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On a Characterization of Almost Dedekind Domains
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Introduction.

Throughout this discussion R will be a commutative ring with unit. The
purpose of this paper is to characterize the rings over which each module
with D.C.C. decomposes to a direct sum of cocyclic modules.

We shall introduce a homomorphism φΛ, related with an ideal of R of an
indecomposable injective module over R. The φA plays an important role for
our purpose we shall discuss in § 3 some basic properties of the ΦA and also
of the image of φA, which enable us to show that a locally noetherian domain
with the property mentioned above must be an almost Dedekind domain.

The author wishes to express his hearty thanks to Professor M. Nishi for
his kind advice and constant encouragement.

Notation and terminology.

Let M be an i?-module and x^O e M. We denote by E(M) the injective
envelope of M and by 0(x) = {r e R\rx=0} the order ideal of x. Let E be an
injective /^-module, iVa submodule of E and A an ideal of R; we put ^4* =
{# e £ |α* = 0 for every ae A} and iV* = {r e R\rx =0 for every x e N}. We
shall say that a module M has D.C.C. if Λf satisfies the descending chain condi-
tion for submodules. We shall say that an i?-module M is a P-primary
module, where P is a prime ideal of R, if for every non-zero element x of M,
0(x) is a P-primary ideal. A ring R is called a quasi-local ring if it has only
one maximal ideal and a noetherian quasi-local ring is called a local ring. If
R is a local ring, R denotes the completion of R.

% 1. Cocyclic modules

Let B be an i?-module. If B has a non-zero element c with the following
condition (*), then we shall B a cocyclic R-module.

(*) For every ^-module C, every i?-homomorphism φ: B -> C with c
ί ίΓer^ is monic.

Then we shall call c a cogenerator of Z?. (We borrow this definition from
Fuchs [3].) It is easily seen that B is a cocyclic Λ-module if and only if
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every non-zero submodule of B contains c i.e. Re is the smallest submodule
of B.

PROPOSITION 1. B is a cocyclic R-module if and only if B is an essential
extension of R/P for some maximal ideal P of R.

PROOF. Let B be a cocyclic i?-module and c a cogenerator of B. It is
clear that B is an essential extension of Re. Since Re is isomorphic to R/P
for some ideal P of R and Re is the smallest submodule of B, R/P is a field.
The assertion follows immediately from the fact that Re is simple.

LEMMA 1. Let Pbe a maximal ideal of R and E=E(R/P).
Then we have the following:
(1) For every non-zero element x of E, 0(x)^P.
(2) For every element s of R — P, the homothety s: E B x->sχ e E is an automo-
rphism.
(3) E has the structure of an RP-module.

PROOF. (1) and (2) are obvious.
(3) Let s e R — P, r e R and x e E. Then by (2), there exists a unique element
y of E such that x = sy. If we define (r/s)x =ry, it is easily verified that this
definition is well-defined and makes E into an J?P-module.

LEMMA 2. With the notation of Lemma 1,
(1) The order ideal of x in RP is 0(x)RP.
(2) 0(x) = 0(χ)RPΓ\R.

PROOF. Trivial.

PROPOSITION 2. Let R be a locally noetherian ring and B a cocyclic
R-module; i.e. B is an essentail extension of R/P for a maximal ideal P of R.
Then B has the structure of an RP-module.

PROOF. By Proposition 1, we may assume B^E(R/P). Let s 6 R — P and
x e B. Then by Lemma 1 (2), there exists a unique element y of E(R/P)
such that x=sy. Since RP is a noetherian ring, then by Lemma 2 and by
Lemma 3.2 of E. Matlis [4], 0(y)RP is a PRP-primary. Therefore PnRP^0(y)RP

for some positive integer n. By Lemma 2, Pn = PnRPr\RS0(y)RPΓ\R = 0(y);
this implies that, combining the fact Pn + Rs = R, ye Rx. Thus the proof is
completed.

COROLLARY. With the notation of Proposition 2, B has the structure of
an RP-module.

PROOF. This follows from Proposition 2 and Theorem 3.6 of E. Matlis [4Γ\.
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THEOREM 1. For a ring R, the following statements are equivalent:
(1) R is a locally noetherian ring.
(2) Every cocyclic R-module has D.C.C.
(3) For every maximal ideal P of R, E(R/P) has D.C.C.

