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1. Introduction

Consider the initial value problem

(l i) y'=f(χ> y\

where the function

(1-2) g(χ, y)=Mχ, y)+f(χ, ?)/,(*, y)

is assumed to be sufficiently smooth. Let

(1.3) xι

where h is a small increment in x and γ(χ) is the solution to the given initial
value problem. We are concerned with the case where the approximate
value zι of yλ is computed by means of the explicit one-step methods of the
type

(1.4) *iy Σ

and put

(1.5) T=z1-y1 =

where

(1.6) *o = /(*o, jo),

(1.7) li=g(xo + aA γo + aihko + h2 Σ ' M ; ) (i = l, 2,..., r).

In our previous paper [V]l\ we have shown that the formulas (1.4) of orders
p=r + 2 exist for r = l , 2, 3, 4 and 5. In this paper, together with (1.4), we
consider the formulas

(1.8) wx = yo + hko + h2 TΣ qβh

1) Numbers in square brackets refer to the references listed at the end of this paper.
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and put

(1.9) S=w1-γ1=O(h9+1)9

(1.10) s=w1-z1=h2Σnli.

In the case wherep>q, for sufficiently small A, the truncation error 5 of
w\ will be approximated by s. Thus we are interested in the relations among
r, q and p. It will be shown that, for r=2, 3 and 4, the formulas of orders
q=r and p — τΛ-2 exist, but those of orders q=r + l and p=r + 2 do not exist;
for r=5, those of orders y=4 and p — 1 and those of orders q = 5 and p = 6
exist, but those of orders q = b and p = 7 do not exist. Finally numerical
examples are presented.

2. Preliminaries

Let Z> be a differential operator defined by

(2.1)
ox ay

and put

(2.2) D'gixo, yo)=Zh / % ( * „ , Jo)= Yh

Dlg,yy(xo, yo)= Wi (i=0, 1, 2,.. ).

Then y(oi) = yaKχo) (i = l, 2, ) can be written as follows:

(2.3) y0" = Ao, jί,
2' - Zo, j ί , 3 '=Z u jί,4 )=Z2 + Zo Yo,

(2.4) y^=Za + SZoYi + Z1Yo,

(2.5) j<6>=Z4+6Z0 F 2 + 4Zχ Γi+Z 2 Yo+Zo Y2

0 + SZ2

0X0,

(2.6) yl7) = Z5 + lOZo F 3 + 10Z1Y2 + 5Z2 Γx+Z3Y0 + 8Z0 F o Γi

+Z 1 YI + IOZOZXXO + 15ZgXχ,

(2.7) j ^ 8 > = Z 6 + 15Z0 F 4 + 20Zi F 3 + 15Z2 F 2 + 6Z3 F j + Z 4 F o + 21Z0 F o F 2

+ lOZi Fo Yi + 18Z0 Ff + Z2 Fg + Zo F0

3 + 18Z2 F0Zo + 15Z0Z2X0

+ βOZoZiXx + IOZIXO + 45Z2

0X2

Put for simplicity

(2.8) d« = i |
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(2.9) e(7 = (i + 2)(i+3)Σ 1αΓ 1^iΛ* (;=3, 4, ., r),
k = 2

(2.10) l,j = (f+ 3)(* '

(2.11) mti = (ί + 4)(ί + 5) *Σ a^d^b^,
k = 2

(2.12) qιJ=(i + 4)(i + 5) ΣVx£/?,δy»,

(2.13) r / y =(i + 4)(i + 5)Σ;1oί-1eiΛ* (;=4, 5, , Ό

Then z\ in (1.4) can be expanded as follows:

(2.14) zι = yo + hko + tfΛoZo + hϊAiZx +-^-Λ4(J2Z2 + A3ZoYo)

! Yι + B,Z2 Yo + B5Z0 Y\ + SBβZ2

oXo) + -^- A 7(dZ 5

+ 10C2Z0 F 3 + lOCsZi Y2 + 5C4Z2 Yi + C5Z3 Yo + SC6Z0 Γo Γi

7Zχ Fg + 10C8Z0Z1X0 + lδCgZiZi) + - 1 ^ ( 5 ^ 6 + 15D2Z0 Γ4

b!

