end{equation*}
$$

then it follows that

$$
\begin{align*}
& d_{j 2}=0 \quad(j=2,3, \cdots, r), \quad l_{i 3}=m_{i 3}=0 \quad(i=1,2, \cdots, r), \tag{2.21}\\
& e_{i k}=d_{i+2, k}, q_{i k}=d_{i+4, k}, r_{i l}=m_{i l}, \tag{2.22}\\
& A_{3}=A_{2}, A_{5}=A_{4}, B_{2}=B_{6}=B_{1}, B_{5}=B_{4}, C_{2}=C_{9}=C_{1}, \\
& 8 C_{6}=5 C_{4}+3 C_{5}, C_{8}=C_{3}, D_{2}=D_{16}=D_{17}=D_{1}, \\
& 7 D_{7}=5 D_{4}+2 D_{6}, D_{9}=D_{5}, D_{11}=D_{10}, 6 D_{12}=5 D_{4}+D_{6}, \\
& D_{13}=D_{4}, D_{14}=D_{3} .
\end{align*}
$$

We make use of the following notations:

$$
\begin{align*}
V^{(n)} & =\frac{1}{(n+1)(n+2)}, W_{i}^{(n)}=V^{(n+1)}-a_{i} V^{(n)}, \tag{2.24}\\
X_{i j}^{(n)} & =W_{i}^{(n+1)}-a_{j} W_{i}^{(n)}, Y_{i j k}^{(n)}=X_{i j}^{(n+1)}-a_{k} X_{i j}^{(n)}, \\
Z_{i j k l}^{(n)} & =Y_{i j k}^{(n+1)}-a_{l} Y_{i j k}^{(n)}, U^{(n)}=V^{(n+3)}-3 a_{1} V^{(n+2)} \quad(n=0,1, \cdots) .
\end{align*}
$$

We denote by ($)^{\prime}$ the expression () in which $p_{r}=0$ and $p_{j}(j=1,2, \cdots$, $r-1$) are replaced by q_{j} respectively.

3. Case where $\mathbf{r}=2$

Tha formulas of orders $q=2$ and $p=4$ exist. For instance, the choice
$a_{1}=\frac{1}{8}$ obtains the following results :

$$
\begin{align*}
a_{1} & =\frac{1}{8}, a_{2}=\frac{3}{5}, b_{21}=\frac{19}{100}, p_{1}=\frac{16}{57}, p_{2}=\frac{25}{114} \tag{3.1}\\
q_{1} & =\frac{1}{2}, r_{1}=\frac{25}{114}, r_{2}=-\frac{25}{114}, \\
T & =-\frac{1}{5!} h^{5}\left(\frac{1}{24} Z_{3}+\frac{3}{8} Z_{1} Y_{0}\right)+O\left(h^{6}\right) \tag{3.2}\\
s & =-\frac{1}{3!} h^{3} \frac{8}{5} Z_{1}-\frac{1}{4!} h^{4}\left(\frac{29}{32} Z_{2}+Z_{0} Y_{0}\right)+O\left(h^{5}\right) \tag{3.3}
\end{align*}
$$

The formulas of orders $q=3$ and $p=4$ do not exist. For otherwise the equations

$$
\begin{equation*}
a_{1}=a_{2}=\frac{1}{3}, a_{2}\left(a_{2}-a_{1}\right) p_{2}=\frac{1}{12}-\frac{1}{6} a_{1} \tag{3.4}
\end{equation*}
$$

must be satisfied.

4. Case where $\mathbf{r}=3$

The formulas of orders $q=3$ and $p=5$ exist. For instance, the choice $a_{1}=\frac{1}{8}$ and $a_{3}=1$ obtains the following results:

$$
\begin{align*}
& a_{1}=\frac{1}{8}, a_{2}=\frac{11}{20}, b_{21}=\frac{17}{100}, a_{3}=1, b_{31}=-\frac{7}{34} \tag{4.1}\\
& b_{32}=\frac{189}{340}, p_{1}=\frac{32}{119}, p_{2}=\frac{100}{459}, p_{3}=\frac{5}{378}, q_{1}=\frac{13}{51} \\
& q_{2}=\frac{25}{102}, r_{1}=-\frac{5}{357}, r_{2}=\frac{25}{918}, r_{3}=-\frac{5}{378}
\end{align*}
$$

$$
\begin{align*}
T= & -\frac{1}{6!} h^{6}\left(\frac{1}{320} Z_{4}+\frac{3}{10} Z_{0} Y_{2}-\frac{1}{2} Z_{1} Y_{1}+\frac{1}{160} Z_{2} Y_{0}+\frac{1}{10} Z_{0} Y_{0}^{2}+\right. \tag{4.2}\\
& \left.\frac{3}{20} Z_{0}^{2} X_{0}\right)+O\left(h^{7}\right), \\
s= & -\frac{1}{4!} h^{4} \frac{1}{16} Z_{2}-\frac{1}{5!} h^{5}\left(\frac{67}{384} Z_{3}+\frac{1}{4} Z_{0} Y_{1}+\frac{3}{8} Z_{1} Y_{0}\right)+O\left(h^{6}\right) . \tag{4.3}
\end{align*}
$$

We shall show that the formulas of orders $q=4$ and $p=5$ do not exist.