PROOE. (1)=K2): Let B be a cocyclic .R-module. Then there exists a
maximal ideal P of R such that R/P^B^E(R/P)=E. By Proposition 2, B
has the structure of an i?P-module. Since RP is a noetherian ring, by Proposi-
tion 4.1 of E. Matlis [4], B has D.C.C. as an i?P-module; therefore B has
D.C.C. as an i?-module.
(2) =Φ (3): Trivial.
(3) =» (1): Let Pbe a maximal ideal of R and E=E(R/P). By Lemma 1, E
has the structure of an i?P-module and therefore E has D.C.C. as an i?P-module.
Then by Theorem 4.1 of Ishikawa [Ύ], RP has the ascending chain condition
for ideals; i.e. RP is a noetherian ring.

§ 2. Modules with D.C.C.

We show in § 2 that every module with D.C.C. over an almost Dedekind
domain has a decomposition into a direct sum of cocyclic modules. Through-
out this section the ring will be a locally noetherian ring. Now we give a
generalization of the result in Proposition 3 of E. Matlis [ΊΓ| in the following

PROPOSITION 3. Let B be an R-module. Then B has D.C.C. if and only
if E(B)=E(R/Pλ)@ - φE(R/Pn) for a finite number of maximal ideals P{ of R.
(i = l,2, . .,ιθ

PROOF. By virtue of Theorem 1, the proof can be done quite similarly as
in Proposition 3 of E. Matlis

COROLLARY. // B is an R-module with D.C.C, then B = Bιφ (&Bn, where
every B{ is the Pi-component of B for distinct maximal ideals Pi, , Pn of R.

PROOF. By Proposition 3, there exist a finite number of distinct maximal
ideals Pu , Pn of R such that £ ( 5 ) = £ i 0 φJ?n, where every E{ is the Pi-
component of E{B). Let Bi = BΓ\Ei for each ί. Then B{ is the Prcomponent
of B. Let x =V 0 6 B. Then x = xλ -\ \- xn, where χ{ 6 E{. It is sufficient to

prove that x{ e B. Clearly xx e B, if x = xλ. If χ^χu then Px ̂  f\ 0(* f ),
i =2

hence there exists an element r of A 0(x{) such that r { Pi. Hence rx=rxx.
i = 2

Since 0(#i)2P{ for some integer 5 and there exist two elements pe P{ and
a e R such that l=p + ra, xχ—rax. Thus x\ e B and so on.

PROPOSITION 4. Suppose that R is a locally noetherian domain. Let B be
a P-primary R-module, where P is a maximal ideal of R.
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Then:
(1) B has the structure of an RP-module.
(2) B has D.C.C. as an R-module if and only if B has D.C.C. as an RP-module.

PROOF. (1) This can be done similarly as Proposition 2.
(2) Trivial.

The next result is a generalization of the result in Theorem 17.1 of Fuchs [ΊΓ].

THEOREM 2. Let R be a local ring with the maximal ideal (p), generated
by an element p of R, and B a (p)-primary R-module. We assume that there

OO

exist an ascending chain {Bn} of R-submodules of B such that B=\J Bn and
n = l

BnΓΛPnB = 0 for each integer n. Then B is a direct sum of cocyclic R-modules;
more precisely, B = Q)Ba, where Ba = Br\Ea for some decomposition φEa of
E(B) with Ea^E(R/(p)).

PROOF. We can prove this by the method analogous to the proof of
Theorem 17.1 of Fuchs [3].

COROLLARY 1. Let Rbe a discrete valuation ring with the maximal ideal
(p) and B a (p)-primary R-module with D.C.C. Then B = BΓ\E1φ'--φBΓ\En

for some decomposition Exφ φEn of E(B), where E{ ^ E(R/(p)).

PROOF. Since R is a discrete valuation ring, each divisible i?-module is
injective. Therefore we may assume that B has no divisible submodule.
Since B has D.C.C, there exists some integer m such that pmB = 0. Then this
Corollary holds by Theorem 2.

COROLLARY 2. Let R be an almost Dedekind domain. Then every R-
module with D.C.C. is a direct sum of a finite number of cocyclic R-modules.