i Y3 + 15D4Z2 Γ2 + 6D5Z3 Γi + Z>6Z4 Fo + 21D7Z0 Γo Y2

+IOD8Z1 Y0 ΓΊ+lδΰgZo γ.\+DxoZ, r § + ί > n z 0 γ\+ISD12Z
2

0 Y0X0

>! 3 Z o Z 2 Zo + 60D 1 4 Z 0 Z 1 X 1 + 10D 1 5Zf Xo

where

r r

(2.15) Jo= . Σ ^ / J Aι=Σaipi, A2=Σa2iph A3= Σ

(2.16) A4= ΣaZip» A5= Σajdupj, A6 =

(2.17) Bι=Σaip{9 B2 = Σajdυph B^ =

k, B6= Σdljpj,Σ
fe — 3

(2.18) Ci = Σa]ph C2 = Σa)dχjph C3 = Σa)d2jph C4 =
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k, C7= Σlιkpk,

C8= Σd1jd2jpj, C 9 — Σa,j

(2.19) Dι=Σa6ipi, D2

D5= Σajd4jph Dβ =

Σ ruph 6Di2 = 5Σdikeιkpk + Σqlkpk,
1=4:

j , D17=

If we impose the condition that

(2.20) a1 = 0,dυ = aj (/ = 2, 3,..., r),

then it follows that

(2.21) dJ2 = 0 (y = 2,3,-..,r), Zl 3 = nιl 3 = 0 (/ = 1,2,.. , r\

(2.22) eik — di+2tk^ qik = di+4fk, rn = mn,

(2.23) ^ 3 = ^2,-^5 = Λ4, B2 = B6 = BUB5 = B4, C2 = C9 = CU

We make use of the following notations:

4 J V W V

(->

We denote by ( )' the expression ( ) in which pr = 0 and pj (y = 1, 2,.. ,
r — 1) are replaced by q} respectively.

3. Case where r = 2

Tha formulas of orders q=2 and p = A exist. For instance, the choice



(3.1)
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= - Q - obtains the following results:

1 3 , 19 16 25
_ α 2 = _ 6 2 1

1 _ 25 _ 25
r Γqi~ 2 ' r i ~ ϊ ϊ ϊ Γ 2 ~ ΪΪ4'

(3.2) T=—^Γ

(3.3) * = — ^

The formulas of orders q = S and p—A do not exist. For otherwise the

equations

(3.4) αi=α2 = —-, α2(α2 —αO/^^-jg-—, α2(α2 α O / ^ ^ j g τ r

must be satisfied.

4. Case where r = 3

The formulas of orders 9 = 3 and p = δ exist. For instance, the choice

=~g~ and α3 = l obtains the following results:

11 , 17 , , 7
0 = 0=1,031=—-O £λj l\j\j OT:

189 32 100 5 13

2 5 5 25 _ 5
_

357' Γ 2 ~ 9 Ϊ 8 ' Γ 3 ~ 378'

(4.2)

(4.3)

We shall show that the formulas of orders 9 = 4 and p=5 do not exist.
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Assume the contrary. Then the following equations must be satisfied:

(4.4) (α3-αi)(α3-α2) = 0,

(4.5) X% = 0 (κ = 0,l),

(4.6) (α3 — aι)di2 = (a2 — αi)di3,

(4.7) (a3-a2)d13p3=W?\

The system (5) has the solution au a2 = (4±V 6 )/10. Hence a2φaι and
ψψφ§9 Then, from the equation (7), it follows that {a3 — a2)d13φ0, and so
a3φax by (6). This contradicts the condition (4), and our assertion is proved.

5. Case where r = 4

We shall show first the following

LEMMA 1. In order that the formulas of orders q = A and p = 6 may exist
for r = 4, the conditions

(5.1) (α2 — αi)(α3 —

(5.2) α! = 0, d i y = αy

2 (y = 2, 3, 4)

must be valid.

PROOF. Assume that such formulas exist. Then there must hold the
following equations:

(5.3), Σ a^aj-aOpj^ W[n) (* = 0, 1, 2),
i = 2

(5.4), Σ an

k(ak-a1)(ak-ai)pk = X[i (jφί;ίj = 2,3\
k=j,4

(5.5), Σ < + * \

Suppose that (α3 — aι)(a3 — a2) = 0. Then, from (4)o and (4)0 (/ = 3), it
follows that

Hence, from (4)Λ (τ& = l, 2), we obtain the equations X$ = 0 (n = l9 2), so that
aλ and α2 must satisfy the system of equations Xψ^Q (n = 0, 1, 2). As is
easily checked, this system has no solution. Hence a3φa\ and a3φa2- Simi-
larly it can be shown that a2φax.
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Put

(5.6) dυ = (aj — aι)sj (j = 2, 3), s3 — s

2 = (a3 — «2>3.