Assume the contrary. Then the following equations must be satisfied:

$$
\begin{gather*}
\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)=0, \tag{4.4}\\
X_{12}^{(n)}=0 \quad(n=0,1), \tag{4.5}\\
\left(a_{3}-a_{1}\right) d_{12}=\left(a_{2}-a_{1}\right) d_{13}, \tag{4.6}\\
\left(a_{3}-a_{2}\right) d_{13} p_{3}=W_{2}^{(2)} . \tag{4.7}
\end{gather*}
$$

The system (5) has the solution $a_{1}, a_{2}=(4 \pm \sqrt{6}) / 10$. Hence $a_{2} \neq a_{1}$ and $W_{2}^{(2)} \neq 0$. Then, from the equation (7), it follows that $\left(a_{3}-a_{2}\right) d_{13} \neq 0$, and so $a_{3} \neq a_{1}$ by (6). This contradicts the condition (4), and our assertion is proved.

5. Case where $r=4$

We shall show first the following
Lemma 1. In order that the formulas of orders $q=4$ and $p=6$ may exist for $r=4$, the conditions

$$
\begin{align*}
& \left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right) \neq 0, \tag{5.1}\\
& a_{1}=0, d_{1 j}=a_{j}^{2} \quad(j=2,3,4) \tag{5.2}
\end{align*}
$$

must be valid.
Proof. Assume that such formulas exist. Then there must hold the following equations:

$$
\begin{equation*}
\sum_{j=2}^{4} a_{j}^{n}\left(a_{j}-a_{1}\right) p_{j}=W_{1}^{(n)} \quad(n=0,1,2) \tag{5.3}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{k=j, 4} a_{k}^{n}\left(a_{k}-a_{1}\right)\left(a_{k}-a_{i}\right) p_{k}=X_{1 i}^{(n)} \quad(j \neq i ; i, j=2,3), \tag{5.4}\\
\sum_{j=2}^{4} a_{j}^{n} d_{1 j} p_{j}=V^{(n+2)} \tag{5.5}
\end{gather*}
$$

and $(4)_{0}^{\prime},(5)_{0}^{\prime}$ and $(3)_{n}^{\prime}(n=0,1)$.
Suppose that $\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)=0$. Then, from (4) and (4) $)_{0}^{\prime}(j=3)$, it follows that

$$
\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)=0, X_{12}^{(0)}=0
$$

Hence, from (4) $(n=1,2)$, we obtain the equations $X_{12}^{(n)}=0(n=1,2)$, so that a_{1} and a_{2} must satisfy the system of equations $X_{12}^{(n)}=0(n=0,1,2)$. As is easily checked, this system has no solution. Hence $a_{3} \neq a_{1}$ and $a_{3} \neq a_{2}$. Similarly it can be shown that $a_{2} \neq a_{1}$.

Put

$$
\begin{equation*}
d_{1 j}=\left(a_{j}-a_{1}\right) s_{j} \quad(j=2,3), \quad s_{3}-s_{2}=\left(a_{3}-a_{2}\right) r_{3} . \tag{5.6}
\end{equation*}
$$

Then, from $(3)_{0}^{\prime},(4)_{0}^{\prime},(5)_{0}^{\prime},(3)_{n},(4)_{n}$ and $(5)_{n}(n=0,1,2)$, it follows that

$$
\begin{gather*}
d_{14}=\left(a_{4}-a_{1}\right)\left[s_{2}+\left(a_{4}-a_{2}\right) r_{3}\right] \tag{5.7}\\
V^{(n+2)}=W_{1}^{(n)} s_{2}+X_{12}^{(n)} r_{3} \quad(n=0,1,2) \tag{5.8}
\end{gather*}
$$

Solving the system of equations (8$)_{n}(n=0,1,2)$, we have the solution

$$
a_{1}=0, s_{2}=a_{2}, r_{3}=1
$$

and the condition (2) follows from (6) and (7). This completes the proof.
The formulas of orders $q=4$ and $p=6$ exist. For instance, the choice $a_{2}=\frac{1}{5}$ and $a_{4}=1$ yields the following results:

$$
\begin{align*}
& a_{1}=0, a_{2}=\frac{1}{5}, b_{21}=\frac{1}{50}, a_{3}=\frac{3}{5}, b_{31}=-\frac{1}{50} \tag{5.9}\\
& b_{32}=\frac{1}{5}, a_{4}=1, b_{41}=\frac{13}{18}, b_{42}=-\frac{2}{3}, b_{43}=\frac{4}{9} \\
& p_{1}=\frac{1}{18}, p_{2}=\frac{25}{96}, p_{3}=\frac{25}{144}, p_{4}=\frac{1}{96}, q_{1}=\frac{1}{12} \\
& q_{2}=\frac{5}{24}, q_{3}=\frac{5}{24}, r_{1}=\frac{1}{36}, r_{2}=-\frac{5}{96}, r_{3}=\frac{5}{144} \\
& r_{4}=-\frac{1}{96}
\end{align*}
$$