PROOF. This follows from Proposition 3, Proposition 4 and Corollary 1
of Theorem 2.

§ 3. On a homomorphism φA

In this section, we shall prove the converse of Corollary 2 of Theorem 2.
Hereafter let R be a quasi-local ring, P the maximal ideal of R and E=E(R/P).

DEFINITION. For an ideal A = (aι ,an) of R, we define a homorphism φA:
n n

E->Q)E by φA(χ) = (aiχ- , anχ)> ( 0 ^ denotes a direct sum of n copies of E.)
We denote ImφA by EA. Since KerφA = A*, EA is independent of the choice of
the ideal basis of A up to isomorphisms.

n

PROPOSITION 5. With the above notation, EA contains φR/P if and only
if A is generated by n elements at least.
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PROOF. Let EA^φR/P. If A is generated by k elements with k<jι — 1,
n-l

) ^ © E. Clearly this leads to a contradiction.
Conversely, let (au •-, an) be a minimal basis of A and iί, = (oi, , «/,-••, ««)•

Then Ai^{ai) for each ί, therefore there exists X{€E such that 0(χi)^Ai
and 0(#/) > αz for each i by noting the annihilator relation of ideals. Then

EA^φ R(aixi9. , w ) = P ( 0 , , a w ; O)3 0 i ? / P .
ί = l ί = l

COROLLARY. Let Rbe a quasi-local domain. Then EA is isomorphic to E
if and only if A is principal.

PROOF. This follows immediately from the fact that E is divisible.

N.B. If R is a complete local domain, indecomposable submodules in each
direct sum of a finite number of E are only EA, where A is principal.

LEMMA 3. Let A be an ideal of R with a minimal basis (αi, , an), where

n^>2. Then we have E

PROOF. Assume that EA= @ E. Then (o1)* = =(α n )*. In fact let
x e (α, )* Since (#,-••, x) e EA, there exists an element y of E such that x = ajγ
fory = l, 2,...,Λ. Then ay^=ayafy=a^=O. Hence Λ; 6 (ay)*. Thus (ai)* = (a 2 )*
= =(a Λ )*. Then by noting the annihilator relation for ideals, (αi) = («2) =
• =(an). This is a contradiction.

PROPOSITION 6. Let R be a complete local domain and let A\ and A2 be
ideals of R. Then EAl is isomorphic to EAl if and only if there exist two non-
zero elements a,b of R such that aAχ = bA2.

PROOF. =Φ. Trivial.
<r=. If EAl is isomorphic to EAi, then E/A\ is isomorphic to E/A% Then by
Theorem 4.2 of E. Matlis [4], AX^A2. Since R is an integral domain, there
exist two non-zero elements α, b of R such that aA1 = bA2.

PROPOSITION 7. Let Rbe a complete local domain. Then E can not have a
decomposition into a sum of two non-zero proper submodules. Moreover every
non-zero homomorphic image of E has this property.

PROOF. Assume that E=M+N, where M and N are two submodules of
E. Then M*niV*=£'* = 0. Since R is an integral domain M* = 0 or iV* = 0.
Say M* = 0;then by Theorem 4.2 of E. Matlis [4], M=E. Thus the first
assertion is proved. The latter is obvious.

COROLLARY. Let Rbe a complete local domain and A a non-zero ideal of
R. Then EA is indecomposable.
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PROOF. This follows immediately from Proposition 7.

THEOREM 3. Let Rbe a locally noetherian domain. Then R is an almost
Dedekind domain if and only if every R-module with D.C.C. decomposes into a
direct sum of cocyclic R-modules.

PROOF. = .̂ This follows from Corollary 2 of Theorem 2.
4=. Suppose R be not an almost Dedekind domain. Then there exists a
maximal ideal P of R such that Rp is not a principal ideal domain but a
noetherian ring. Let E=E(R/P). Then E has the structure of an Λp-module
by Corollary of Proposition 2 and by Theorem 2 of I.S. Cohen [2] RP is not a
principal ideal domain therefore there exists an ideal A of RP such that A is
not principal. Then EA has D.C.C. and is not a direct sum of cocyclic R-
modules by Theorem 1 and Corollary of Proposition 7. This is a contradiction.
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