Then, from (3)ί, (4)ί, (5)5, (3),, (4)w and (5), (* = 0, 1, 2), it follows that

(5.7) du = (α4 — aι)\js2 + («4 — a2)r{],

(5.8)w V(n+2)= w[«)s2 + XWrz (n = 0, 1, 2).

Solving the system of equations (8)n (τι = 0, 1, 2), we have the solution

and the condition (2) follows from (6) and (7). This completes the proof.
The formulas of orders q = A and p = 6 exist. For instance, the choice

a2 =~5~ and α4 = l yields the following results:

(5.9) αi = 0, a2 = 5" ' ^ i - 5 0 > - 3 - 5 ' d l ~ 5 0 5

I A 1 3 7 2 , 4

25 _ 2 5 _ 1 _ 1
^ pi—w, qi-^2

5 5
Γ

(5.10)

(5.11)

+ 3Z2

0X0) + -A. (Z2 Γo + Zo r g)]+O(A7).

Now we shall show that the formulas of orders q = 5 and />=6 do not
exist. Assume the contrary. Then the following equations must be satisfi-
ed:

(5.12) aiicii—a2)(ai — α3) = 0,
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(5.13)

(5.14)

(5.15)

(5.16)

and (14)' and (15)'. Solving the system (13), we have the solution

fK 1Γ7\ 5±V5

(δ.17) o2, a3 = — j ^ —

Put d23=a3(a3-a2)t3. Then, from (14)', (15/, (14) and (15) it follows
that

(5.18) c?24 — #4(04 —«2)£3.

By (18), (16) and (12) we have the equation fF3

3) = 0, from which follows that
2

α3

 = " o ~ This contradicts the result (17). Hence such formulas do not exist.

Summarizing the results, we have the following

THEOREM 1. For r = 2, 3 and 4 the formulas of orders q=r and p =
exist, but those of orders q=r + l and p = r + 2 do not exist.

6. Case where r = 5

We shall show the following

THEOREM 2. For r = 5, the formulas of orders q = 4 and p = 7 and those of
orders q = 5 and p = 6 exist, but those of orders q = 5 and p = Ί do not exist.

Assume that the formulas of orders q = 5 and p = 7 exist. Then there
must hold the following equations:

(6.1), Σ2at(ak-ai)pk= Wψ (n = 0, 1, 2, 3, 4),

(6.2), Σ aJdikPk= V(n+2) (n = 0, 1, 2, 3),
k = 2

(6.3), Σ a&au-axXau-adp^Xft (i = l, 2, 3, 4; n = 0, 1, 2, 3),
k = 2,kΦi

(6.4), Σ w ( 0l2)
« — 3

(6.5), Σ
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(6.6), Σ βS(o*-o0c*p*=ri"+3)-3αiri +a) 0=0,1),
£ = 3,5

(6.7), Σ α7(α/-α1)(α/-o l )(α/-αy)p/=r?/

)

y

l=k,5

(ίφj\ k jφk; i,j\ * = 2, 3, 4; n = 0, 1, 2),

(6.8)Λ αK^s —αi)(«5 —«2)(α5 —αsXαs —α4)jp5 = ̂ iW234 (^ = 0, 1),

(6.9) Σ
£ = 4,5

(6.10) (ak-

(6.11) («4~

(6.12)
k

(6.13)
k = 4

(6.14) 20(α4 — αi)(α4 — «2)(α4 — a3)b54p5 = Q,

(6.15) (α4 — a5)f4p4 = R,

and (1); ( Λ = 0, 1, 2), (2)4, (3); (m = 0, 1), (4)ί, (5)5 and (7)ί, where

(6.16) c^ = 6 * 2 ( ^ — 0 1 ) 6 ^ (λ = 3, 4, 5),

(6.17) /Λ = 12 Σ1(α y-α1)(αy-α2)δiky (^ = 4, 5),

(6.18) p = ^ _ _ _ ^ ^

(6.19) <?=^2"—^g

(6.20)

Consider the following system of equations:

(6.21) Yftk = 0 (* = 0, 1, 2; iφj, k jφk).

Then it follows that

9 3 1
(6.22) o, + σy + α̂  = -=-, am + αz αA. + ajak = -=-, af-aa =

so that α, ,:tty and ak are the roots of the equation
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(6.23) P(x)

This equation has three real distinct roots and they can be expressed as
follows:

~τ+wcos \{φ+2kπ) (k=° lf

where tan#? = 7. Hence these I roots do not satisfy any quadratic equation

with rational coefficients, and they lie in the interval (0, 1).