$$
\begin{align*}
T= & -\frac{1}{7!} h^{7}\left[\frac{89}{125}\left(Z_{5}+10 Z_{0} Y_{3}+15 Z_{0}^{2} X_{1}\right)+\frac{1}{5}\left(Z_{1} Y_{2}+Z_{0} Z_{1} X_{0}\right)\right. \tag{5.10}\\
& \left.+\frac{4}{5} Z_{2} Y_{1}-\frac{2}{75} Z_{3} Y_{0}+\frac{18}{25} Z_{0} Y_{0} Y_{1}+\frac{1}{15} Z_{1} Y_{0}^{2}\right]+O\left(h^{8}\right)
\end{align*}
$$

$$
\begin{align*}
s= & -\frac{1}{5!} h^{5} \frac{1}{15}\left(Z_{3}+3 Z_{0} Y_{1}\right)-\frac{1}{6!} h^{6}\left[\frac { 4 } { 2 5 } \left(Z_{4}+6 Z_{0} Y_{2}+4 Z_{1} Y_{1}\right.\right. \tag{5.11}\\
& \left.\left.+3 Z_{0}^{2} X_{0}\right)+\frac{2}{5}\left(Z_{2} Y_{0}+Z_{0} Y_{0}^{2}\right)\right]+O\left(h^{7}\right)
\end{align*}
$$

Now we shall show that the formulas of orders $q=5$ and $p=6$ do not exist. Assume the contrary. Then the following equations must be satisfied:

$$
\begin{equation*}
a_{4}\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right)=0, \tag{5.12}
\end{equation*}
$$

$$
\begin{equation*}
X_{23}^{(1)}=0, \quad X_{23}^{(2)}=0 \tag{5.13}
\end{equation*}
$$

$$
\begin{gather*}
a_{3}\left(a_{3}-a_{2}\right) p_{3}+a_{4}\left(a_{4}-a_{2}\right) p_{4}=W_{2}^{(1)} \tag{5.14}\\
d_{23} p_{3}+d_{24} p_{4}=V^{(3)} \tag{5.15}\\
\left(a_{4}-a_{3}\right) d_{24} p_{4}=W_{3}^{(3)} \tag{5.16}
\end{gather*}
$$

and (14)' and (15)'. Solving the system (13), we have the solution

$$
\begin{equation*}
a_{2}, a_{3}=\frac{5 \pm \sqrt{5}}{10} \tag{5.17}
\end{equation*}
$$

Put $d_{23}=a_{3}\left(a_{3}-a_{2}\right) t_{3}$. Then, from (14)', (15)', (14) and (15) it follows that

$$
\begin{equation*}
d_{24}=a_{4}\left(a_{4}-a_{2}\right) t_{3} \tag{5.18}
\end{equation*}
$$

By (18), (16) and (12) we have the equation $W_{3}^{(3)}=0$, from which follows that $a_{3}=\frac{2}{3}$. This contradicts the result (17). Hence such formulas do not exist.

Summarizing the results, we have the following
Theorem 1. For $r=2,3$ and 4 the formulas of orders $q=r$ and $p=r+2$ exist, but those of orders $q=r+1$ and $p=r+2$ do not exist.

6. Case where $r=5$

We shall show the following
Theorem 2. For $r=5$, the formulas of orders $q=4$ and $p=7$ and those of orders $q=5$ and $p=6$ exist, but those of orders $q=5$ and $p=7$ do not exist.

Assume that the formulas of orders $q=5$ and $p=7$ exist. Then there must hold the following equations:

$$
\begin{equation*}
\sum_{k=2}^{5} a_{k}^{n}\left(a_{k}-a_{1}\right) p_{k}=W_{1}^{(n)} \quad(n=0,1,2,3,4) \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=2}^{5} a_{k}^{n} d_{1 k} p_{k}=V^{(n+2)} \quad(n=0,1,2,3) \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=2, k \neq i}^{5} a_{k}^{n}\left(a_{k}-a_{1}\right)\left(a_{k}-a_{i}\right) p_{k}=X_{1 i}^{(n)} \quad(i=1,2,3,4 ; n=0,1,2,3) \tag{6.3}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{k=3}^{5} a_{k}^{n} c_{k} p_{k}=U^{(n)} \quad(n=0,1,2) \tag{6.4}\\
& \sum_{k=2, k \neq 4}^{5} a_{k}^{n}\left(a_{k}-a_{4}\right) d_{1 k} p_{k}=W_{4}^{(n+2)} \quad(n=0,1,2) \tag{6.5}
\end{align*}
$$