LEMMA 2. Let α*, aj and ak be the solution of the system (6.21). Then

(6.24)

and -Q-ak is not a root of the equation (6.23).

PROOF. Suppose that Xff = 0. Then, from the equation Ylfik = 0, it

follows that Xψj = 0. Hence αf and aj must satisfy the equation 7x2 — 8x + 2 = 0.

But this is impossible, and so XfjΦQ.
Suppose that XJ0/ = 0. Then Xj1/ = 0 by the equation ΓJ% = 0, and X{fi = 0

from ΓjyA = O. This contradiction shows that XflΦO.
Assume that P(α*/3) = 0. Since akφ0, evidently akφak/3. Hence sup-

pose that ai=ak/3. Then by (22) we have

9 S
4α, + aj = -ψ, 3αf + 4α,αy = -y-,

so that en must satisfy the equation 91#2 — 36*+ 3 = 0. But this is impossible
and so aiΦak/S. Similarly it can be shown that a,jφak/3. Hence P(ak/3)φ
0 and the lemma is proved.

LEMMA 3. Under the assumption that the formulas of orders q = 5 and
p=7 exist for r = 5, let z, /, k and I be a permutation of 1, 2, 3 and 4. // α/ =
ak, then a^ aj and ak satisfy the system (6.21),

(6.25) (α 5 — αi)(α5 — a2)(a5 — a3)(a5 — α 4) = 0,

and

(6.26)

PROOF. Suppose that aι = ak. From (7)5 and (7)0 follow (25) and r j % = 0.
Then by (7)w (Λ = l, 2) we have ΓJ% = 0 (Λ = 1, 2).

Suppose that (26) is not true. Then, since Xff-akX
{fl = 0 by (21), we

have (ak — 3αi)Jf $} = 0. By (24) it follows that ak = 3aι. Since «i and ak are
roots of the equation (23), this contradicts the lemma 2. Thus the proof is
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complete.

LEMMA 4. In order that the formulas of orders q = 5 and p=Ί may exist
for r = 5 , it is necessary that

aιφak (Iφk k, Z = 1 , 2 , 3, 4).

PROOF. Suppose first that α 2 =αi . Then c3 = 0 and ax must satisfy the
equation (23) by the lemma 3. If we put c4 = (α4 —αi)(α4 —α3)ί4, from (4)o,
(3)ί, (4)0 and (3)0 (ΐ = 3), it follows that

(6.27) c5 = (α5

By (27), (25) and (6)* (rc = 0, 1) we have

r 4 * + 3 ) - 3 α i r 4 * + 2 ) = 0 (τι = 0, 1).

Solving this system, we have «i = (4± V2 )/21. But this value does not satis-
fy the equation (23). Hence a2φax.

Suppose next that (α3 — αi)(α3 — α2) = 0. Then / 4 = 0 and R = 0 by (15).
Since by (22)

from the equation R = 0 we have

63αl-67α4

105αl-114α
4

By (25) α5 must be equal to one of au a2 and α4, so that it must satisfy t h e
equation (23). But, as is easily checked, it is impossible. Hence a3φaι and

Suppose that α 4 = α i and put c?i3 — c?i2 = (α3—a2)w. Then, from (5)o, (l)o 5

)ί, (5)o, (l)o and (3)0 (ί=2\ it follows that

(6.28) (α 5 — «i)E^i5 — dί2 — (a5 — a2)uί\ = 0,

(6.29) Wψ= JF^

By (5)i, (l)i, (3)i and (28) we have

(6.30)

Since by (21) and (24)

we have d12 — a\ from (29) and (30). Similarly d13=a\ can be obtained.
By (26) and (10) (A=5) we have

(6.31) (a5-aiXa5-a3)c5φ0.
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Hence it must hold that a5=a2 by (25) and then dι5 = di2 by (28). Put c3 =
(a3-cn)(a3-a2)t3. Then, from (4)5, (3)5, (4)0 and (3)0 (ί = 2), it follows that

(6.32)

From (2)5, (3)5, (2)0 and (3)0 (/=2, 3) we have

Hence q4=p4φ0, and c 5p 5 = 0 by (32). Since p5φ0, we must have c5 = 0,
which contradicts (31). Hence a4φa\.

Suppose that (α4—a2)(a4 —α3) = 0. Then we have Z ^ ^ α s X ^ by (11) and
-Σ"23>=αi-Σ"223 by ^123 = 0. Hence a5=ai by (24). Assume first that a4=a3.
Then x a ^ S o i J Γ i ϊ by (10) (A =4). This contradicts (26), so that α 4 ^ α 3 .
Next suppose that a4=a2. Then (α5 —α2)di5 = 0 from (5)5, (3)5, (5)0 and (3)0

(i = 2). Since α5 —α 2 =αi—α 2 =^0, it follows that dι5 = 0 and X2

23)==0 by (9).
This contradicts (24). Hence a4φa2. Thus the lemma has been proved.

PROOF of the theorem. Assume that the formulas of orders q = 5 and
p=Ί exist and put

(6.33) dlk = (ak-a1)sk (A = 2, 3, 4)

(6.34) sj — s2 = (aj — a2)rj ( y = 3 , 4), r4—r3 = (a4 — a3)u.

Then, from (2)5, (1)5, (3)5, (7)5, (2),, (l)w, (3), ( ί=2), (7), (A = 4) (* = 0, 1, 2), it
follows that

(6.35) dιs = (a5 — dι)\j2 + (α5 — α2)(r3 + (α5 — α3)^)D,

(6.36) V(n+2)= r («) 5 2 + Z ( « ) Γ 3 + F ( , ) 3 ^ ( Λ = O J 1 ? 2 ) .

Also from (2)5, (1)5, (3)5, (2),, (1),, (3), ( ί=2) (ι* = 0, 1, 2, 3), we have

(6.37) (05 — αi) (α 5 — α 2 ) (α 5 — α 3 ) («5 — α 4 ) ^ = 0,

(6.38) r i w + 2 ) = X ^ 2 + Y[»2\r3 (n = 0, 1, 2).

From (12), (4)0, (13) and (14) it follows that

(6.39) Γ ( 4 ) = 2 C/(o)52 + Pr 3 + Qu.

The system (36) can be solved as follows:

(6.40) u = 35al/d, r3 = [1 - 15αχ + 35αf (α2 + αs)]/rf,

•52 = (ai + a2 — 15aιa2 + 35αfα2)/c?, d=1 — 15αi + 45αf — 35αf.

Put

(6.41) cj = (aj — a1)(aj — a2)tj (j = 3, 4), ί4 — ί3 = («4 — 03)v.

Then from (4)5, (3)5, (7)5, (4)Λ, (3), (/=2), and (7), (A=4) (n = 0, 1, 2) we have
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(6.42) C5 = (a5 — a1)(a5 — a2)[_t3 + (a5 — a3)v~l,

(6.43) U™ = X®h+Y$sv (* = 0, 1,2).

Suppose that aλφQ. Then (25) must be valid by (40) and (37), so that
we have by (8)n

(6.44) ^ 3 4 = 0 (* = 0,l).

Since Y[n

2\
λ) = a3Y[n

2\ (n = 0, 1) by (44), from (38) it follows that

X3Ϋ
2)=YΆs2 (71 = 0,1),

and from this we have

(6.45) X$=a2X3

2l,

because Y[1

3\=a2Y[0

3\ by (44). Similarly from (43) it follows that

JP^-S^JF^^Y^t, (n = 0, 1),

and from this we have

(6.46) X$ = 3aιX
{

3

2l.

From (45) we have Y{

2%\ = 0 and so by (44).

(6.47) r&}4 = 0 U = 0,1,2),

because aχφθ by the assumption. From (45) and (46) it follows that aι =
α2/3. Then by the lemma 2 αx is not a root of P(x) — 0, so that
Substituting (40) into (39), we have

6 — 14(αi + α2 + a3) + 42(aχa2 + a\a3 + a2a3) — 210aιa2a3 = 0.

On the other hand, by (47) and (22) there holds

6 — 14(α2 + a3 + a±) + 42(α2α3 + a2a^ + a3a^) ~ 210a2a3a,4 = 0.

From these we have

(6.48) (α4 - αi)[l - 3(α2 + α3) + 15α2α3] = 0.

Since a±φaι and

7 [1 - 3(α2 + α3) + 15α2α3] = lOδαf - 114α4 + 25 φ 0,

(48) can not be satisfied. Hence αi = 0.
When «i = 0, the system of equations (43) has the solution
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which contradicts a2φaχ. Thus the last part of the theorem has been
proved.