$(6.6)_{n}$

$$
\sum_{k=3,5} a_{k}^{n}\left(a_{k}-a_{4}\right) c_{k} p_{k}=W_{4}^{(n+3)}-3 a_{1} W_{4}^{(n+2)} \quad(n=0,1),
$$

$$
\begin{equation*}
\sum_{l=k, 5} a_{l}^{n}\left(a_{l}-a_{1}\right)\left(a_{l}-a_{i}\right)\left(a_{l}-a_{j}\right) p_{l}=Y_{1 i j}^{(n)} \tag{6.7}
\end{equation*}
$$

$$
(i \neq j, k ; j \neq k ; i, j, k=2,3,4 ; n=0,1,2)
$$

$$
\begin{equation*}
a_{5}^{n}\left(a_{5}-a_{1}\right)\left(a_{5}-a_{2}\right)\left(a_{5}-a_{3}\right)\left(a_{5}-a_{4}\right) p_{5}=Z_{1234}^{(n)} \quad(n=0,1), \tag{6.8}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=4,5}\left(a_{k}-a_{2}\right)\left(a_{k}-a_{3}\right) d_{1 k} p_{k}=X_{23}^{(2)} \tag{6.9}
\end{equation*}
$$

$$
\begin{equation*}
\left(a_{k}-a_{3}\right)\left(a_{k}-a_{j}\right) c_{k} p_{k}=X_{3 j}^{(3)}-3 a_{1} X_{3 j}^{(2)} \quad(j \neq k ; j, k=4,5) \tag{6.10}
\end{equation*}
$$

$$
\begin{equation*}
\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right)\left(a_{4}-a_{5}\right) d_{14} p_{4}=Y_{235}^{(2)}, \tag{6.11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=3}^{5} e_{1 k} p_{k}=V^{(4)} \tag{6.12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=4}^{5} f_{k} p_{k}=P \tag{6.13}
\end{equation*}
$$

$$
\begin{equation*}
20\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right) b_{54} p_{5}=Q, \tag{6.14}
\end{equation*}
$$

$$
\begin{equation*}
\left(a_{4}-a_{5}\right) f_{4} p_{4}=R, \tag{6.15}
\end{equation*}
$$

and $(1)_{n}^{\prime}(n=0,1,2),(2)_{m}^{\prime},(3)_{m}^{\prime}(m=0,1),(4)_{0}^{\prime},(5)_{0}^{\prime}$ and $(7)_{0}^{\prime}$, where

$$
\begin{equation*}
c_{k}=6 \sum_{j=2}^{k-1}\left(a_{j}-a_{1}\right) b_{k j} \quad(k=3,4,5), \tag{6.16}
\end{equation*}
$$

$$
\begin{equation*}
f_{k}=12 \sum_{j=3}^{k-1}\left(a_{j}-a_{1}\right)\left(a_{j}-a_{2}\right) b_{k j} \quad(k=4,5) \tag{6.17}
\end{equation*}
$$

$$
\begin{equation*}
P=\frac{1}{30}-\frac{1}{10}\left(a_{1}+a_{2}\right)+\frac{1}{2} a_{1} a_{2}, \tag{6.18}
\end{equation*}
$$

$$
\begin{equation*}
Q=\frac{1}{42}-\frac{1}{18}\left(a_{1}+a_{2}\right)+\frac{1}{6} a_{1} a_{2}-\frac{5}{3} a_{3} P, \tag{6.19}
\end{equation*}
$$

$$
\begin{equation*}
R=\frac{1}{42}-\frac{1}{15}\left(a_{1}+a_{2}\right)+\frac{3}{10} a_{1} a_{2}-a_{5} P \tag{6.20}
\end{equation*}
$$

Consider the following system of equations:

$$
\begin{equation*}
Y_{i j k}^{(n)}=0 \quad(n=0,1,2 ; i \neq j, k ; j \neq k) . \tag{6.21}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
a_{i}+a_{j}+a_{k}=\frac{9}{7}, a_{i} a_{j}+a_{i} a_{k}+a_{j} a_{k}=\frac{3}{7}, a_{i} a_{j} a_{k}=\frac{1}{35}, \tag{6.22}
\end{equation*}
$$

so that a_{i}, a_{j} and a_{k} are the roots of the equation

$$
\begin{equation*}
P(x)=35 x^{3}-45 x^{2}+15 x-1=0 . \tag{6.23}
\end{equation*}
$$

This equation has three real distinct roots and they can be expressed as follows:

$$
\frac{3}{7}+\frac{4 \sqrt{2}}{343} \cos \frac{1}{3}(\varphi+2 k \pi) \quad(k=0,1,2)
$$

where $\tan \varphi=7$. Hence these |roots do not satisfy any quadratic equation with rational coefficients, and they lie in the interval $(0,1)$.

Lemma 2. Let a_{i}, a_{j} and a_{k} be the solution of the system (6.21). Then

$$
\begin{equation*}
X_{i j}^{(0)} \neq 0, \quad X_{i j}^{(2)} \neq 0 \tag{6.24}
\end{equation*}
$$

and $\frac{1}{3} a_{k}$ is not a root of the equation (6.23).
Proof. Suppose that $X_{i j}^{(2)}=0$. Then, from the equation $Y_{i j k}^{(2)}=0$, it follows that $X_{i j}^{(3)}=0$. Hence a_{i} and a_{j} must satisfy the equation $7 x^{2}-8 x+2=0$. But this is impossible, and so $X_{i j}^{(2)} \neq 0$.

Suppose that $X_{i j}^{(0)}=0$. Then $X_{i j}^{(1)}=0$ by the equation $Y_{i j k}^{(0)}=0$, and $X_{i j}^{(2)}=0$ from $Y_{i j k}^{(1)}=0$. This contradiction shows that $X_{i j}^{(0)} \neq 0$.

Assume that $P\left(a_{k} / 3\right)=0$. Since $a_{k} \neq 0$, evidently $a_{k} \neq a_{k} / 3$. Hence suppose that $a_{i}=a_{k} / 3$. Then by (22) we have

$$
4 a_{i}+a_{j}=\frac{9}{7}, \quad 3 a_{i}^{2}+4 a_{i} a_{j}=\frac{3}{7},
$$

so that a_{i} must satisfy the equation $91 x^{2}-36 x+3=0$. But this is impossible and so $a_{i} \neq a_{k} / 3$. Similarly it can be shown that $a_{j} \neq a_{k} / 3$. Hence $P\left(a_{k} / 3\right) \neq$ 0 and the lemma is proved.

Lemma 3. Under the assumption that the formulas of orders $q=5$ and $p=7$ exist for $r=5$, let i, j, k and l be a permutation of $1,2,3$ and 4 . If $a_{l}=$ a_{k}, then a_{i}, a_{j} and a_{k} satisfy the system (6.21),

$$
\begin{equation*}
\left(a_{5}-a_{1}\right)\left(a_{5}-a_{2}\right)\left(a_{5}-a_{3}\right)\left(a_{5}-a_{4}\right)=0 \tag{6.25}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{i j}^{(3)}-3 a_{1} X_{i j}^{(2)} \neq 0 . \tag{6.26}
\end{equation*}
$$

Proof. Suppose that $a_{l}=a_{k}$. From (7) ${ }_{0}^{\prime}$ and (7) follow (25) and $Y_{i j k}^{(0)}=0$. Then by (7$)_{n}(n=1,2)$ we have $Y_{i j k}^{(n)}=0(n=1,2)$.

Suppose that (26) is not true. Then, since $X_{i j}^{(3)}-a_{k} X_{i j}^{(2)}=0$ by (21), we have $\left(a_{k}-3 a_{1}\right) X_{i j}^{(2)}=0$. By (24) it follows that $a_{k}=3 a_{1}$. Since a_{1} and a_{k} are roots of the equation (23), this contradicts the lemma 2. Thus the proof is
complete.
Lemma 4. In order that the formulas of orders $q=5$ and $p=7$ may exist for $r=5$, it is necessary that

$$
a_{l} \neq a_{k} \quad(l \neq k ; k, l=1,2,3,4) .
$$

Proof. Suppose first that $a_{2}=a_{1}$. Then $c_{3}=0$ and a_{1} must satisfy the equation (23) by the lemma 3. If we put $c_{4}=\left(a_{4}-a_{1}\right)\left(a_{4}-a_{3}\right) t_{4}$, from (4) $)_{0}^{\prime}$, $(3)_{0}^{\prime},(4)_{0}$ and $(3)_{0}(i=3)$, it follows that

$$
\begin{equation*}
c_{5}=\left(a_{5}-a_{1}\right)\left(a_{5}-a_{3}\right) t_{4} . \tag{6.27}
\end{equation*}
$$

By (27), (25) and (6) $n=0,1$) we have

$$
W_{4}^{(n+3)}-3 a_{1} W_{4}^{(n+2)}=0 \quad(n=0,1)
$$

Solving this system, we have $a_{1}=(4 \pm \sqrt{2}) / 21$. But this value does not satisfy the equation (23). Hence $a_{2} \neq a_{1}$.

Suppose next that $\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)=0$. Then $f_{4}=0$ and $R=0$ by (15). Since by (22)

$$
7\left(a_{1}+a_{2}\right)=9-7 a_{4}, \quad 7 a_{1} a_{2}=7 a_{4}^{2}-9 a_{4}+3
$$

from the equation $R=0$ we have

$$
a_{5}=\frac{63 a_{4}^{2}-67 a_{4}+14}{105 a_{4}^{2}-114 a_{4}+25} .
$$

By (25) a_{5} must be equal to one of a_{1}, a_{2} and a_{4}, so that it must satisfy the equation (23). But, as is easily checked, it is impossible. Hence $a_{3} \neq a_{1}$ and $a_{3} \neq a_{2}$.

Suppose that $a_{4}=a_{1}$ and put $d_{13}-d_{12}=\left(a_{3}-a_{2}\right) w$. Then, from (5) ${ }_{0}^{\prime}$, ($\left.\mathbf{1}\right)_{0}^{\prime}$, (3) ${ }_{0}^{\prime},(5)_{0},(1)_{0}$ and (3) $)_{0}(i=2)$, it follows that

$$
\begin{gather*}
\left(a_{5}-a_{1}\right)\left[d_{15}-d_{12}-\left(a_{5}-a_{2}\right) w\right]=0 \tag{6.28}\\
W_{1}^{(2)}=W_{1}^{(0)} d_{12}+X_{12}^{(0)} w \tag{6.29}
\end{gather*}
$$

By (5) ${ }_{1},(1)_{1},(3)_{1}$ and (28) we have

$$
\begin{equation*}
W_{1}^{(3)}=W_{1}^{(1)} d_{12}+X_{12}^{(1)} w . \tag{6.30}
\end{equation*}
$$