The formulas of orders q — 5 and p = 6 exist. For instance, we have the
following formulas:

(6.49) αi=0, α 2 = - ^ - , ό2i =-gQ-, 03=-^-, ό 3 i=0, ό32=-g-,

, 337 , 44 , 472
* 6 1 ~ ΐ 0 5 0 ' 0 5 2 = ~3Ί5' 0 5 3 =ΐ050' 0 5 2 = 3Ί5' 0 5 3 = Ϊ 5 7 5 '

25 n 25
p = 0 p = P

25 _ 2 _ 25
72>?8-—9-, ?4~72

^ 2

(6.50) Γ = ^ - A7

J^ ^ _ ^ _
3 6 ' Γ 2 288' Γ 3 9 ' Γ 4 144' Γ 5 9 6 '

(6.51) * = —Jj- Λ 6[^- (Z4 + 6Z0 r 2 + 3ZgZ0) + ̂ - (Z2 Yo + Zo

TΓ A Ϊ T O
 ( Z S + 1 O Z o Γ s + 1 5 z » Z l ) + ^ ( Z l r2+Z0Z1X0)

The formulas of orders q=4 and JD=7 exist. For instance, we have the
formulas as follows:

1 1 2 1
(6.52) αi=0, α2 = -=-, 2̂i = -gg-, θ3 = -g-, ^ 3 1 = ~250'

A _ 21 _ 5 , _ 235 , _ 10
632-250, α * - ^ - , 041-2058. 6 4 2 ~ "

0 4 3 =

250, α * - ^ - , 041-2058. 6 4 2 ~ Ϊ 3 2 3 '

1375 , , 47 , 56 , _ 425
926T' β 5 = 1 > 0 5 1 = ~ ^ 5 " ' *"—88"' 0 5 3 ~ ~ T "



On Explicit One-step Methods Utilizing the Second Derivative 367

, _ 147 _ 13 _ 2401 _ 625 _ 2401
054
 6 0 5 ' ^ 300'

P2
 12960'

p3
 3564'

Pi
 26400'

_ 11 1 _ 49 _ 325 _49
P
* 2160'

 qi
 40 '

qz
 216'

 ? 3
 2376'

 ? 4
 440'

Jl 539 2JL 49 11
600' Γ 2 12960' Γ 3 648' u 2400' n 2160'

(6.53) Γ = A . Λ 8 Γ ^ (Z6 + 15Z0 Γ4 + 45ZgX2 + 15Zg r 0 ) + - ^ ( Z x F 3 + 3Z0ZιX1

-A

(6.54) s = — ^ -

—A-(Z2 Fo + Zo Fg)] — l - f t 7 [ Ί | | | ϋ - ( Z 5 + lOZo F3

o Fo r 2 + ^ Z i Fo Γx — ^ - ( z 2 rg+Zo y § ) + ^ - z ? z 0 ]

+ 1225 ( Z l Yz + Z o Z l X o ) + 245 Z i Yl+294 Z s F ° + 490 Z° F°

+O(h8).

Thus the theorem has been proved.

7. Numerical examples

The initial value problem

(7.1) y=y, y(θ)=i

is solved numerically by means of the formulas for r = 2, 3 and 4 with the
step-size Λ = 0.25. At each step of integration zx is accepted as the approxi-
mate value of γλ. The values of s and S are listed in the table 1 for com-
parison.
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Table 1.

X

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Γ =

s

-1.80E-3

-2.31E-3

-2.96E-3

-3.80E-3

-4.88E-3

-6.27E-3

-8.05E-3

-1.03E-2

= 2

S

-1.80E-3

-2.31E-3

-2.97E-3

-381E-3

-4.89E-3

-6.28E-3

-8.06E-3

-1.04E-2

r = 3

s

-3.37E-6

-4.32E-6

-5.55E-6

-7.13E-6

-9.15E-6

-1.18E-5

-1.51E-5

-1.94E-5

S

-3.40E-6

-4.37E-6

-5.61E-6

-7.20E-6

-9.25E-6

-1.19E-5

-1.53E-5

-1.96E-5

r = 4

s

-1.47E-7

-1.89E-7

-2.43E-7

-3.12E-7

-4.00E-7

-5.14E-7

-6.60E-7

-8.47E-7

S

-1.48E-7

-1.90E-7

-2.44E-7

-3.14E-7

-4.03E-7

-5.17E-7

-6.64E-7

-8.53E-7
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