Since by (21) and (24)

$$
X_{12}^{(1)}=a_{3} X_{12}^{(0)}, X_{13}^{(2)}=a_{2}^{2} X_{13}^{(0)}, X_{13}^{(0)} \neq 0
$$

we have $d_{12}=a_{2}^{2}$ from (29) and (30). Similarly $d_{13}=a_{3}^{2}$ can be obtained.
By (26) and (10) ($k=5$) we have

$$
\begin{equation*}
\left(a_{5}-a_{1}\right)\left(a_{5}-a_{3}\right) c_{5} \neq 0 \tag{6.31}
\end{equation*}
$$

Hence it must hold that $a_{5}=a_{2}$ by (25) and then $d_{15}=d_{12}$ by (28). Put $c_{3}=$ $\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right) t_{3}$. Then, from (4) ${ }_{0}^{\prime},(3)_{0}^{\prime},(4)_{0}$ and (3) ${ }_{0}(i=2)$, it follows that

$$
\begin{equation*}
c_{4} q_{4}=U^{(0)}-X_{12}^{(0)} t_{3}=c_{4} p_{4}+c_{5} p_{5} \tag{6.32}
\end{equation*}
$$

From (2) ${ }_{0}^{\prime}$, (3) $)_{0}^{\prime},(2)_{0}$ and (3) $)_{0}(i=2,3)$ we have

$$
d_{14} q_{4}=d_{14} p_{4}=a_{1}^{2} X_{23}^{(0)} /\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right) \neq 0
$$

Hence $q_{4}=p_{4} \neq 0$, and $c_{5} p_{5}=0$ by (32). Since $p_{5} \neq 0$, we must have $c_{5}=0$, which contradicts (31). Hence $a_{4} \neq a_{1}$.

Suppose that $\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right)=0$. Then we have $X_{23}^{(3)}=a_{5} X_{23}^{(2)}$ by (11) and $X_{23}^{(3)}=a_{1} X_{23}^{(2)}$ by $Y_{123}^{(2)}=0$. Hence $a_{5}=a_{1}$ by (24). Assume first that $a_{4}=a_{3}$. Then $X_{13}^{(3)}=3 a_{1} X_{13}^{(2)}$ by (10) ($k=4$). This contradicts (26), so that $a_{4} \neq a_{3}$. Next suppose that $a_{4}=a_{2}$. Then ($a_{5}-a_{2}$) $d_{15}=0$ from (5) ${ }_{0}^{\prime}$, (3) $)_{0}^{\prime}$, (5) ${ }_{0}$ and (3) $)_{0}$ ($i=2$). Since $a_{5}-a_{2}=a_{1}-a_{2} \neq 0$, it follows that $d_{15}=0$ and $X_{23}^{(2)}=0$ by (9). This contradicts (24). Hence $a_{4} \neq a_{2}$. Thus the lemma has been proved.

Proof of the theorem. Assume that the formulas of orders $q=5$ and $p=7$ exist and put

$$
\begin{equation*}
d_{1 k}=\left(a_{k}-a_{1}\right) s_{k} \quad(k=2,3,4) \tag{6.33}
\end{equation*}
$$

Then, from $(2)_{0}^{\prime},(1)_{0}^{\prime},(3)_{0}^{\prime},(7)_{0}^{\prime},(2)_{n},(1)_{n},(3)_{n}(i=2),(7)_{n}(k=4)(n=0,1,2)$, it follows that

$$
\begin{gather*}
d_{15}=\left(a_{5}-a_{1}\right)\left[s_{2}+\left(a_{5}-a_{2}\right)\left(r_{3}+\left(a_{5}-a_{3}\right) u\right)\right], \tag{6.35}\\
V^{(n+2)}=W_{1}^{(n)} s_{2}+X_{12}^{(n)} r_{3}+Y_{123}^{(n)} u \quad(n=0,1,2) . \tag{6.36}
\end{gather*}
$$

Also from (2) $)_{0}^{\prime},(1)_{0}^{\prime},(3)_{0}^{\prime},(2)_{n},(1)_{n},(3)_{n}(i=2)(n=0,1,2,3)$, we have

$$
\begin{align*}
& \left(a_{5}-a_{1}\right)\left(a_{5}-a_{2}\right)\left(a_{5}-a_{3}\right)\left(a_{5}-a_{4}\right) u=0, \tag{6.37}\\
& W_{4}^{(n+2)}=X_{14}^{(n)} s_{2}+Y_{124}^{(n)} r_{3} \quad(n=0,1,2) . \tag{6.38}
\end{align*}
$$

From (12), (4) ${ }_{0}$, (13) and (14) it follows that

$$
\begin{equation*}
V^{(4)}=2 U^{(0)} s_{2}+P r_{3}+Q u \tag{6.39}
\end{equation*}
$$

The system (36) can be solved as follows:

$$
\begin{align*}
& u=35 a_{1}^{2} / d, \quad r_{3}=\left[1-15 a_{1}+35 a_{1}^{2}\left(a_{2}+a_{3}\right)\right] / d, \tag{6.40}\\
& s_{2}=\left(a_{1}+a_{2}-15 a_{1} a_{2}+35 a_{1}^{2} a_{2}^{2}\right) / d, \quad d=1-15 a_{1}+45 a_{1}^{2}-35 a_{1}^{3} .
\end{align*}
$$

Put

$$
\begin{equation*}
c_{j}=\left(a_{j}-a_{1}\right)\left(a_{j}-a_{2}\right) t_{j} \quad(j=3,4), \quad t_{4}-t_{3}=\left(a_{4}-a_{3}\right) v . \tag{6.41}
\end{equation*}
$$

Then from (4) $)_{0}^{\prime},(3)_{0}^{\prime},(7)_{0}^{\prime},(4)_{n},(3)_{n}(i=2)$, and $(7)_{n}(k=4)(n=0,1,2)$ we have

$$
\begin{align*}
& c_{5}=\left(a_{5}-a_{1}\right)\left(a_{5}-a_{2}\right)\left[t_{3}+\left(a_{5}-a_{3}\right) v\right], \tag{6.42}\\
& U^{(n)}=X_{12}^{(n)} t_{3}+Y_{123}^{(n)} v \quad(n=0,1,2) . \tag{6.43}
\end{align*}
$$

Suppose that $a_{1} \neq 0$. Then (25) must be valid by (40) and (37), so that we have by (8) n_{n}

$$
\begin{equation*}
Z_{1234}^{(n)}=0 \quad(n=0,1) . \tag{6.44}
\end{equation*}
$$

Since $Y_{124}^{(n+1)}=a_{3} Y_{124}^{(n)}(n=0,1)$ by (44), from (38) it follows that

$$
X_{34}^{(n+2)}=Y_{134}^{(n)} s_{2} \quad(n=0,1),
$$

and from this we have

$$
\begin{equation*}
X_{34}^{(3)}=a_{2} X_{34}^{(2)}, \tag{6.45}
\end{equation*}
$$

because $Y_{134}^{(1)}=a_{2} Y_{134}^{(0)}$ by (44). Similarly from (43) it follows that

$$
W_{4}^{(n+3)}-3 a_{1} W_{4}^{(n+2)}=Y_{124}^{(n)} t_{3} \quad(n=0,1),
$$

and from this we have

$$
\begin{equation*}
X_{34}^{(3)}=3 a_{1} X_{34}^{(2)} . \tag{6.46}
\end{equation*}
$$

From (45) we have $Y_{234}^{(2)}=0$ and so by (44).

$$
\begin{equation*}
Y_{234}^{(n)}=0 \quad(n=0,1,2), \tag{6.47}
\end{equation*}
$$

because $a_{1} \neq 0$ by the assumption. From (45) and (46) it follows that $a_{1}=$ $a_{2} / 3$. Then by the lemma $2 a_{1}$ is not a root of $P(x)=0$, so that $a_{4} \neq a_{1}$.
Substituting (40) into (39), we have

$$
6-14\left(a_{1}+a_{2}+a_{3}\right)+42\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right)-210 a_{1} a_{2} a_{3}=0 .
$$

On the other hand, by (47) and (22) there holds

$$
6-14\left(a_{2}+a_{3}+a_{4}\right)+42\left(a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}\right)-210 a_{2} a_{3} a_{4}=0
$$

From these we have

$$
\begin{equation*}
\left(a_{4}-a_{1}\right)\left[1-3\left(a_{2}+a_{3}\right)+15 a_{2} a_{3}\right]=0 . \tag{6.48}
\end{equation*}
$$

Since $a_{4} \neq a_{1}$ and

$$
7\left[1-3\left(a_{2}+a_{3}\right)+15 a_{2} a_{3}\right]=105 a_{4}^{2}-114 a_{4}+25 \neq 0
$$

(48) can not be satisfied. Hence $a_{1}=0$.

When $a_{1}=0$, the system of equations (43) has the solution

$$
a_{2}=0, v=1, t_{3}=a_{3},
$$

which contradicts $a_{2} \neq a_{1}$. Thus the last part of the theorem has been proved.

The formulas of orders $q=5$ and $p=6$ exist. For instance, we have the following formulas:

$$
\begin{align*}
T= & \frac{1}{7!} h^{7}\left[\frac{1}{125}\left(Z_{5}+10 Z_{0} Y_{3}+15 Z_{0}^{2} X_{1}\right)-\frac{1}{5}\left(Z_{1} Y_{2}+Z_{0} Z_{1} X_{0}\right)\right. \tag{6.50}\\
& \left.-\frac{1}{15} Z_{0} Y_{0}^{2}\right]+O\left(h^{8}\right), \\
s= & -\frac{1}{6!} h^{6}\left[\frac{1}{20}\left(Z_{4}+6 Z_{0} Y_{2}+3 Z_{0}^{2} X_{0}\right)+\frac{1}{35}\left(Z_{2} Y_{0}+Z_{0} Y_{0}^{2}\right)\right] \tag{6.51}\\
& -\frac{1}{7!} h^{7}\left[\frac{161}{1000}\left(Z_{5}+10 Z_{0} Y_{3}+15 Z_{0}^{2} X_{1}\right)+\frac{7}{10}\left(Z_{1} Y_{2}+Z_{0} Z_{1} X_{0}\right)\right. \\
& \left.+\frac{2}{5} Z_{2} Y_{1}+\frac{1}{50} Z_{3} Y_{0}+\frac{23}{50} Z_{0} Y_{0} Y_{1}-\frac{1}{15} Z_{0} Y_{0}^{2}\right]+O\left(h^{8}\right) .
\end{align*}
$$

The formulas of orders $q=4$ and $p=7$ exist. For instance, we have the formulas as follows:

$$
\begin{align*}
& a_{1}=0, a_{2}=\frac{1}{7}, b_{21}=\frac{1}{98}, a_{3}=\frac{2}{5}, b_{31}=-\frac{1}{250} \tag{6.52}\\
& b_{32}=\frac{21}{250}, a_{4}=\frac{5}{7}, b_{41}=\frac{235}{2058}, b_{42}=-\frac{10}{1323}, \\
& b_{43}=\frac{1375}{9261}, a_{5}=1, b_{51}=-\frac{47}{55}, b_{52}=\frac{56}{33}, b_{53}=-\frac{425}{726},
\end{align*}
$$

$$
\begin{align*}
s= & -\frac{1}{5!} h^{5} \frac{1}{42} Z_{1} Y_{0}-\frac{1}{6!} h^{6}\left[\frac{11}{490}\left(Z_{4}+6 Z_{0} Y_{2}+3 Z_{0}^{2} X_{0}\right)+\frac{46}{245} Z_{1} Y_{1}\right. \tag{6.54}\\
& \left.-\frac{3}{98}\left(Z_{2} Y_{0}+Z_{0} Y_{0}^{2}\right)\right]-\frac{1}{7!} h^{7}\left[\frac{869}{12250}\left(Z_{5}+10 Z_{0} Y_{3}+15 Z_{0}^{2} X_{1}\right)\right. \\
& \left.+\frac{1012}{1225}\left(Z_{1} Y_{2}+Z_{0} Z_{1} X_{0}\right)+\frac{8}{245} Z_{2} Y_{1}+\frac{25}{294} Z_{3} Y_{0}+\frac{141}{490} Z_{0} Y_{0} Y_{1}\right] \\
& +O\left(h^{8}\right) .
\end{align*}
$$

Thus the theorem has been proved.

7. Numerical examples

The initial value problem

$$
\begin{equation*}
y^{\prime}=y, \quad y(0)=1 \tag{7.1}
\end{equation*}
$$

is solved numerically by means of the formulas for $r=2,3$ and 4 with the step-size $h=0.25$. At each step of integration z_{1} is accepted as the approximate value of y_{1}. The values of s and S are listed in the table 1 for comparison.

Table 1.

	$\mathrm{r}=2$		$\mathrm{r}=3$		$\mathrm{r}=4$	
X	s	S	s	S	s	S
0.25	$-1.80 \mathrm{E}-3$	$-1.80 \mathrm{E}-3$	$-3.37 \mathrm{E}-6$	$-3.40 \mathrm{E}-6$	$-1.47 \mathrm{E}-7$	$-1.48 \mathrm{E}-7$
0.50	$-2.31 \mathrm{E}-3$	$-2.31 \mathrm{E}-3$	$-4.32 \mathrm{E}-6$	$-4.37 \mathrm{E}-6$	$-1.89 \mathrm{E}-7$	$-1.90 \mathrm{E}-7$
0.75	$-2.96 \mathrm{E}-3$	$-2.97 \mathrm{E}-3$	$-5.55 \mathrm{E}-6$	$-5.61 \mathrm{E}-6$	$-2.43 \mathrm{E}-7$	$-2.44 \mathrm{E}-7$
1.00	$-3.80 \mathrm{E}-3$	$-381 \mathrm{E}-3$	$-7.13 \mathrm{E}-6$	$-7.20 \mathrm{E}-6$	$-3.12 \mathrm{E}-7$	$-3.14 \mathrm{E}-7$
1.25	$-4.88 \mathrm{E}-3$	$-4.89 \mathrm{E}-3$	$-9.15 \mathrm{E}-6$	$-9.25 \mathrm{E}-6$	$-4.00 \mathrm{E}-7$	$-4.03 \mathrm{E}-7$
1.50	$-6.27 \mathrm{E}-3$	$-6.28 \mathrm{E}-3$	$-1.18 \mathrm{E}-5$	$-1.19 \mathrm{E}-5$	$-5.14 \mathrm{E}-7$	$-5.17 \mathrm{E}-7$
1.75	$-8.05 \mathrm{E}-3$	$-8.06 \mathrm{E}-3$	$-1.51 \mathrm{E}-5$	$-1.53 \mathrm{E}-5$	$-6.60 \mathrm{E}-7$	$-6.64 \mathrm{E}-7$
2.00	$-1.03 \mathrm{E}-2$	$-1.04 \mathrm{E}-2$	$-1.94 \mathrm{E}-5$	$-1.96 \mathrm{E}-5$	$-8.47 \mathrm{E}-7$	$-8.53 \mathrm{E}-7$

References

[1] Shintani, H.: On one-step methods utilizing the second derivative, Hiroshima Math. J., 1 (1971), 349372.
[2] Urabe, M.: An implicit one-step method of high-order accuracy for the numerical integration of ordinary differential equations, Numer. Math., 15 (1970), 151-164.

Department of Mathematics, Faculty of Science, Hiroshima University

[^0]: 1) Numbers in square brackets refer to the references listed at the end of this paper.
